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Introduction
On admet la connaissance par le lecteur des éléments de la géométrie euclidienne

classique (aussi dite la géométrie synthétique).
En géométrie euclidienne classique, les objets géométriques de base sont les points

et les droites, qui se trouvent dans un plan euclidien ou dans un espace euclidien 3-
dimensionnel. On peut étudier les positions relatives des points et des droites, évaluer
les distances entre des points et les angles entre des droites ou demi-droites (rayons). En
utilisant les points, les droites, et les notions de distance et d’angle, on peut définir des
figures géométriques, telles que triangles et cercles.

En géométrie classique, les calculs au sens algébrique sont d’habitude limités aux
calculs des longueurs et des angles, et on raisonne avec des relations entre des objets
plutôt qu’avec des opérations sur des objets.

En revanche, en géométrie analytique, on utilise plutôt des opérations que des relations,
et on calcule avec des coordonnées ainsi qu’avec des vecteurs.

Les droites, les plans, et les figures géométriques en géométrie analytique son souvent
confondus avec les ensembles de leurs points. Des ensembles de vecteurs jouent également
un rôle important en géométrie analytique.

Dans la suite, on va parler des points, des droites, et des autres objets géométrique
situés sur/dans une même droite, un même plan ou un même espace tridimensionnel.
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I. Espaces affines et espaces vectoriels
Commençons par étudier de manière analytique la partie de la géométrie classique

qui ne tient pas compte des longueurs ni des angles. Les objets élémentaires de l’étude
seront les points et les vecteurs géométriques libres.

I.1. Qu’est-ce que c’est, un vecteur géométrique libre ?
Notation. Si A et B sont deux points distincts, on va noter « (AB) » la droite qui passe
par A et B, et on va noter « [AB] » le segment de la droite (AB) entre A et B. On peut
aussi considérer le segment « dégénéré » réduit au point A tout seul et noté « [AA] ».

Définition. On définit les vecteurs géométriques liés ainsi :

(1) à tout couple de points (A,B), on associe un vecteur géométrique lié, noté «
#       »

[AB] » ;

(2) si A, B, C, D sont quatre points, on admet que le vecteur géométrique lié
#       »

[CD]

est le même que
#       »

[AB] si et seulement si C = A et D = B :
#       »

[CD] =
#       »

[AB] ⇔ (C,D) = (A,B) ;

(3) tout vecteur géométrique lié est de la forme
#       »

[AB], où A et B sont deux points.

Les vecteurs géométriques liés sont faciles à définir, mais on ne va pas s’en servir car
ils sont moins pratiques à travailler avec que les vecteurs géométriques libres qu’on va
définir et étudier dans la suite. Afin de pouvoir définir les vecteurs géométriques libres,
on introduit la relation d’équipollence entre des couples de points.

Définition. La relation d’équipollence (≏) entre deux couples de points (A,B) et (C,D)
est définie par l’équivalence suivante :

(A,B) ≏ (C,D) ⇔ le milieu de [BC] coïncide avec le milieu de [DA].

Notons que, d’après cette définition,

(A,B) ≏ (C,D) ⇔ (B,A) ≏ (D,C)

⇔ (A,C) ≏ (B,D) ⇔ (C,A) ≏ (D,B).

Proposition. Soient A, B, C, D quatre points tels que (A,B) ≏ (C,D).

(1) Si A ̸= B, alors C ̸= D et les droites (AB) et (CD) sont parallèles ou confondues.
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3 I.1. Qu’est-ce que c’est, un vecteur géométrique libre ?

(2) Si A ̸= C, alors B ≠ D et les droites (AC) et (BD) sont parallèles ou confondues.

Exercice. Prouver cette proposition.

Les trois propriétés suivantes de la relation (≏) sont d’une importance particulière
pour la définition des vecteurs géométriques libres :

(1) si (A,B) ≏ (C,D) et (C,D) ≏ (E,F ), alors (A,B) ≏ (E,F ),

(2) (A,B) ≏ (A,B),

(3) si (A,B) ≏ (C,D), alors (C,D) ≏ (A,B).

La propriété (1) est dite la transitivité de (≏), la propriété (2) est dite la réflexivité
de (≏), et la propriété (3) est dite la symétrie de (≏).

La réflexivité et la symétrie de (≏) sont presque évidentes, mais pas la transitivité.
Pour démontrer que (≏) est transitive (la propriété (1)), on peut utiliser le lemme
suivant.

Lemme. Soient A, B, C, D quatre points quelconques, et soient MAB le milieu de [AB],
MBC le milieu de [BC], MCD le milieu de [CD], et MDA le milieu de [DA]. Alors le
milieu de [MABMCD] coïncide avec le milieu de [MBCMDA].

Admettons ce lemme sans démonstration et utilisons le pour en déduire la transitivité
de (≏).

Proposition. Soient A, B, C, D, E, F six points tels que (A,B) ≏ (C,D) et (C,D) ≏
(E,F ). Alors (A,B) ≏ (E,F ).

Démonstration. Posons G le milieu de [BC], lequel coïncide avec le milieu de [DA], et
H le milieu de [DE], lequel coïncide avec le milieu de [FC]. Posons K le milieu de [GH].

Posons MDC le milieu de [DC], MBE le milieu de [BE], et MFA le milieu de [FA]. Le
but est de prouver que MBE = MFA.

En appliquant le lemme précédent aux quatre points B, E, D, C, on trouve que le
milieu de [MBEMDC ] coïncide avec le milieu de [HG], c’est-à-dire, avec K.

En appliquant le lemme précédent aux quatre points F , A, D, C, on trouve que le
milieu de [MFAMDC ] coïncide avec le milieu de [GH], c’est-à-dire, avec K.

Ainsi, les milieux de [MBEMDC ] et de [MFAMDC ] coïncident. D’où, MBE = MFA.

Le lemme suivant est à la fois utile et facile à démontrer.

Lemme. (1) Si A, B, C sont trois points tels que (A,B) ≏ (A,C), alors B = C.

(2) Si A, B, C sont trois points tels que (A,C) ≏ (B,C), alors A = B.

Ayant étudié la relation d’équipollence (≏), on s’en sert maintenant pour définir les
vecteurs géométriques libres.

Définition. On définit les vecteurs géométriques libres ainsi :
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(1) à tout couple de points (A,B), on associe un vecteur géométrique libre, noté
« #    »

AB » ;

(2) si A, B, C, D sont quatre points, on admet que le vecteur géométrique libre #    »

CD
est le même que #    »

AB si et seulement si (C,D) ≏ (A,B) :

#    »

CD =
#    »

AB ⇔ (C,D) ≏ (A,B) ;

(3) tout vecteur géométrique libre est de la forme #    »

AB, où A et B sont deux points.

Exercice. Soient A, B, O trois points. Montrer que O est le milieu de [AB] si et
seulement si #    »

AO =
#    »

OB.

Définition. Pour deux points A et B, le vecteur géométrique libre #    »

AB peut être noté
«B − A» et peut être dit la différence de B et A :

B − A
déf
=

#    »

AB.

Notation. Si E est une droite, un plan ou un espace, alors l’ensemble des vecteurs géo-
métriques libres de E est parfois noté « #»

E ».

Lorsque il n’y a pas d’ambiguïté, on va appeler les vecteurs géométriques libres les
vecteurs tout court.

I.2. Vecteur nul, vecteur opposé
Exercice. Soient A et B deux points d’une même droite, d’un même plan ou d’un même
espace. Montrer que #   »

AA =
#    »

BB.

Définition. Si E est une droite, un plan ou un espace, le vecteur nul de E est le vecteur
#   »

AA, où A est un point arbitraire de E.

Notation. Le vecteur nul d’une droite, d’un plan ou d’un espace E peut être noté « 0⃗E »,
ou «0E », ou tout simplement « 0⃗ », ou «0 ».

Exercice. Soient A, B, C, D quatre points tels que #    »

AB =
#    »

CD. Montrer que #    »

BA =
#    »

DC.

Définition. Le vecteur opposé d’un vecteur #    »

AB est le vecteur #    »

BA.

Ainsi, en particulier, l’opposé de 0⃗ est 0⃗.

