# Division theorems for the rational cohomology of discriminant complements and automorphism groups of projective hypersurfaces

Alexei Gorinov

#### Main results

 $n, k, 1 \le k \le n + 1$ .  $\underline{d} = (d_1, \dots, d_k) = \text{a collection of integers such that}$  $2 \le d_1 \le \dots \le d_k$ .

 $\Pi_{\underline{d},n}$  = the  $\mathbb{C}$ -vector space of all k-tuples  $(f_1, \ldots, f_k)$ , where  $f_i, i = 1, \ldots, k$ , is a homogeneous polynomial in n + 1 variables of degree  $d_i$  with coefficients in  $\mathbb{C}$ .

For  $f = (f_1, ..., f_k) \in \Pi_{d,n}$  define Sing f = the (projectivisation of the) set of all  $x \in \mathbb{C}^{n+1} \setminus \{0\}$  such that

- $f_i(x) = 0, i = 1, ..., k$ ,
- the gradients of f<sub>i</sub>, i = 1,..., k at x are linearly dependent.

 $\Sigma_{d,n} \subset \Pi_{d,n}$  is the set of all f such that Sing  $f \neq \emptyset$ .  $GL_{n+1}(\mathbb{C})$  acts on  $\Pi_{d,n} \setminus \Sigma_{d,n}$ .

**Theorem 1.** Suppose  $d \neq (2)$ . Then the geometric quotient of  $\Pi_{d,n} \setminus \Sigma_{d,n}$  by  $GL_{n+1}(\mathbb{C})$  exists, and the Leray spectral sequence of the corresponding quotient map degenerates over  $\mathbb{Q}$ (or modulo a sufficiently large prime) at the second term. This generalises a result by C. Peters and J. Steenbrink 2001 for k = 1.

### Corollary 1.

$$H^*(\Pi_{d,n} \setminus \Sigma_{d,n}, \mathbb{Q})$$
  
 $\cong H^*((\Pi_{d,n} \setminus \Sigma_{d,n})/GL_{n+1}(\mathbb{C}), \mathbb{Q}) \otimes H^*(GL_{n+1}(\mathbb{C}), \mathbb{Q}).$ 

This isomorphism holds on the algebra level and respects the mixed Hodge structures.

By-product 1. The order of the subgroup  $PGL_{n+1}(\mathbb{C})$ ,  $n \ge 1$ , consisting of the transformations that preserve a smooth hypersurface of degree d > 2 divides

$$\frac{1}{n+1} \prod_{i=0}^{n-1} \left( \frac{1}{C_{n+1}^i} ((-1)^{n-i} + (d-1)^{n-i+1}) \right)$$

$$LCM(C_{n+1}^i(d-1)^i, (n+1)(d-1)^n) . (1)$$

By-product 2. Let d be an integer > 2. Then the order of the subgroup of  $GL_{n+1}(\mathbb{C})$  consisting of the transformations that fix  $f \in \Pi_{(d),n} \setminus \Sigma_{(d),n}$  divides

$$\prod_{i=0}^{n} ((-1)^{n-i} + (d-1)^{n-i+1})(d-1)^{i}.$$

Actually, we prove an analogous statement for arbitrary  $\underline{d}$ , but the resulting formula is a bit messy (and was therefore banned from here). By-product 3. Let  $f : \mathbb{C}P^n \to \mathbb{C}P^n$  be a ramified covering of degree  $d^n$ . Then the order of the group formed by the automorphisms  $g : \mathbb{C}P^n \to \mathbb{C}P^n$  such that  $f \circ g = f$  divides

$$d^{n^2-1}\prod_{i=2}^{n+1}\frac{1}{C_{n+1}^i}LCM(C_{n+1}^i,(n+1)d^{i-1}).$$

#### Comments.

 (1) is majorated by d<sup>3</sup>/<sub>2</sub>n(n+1)(n+1)<sup>n-1</sup>; since (1) is divisible by the order of the projective automorphism group of any smooth hypersurface of degree d in CP<sup>n</sup>, it can hardly be expected to be sharp. Indeed, smaller bounds are known. The best one I know is

$$J(n + 1)d^n$$
 (2)

by A. Howard and A. J. Sommese 1980 where J is the Jordan function, i.e.,

$$J(m) = \max_{G \subset GL_m(\mathbb{C}) \text{ finite}} \left( \min_{G' \circ G \text{ Abelian}} (G : G') \right);$$

