Groebner bases (standard bases)

Alexey Muranov

 $10\mathrm{th}$ April 2025

1 Preliminaries and definition

Let (M, \prec) be a totally ordered monoid whose (strict) order relation (\prec) satisfies the following two conditions:

- (1) (\prec) is a well-order, that is, every nonempty subset of M has the least element with respect to (\prec) ,
- (2) (\prec) is compatible with the multiplication, that is, if $x, y, z \in M$ and $x \prec y$, then $xz \prec yz$ and $zx \prec zy$.

It follows from these two conditions that the identity element $1 \in M$ is the least element of $M: 1 \leq x$ for every $x \in M$. Indeed, let x be the least element of M. Then either x = 1, or $1 \succ x \succ x^2 \succ \cdots$, but the relation $x \succ x^2$ is impossible if x is minimal.

In addition to the total order (\prec) , consider the divisibility preorder (|) on M: "x|y" means that there exist $z, w \in M$ such that y = zxw.

It follows from the stated properties of (\prec) that the divisibility relation (|) is a subrelation (restriction) of (\preceq) . In particular, (|) is a partial order: if x|y and y|x, then x = y. Moreover, it follows that the divisibility relation is a well-founded partial order (that is, every subset of M has an element that is not divisible by any other element of that subset).

In the present note, elements of M shall be called *monomials*, though this is not a standard usage of the term.

Let \mathbf{k} be a field. The goal is to define *Groebner bases* of two-sided ideals of the (associative but not necessarily commutative) unitary ring $\mathbf{k}M$.

Elements of M shall be identified with the corresponding elements of $\mathbf{k}M$ in all contexts where this does not cause confusion.

Notation. For every nontrivial element $p \in \mathbf{k}M$, let $\operatorname{Im}(p)$ denote its *leading monomial*, that is, the greatest element of M in the "monomial decomposition" of p.

Notation. If S is a subset of $\mathbf{k}M$, let Im(S) denote the set of the leading monomials of all the nontrivial elements of S:

$$\lim(S) \stackrel{\text{def}}{=} \{ \lim(p) \mid p \in S, \ p \neq 0 \}.$$

1.1

Proposition. If I is a two-sided ring ideal of $\mathbf{k}M$, then $\mathrm{lm}(I)$ is a two-sided semigroup ideal of M.

Definition. If I is a two-sided ideal of $\mathbf{k}M$, then the elements of $M \setminus \text{lm}(I)$ shall be called *normal* monomials with respect to I.

Remark. The monomials called *normal* in this note are more commonly known as *standard.* Calling them "normal" can be justified by considering a certain *algebraic rewriting system* on $\mathbf{k}M$ associated to I, with respect to which the normal monomials will generate the linear subspace of *normal forms*.

Notation. If I is a two-sided ideal of $\mathbf{k}M$, the linear subspace of $\mathbf{k}M$ spanned by the corresponding normal monomials shall be denoted N(I).

Proposition. If I is a two-sided ideal of $\mathbf{k}M$, then

$$\mathbf{k}M = I \oplus N(I).$$

Proof. It is clear that $I \cap N(I) = \{0\}$.

To prove that $I + N(I) = \mathbf{k}M$, suppose that this is not the case and consider an element $p \in \mathbf{k}M \setminus (I + N(I))$ such that $\operatorname{Im}(p)$ is the least possible. The possibilities that $\operatorname{Im}(p) \in \operatorname{Im}(I)$ or that, otherwise, $\operatorname{Im}(p) \notin \operatorname{Im}(I)$ both lead to a contradiction with the minimality of $\operatorname{Im}(p)$. Indeed, if $\operatorname{Im}(p) \in \operatorname{Im}(I)$, then there exists $q \in p + I$ such that $\operatorname{Im}(q) \prec \operatorname{Im}(p)$, and if $\operatorname{Im}(p) \notin \operatorname{Im}(I)$, then there exists $q \in p + N(I)$ such that $\operatorname{Im}(q) \prec \operatorname{Im}(p)$.

Definition. If I is a two-sided ideal of $\mathbf{k}M$, and p is an element of $\mathbf{k}M$, let the remainder of p modulo I, denoted rem_I(p), be the unique element $r \in N(I)$ such that $p - r \in I$.

Thus,

 $\operatorname{rem}_I \colon \mathbf{k}M \to N(I)$

is the linear projection of $\mathbf{k}M$ onto N(I) such that

 $\operatorname{ker}(\operatorname{rem}_I) = I.$

The notion of a *Groebner basis* of I can be motivated by the problem of computing $\operatorname{rem}_I(p)$ for a given p in practice. The set of all elements of I, as well as the set of all *monic* elements of I, are Groebner bases of I, but using a small finite Groebner basis, if such exists, may be preferable over using an infinite or a large one.

Notation. For any subset S of M, let divmin(S) denote the set of minimal elements of S with respect to the divisibility relation.

For example, $\operatorname{divmin}(M) = \{1\}$.

Since the divisibility order on M is well-founded, every semigroup ideal K of M is generated by $\operatorname{divmin}(K)$ (as a two-sided semigroup ideal).

Proposition. Let I be a two-sided ideal of $\mathbf{k}M$, and G a subset of I such that

divmin $\operatorname{lm}(I) \subset \operatorname{lm}(G)$.

Then G generates I (as a two-sided ideal).

Proof. Suppose, on the contrary, that the two-sided ideal $\langle G \rangle$ generated by G does not contain all elements of I.

Let p be an element of $I \setminus \langle G \rangle$ such that $\operatorname{Im}(p)$ be the least possible with respect to (\prec) . Let g be an element of G such that $\operatorname{Im}(g) | \operatorname{Im}(p)$, and let $x, y \in M$ be such that $\operatorname{Im}(p) = x \operatorname{Im}(g)y$. Let α be the element of k such that the leading *terms* of p and of αxgy be the same, and let $q = p - \alpha xgy$. Then $q \in I \setminus \langle G \rangle$ and $\operatorname{Im}(q) \prec \operatorname{Im}(p)$, in contradiction with the choice of p.

Remark. If I is a two-sided ideal of $\mathbf{k}M$, $G \subset I$, and divmin $\mathrm{Im}(I) \subset \mathrm{Im}(G)$, then there is a subset $G_0 \subset G$ such that divmin $\mathrm{Im}(I) = \mathrm{Im}(G_0)$. This subset G_0 generates I too.

Definition. A *Groebner basis* of a two-sided ideal I of $\mathbf{k}M$ is a subset $G \subset I$ such that

divmin $\operatorname{lm}(I) \subset \operatorname{lm}(G)$.

The reduced Groebner basis of I is the set

 $\{x - \operatorname{rem}_I(x) \mid x \in \operatorname{divmin} \operatorname{lm}(I)\},\$

which is clearly a Groebner basis of I.