Exercice. Soit x un vecteur qui est son propre opposé. Montrer que x = 0⃗.
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5 I.3. Translation d’un point par un vecteur

I.3. Translation d’un point par un vecteur
Définition. Si A et B sont deux points et que x =

#    »

AB, alors le translaté de A par le
vecteur x, noté «A+ x», est B :

A+
#    »

AB
déf
= B.

Le translaté d’un point A par un vecteur x peut aussi être appelé la somme de A et x.

Ainsi, si A et B sont deux points, alors

A+ (B − A) = A+
#    »

AB = B.

Si A est un point et x est un vecteur, alors on peut montrer que

(A+ x)− A =
#                   »

A(A+ x) = x.

Exercice. Montrer le.

Si x est un vecteur, l’opération qui à tout point associe son translaté par x est dite
la translation par le vecteur x, ou translation de vecteur x.

Définition. Si A et B sont deux points et que x =
#    »

BA, alors le translaté inverse de A
par le vecteur x, noté «A− x», est B :

A− #    »

BA
déf
= B.

Le translaté inverse d’un point A par un vecteur x peut aussi être appelé la différence
de A et x.

Ainsi, si A et B sont deux points, alors

A− (A− B) = A− #    »

BA = B.

Si A est un point et x est un vecteur, alors on peut montrer que

A− (A− x) =
#                   »

(A− x)A = x.

Exercice. Montrer le.

Si x est un vecteur, l’opération qui à tout point associe son translaté inverse par x
est dite la translation inverse par le vecteur x, ou translation inverse de vecteur x.

Les deux identités suivantes sont satisfaites pour tout point A et pour tout vecteur x :

(1) (A+ x)− x = A,

(2) (A− x) + x = A.

5
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I.4. Addition et soustraction de vecteurs
D’après la définition des translatés, quels que soient trois points A, B, C, on a :

A+
#    »

AB +
#    »

BC = B +
#    »

BC = C = A+
#    »

AC.

Cette observation suggère qu’il est naturel de définir l’opération d’addition (+) des
vecteurs de telle manière que pour tous points A, B, C, on ait l’égalité :

#    »

AB +
#    »

BC =
#    »

AC.

Pour voir si on peut imposer cette identité comme la définition de l’addition de vecteurs,
il suffit de vérifier si pour tous points A1, A2, B1, B2, C1, C2 tels que #        »

A1B1 =
#        »

A2B2 et
#        »

B1C1 =
#        »

B2C2, on a #        »

A1C1 =
#        »

A2C2. D’après le lemme suivant, c’est le cas.

Lemme. Soient six points A1, A2, B1, B2, C1, C2 tels que (A1, B1) ≏ (A2, B2) et
(B1, C1) ≏ (B2, C2). Alors (A1, C1) ≏ (A2, C2).

Démonstration. Comme (A1, B1) ≏ (A2, B2), on en déduit que (A1, A2) ≏ (B1, B2).
Comme (B1, C1) ≏ (B2, C2), on en déduit que (B1, B2) ≏ (C1, C2). Ainsi, (A1, A2) ≏
(C1, C2). D’où, (A1, C1) ≏ (A2, C2).

Définition. Si A, B, C sont trois points, x =
#    »

AB et y =
#    »

BC, alors la somme des
vecteurs x et y, notée «x+ y », est #    »

AC :
#    »

AB +
#    »

BC
déf
=

#    »

AC.

Exercice. Montrer, en utilisant le dernier lemme, que cette définition est correcte (au
sens d’être cohérente). Vérifier en plus qu’elle est complète, c’est-à-dire, qu’elle définit
la somme de deux n’importe quels vecteurs.

Voici les trois identités les plus importantes satisfaites par l’opération d’addition des
vecteurs :
(1) x+ (y + z) = (x+ y) + z,

(2) x+ 0⃗ = x = 0⃗+ x,

(3) y + x = x+ y.

Exercice. Vérifier ou observer ces identités sur un dessin.

Proposition. Soient x et y deux vecteurs d’une même droite, d’un même plan ou d’un
même espace E. Alors x et y sont opposés l’un de l’autre si et seulement si x+ y = 0⃗E.

Exercice. Prouver cette proposition.

Définition. L’opération de soustraction des vecteurs est définie par l’équivalence sui-
vante :

y − x = z ⇔ y = z + x.

6
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7 I.5. Multiplication et division de vecteurs par des scalaires

Une autre façon de définir la soustraction des vecteurs est par les deux identités
suivantes :
(1) (x+ y)− y = x,

(2) (x− y) + y = x.

En fait, on peut montrer que n’importe quelle de ces deux identités suffit toute seule.
Notation. L’expression «+x» veut dire 0⃗+x (= x). L’expression «−x» veut dire 0⃗−x.

Ainsi, −x est le vecteur opposé de x (et x est le vecteur opposé de −x).

I.5. Multiplication et division de vecteurs par des
scalaires

Dans le contexte du calcul vectoriel, on appelle scalaires les nombres par lesquels les
vecteurs peuvent être multipliés.

Définition. (1) Si n est un nombre naturel et x est un vecteur, alors le produit nx
est défini par la règle :

nx
déf
= 0⃗ + x+ · · ·+ x︸ ︷︷ ︸

n fois

.

(2) Si m et n sont naturels, x est un vecteur, et a = n − m, alors le produit ax est
défini par la règle :

(n−m)x
déf
= nx−mx.

(3) Si a est un nombre entier non nul et x est un vecteur, alors le quotient x/a est
défini par l’équation :

a
x

a
= x.

(4) Si a est un entier non nul, b est un entier, x est un vecteur, et q = b/a, alors le
produit qx est défini par la règle :

b

a
x

déf
=

bx

a
= b

x

a
.

(5) Si α est un nombre réel et x est un vecteur, alors le produit αx est défini par la
condition :

pour tous nombres rationnels p et q tels que p ⩽ α ⩽ q, si O, A, P ,
Q sont quatre points tels que #    »

OA = αx, #    »

OP = px, #    »

OQ = qx, alors le
point A se trouve sur le segment [PQ].

7
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(6) Si α est un nombre réel non nul et x est un vecteur, alors le quotient x/α est défini
par l’équation :

α
x

α
= x.

Notation. Le produit d’un vecteur x et d’un nombre α peut être noté «αx» ou «xα ».
On va admettre sans démonstration que les définitions données ci-dessus de la multi-

plication d’un vecteur par un réel et de la division d’un vecteur par un réel non nul sont
correctes et complètes. Cela implique en particulière qu’on admet que le produit d’un
vecteur non nul avec un réel non nul est un vecteur non nul : pour tout vecteur x ̸= 0⃗
et pour tout réel α ̸= 0, on a que αx ̸= 0⃗.

Les identités suivantes sont satisfaites :

(1) (βα)x = β(αx),

(2) 1x = x,

(3) (α + β)x = αx+ βx,

(4) (α− β)x = αx− βx,

(5) 0x = 0⃗,

(6) α(x+ y) = αx+ αy,

(7) α(x− y) = αx− αy,

(8) α0⃗ = 0⃗.

Définition. Si x est un vecteur non nul, α est un nombre réel, et y = αx, alors
définissons le quotient y/x comme α :

αx

x
déf
= α (si x ̸= 0⃗).

Remarque. L’opération de division d’un vecteur par un autre est peu courante et rare-
ment utilisée en pratique.

I.6. Axiomes et propriétés d’un espace vectoriel abstrait
Les vecteurs géométriques libres d’une droite, d’un plan ou d’un espace forment ce

qui s’appelle un espace vectoriel (réel).

Définition. Un espace vectoriel réel1 est un ensemble V muni :

(1) d’une opération d’addition, qui à deux éléments x et y de V associe leur somme
x+ y ∈ V,

(2) d’un élément nul 0⃗ ∈ V,

(3) d’une opération de soustraction, qui à deux éléments x et y de V associe leur
différence x− y ∈ V,

(4) d’une operation de multiplication par des nombres réel, qui à un élément x de V
et à un nombre réel α associe un élément αx ∈ V (aussi noté «xα »),

tel que les identités suivantes soient satisfaites, pour tous x,y, z ∈ V et α, β ∈ R :

8
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9 I.6. Axiomes et propriétés d’un espace vectoriel abstrait

(1) x+ (y + z) = (x+ y) + z,

(2) x+ 0⃗ = x = 0⃗+ x,

(3) x+ (y − x) = y = (y − x) + x,

(4) y + x = x+ y,

(5) (βα)x = β(αx),

(6) 1x = x,

(7) (α + β)x = αx+ βx,

(8) α(x+ y) = αx+ αy.

