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The goal of this note is to state and prove a theorem in Zermelo-Fraenkel set theory
without the Axiom of Choice that allows to easily deduce Tychonoff’s theorem from
the Axiom of Choice and to easily prove that the product of two compacts is compact
without using the Axiom of Choice. (Usually Tychonoff’s theorem and the compactness
of the product of two compacts are proved by quite different arguments.) This theorem
also shows that the Hilbert cube [0, 1]Z is compact without using the Axiom of Choice.
(Another way to see this is to observe that [0, 1]Z is a continuous image of the Cantor
set.)

Apparently this or a very similar result was published in [1].

Definition. A set-theoretic tree is a partially ordered set (T,<) such that for every
element t ∈ T , the set { s ∈ T | s < t } is well-ordered. A branch of a tree (T,<) is a
maximal chaine in the tree. A subtree of a tree (T,<) is an ordered subset (S,<) with
the property that for every s in S and every t in T such that t < s, t is in S.

Note that according to this definition, a tree can be empty or have multiple “roots.”
Probably forest would be a better term. In this note, however, all trees will be nonempty
with a single “root.”

Recall that a basic open set in a Cartesian product
∏

i∈I Xi of topological spaces is a
set of the form

∏
i∈I Ui, where each Ui is a nonempty open subset of Xi and Ui = Xi for

all but finitely many i ∈ I.
The word “collection” will be used to mean “set of sets.”

Theorem (Tychonoff’s theorem without the Axiom of Choice). Let (I,<) be a well-
ordered set1 and (Xi)i∈I be a family of compact topological spaces. Denote X =

∏
i∈I Xi.

Let F be the tree
(∪

i∈I
∏

j<iXj

)
∪ X of functions defined on initial intervals of I

ordered by inclusion. Consider the set of all nonempty subtrees T ⊂ F with the following
property: for every i ∈ I and every f ∈ T ∩

∏
j<iXj , the set { g(i) | g ∈ T, f ⫋ g }

is closed in Xi; suppose that every such tree T has a branch.2 Then X is compact.
Moreover, if all Xi are nonempty, then X is nonempty.

1 The Axiom of Choice implies that every set is well-orderable.
2 The Axiom of Choice in the form of Zorn’s Lemma or Hausdorff Maximal Principle implies easily that

every nonempty tree has a branch.
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Proof. To prove that every open cover of X has a finite subcover, it is enough to prove
that every open cover by basic open sets has a finite subcover.

Let O be a collection of basic open subsets of X such that no finite subcollection of
O covers X. It is enough to prove that O does not cover X.

Let TO be the set of all elements f ∈ F such that the set {x ∈ X | f ⊂ x } is not
covered by any finite subcollection of O. Then TO is a subtree of F . For every i ∈ I and
f ∈ TO ∩

∏
j<iXj , denote

CO(f) = { g(i) | f ⫋ g ∈ TO }.

Step 1. For every i ∈ I and every f ∈ TO ∩
∏

j<iXj , CO(f) is closed in Xi and
nonempty. To prove this, let W be the collection of all open subsets U of Xi such that
there exist a finite subcollection P ⊂ O such that

{x ∈ X | f ⊂ x, x(i) ∈ U } ⊂
∪

P.

Then Xi \ CO(f) =
∪
W and hence CO(f) is closed. It also follow that CO(f) is

nonempty, because otherwise, by compactness of Xi, W would have a finite subcover
for Xi, which would yield a finite subcollection of O that covers {x ∈ X | f ⊂ x } in
contradiction with the fact that f ∈ TO. (Here the compactness of Xi is used similarly
to the usual proof that the product of two compact spaces is compact.) It is left to
show that indeed Xi \ CO(f) =

∪
W. Consider an arbitrary a ∈ Xi \ CO(f) and define

g ∈
∏

j≤iXj by: f ⊂ g and g(i) = a. Then g /∈ TO, and therefore there is a finite
collection P ⊂ O such that

{x ∈ X | f ⊂ x, x(i) = a } = {x ∈ X | g ⊂ x } ⊂
∪

P

and

{x ∈ X | f ⊂ x, x(i) = a } ∩ V ̸= ∅ for every V ∈ P .

