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EXTREMAL KAHLER METRICS

e (M,J): a compact complex manifold.
e Qe H2(M,R): a Kahler class on M.
e (2. the set of Kahler forms in €2.

Calabi functional C: Q2; — R;

Clw) = /M Scalf, VOl .

Scaly, is the scalar curvature of the induced
metric g = g,, y and voly is the volume form.

Fact (Calabi): w e Q25 is a critical point of C
iff grad,, Scal, is a Killing vector field.

Then w is said to be extremal (g;, is an
extremal Kahler metric).

Call 2 an extremal Kahler class on (M, J)
if Jw € €25 extremal.



BASIC QUESTIONS

1. Uniqueness? (Optimality)

2. Existence? (Usefulness)

SOME ANSWERS

1. Formally clear that extremal Kahler met-
rics in €2 are unique modulo automorphisms
of (M, J). Now proven analytically by Chen—

Tian (2005).

2. Conjectures of Donaldson, Tian and Yau:

Q extremal <— (M, J, Q) K-polystable

N/

€2 has proper K-energy

T he precise notions of polystability and proper-
ness are not yet completely settled.



THE EXTREMAL VECTOR FIELD

ho(M, J): Lie algebra of holomorphic vector
fields with zeros. Hg(M,J): corresponding
connected group of automorphisms.

Fact (Calabi): for w € Q; extremal, G =
Ham(M,w) NHg(M, J) is a maximal compact
subgroup of Ho(M, J).

Fix G C Ho(M,J) compact and let
§2§ = {w € 2 : w is G-invariant}.

Note w € Q§ = G C Ham(M,w). Let g, C
C*®(M,R) be the subspace of hamiltonian
generators for the G action (gw = g @ R).

C®(M,R) = §o ®§5 wrt. L, inner product
Scalw — Sw _I_ Si_.

Fact (Futaki—-Mabuchi): for G maximal, x :=
grad, sy € g is independent of w € 2.

w extremal < grad, Scaly =x < s= =0

x Is called the extremal vector field.



RELATIVE (OR MODIFIED) K-ENERGY

Fact (Mabuchi, Guan, Simanca):

oo (ddCf) = /M s voly,

defines a closed 1-form on Qf];.

QG is contractible, so o = —d&, where £: Q§ —
R is defined up to an additive constant. This
IS the relative K-energy.

Clearly: w is extremal < w is critical for £.

The Mabuchi metric g is the Lo metric on
QF, i.e., gu(dd®f1,ddf2) = [y f1f2VOlw.

Fact: £ is geodesically convex wrt. g.

This underlies the Chen—Tian uniqueness re-
sult for extremal Kahler metrics. It also mo-
tivates the properness criterion. Chen—Tian
show that extremal Kahler metrics minimize
the relative K-energy.



THE SYMPLECTIC VIEWPOINT
e (M,w): a compact symplectic manifold.
e G C Hom(M,w): a compact subgroup.

o DIff§(M): connected normalizer of G in
Diff(M) (modulo G).

Let JC be an orbit of Diﬂ’g(M) on the space
of GG-invariant complex structures on M, and
let 7& be the set of w-compatible J € JC.

Fact: for any w € Q§, there is an isomor-
phism J§/Sp§ (M, w) = QG /HS (M, J).

Let g C C°°(M,R) be the subspace of hamil-
tonian generators for the GG action.

C®(M,R) =§®g§- wrt. Ly inner product
SCa|J:SJ—|—Sff.

Fact (Apostolov): sj € g is independent of J
and so defines an potential for a symplectic
version of the extremal vector field.



SCALAR CURVATURE AND STABILITY

Note p(grad,, f) = [y fsT vol, defines a map
pe IS — ham& (M, w)*

Fact (Donaldson, Fujiki): J§ is a (co-diml.)
Kahler manifold with an isometric action of
Ham& (M, w) with momentum map pu.

p~1(0) = {J : s} = 0} is then the space of
extremal Kahler metrics in JG.