Les éléments d’un espace vectoriel sont dits vecteurs.

Les 8 propriétés qui font partie de la définition d’un espace vectoriel réel (abstrait)
sont dites axiomes.2 Lorsque on considère un espace vectoriel réel abstrait, on admet
que les axiomes soient satisfaits, car ils font partie de la définition.

Les vecteurs géométriques libres d’une droite, d’un plan ou d’un espace forment un
exemple « concret » d’un espace vectoriel réel abstrait. (Pour le montrer, on doit vérifier
que les 8 axiomes sont satisfaits.)

Un autre exemple « concrete » d’un espace vectoriel réel est l’ensemble des nombres
réels R. Il est en effet facile de vérifier que l’ensemble R muni de ses opérations d’addition
et de soustraction, de son élément 0, et de l’opération de multiplication des réels par des
réels, satisfait les 8 axiomes.

Parmi d’autres exemples courants des espaces vectoriels réels il y a :

(1) l’ensemble R2 des couples de réels, l’ensemble R3 des triples de réels, ainsi que les
ensembles R4, R5, R6, et ainsi de suite.

(2) l’ensemble C des nombres complexes,

(3) l’ensemble R[X] des polynômes à coefficients réels en une indéterminée X.

Plus précisément, pour chacun de ces ensembles, si on le munira des opérations d’addition
et de soustraction, de l’élément nul, et de l’opération de multiplication par des réels
d’une manière « naturelle », on pourra montrer que les 8 axiomes d’un espace vectoriel
réel seront satisfaits.

À partir des 8 axiomes d’un espace vectoriel, on peut déduire d’autres propriétés, dont
les suivantes :

(1) x− x = 0⃗,

(2) x− y = x+ (0⃗− y),

(3) (x+ y)− y = x,

(4) (x+ y)− z = x+ (y − z),

(5) 0x = 0⃗,

(6) (α− β)x = αx− βx,

(7) α0⃗ = 0⃗,

(8) α(x− y) = αx− αy.
1 De la même manière on peut définir les espaces vectoriels rationnels ou les espaces vectoriels complexes.

En fait, pour le faire, il suffit de remplacer dans cette définition toute mention des nombres réels par
une mention appropriée des rationnels ou des complexes (remplacer «α, β ∈ R » par «α, β ∈ Q » ou
«α, β ∈ C »).

2 En général, lorsque on définit une structure algébrique abstraite, les propriétés qui font partie de sa
définition sont dites axiomes.

9
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En effet :

x− x
(2)
= (x− x) + 0⃗

(3)
= (x− x) + (x+ (0⃗− x))

(1)
= ((x− x) + x) + (0⃗− x)

(3)
= x+ (0⃗− x)

(3)
= 0⃗,

x− y
(2)
= (x− y) + 0⃗

(3)
= (x− y) + (y + (0⃗− y))

(1)
= ((x− y) + y) + (0⃗− y)

(3)
= x+ (0⃗− y),

(x+ y)− y
(2)
= ((x+ y)− y) + 0⃗

(3)
= ((x+ y)− y) + (y + (0⃗− y))

(1)
= (((x+ y)− y) + y) + (0⃗− y)

(3)
= (x+ y) + (0⃗− y)

(1)
= x+ (y + (0⃗− y))

(3)
= x+ 0⃗

(2)
= x,

(x+ y)− z
(2)
= ((x+ y)− z) + 0⃗

(3)
= ((x+ y)− z) + (z + (0⃗− z))

(1)
= (((x+ y)− z) + z) + (0⃗− z)

(3)
= (x+ y) + (0⃗− z)

(1)
= x+ (y + (0⃗− z))

(3)
= x+ (((y − z) + z) + (0⃗− z))

(1)
= x+ ((y − z) + (z + (0⃗− z)))

(3)
= x+ ((y − z) + 0⃗)

(2)
= x+ (y − z),

0x
(2)
= 0x+ 0⃗

(3)
= 0x+ (0x+ (0⃗− 0x))

(1)
= (0x+ 0x) + (0⃗− 0x)

(7)
= (0 + 0)x+ (0⃗− 0x) = 0x+ (0⃗− 0x)

(3)
= 0⃗,

10
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(α− β)x
(2)
= (α− β)x+ 0⃗

(3)
= (α− β)x+ (βx+ (0⃗− βx))

(1)
= ((α− β)x+ βx) + (0⃗− βx)

(7)
= ((α− β) + β)x+ (0⃗− βx) = αx+ (0⃗− βx) = αx− βx,

α0⃗
(2)
= α0⃗+ 0⃗

(3)
= α0⃗+ (α0⃗+ (0⃗− α0⃗))

(1)
= (α0⃗+ α0⃗) + (0⃗− α0⃗)

(8)
= α(0⃗+ 0⃗) + (0⃗− α0⃗)

(2)
= α0⃗+ (0⃗− α0⃗)

(3)
= 0⃗,

α(x− y)
(2)
= α(x− y) + 0⃗

(3)
= α(x− y) + (αy + (0⃗− αy))

(1)
= (α(x− y) + αy) + (0⃗− αy)

(8)
= α((x− y) + y) + (0⃗− αy)

(3)
= αx+ (0⃗− αy) = αx− αy.

I.7. Espaces vectoriels Rn

Rappelons nous qu’on note «R» l’ensemble des nombres réels.

Notation. Si n est un nombre naturel et X est un ensemble (de nombre, ou de points, ou
d’autres objets mathématiques), alors on note «Xn » l’ensemble des n-uples d’éléments
de X.

En particulier, Nn est l’ensemble des n-uples de nombres naturels, Zn est l’ensemble
des n-uples d’entiers, Qn est l’ensemble des n-uples de rationnels, et Rn est l’ensemble
des n-uples de réels.

Ainsi, R2 est l’ensemble des couples de réels, R3 est l’ensemble des triples de réels, R4

est l’ensemble des quadruples de réels, et ainsi de suite. L’ensemble R0 ne contient qu’un
seul élément – le 0-uple (). On va éviter de parler de R0 pour des raisons pédagogiques,
car à première vue ce cas peut paraître peu intuitif et différent des autres.

Pour tout nombre naturel non nul n, on va doter Rn d’une structure d’un espace
vectoriel réel. Pour cela il suffit de définir les opérations d’addition et de soustraction,
l’élément nul, et l’opération de multiplication par de réels de manière qu’ils satisfont les
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8 axiomes. On les définit ainsi :

(α1, . . . , αn) + (β1, . . . , βn)
déf
= (α1 + β1, . . . , αn + βn),

(α1, . . . , αn)− (β1, . . . , βn)
déf
= (α1 − β1, . . . , αn − βn),

0⃗
déf
= (0, . . . , 0),

β(α1, . . . , αn)
déf
= (βα1, . . . , βαn).

(Ici αi, βi, β sont des réels.)

Exemples.

(1, 2) + (3, 4) = (4, 6) = 2(2, 3),

(1, 2)− (3, 4) = (−2, −2) = 2(−1, −1) = (−2)(1, 1).

Exercice. Vérifier que les opérations définies ci-dessus satisfont les 8 axiomes d’un
espace vectoriel réel.

Parfois les n-uples de réels sont écrits en colonne,3 par exemple :

α1
...
αn

 +


β1
...
βn

 =


α1 + β1

...
αn + βn

, β


α1
...
αn

 =


βα1

...
βαn

.

I.8. Axiomes et propriétés d’un espace affine abstrait
Les points d’une droite, d’un plan ou d’un espace forment ce qui s’appelle un espace

affine réel, lorsque on prend en compte les opérations de translation par tous les vecteurs
libres.

Définition. Soit V un espace vectoriel. Un espace affine de direction V est un ensemble
E muni :

(1) d’une opération qui à deux éléments A et B de E associe un élément #    »

AB de V,

(2) d’une opération qui à un élément x de V et à un élément A de E associe un élément
A+ x de E,

tel que les identités suivantes soient satisfaites, pour tous A,B ∈ E et x,y ∈ V :

(1) A+ (x+ y) = (A+ x) + y,

(2) A+
#    »

AB = B,

(3)
#                   »

A(A+ x) = x.
3 En fait, en calcul matriciel, suivant les conventions établies, il est souvent pratique d’identifier les

éléments de Rn avec des matrices-colonnes.