Let U be the intersection of the ith projections of all elements of P. Then U is an open
subset of Xi, a ∈ U , and

{x ∈ X | f ⊂ x, x(i) ∈ U } ⊂
∪

P.

Therefore U ∩ CO(f) = ∅ and a ∈ U ∈ W .
Step 2. Every branch of TO has the greatest element. To prove this, suppose that B

is a branch of TO without the greatest element. Let f =
∪
B. Let i be the least element

of I that is not in the domain of any element of B; then f ∈
∏

j<iXj . Since B has no
greatest element, f /∈ B, and since B is a maximal chain in TO, f /∈ TO. Let P ⊂ O be
a finite collection such that

{x ∈ X | f ⊂ x } ⊂
∪

P.

Let m be the greatest element of the finite set of all j ∈ I such that j < i and for some
V ∈ P , the jth projection of V is not the whole Xj . Let g be any element of B that is
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defined on m. Consider an arbitrary x ∈ X such that g ⊂ x. Let y ∈ X be defined by
f ⊂ y and y(j) = x(j) for every j ≥ i, and choose V ∈ P such that y ∈ V . Then x ∈ V
(because V does not “take into account” the values of x(j) for m < j < i). Thus

{x ∈ X | g ⊂ x } ⊂
∪

P,

in contradicts with the fact that g ∈ TO.
Step 3. Every maximal element of TO is an element of X: an element f ∈ TO \ X

cannot be maximal in TO because CO(f) ̸= ∅.
Now it can be shown that there is f ∈ X such that f /∈

∪
O. Indeed, according to

the hypotheses, TO has a branch B. Let f be the greatest element of B. Then f is a
maximal element of TO. Therefore f ∈ X. Therefore the set {f} = {x ∈ X | f ⊂ x }
is not covered by any finite subcollection of O, and hence f /∈

∪
O. By the choice of O,

the compactness of X is thus proved.
Suppose now that all Xi are nonempty. Then F is nonempty, and, by one of the

assumptions, it has a branch. The union of this branch is an element of X, thus X is
nonempty.

Corollary (without the Axiom of Choice). The Cartesian product of a finite family of
compact topological spaces is compact.
Corollary (without the Axiom of Choice). Let I be a well-orderable set and (Xi)i∈I a
family of compact topological spaces. Suppose that the Cartesian product of all nonempty
closed subsets of all Xi is nonempty:∏

{C | C is nonempty and closed in Xi for some i ∈ I } ̸= ∅.

Then
∏

i∈I Xi is compact.
Outline of a proof. Let < be a well-order relation on I. Denote X =

∏
i∈I Xi. Let F be

the tree
(∪

i∈I
∏

j<iXj

)
∪X ordered by inclusion. To apply the theorem, it is enough

to verify that if T is a nonempty subtree of F such that for every i ∈ I and every
f ∈ T ∩

∏
j<iXj , the set { g(i) | g ∈ T, f ⫋ g } is closed in Xi, then T has a branch.

Let

e ∈
∏

{C | C is nonempty and closed in Xi for some i ∈ I }

be a “choice function.” Let Be be the minimal tree among all subtrees S of T with the
property that for every i ∈ I and every f ∈ S ∩

∏
j<iXj ,

e({ g(i) | g ∈ T, f ⫋ g }) ∈ { g(i) | g ∈ S, f ⫋ g }

unless

{ g(i) | g ∈ T, f ⫋ g } = ∅.

Such subtrees of T exist because T itself is such, and the minimal such subtree is the
intersection of all such subtrees. It can be shown that Be is a branch by assuming that it
is not, considering the minimal i ∈ I where it “branches,” and arriving at a contradiction
with its minimality.
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Example. The Hilbert cube [0, 1]Z is compact independently of the Axiom of Choice,
because the product of all nonempty closed subsets of [0, 1] contains, for example, the
function min that to every nonempty closed subset of [0, 1] associate its minimal element.

Tichonoff’s theorem is an easy corollary of the Alexander subbase theorem (in the
presence of the Axiom of Choice):

Theorem (Alexander subbase theorem). If a topological space X has a subbase such that
every cover of X by elements of this subbase has a finite subcover, then X is compact.

It remains to be seen how the hypotheses of the Alexander subbase theorem could be
modified to eliminate the need for the Axiom of Choice in its proof.
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