Geometric Invariant Theory then motivates
the idea that there is a stability condition for
the existence of extremal Kahler metrics.



SYMPLECTIC K-ENERGY

Suppose £ is H§ (M, J)-invariant on Q§. Then
it defines a symplectic version £ of K-energy.

Note that T;7C = {L,J : Z = Z1 + JZ5}
where Z1 € spG (M, w), Zo € ham®(M,w). Then

cj(LzJ]) = /M f257 VOl

where Z>, = grad, fo, is a closed 1-form and
g =dE.

Fact (Gauduchon): £ isa Ham(M,w)-invariant
Kahler potential along integral manifolds of
{Lyd : Z1,Z € f)amG(M,w)}. Hence it is
strongly plurisubharmonic.

Observation: geodesics in Q§ correspond to
integral curves of the vector field J — L;7,J
on J&, where Z5 € ham® (M, w).

Extremal Kihler metrics are critical for £ and
this provides another way to see their formal
unigqueness.



K-STABILITY

Suppose Q2 = 2wc1(L), so (M,) is Hodge,
and there is a lift of the G-action to L. It
is convenient to take G C Hp(M,J) to be a
maximal torus instead of a maximal compact.

A test configuration 7 for (M, L,G) is:

e a polarized complex variety (or scheme)
(X, L) with an action of G;

e a G-equivariant C* action a on (X, £);

e a (G-invariant and C*-equivariant flat mor-
phism p: X — C

such that (X, L) = (M, L) for some t £ 0.

(Here Xy =p~1(t) and L; = L]x,.)

a induces a C* action on (Xg, Lg) which is
called the central fibre of (X, L).

This action has a weight called the relative
(or modified) Futaki invariant Fo(7) of 7.

(M, L) is (relatively) K-polystable if Fo(7) >
O for all 7, with equality if X = M x C and «
is induced by a C* action on M.



BUNDLE CONSTRUCTIONS
Build Kahler metrics on bundles M — S for:

e S a compact Kdhler 2d-manifold (e.g., Xg),
e T an (-torus (e.g., S1),
e P a principal T bundle over S (e.g., U(L)),

e V a compact Kahler manifold with an iso-
metric hamiltonian T-action (e.g., CP1),

such that M is (covered by) P xpV, a com-
pact complex 2m-manifold with m = d +
dimgV >d+/¢ (e.g9., PO® L) — Xg).

Simplifying assumptions:

S'is (covered by) [];(S;,w;) such that 2wc1 (P)
pulls back to > ;[w;] ® b; for b; €t

(V,T) is essentially toric, i.e., its blow-up along
the fixed point sets of circle subgroups of T
is (covered by) PxpV — §, with V toric, and
S a product of projective spaces.

Say M has order £. (P(O® L) has order 1).
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EXAMPLES
M=PO®L) — 31 x---x24 (order 1).

M=P(O®L) — Sy x---x Sy with £’=®j£'j
and Ej a power of an ample line bundle on
S; (order 1).

M = P(FE) — S with E a projectively-flat
hermitian vector bundle (order 0).

M =PEPEL1D---PEy) — S1 X---x 8y
where Ej are projectively-flat hermitian vec-
tor bundles and c1(E;)/rk(E;) —c1(E;)/rk(E;)
is a linear combination of the Kahler forms
on the S;. (order £).

M =V toric (order dim¢ V).

M = Px7V — S with V toric and S as before
(order dimg V).
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M of order ¢ admit Kahler metrics of the form

g=>,;(bj,2) +¢j)g;
+ (dz,©71(2),d2) + (@, ©(2), o),
w =3 ;((bj, 2) + ¢j)w; + (dz A 6),
doa = Z]b]w]

(z € C°(M,t*) is the momentum map of the
T-action, and ©(z) € S2t* the matrix of in-
ner products of the generators, while 6 is a
connection 1-form for P and c; € R.)

In particular, if £ =1, with ¢; = b;/x;, then
rescaling wj by bj gives

1+ Tz dz?