12
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Les éléments d’un espace affine sont dits points. La direction d’un espace affine est aussi
dite l’espace vectoriel associé à cet espace affine.

On peut interpréter le point écrit «A + x» comme le résultat de la translation du
point A par le vecteur x, et on peut interpréter le vecteur écrit « #    »

AB » comme le vecteur
par lequel il faut translater le point A pour obtenir le point B.

Définition. Pour deux points A et B d’un espace affine, le vecteur #    »

AB peut être noté
«B − A» et peut être dit la différence de B et A :

B − A
déf
=

#    »

AB.

Notation. Lorsque un ensemble E est traité comme un espace affine, son espace vectoriel
associé (sa direction) est parfois noté #»

E .
L’ensemble des poins d’une droite, d’un plan ou d’un espace est un exemple d’un

espace affine, si comme son espace vectoriel associé on prend l’ensemble des vecteurs
géométriques libres de cette droite, ce plan, ou cet espace.

À partir des 3 axiomes d’un espace affine réel et des 8 axiomes d’un espace vectoriel
réel, on peut déduire d’autres propriétés, en particulier les suivantes :

(1) A+ 0⃗ = A,

(2) #   »

AA = 0⃗,

(3) #    »

AB + x =
#                   »

A(B + x),

(4) #    »

AB +
#    »

BC =
#    »

AC.

En effet :

A+ 0⃗
(2)
= (A+

#   »

AA) + 0⃗
(1)
= A+ (

#   »

AA+ 0⃗) = A+
#   »

AA
(2)
= A,

#   »

AA =
#                  »

A(A+ 0⃗)
(3)
= 0⃗,

#    »

AB + x
y

(3)
=

#                                        »

A(A+ (
#    »

AB + x
y

))
(1)
=

#                                        »

A((A+
#    »

AB) + x)
(2)
=

#                   »

A(B + x),

#    »

AB +
#    »

BC
x

(3)
=

#                                             »

A(A+ (
#    »

AB +
#    »

BC
x

))
(1)
=

#                                             »

A((A+
#    »

AB) +
#    »

BC)
(2)
=

#                         »

A(B +
#    »

BC)
(2)
=

#    »

AC.

I.9. Espaces vectoriels vus comme affines
Tout espace vectoriel E peut être vu comme un espace affine. Pour cela on utilise E

comme son propre espace vectoriel associé (donc, #»

E = E), et on définit :

#  »xy
déf
= y − x pour tous x,y ∈ E.

Ainsi, les éléments d’un espace vectoriel E peuvent être traités comme vecteurs ou
comme points, mais l’addition de deux éléments de E donne le même résultat indépen-
damment si on la regarde comme l’addition de deux vecteurs ou comme l’addition d’un
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point et d’un vecteur. Pareil, la soustraction de deux éléments de E donne le même ré-
sultat indépendamment si on la regarde comme la soustraction entre deux vecteurs ou
entre deux points.

Ainsi on munit chaque ensemble Rn d’une structure d’un espace affine, en utilisant
son structure d’espace vectoriel.

Exemple. Si A = (1, 2) et B = (3, 4) sont deux point de l’espace affine R2, alors
#    »

AB = B − A = (2, 2), et c’est un vecteur de l’espace vectoriel R2.

I.10. Ambiguïté de la définition de vecteurs
géométriques libres

SECTION-BROUILLON
Jusqu’ici dans ce chapitre, on parlait de points et de vecteurs d’une droite, d’un plan,

ou d’un espace sans tenir compte qu’une droite peut faire partie d’un plan ou d’un
espace, et qu’un plan peut faire partie d’un espace. Ainsi, on n’a pas encore été exposé
à une certaine ambiguïté de notre définition de vecteurs géométriques libres.

Considérons, par exemple, une droite D dans un plan P. Considérons deux points A
et B dans P qui n’appartiennent pas à D, mais qui se trouvent sur une droite parallèle
à D. Posons nous les questions suivantes :

(1) est-ce que le vecteur #    »

AB est un vecteur de D ?

(2) est-ce qu’il existe deux points A′ et B′ sur D tels que
#      »

A′B′ =
#    »

AB ?

La définition des vecteurs géométriques libres donnée dans la section I.1 sous-entendait
qu’on considérait les points d’une certaine droite, d’un certain plan, ou d’un certain
espace. Si on lit cette définition dans le contexte où on considère les points de la droite
D, la définition ne dit rien au sujet des points A et B, qui ne sont pas des points de D,
et ainsi elle ne permet pas de donner un sens à l’expression « #    »

AB ».
Cependant, on peut appliquer la définition des vecteurs géométriques libres au plan

P, dans quel cas, selon cette définition, #    »

AB est un vecteur géométrique libre de P, et on
peut facilement voir qu’il existe deux points A′ et B′ sur D tels que

#      »

A′B′ =
#    »

AB. Ce qui
implique que #    »

AB est un vecteur de D, alors que ni A, ni B n’appartiennent à D.
On peut donc se demander :

Est-ce que les vecteurs de la droite D sont propres à D, ou est-ce qu’ils font
partie des vecteurs du plan ambiant P ?

Notons, en plus, qu’on peut considérer plusieurs plans différents qui contiennent la même
droite D.

La même ambiguïté concerne la notion d’un vecteur d’un plan ou d’un espace. L’origine
de cette ambiguïté est la définition de vecteurs géométriques libre en termes des points.

14
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Le sens de la définition change si on change le contexte en passant à un plan ou à un
espace ambiant, car on considère alors un ensemble différent de points.4

Remarque. Cette ambiguïté peut être évitée en adoptant la définition axiomatique de
droites, de plans et d’espaces affines, où les vecteurs sont des éléments fondamentaux
qui n’ont pas besoin d’être définis séparément. Il faudra alors préciser que lorsqu’on dit,
par exemple, qu’une droite affine fait partie d’un plan affine, cela signifie que l’ensemble
des points de la droite est inclus dans l’ensemble des points du plan, que l’ensemble des
vecteur de la droite est inclus dans l’ensemble des vecteurs du plan, et que certaines
propriétés concernant ces inclusions sont satisfaites.5

Cependant, cette ambiguïté ne doit pas causer de la confusion en pratique, car le sens
des opérations sur des vecteur ne change pas lorsqu’on change le contexte en passant à
un plan ou à un espace ambiant.

Par exemple, considérons encore une fois une droite D dans un plan P. Alors on peut
démontrer les propositions suivantes :

(1) Soient A, B, C, D quatre points de D. Alors #    »

AB =
#    »

CD dans le contexte de P si
et seulement si #    »

AB =
#    »

CD dans le contexte de D.

(2) Soient A et B deux points de D. Alors #    »

AB dans le contexte de P est nul si et
seulement si #    »

AB dans le contexte de D est nul. (Et c’est si et seulement si A = B.)

(3) Soient A, B, C, D, E, F six points de D. Alors #    »

AB +
#    »

CD =
#    »

EF dans le contexte
de P si et seulement si #    »

AB +
#    »

CD =
#    »

EF dans le contexte de D.

(4) Soient α un nombre réel et A, B, C, D quatre points de D. Alors α #    »

AB =
#    »

CD dans
le contexte de P si et seulement si α #    »

AB =
#    »

CD dans le contexte de D.

Exercice. Essayer de comprendre l’ambiguïté de définition des vecteurs géométriques
libres, et pourquoi cette ambiguïté peut être tolérée.

I.11. Droites dans un plan ou dans un espace affine
SECTION-BROUILLON

Jusqu’ici dans ce chapitre, on parlait de points et de vecteurs d’une droite, d’un plan,
ou d’un espace D sans tenir compte qu’une droite D puisse faire partie d’un plan ou
d’un espace E, et qu’un plan D puisse faire partie d’un espace E. Dans cette section on
va parler de droites dans un plan ou dans un espace.

