Algèbre et Géométrie Examen Partiel, mars 2015

Exercice 1. (11p)

- 1. (1p) Énoncer le lemme des noyaux.
- 2. (2p) Donner la démonstration du lemme des noyaux dans le cas k=2.
- 3. Considérons les polynômes $Q_1(X) = X^2 + 1$, $Q_2(X) = X 1$, $Q_3(X) = X 2 \in \mathbb{R}[X]$ et posons

$$R_1(X) := Q_2(X)Q_3(X)$$
, $R_2(X) := Q_1(X)Q_3(X)$, $R_3(X) := Q_1(X)Q_2(X)$.

(a) (2p) Calculer $pgcd(R_1(X), R_2(X))$ et exprimer le résultat sous la forme

$$A(X)R_1(X) + B(X)R_2(X) .$$

Indication : Par convention on va supposer qu'un pgcd est toujours un polynôme unitaire.

(b) (2p) Préciser $\operatorname{pgcd}(R_1(X), R_2(X), R_3(X))$, trouver trois polynômes $U_1(X), U_2(X), U_3(X) \in \mathbb{R}[X]$ tels que

$$U_1(X)R_1(X) + U_2(X)R_2(X) + U_3(X)R_3(X) = 1$$

et vérifier votre réponse. Indication : Utiliser (a) et l'égalité

$$\operatorname{pgcd}(R_1(X), R_2(X), R_3(X)) = \operatorname{pgcd}(\operatorname{pgcd}(R_1(X), R_2(X)), R_3(X))$$
.

(c) (4p) Soit E un espace \mathbb{R} -vectoriel de dimension 4 et $\phi \in \text{End}(E)$ tel que

$$m_{\phi}(X) = Q_1(X)Q_2(X)Q_3(X)$$
.

- i. Préciser $P_{\phi}(X)$, Spec (ϕ) , Tr (ϕ) et det (ϕ) . (2p)
- ii. En utilisant le lemme des noyaux décomposer E en somme directe de sous-espaces ϕ -invariants et exprimer les projections associées à cette somme directe comme polynômes de ϕ . (1p)
- iii. Exprimer ϕ^{-1} comme polynôme de ϕ . (1p)

Exercice 2. (8p) Soient a, b des nombres complexes. On considère la matrice :

$$M = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ a & a & a & b \end{array}\right)$$

et l'endomorphisme $\phi \in \operatorname{End}(\mathbb{C}^4)$ associé à cette matrice.

- 1. (1p) Discuter, suivant les valeurs de a et b, le rang de M.
- 2. (1p) Déterminer $\ker(\phi)$ en discutant suivant les valeurs de a et b.
- 3. (2p) Calculer le polynôme caractéristique de M. On demande le détail des calculs.
- 4. (2p) Déterminer le polynôme minimal de M en discutant suivant les valeurs de a et b.
- 5. (2p) Montrer que M est diagonalisable dans $\mathbb C$ si et seulement si on a $b^2+12a\neq 0$.

Exercice 3. (8p) Soient ϕ l'endomorphisme de \mathbb{R}^4 associé à la matrice

$$A := \begin{pmatrix} 2 & -1 & 1 & 0 \\ -1 & 2 & 0 & 1 \\ -1 & 0 & 2 & 1 \\ 0 & -1 & 1 & 2 \end{pmatrix}.$$

- 1. (2p) Calculer le polynômes caractéristique $P_{\phi}(X)$ et le spectre $\operatorname{Spec}(\phi)$. Indication : $(X-2)^2|P_{\phi}(X)$
- 2. (2p) Déterminer les espaces propres de ϕ et les multiplicités géométriques des valeurs propres.
- 3. (1p) Préciser si ϕ est diagonalisable ou trigonalisable.
- 4. (2p) Déterminer le polynôme minimal et les espaces caractéristiques de ϕ .
- 5. (1p) Exprimer ϕ^{-1} et ϕ^3 comme polynômes du premier degré de ϕ .