= '+ +O(z)a?,
g ; - 95t o) (z)c
wzzl_l_szwj—l—dz/\@,

i
da=2wj.
J
If the image of z is [-1,1] and 0 < |z;| < 1,

this generalizes the form of metric on ruled
surfaces as presented by Christina.

Note the symplectic viewpoint.
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EXTREMAL KAHLER METRICS OF OR-
DER ONE

Suppose M has order one. Then for any ad-
missible Kahler class Q2 = Q(x) (i.e., contain-
ing a metric of the previous form) 3! poly-
nomial Fo(z) (the extremal polynomial) s.t.
TFAE

o (2 is extremal;

e g (as before), with ©(z) = Fo(z)/Pa(z)
and Pq(z) =[[;(1+ :I:jz)dj, is extremal;

o F'o(z) >0 for ze (—1,1).

This completely solves the existence problem
for a large class of ruled manifolds. How does
it relate to stability and properness?

AMAZING FACT: for 2 € (—=1,1)NQ 3 a test
configuration 7(z) for (M,2,T) such that

Fa(T(z)) = Fa(z).

So Fo(z) >0 for z € (—1,1)NQ is a stability
condition!
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AN EXAMPLE

What if Fo(z) > 0 for z € (=1,1) N Q but
Fo(z) =0 for some z € (—-1,1)\ Q7

T his can happen.
Let M = P(OP(L1RLIRL)) — 1 XZoX23.

Then the freedom in the genera of 2 ; and
degrees of L; can be used to obtain Fq(z) =
(1—22)(z24rz—1)2forany r € QT. z24rz—1
has an irrational root in (—=1,1) for r in a
nonempty open subset of Q.

How to handle this problem?
1. Allow analytic test configurations.

2. Require a uniform bound on Fo(7):

Fo(T) > M|T]||
— notion of uniform K-polystability (Székelyhidi).
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UNIFORM K-STABILITY

Let ||x(7)|| be the Lo norm of the generator
of the C* action on the central fibre (Xg, Lg)
projected orthogonally to g.

Defn (M,2,G) is Lo-uniformly K-polystable
if 9\ > 0 s.t. V test configurations 7,

Fo(T) = A|[=(T)]

A similar definition can be made for a wide
range of semi-norms on test configurations
as long as the semi-norm vanishes when the
test configuration is a product M x C.

In his work on toric surfaces, Donaldson uses
a boundary integral over the momentum poly-
gon to bound the Futaki invariant below.
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TORIC KAHLER MANIFOLDS AND BUN-
DLES

Let M = P xp7V — S be a bundle of toric
Kahler manifolds. The image of z is a com-
pact convex polytope A in t*, generalizing
[—1,1] in the order one case.

Assume M is toric for simplicity (S = {pt}).
Let C={f: A — R convex}.

Let S be the space of ‘symplectic poten-
tials”: a subspace of strictly convex func-
tions such that S§/{affine linear functions on
AY =2 g HamT (M, w) = QT /HET (M, w).

Then (Donaldson) as a function on S:

E(u) = — /M log det Hess(u)du + Fo(u)

where Fo(u): C — R is linear.

The “"amazing fact” generalizes: for any PL
f € C there is a test configuration 7(f) with
Futaki invariant Fo(7(f)) = Fo(/f).
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TWO OBSERVATIONS OF DONALDSON,
ENHANCED.

Theorem For any A > 0 TFAE:

1. (Uniform K-stability)

Eo(f) = All=(H)Il vV PL feC.

2. (Proper K-energy) For 0 <6 < A 94C5 s.t.
E(u) > ollr(uw)|| +Cs YueS

Idea of proof By approximation, can suppose

f,u smooth. Also without loss, n(f) = f and

m(u) = u.

(i) = (ii) Compare &€ to

Ealu) = — /M log det Hess(w)dy 4+ Fa(u)

where Fy(u) (linear) is chosen so that &, is
bounded below.

(ii) = (i) Consider E(u+ kf) and let kK — oo.

17