4 Ce problème sera plus éclatant si on adopte une définition courante de vecteurs géométriques libres en
termes d’ensembles de couples de points. Selon cette définition, le vecteur #    »

AB est l’ensemble de tous
les couples (A′, B′) tels que (A′, B′) ≏ (A,B). Avec cette définition, si A et B sont deux points d’une
droite D qui fait partie d’un plan P, alors le vecteur #    »

AB de D et le vecteur #    »

AB de P sont deux ensembles
différents, dont le premier est inclus dans le second.

5 Il s’agit de définir la notion d’un sous-espace affine.
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Définition. Soit D une droite dans un plan ou dans un espace E. Un vecteur u de E est
dit un vecteur de D si et seulement si il existe deux points A et B de D (pas forcement
distincts) tels que #    »

AB = u.

Un lecteur attentif peut remarquer que la notion d’un vecteur d’une droite est devenue
légèrement ambiguë : est-ce que les vecteurs d’une droite sont propres à cette droite, ou
est-ce qu’ils font partie des vecteurs d’un plan ou d’un espace ambiant ? En plus, il peut
y avoir plusieurs plans qui contiennent une même droite. La même ambiguïté concerne
la notion d’un vecteur d’un plan ou d’un espace. Cependant, en pratique cette ambiguïté
ne doit pas causer de la confusion.

Exercice. Essayer de comprendre l’ambiguïté de la notion d’un vecteur d’une droite ou
d’un plan, et pourquoi cette ambiguïté peut être tolérée.

Considérons un plan ou un espace arbitraire E. On va identifier E avec l’ensemble
de ses points, et on va noter « #»

E » l’ensemble des vecteurs de E (donc, #»

E est l’espace
vectoriel associé à l’espace affine E). On va utiliser les mêmes conventions pour les droites
dans E : si D est une droite dans E, on va identifier D avec l’ensemble des ses points, et
on va noter « #»

D » l’ensemble des vecteurs de D (donc, #»

D est l’espace vectoriel associé à
l’espace affine D). Ainsi, si D est une droite dans E, alors D fait partie de E et #»

D fait
partie de #»

E , ce qui peut être écrit ainsi : D ⊂ E et #»

D ⊂ #»

E . (La formule «X ⊂ Y » veut
dire que l’ensemble X est inclus dans l’ensemble Y .)

Certains auteurs appellent l’ensemble #»

E des vecteurs d’une droite, d’un plan ou d’un
espace E la direction de E.

Proposition. Soient E un plan ou un espace et D une droite dans E. Comme d’habitude,
notons « #»

E » l’ensemble des vecteurs de E et « #»

D » l’ensemble des vecteurs de D. Alors :

(1) si u,v ∈ #»

D, alors u+ v ∈ #»

D,

(2) si u,v ∈ #»

D, alors u− v ∈ #»

D,

(3) 0⃗E = 0⃗D ∈ #»

D,

(4) si α ∈ R et u ∈ #»

D, alors αu ∈ #»

D,

(5) si A,B ∈ D, alors #    »

AB ∈ #»

D,

(6) si u ∈ #»

D et A ∈ D, alors A+u ∈ D.

Proposition. Soient D une droite et u un vecteur non nul de D : u ∈ #»

D, u ̸= 0⃗. Alors
pour tout v ∈ #»

D, il existe un unique α ∈ R tel que αu = v.

Définition. Tout vecteur non nul d’une droite est dit vecteur directeur de cette droite.

Proposition. Soient A et B deux points distincts et C un point arbitraire. Alors C
appartient à la droite (AB) si et seulement si il existe un réel α tel que #    »

AC = α
#    »

AB.
En plus, C appartient au segment [AB] si et seulement si il existe un réel α tel que
#    »

AC = α
#    »

AB et 0 ⩽ α ⩽ 1.

Proposition. Soient A et B deux points distincts et O et C deux points arbitraires.
Alors C appartient à la droite (AB) si et seulement si il existe deux nombres réels α et
β tels que :

16
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(1) α + β = 1,

(2) α
#    »

OA+ β
#    »

OB =
#    »

OC.
En plus, C appartient au segment [AB] si et seulement si il existe deux nombres réels
positifs α et β tels que :
(1) α + β = 1,

(2) α
#    »

OA+ β
#    »

OB =
#    »

OC.
Exercice. Prouver cette proposition.
Proposition. Soient E un plan ou un espace et A et B deux droites dans E. Alors les
énoncés suivants sont équivalents :
(1)

#»

A =
#»

B ,

(2) A et B sont parallèles ou confondus.

I.12. Points alignés, vecteurs colinéaires
Définition. Des points sont dits alignés si et seulement si ils se trouvent sur une même
droite.
Proposition. Si A1, . . . , An sont des points alignés et x est un vecteur, alors les points
A1 + x, . . . , An + x sont alignés aussi.
Exercice. Prouver cette proposition.
Corollaire. Soient A et B deux points et x1, . . . ,xn des vecteurs. Supposons que les
points A+x1, . . . , A+xn sont alignés. Alors les points B +x1, . . . , B +xn sont alignés
aussi.
Définition. Des vecteurs x1, . . . ,xn sont dits colinéaires si et seulement si pour tout
point A, les n+ 1 points A,A+ x1, . . . , A+ xn sont alignés.
Exercice. Soient A et B deux points différents.
(1) Montrer qu’un point C appartient à la droite (AB) si et seulement si les vecteurs

#    »

AB et #    »

AC sont colinéaires.

(2) Montrer qu’un point C appartient à la droite (AB) si et seulement si les vecteurs
#    »

CA et #    »

CB sont colinéaires.
Lemme. Soient x,y1, . . . ,yn des vecteurs avec x non nul. Alors ces n + 1 vecteurs
sont colinéaires si et seulement si il existe des réels α1, . . . , αn tels que yi = αix pour
i = 1, . . . , n.

On va admettre ce lemme sans démonstration.
Exercice. Soient x et y deux vecteurs.
(1) Montrer que si x et y sont colinéaires, alors x+ y et x− y le sont aussi.

(2) Montrer que si x+ y et x− y sont colinéaires, alors x et y le sont aussi.
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I.13. Bases, repères, coordonnées cartésiennes dans un
plan

Théorème. Soient P un plan et a et b deux vecteurs non colinéaires de P (a, b ∈ #»

P).
Alors pour tout vecteur x de P (x ∈ #»

P), il existe un unique couple de nombres réels
(α, β) tel que x = αa+βb. En particulier, si α et β sont deux réels tels que αa+βb = 0⃗,
alors α = β = 0.

On va admettre ce théorème sans démonstration formelle.

Définition. Soient P un plan et #»

P l’ensemble des vecteur de P. Une base de #»

P est un
couple de vecteurs non colinéaire de #»

P . Si (a, b) est une base de #»

P et que x ∈ #»

P , alors
les coordonnées cartésiennes du vecteur x dans la base (a, b) sont l’unique couple de
réels (α, β) tel que x = αa+ βb.

Exercice. Soient P un plan et (a, b) une base de #»

P . Soient x = a + b et y = a − b
deux vecteurs.

(1) Trouver les coordonnées de x et de y dans la base (a, b).

(2) Trouver les coordonnées de x et de y dans la base (b,a).

(3) Montrer que (x,y) est une base de #»

P .

(4) Trouver les coordonnées de a et de b dans la base (x,y).

Notation. Si B = (a, b) est une base de #»

P et x est un élément de #»

P , le couple des
coordonnées de x dans B peut être noté « [x]B » ou « B[x] » ou « [x]B » ; ici on va adopter
la deuxième notation. Ainsi :

B[x] = (α, β) ⇔ x = αa+ βb.

Exemple. Si B = (u,v) est une base et w = 2v − u, alors B[w] = (−1, 2).

Les coordonnées des vecteurs peuvent être écrites en colonne, par exemple :

« B[x] =

αβ
 »

(au lieu de « B[x] = (α, β) »).
Les coordonnées des vecteurs dans une base B respectent les opérations vectorielles :

B[x+ y] = B[x] + B[y],

B[x− y] = B[x]− B[y],

B[0⃗] = (0, 0),

B[αx] = αB[x].
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19 I.14. Représentation paramétrique d’une droite dans un plan

Définition. Soient P un plan et #»

P l’ensemble des vecteur de P. Un repère de P est
composé d’un point de P, qui est appelé son origine, et d’une base de #»

P .
On va identifier le repère composé d’une origine A et d’une base (u,v) au triple

(A,u,v).
Notation. Un repère (A,u,v) peut être noté «Auv ».

