
Uniqueness theorems for Korenblum type spaces
Alexander Borichev

(joint work with Yuri Lyubarskii)

Given a topological space X of analytic functions in the unit disc D and a class E
of subsets E of D, we call a non-decreasing positive function M : [0, 1)→ (0,∞) a
minorant for the pair (X, E) and write M ∈M(X, E) if

f ∈ X, E ∈ E ,
log |f(z)| ≤ −M(|z|), z ∈ E, (1)

imply that f = 0.
Clearly, M(X, E) 6= ∅ implies that E ⊂ U(X), where U(X) is the family of the

uniqueness subsets E for the space X: E ∈ U(X) if and only if

f ∈ X, f
∣∣E = 0 =⇒ f = 0.

Suppose that H∞ ⊂ X ⊂ A(λ), for some λ, where

A(λ) =
{
f ∈ Hol(D) : sup

z∈D
|f(z)|/λ(|z|) <∞

}
.

Then a simple argument shows that the class M(X,U(X)) is empty. The reason
is that the class U(X) contains subsets E ⊂ D which are not massive enough: E
may be the union of clusters Ej of nearby points in such a way that the estimate
(1) on x ∈ Ej implies a similar estimate (with M replaced by M/2) on the whole
Ej . That is why we need to consider only elements in the family U(X) which
are sufficiently separated. In [3], the authors deal with the case X = H∞, and
consider the class SU(H∞) of hyperbolically separated subsets E of D that are
uniqueness subsets for H∞. They prove that

M ∈M(H∞,SU(H∞)) ⇐⇒
∫

0

dt

tM(1− t)
<∞.

Here we work with the scale of spaces

Ar
s =

{
f ∈ Hol(D) : log |f(z)| ≤ r logs 1

1− |z|
+ cf

}
, r, s > 0,

As =
⋃

r<∞
Ar

s.

We have H∞ ⊂ As ⊂ A1 ⊂ At, 0 < s < 1 < t, where A1 is the so called
Korenblum space,

A1 =
{
f ∈ Hol(D) : |f(z)| ≤ cf

(1− |z|)c′
f

}
.

The uniqueness subsets for As are described by Korenblum [2] (1975, s = 1)
and Seip [5] (1995, s > 0). For 0 < s < 1, we define SU(As) as the class of
hyperbolically separated subsets E of D that are uniqueness subsets for As.
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Theorem 1. For regular M , 0 < s < 1,

M ∈M(As,SU(As)) ⇐⇒
∫

0

dt

tM(1− t)
<∞.

For s = 1, no hyperbolically separated subset of D belongs to U(A1). The results
of Korenblum and Seip do not give a complete description of U(Ar

1), r < ∞.
However, there is only a small gap between necessary conditions and sufficient
conditions. In particular, it is known that every U(Ar

1) contains hyperbolically
separated subsets. We define SU(A1) as the class of E ⊂ D such that for every r
there exists a hyperbolically separated subset Er of E such that Er ∈ U(Ar

1).

Theorem 2. For regular M ,

M ∈M(A1,SU(A1)) ⇐⇒
∫

0

dt

tM(1− t)
<∞.

For s > 1, we introduce

ρs(z) = (1− |z|)
(

log
1

1− |z|

)(1−s)/2

,

and say that E is s-separated if for some ε > 0,

|λ− µ| ≥ ερs(λ), λ, µ ∈ E, λ 6= µ.

We define SU(As), s > 1, as the class of E ⊂ D such that for every r there exists
an s-separated subset Er of E such that Er ∈ U(Ar

s).

Theorem 3. For regular M , s > 1,

M ∈M(As,SU(As)) ⇐⇒
∫

0

(
log

1
t

)s−1 dt

tM(1− t)
<∞.

Remarks. 1. In Theorems 1–3, when the integrals diverge, we can find E ∈
SU(As) and f ∈ H∞ \ {0} satisfying the estimate (1).

2. Our result should be compared to that by Pau and Thomas [4] concerning
M(H∞, E), for some special classes E ⊂ SU(H∞).

3. By duality, using a method of Havinson [5], we can deduce from Theorem 2
a result on approximation by simple fractions with restrictions on coefficients in
the space C∞A = C∞(T) ∩H∞.

Question. How to get analogous results for the Bergman space (no description
of uniqueness subsets is known yet), for the spaces Ar

s, 0 < s < 1?
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