Un plan P muni d’un repère est dit un plan cartésien. On dit aussi qu’un repère donné
définit dans P un système de coordonnés cartésiennes. En effet, un repère Auv dans P
permet d’associer à tout point B de P un unique couple de ses coordonnées cartésiennes
(α, β) par l’équation

#    »

AB = αu+ βv.

Définition. Soient P un plan, Auv un repère de P, et B un point de P. Alors les
coordonnées cartésiennes du point B dans le repère Auv sont l’unique couple de réels
(α, β) tel que #    »

AB = αu+ βv.
Ainsi, si P est un plan muni d’un repère Auv, et α et β sont réels, alors le point de

P de coordonnées (α, β) est le point

B = A+ αu+ βv.

I.14. Représentation paramétrique d’une droite dans un
plan

Soient P un plan (affine) et Oab un repère dans P. (Le plan P muni du repère Oab
est donc un plan cartésien.)

Soit D une droite (affine) dans P. Soient A un point de D et u un vecteur directeur
de D. (Autrement dit : A ∈ D, u ∈ #»

D, u ̸= 0⃗.) Soient xA, yA les coordonnées de A
par rapport au repère Oab, et soient xu, yu les coordonnées de u par rapport à la base
(a, b). (Ainsi, #    »

OA = xAa+ yAb et u = xua+ yub.)
Considérons un point indéterminé M dans P de coordonnées cartésiennes x, y par

rapport au repère Oab. (Ainsi, #     »

OM = xa+ yb.) Le point M appartient à la droite D si
et seulement si il existe un nombre réel t tel que

#     »

AM = tu (ou, autrement dit : M = A+ tu).

Or,
#     »

AM = tu ⇔ #    »

AO +
#     »

OM = tu

⇔ #     »

OM =
#    »

OA+ tu

⇔ xa+ yb = (xAa+ yAb) + t(xua+ yub)

⇔ xa+ yb = (xA + xut)a+ (yA + yut)b

⇔
{

x = xA + xut,
y = yA + yut.
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Le système d’équations{
x = xA + xut,
y = yA + yut,

où xA, yA, xu, yu sont des réels connus, x, y sont les coordonnées d’un point indéterminé,
et t est un paramètre réel, est dit une représentation paramétrique de D dans le système
de coordonnées cartésiennes associé au repère Oab.

En général, une représentation paramétrique de D dans le système de coordonnées
donné est un système de deux équations qui expriment les coordonnées x, y d’un point
indéterminé en fonction d’un paramètre t, dont l’ensemble des valeurs admissibles est R
ou un intervalle dans R, de manière que :

(1) pour chaque valeur (admissible) du paramètre t, le point de coordonnées x, y don-
nées par les équations se trouve sur D ;

(2) pour chaque point sur D, il y a une unique valeur (admissible) du paramètre t qui
donne les coordonnées x, y de ce point ;

(3) les valeurs des coordonnées x et y dépendent de la valeur du paramètre t de
manière continue (par exemple, il suffit que les expressions de x et de y en fonction
de t n’utilisent que t, des constantes numériques, et des opérations arithmétiques
élémentaires).

Exemple. Posons u = a−b, et soit A le point de coordonnées (2, 3) par rapport à Oab.
Alors voici une représentation paramétrique par rapport à Oab de la droite passant par
A avec vecteur directeur u :{

x = 2 + t,

y = 3− t,
t ∈ R.

En voici une autre :
x =

t2 + 2t− 1

t
,

y =
1 + 3t− t2

t
,

t ∈ ]0, ∞[ .

Exercice. Vérifier le dernier exemple.

I.15. Équation cartésienne d’une droite dans un plan
Soient P un plan (affine) et Oab un repère dans P. (Le plan P muni du repère Oab

est donc un plan cartésien.)
Soit D une droite (affine) dans P.

20
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21 I.15. Équation cartésienne d’une droite dans un plan

Choisissons un point A sur D, un vecteur directeur u de D, et un vecteur v de P non
colinéaire avec u. (Autrement dit : A ∈ D, u ∈ #»

D, u ̸= 0⃗, v ∈ #»

P , v ̸∈ #»

D.) Ainsi, Au est
un repère de D et Auv est un repère de P.

Soient pO, qO les coordonnées de O par rapport au repère Auv, et soient pa, qa les
coordonnées de a et pb, qb les coordonnées de b par rapport à la base (u,v). (Ainsi,
#    »

AO = pOu+ qOv, a = pau+ qav, et b = pbu+ qbv.)
Considérons un point indéterminé M dans P de coordonnées cartésiennes x, y par

rapport au repère Oab. (Ainsi, #     »

OM = xa+ yb.) Soient s, t les coordonnées cartésiennes
de M par rapport au repère Auv. (Ainsi, #     »

AM = su + tv.) Le point M appartient à la
droite D si et seulement si t = 0, dans quel cas #     »

AM = su.
Or,

#     »

AM =
#    »

AO +
#     »

OM

=
#    »

AO + xa+ yb

= pOu+ qOv + x(pau+ qav) + y(pbu+ qbv)

= (pO + xpa + ypb)u+ (qO + xqa + yqb)v.

D’où, s = pO + xpa + ypb et t = qO + xqa + yqb. Donc, le point M appartient à la droite
D si et seulement si

qO + xqa + yqb = 0.

L’équation

qO + xqa + yqb = 0,

où qO, qa, qb sont des réels connus, et x, y sont les coordonnées d’un point indéterminé, est
dite une équation cartésienne de D dans le système de coordonnées cartésiennes associé
au repère Oab.

En général, une équation cartésienne de D dans le système de coordonnées cartésiennes
donné est une équation avec deux inconnues x, y telle que quel que soit un point de P
de coordonnées x, y, ce point appartient à D si et seulement si ses coordonnées satisfont
l’équation. On dit aussi dans ce cas que l’équation définit la droite dans le système de
coordonnées donné.

Exemple. L’équation

x+ 2y = 3

est une équation cartésienne d’une droite. Cette droite passe par le point de coordonnées
(1, 1). Le vecteur 2a− b est un vecteur directeur de cette droite.

Exercice. Vérifier le dernier exemple.
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Proposition. Soient α, β deux nombres réels pas tous les deux nuls ((α, β) ̸= (0, 0)), et
soit γ un nombre réel arbitraire. Considérons l’équation

αx+ βy = γ, (E)

où x, y sont des inconnues. Alors, quel que soit un repère Oab d’un plan P, l’équation
(E) définit dans P une droite D. En plus, un vecteur appartient à la droite vectorielle #»

D
si et seulement si ses coordonnées x, y dans la base (a, b) satisfont l’équation

αx+ βy = 0. (E0)

Exercice. Prouver cette proposition.

I.16. Déterminant d’un couple de vecteurs dans un plan
par rapport à une base

Soit P un plan vectoriel.

Définition. Soit B = (a, b) une base du plan vectoriel P. À tout couple (u,v) de
vecteurs de P on associe leur déterminant par rapport à B, qui est un nombre réel noté
« detB(u,v) ». L’opération detB est complètement déterminée par les identités suivantes,
où u, v, w sont des vecteurs arbitraires de P, et α est un nombre réel arbitraire :

(1) detB(u+ v, w) = detB(u,w) + detB(v,w) et detB(αu, v) = α detB(u,v)
(l’opération detB est linéaire en premier argument),

(2) detB(u, v +w) = detB(u,v) + detB(u,w) et detB(u, αv) = α detB(u,v)
(l’opération detB est linéaire en deuxième argument),

(3) detB(u,u) = 0
(l’opération detB est alternée, en tant qu’une opération bilinéaire),

(4) detB B = 1.

Proposition. Cette définition est correcte : pour toute base B de P, il existe une unique
opération detB qui à chaque couple de vecteurs de P associe un réel et qui satisfait les
quatre propriétés données. En plus, si B = (a, b) est une base de P, et que

u = xua+ yub, v = xva+ yvb

sont deux vecteurs de P avec B[u] = (xu, yu) et B[v] = (xv, yv), alors

detB(u,v) = xuyv − yuxv.
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23 I.16. Déterminant d’un couple de vecteurs dans un plan par rapport à une base

Esquisse d’une démonstration. Soit B = (a, b) une base de P.
Montrons d’abord l’unicité : admettons qu’une opération detB satisfait les propriétés

données dans la définition, et montrons qu’il n’y en a pas d’autres qui satisferaient ces
propriétés.

Notons d’abord que

detB(a,a) = 0, detB(b, b) = 0, detB(a, b) = 1.

Puis,

0 = detB(a+ b, a+ b) = detB(a,a) + detB(a, b) + detB(b,a) + detB(b, b),

et donc

detB(b,a) = −1.

Soient u et v deux vecteurs arbitraires de P. Soient (xu, yu) les coordonnées de u et
(xv, yv) les coordonnées de v dans la base B :

u = xua+ yub, v = xva+ yvb.

Alors on peut calculer que

detB(u,v) = detB(xua+ yub, xva+ yvb) = xuyv − yuxv.

Par le même calcul, toute opération qui satisfait les propriétés données dans la définition
de « detB(u,v) » doit avoir xuyv − yuxv pour le résultat si elle est appliquée à (u,v), et
donc elle ne peut pas être différente de detB.

On a montré l’unicité, il ne reste qu’à montrer qu’une opération avec les propriétés
données existe. Pour cela il suffit de définir

detB(u,v)
déf
= xuyv − yuxv, où u = xua+ yub, v = xva+ yvb,

et de vérifier que les propriétés désirées sont satisfaites.

L’identité suivante découle des identités données dans la définition de detB :

detB(v,u) = − detB(u,v)

(l’opération detB est antisymétrique, en tant qu’une opération bilinéaire).

Exercice. Démontrer cette identité. Indication : il suffit de vérifier que

0 = detB(u+ v, u+ v) = detB(u,v) + detB(v,u).

Théorème. Quel que soit une base B d’un plan vectoriel P, deux vecteur u et v de P
sont colinéaires si et seulement si detB(u,v) = 0.

23

2025-10-15T18:18

I. Espaces affines et espaces vectoriels 24

Démonstration. Il est facile de vérifier que si u et v sont colinéaires, alors detB(u,v) = 0.
En effet, si v = αu, alors detB(u,v) = detB(u, αu) = α detB(u,u) = 0.

Si u et v ne sont pas colinéaires, alors le couple (u,v) est une base. Soient (pa, qa) les
coordonnées de a et (pb, qb) les coordonnées de b dans la base (u,v) :

a = pau+ qav, b = pbu+ qbv.

Alors on peut calculer :

1 = detB B = detB(a, b) = detB(pau+ qav, pbu+ qbv) = (paqb − qapb) detB(u,v)

=
(
det(u,v) B

)(
detB(u,v)

)
.

D’où, detB(u,v) ̸= 0.

Voici quelques identités remarquables satisfaites pour toutes bases B et C et pour tout
couple de vecteurs F dans P :
(1) (detB C)(detC F) = detB F ,

(2) (detB C)(detC B) = 1,

(3) detB B = 1.

Exercice. Démontrer ces identités.

Application des déterminants à la recherche des équations
cartésiennes des droites dans un plan

Soient P un plan affine et D une droite affine dans P passant par un point A avec un
vecteur directeur u. Alors, quels que soient un point M de P et une base B de #»

P , on a
l’équivalence :

M ∈ D ⇔ #     »

AM et u sont colinéaires ⇔ detB(
#     »

AM, u) = 0.

Si O est un point quelconque, alors

detB(
#     »

AM, u) = detB(
#     »

OM − #    »

OA, u) = detB(
#     »

OM, u)− detB(
#    »

OA, u).

Si R = Oab est un repère de P, soient (xM , yM) les coordonnées de M dans R :
#     »

OM = xMa+ yMb.

Alors

detB(
#     »

OM, u) = detB(xMa+ yMb, u) = xM detB(a,u) + yM detB(b,u).

Ainsi on obtient une équation cartésienne de D dans R :

detB(a,u)x+ detB(b,u)y = detB(
#    »

OA, u).
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Jusqu’à ici on n’a supposé aucun rapport entre la base B le repère R = Oab. Suppo-
sons maintenant que B est la base de R : B = (a, b).

Soient (xA, yA) les coordonnées de A dans R = Oab et (xu, yu) les coordonnées de u
dans B = (a, b) :

#    »

OA = xAa+ yAb et u = xua+ yub.

Alors

detB(a,u) = yu, detB(b,u) = −xu, detB(
#    »

OA, u) = xAyu − yAxu.

D’où une équation cartésienne de D dans R :

yux− xuy = yuxA − xuyA.

Considérons maintenant la droite vectorielle #»

D associée à D. Alors quel que soit un
vecteur v de #»

P , on a l’équivalence :

v ∈ #»

D ⇔ v et u sont colinéaires ⇔ detB(v,u) = 0.

On peut en déduire une équation cartésienne de #»

D dans la base B :

yux− xuy = 0.

I.17. Orientations
Pour concevoir l’idée d’une orientation d’un espace affine, considérons des petites bêtes

affines. Par exemple, on peut travailler avec des mouches affines, qui sont des mouches de
taille d’un point qui habitent un espace affine. (À la place de mouches, on peut travailler
avec des abeilles ou avec des moustiques.)

Considérons d’abord une droite affine et deux mouches qui habitent cette droite.
Admettons que les mouches s’appellent Amélie et Benjamin. Soient A et B deux points
distincts de la droite. Supposons qu’à un certain moment, Amélie se trouve au point A,
et Benjamin – au point B.

Si Amélie et Benjamin tentent d’échanger leurs places sans quitter la droite, elles
seront obligées à se croiser à un certain moment, c’est-à-dire, à passer par un même
point au même moment.

En revanche, si C et D sont n’importe quels deux points distincts de la même droite,
Amélie et Benjamin peuvent se déplacer des points A, B aux points C, D sans se
croiser, tant qu’elles peuvent choisir qui prend quel point (soit Amélie arrive au point C
et Benjamin au point D, soit Benjamin au point C et Amélie au point D).

En fait, si le sens du vecteur #    »

CD est le même que celui du vecteur #    »

AB, et que Amélie
se déplace de A vers C, alors Benjamin peut simultanément se déplacer de B vers D sans
croiser Amélie. Si, au contraire, le sens du vecteur #    »

CD est opposé au sens du vecteur
#    »

AB (et donc le même que le sens du vecteur #    »

BA), et que Amélie se déplace de A vers
D, alors Benjamin peut simultanément se déplacer de B vers C sans croiser Amélie.
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Considérons maintenant un plan affine et trois mouches qui l’habitent. Admettons
que les mouches s’appellent Abraham, Béatrice et Charlemagne. Soient A, B et C trois
points non alignés du plan. Supposons qu’à un certain moment, Abraham se trouve au
point A, Béatrice – au point B, et Charlemagne – au point C.

Si Abraham et Béatrice tentent d’échanger leurs places sans quitter le plan, alors que
Charlemagne se promène un peu dans le plan avant de rentrer au point C, les trois
mouches seront obligées à se trouver alignées à un certain moment, c’est-à-dire, à se
trouver sur une même droite au même moment.

En revanche, si Abraham veut aller au point B, Béatrice veut aller au point C, et
Charlemagne veut aller au point A, elles peuvent le faire sans jamais se trouver alignées.

Considérons enfin un espace affine à trois dimensions et quatre mouches qui l’habitent.
Admettons que les mouches s’appellent Anaïs, Benoît, Caroline et Daniel. Soient A, B,
C et D quatre points non coplanaires de l’espace. Supposons qu’à un certain moment,
Anaïs se trouve au point A, Benoît – au point B, Caroline – au point C, et Daniel – au
point D.

Si Anaïs et Benoît tentent d’échanger leurs places sans quitter l’espace, alors que
Caroline et Daniel se promènent un peu dans l’espace avant de rentrer chacune à sa
place, les quatre mouches seront obligées, à un certain moment, à se trouver sur un
même plan.

En revanche, il est possible, par exemple, pour les quatre mouches de se déplacer
simultanément dans l’espace de manière que :

(1) elles ne se trouvent jamais sur un même plan au même moment,

(2) Anaïs se déplace de A à B, Benoît se déplace de B à A, Caroline se déplace de C
à D, et Daniel se déplace de D à C.

On va maintenant traiter les phénomènes analogiques dans les espaces vectoriels.
Comme c’est un sujet assez avancé, on ne va pas donner toutes le démonstration, ni
toute les définitions exactes. En particulière, on va se servir sans définition de la notion
d’une fonction continue à valeurs dans un espace vectoriel.

Définissons d’abord les orientations d’une droite vectorielle.

Définition. Les orientations d’une droite vectorielle V peuvent être définies ainsi :

(1) tout vecteur non nul de V détermine une orientation de V,

(2) deux vecteurs non nuls a0 et a1 de V déterminent la même orientation de V si
et seulement si il existe une fonction continue a : [0, 1] → V telle que a(0) = a0,
a(1) = a1, et que a(t) ̸= 0⃗ pour tout t ∈ [0, 1].

(3) toute orientation de V est déterminée par un vecteur non nul de V.

On peut démontrer la proposition suivante :

Proposition. Soient V une droite vectorielle et a un vecteur non nul de V. Alors :

26



2025-10-15T18:18

27 I.17. Orientations

(1) l’orientation déterminée par le vecteur −a est différente de celle déterminée par
le vecteur a,

(2) l’orientation déterminée par un n’importe quel vecteur non nul de V est soit la
même que celle déterminée par a, soit la même que celle déterminée par −a.

Autrement dit, toute droite vectorielle admet exactement deux orientations différentes,
et les orientations déterminées par deux vecteurs opposés non nuls sont différentes.

Définition. Les deux orientations différentes d’une droite vectorielle sont dites opposées
l’une de l’autre.

On peut démontrer le théorème suivant :

Théorème. Soient a et b deux vecteurs non nuls d’une droite vectorielle V. Alors :

(1) les orientations déterminées par les vecteurs a et b sont identiques si et seulement
si

b

a
> 0,

(2) les orientations déterminées par les vecteurs a et b sont opposées si et seulement
si

b

a
< 0.

Définition. Une droite vectorielle orientée est une droite vectorielle munie d’un choix
d’une de ses deux orientations. L’orientation choisie est dite positive, et l’autre (l’orien-
tation opposée) est dite négative.

Définition. Une droite affine orientée est une droite affine munie d’un choix d’une des
deux orientations de sa droite vectorielle associée. L’orientation choisie est dite positive,
et l’autre (l’orientation opposée) est dite négative.

Rappelons-nous qu’une base d’une droite vectorielle est composée d’un vecteur non
nul. Ainsi, toute base d’une droite vectorielle détermine une orientation de cette droite.

Définition. Une base d’une droite vectorielle orientée est dite directe si elle détermine
l’orientation positive, et elle est dite indirecte dans le cas contraire, c’est-à-dire, si elle
détermine l’orientation négative.

Rappelons-nous qu’un repère d’une droite affine est composé d’un point (l’origine
du repère) et d’un vecteur non nul (qui constitue une base). Ainsi, tout repère d’une
droite affine détermine une orientation de cette droite (ainsi que de sa droite vectorielle
associée).
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Définition. Un repère d’une droite affine orientée est dite direct s’il détermine l’orien-
tation positive, et il est dite indirect dans le cas contraire, c’est-à-dire, s’il détermine
l’orientation négative.

Définissons maintenant les orientations d’un plan vectoriel.

Définition. Les orientations d’un plan vectoriel V peuvent être définies ainsi :

(1) toute base de V détermine une orientation de V,

(2) deux bases (a0, b0) et (a1, b1) de V déterminent la même orientation de V si et
seulement si il existe deux fonctions continues a, b : [0, 1] → V telles que a(0) =
a0, a(1) = a1, b(0) = b0, b(1) = b1, et que (a(t), b(t)) est une base de V pour
tout t ∈ [0, 1].

(3) toute orientation de V est déterminée par une base de V.

On peut démontrer la proposition suivante :

Proposition. Soient V un plan vectoriel et (a, b) une base de V. Alors :

(1) l’orientation déterminée par la base (−a, b) est la même que celle déterminée par
la base (a, −b), mais elle est différente de celle déterminée par la base (a, b),

(2) l’orientation déterminée par une n’importe quelle base de V est soit la même que
celle déterminée par (a, b), soit la même que celle déterminée par (−a, b).

Autrement dit, tout plan vectoriel admet exactement deux orientations différentes, et
si dans une base on remplace un vecteur par son opposé, l’orientation de la base change.

Définition. Les deux orientations différentes d’un plan vectoriel sont dites opposées
l’une de l’autre.

On peut démontrer le théorème suivant :

Théorème. Soient A et B deux bases d’un plan vectoriel V. Alors :

(1) les orientations déterminées par les bases A et B sont identiques si et seulement
si

detA B > 0,

(2) les orientations déterminées par les bases A et B sont opposées si et seulement si

detA B < 0.

Définition. Un plan vectoriel orienté est un plan vectoriel muni d’un choix d’une de ses
deux orientations. L’orientation choisie est dite positive, et l’autre (l’orientation opposée)
est dite négative.
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Définition. Un plan affine orienté est un plan affine muni d’un choix d’une des deux
orientations de son plan vectoriel associé. L’orientation choisie est dite positive, et l’autre
(l’orientation opposée) est dite négative.

Définition. Une base d’un plan vectoriel orienté est dite directe si elle détermine l’orien-
tation positive, et elle est dite indirecte dans le cas contraire, c’est-à-dire, si elle détermine
l’orientation négative.

Un repère d’un plan affine est composé d’un point (l’origine du repère) et d’une base
du plan vectoriel associé. Ainsi, tout repère d’un plan affine détermine une orientation
de ce plan (ainsi que de son plan vectoriel associé).

Définition. Un repère d’un plan affine orienté est dite direct s’il détermine l’orien-
tation positive, et il est dite indirect dans le cas contraire, c’est-à-dire, s’il détermine
l’orientation négative.

Pour clarifier le rapport entre la notion de l’orientation et les déplacements de mouches
affines (s’il n’est pas déjà clair), considérons trois mouches affines : Oscar, Alice, et
Bernard, qui habitent un plan affine. Soient O0, O1, A0, A1, B0 et B1 six points dans
ce plan tels que les points O0, A0, B0 ne sont pas alignés, et que les points O1, A1, B1

ne sont pas alignés non plus. Posons a0 =
#        »

O0A0, a1 =
#        »

O1A1, b0 =
#        »

O0B0 et b1 =
#        »

O1B1.
Ainsi, O0a0b0 et O1a1b1 sont deux repères du plan habité par les mouches.

Supposons qu’à un certain moment, Oscar se trouve au point O0, Alice – au point A0,
et Bernard – au point B0, et que Oscar veut aller au point O1, Alice – au point A1, et
Bernard – au point B1, et que les trois mouches ne veulent jamais se trouver alignées.
Alors elle peuvent le faire simultanément si et seulement si l’orientation déterminée par
la base (a1, b1) est la même que celle déterminée par la base (a0, b0).

On définit de manière similaire les orientations d’un espace vectoriel à trois dimen-
sions, ainsi que les orientations d’un espace vectoriel à un n’importe quel nombre fini de
dimensions. Il y a toujours deux orientations différentes, qui sont dites opposées l’une
de l’autre. Un espace vectoriel orienté est un espace vectoriel muni d’un choix d’une de
ses deux orientations, et un espace affine orienté est un espace affine muni d’un choix
d’une des deux orientations de son espace vectoriel associé.

Voici, par exemple, une définition des orientations d’un espace vectoriel tridimension-
nel :

Définition. Les orientations d’un espace vectoriel tridimensionnel V peuvent être défi-
nies ainsi :

(1) toute base de V détermine une orientation de V,

(2) deux bases (a0, b0, c0) et (a1, b1, c1) de V déterminent la même orientation de
V si et seulement si il existe trois fonctions continues a, b, c : [0, 1] → V telles
que a(0) = a0, a(1) = a1, b(0) = b0, b(1) = b1, c(0) = c0, c(1) = c1, et que
(a(t), b(t), c(t)) est une base de V pour tout t ∈ [0, 1].

(3) toute orientation de V est déterminée par une base de V.
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