 $J(m) \le (m+1)! m^{a \ln m + b}$ 

for some  $a, b \in \mathbb{R}$  (B. Weisfeiler 1984)).

Asymptotically as  $d \to \infty$ ,

(2) is smaller than (1);

- By-product 1 provides much more restrictions than (2), since the number of divisors of x ∈ Z grows more slowly than any positive power of x as x → ∞.
- If n ≥ 3, d ≥ 3 and (d, n) ≠ (4, 3), then any automorphism of a smooth hypersurface of degree d in CP<sup>n</sup> is known (Matsumura-Monsky 1964) to be the restriction of a projective transformation, so in these cases by-product 1 implies that the order of the full automorphism group divides (1).
- If n = 1, by-product 1 is equivalent to saying that the order of the subgroup of PGL<sub>2</sub>(C) that preserves a given subset of d > 2 points of CP<sup>1</sup> divides

$$d(d-1)(d-2)$$
.

This is obvious. Optimal, if d is odd.

• If n = 2 and 3, then (1) becomes

$$d^2(d-1)^4(d^2-3d+3)(d-2)$$

and

$$\frac{1}{4}d^4(d-1)^{13}(d^4-5d^3+10d^2-10d+5)(d^3-4d^2+6d-4)$$
$$(d^2-3d+3)(d-2)\cdot \text{LCM}(2,(d-1)^2)\text{LCM}(2,d-1)$$

respectively.

- An explicit description of all projective automorphism groups of smooth projective hypersurfaces of given dimension and degree > 2 is rarely known. Three cases (to my knowledge):
  - Cubic curves in CP<sup>2</sup> can have 18, 36 or 54 projective automorphisms. LCM = 2<sup>2</sup> · 3<sup>3</sup>. (1)=2<sup>4</sup> · 3<sup>3</sup>.
  - Quartic curves in CP<sup>2</sup>. The LCM of the orders of the projective automorphism groups is 2<sup>5</sup> · 3<sup>2</sup> · 7 (I. Dolgachev's "Topics in classical algebraic geometry", available on I. Dolgachev's webpage). (1)=2<sup>5</sup> · 3<sup>4</sup> · 7.
  - Cubic surfaces in CP<sup>3</sup>. The LCM of the orders of the projective automorphism groups is 2<sup>3</sup> · 3<sup>4</sup> · 5 (B. Segre 1942 and T. Hosoh 1997). (1)=2<sup>10</sup> · 3<sup>4</sup> · 5.

# Idea of the proofs.

### Linking numbers.

All (co)homology coefficients are  $\mathbb{Z}$ , unless indicated otherwise.  $\bar{H}_{*}(Y) = \text{the Borel-Moore homology groups of } Y$  (with integer coefficients). Two definitions: 1. the homology groups of the complex of locally finite chains; 2. the homology of the one-point compactification modulo, the infinity.

M a smooth oriented manifold of  $\dim_{\mathbb{R}} = p$ ,  $X \subset M$  a closed subspace,  $c \in \ker(\bar{H}_{p-q}(X) \to \bar{H}_{p-q}(M))$ . Suppose  $H_{q-1}(M) =$  $H^{q-1}(M) = 0$ . We define the linking number  $\mathrm{lk}_{c,X,M} \in H^{q-1}(M \setminus X)$  by the following diagram

Another (equivalent) definition: represent c by a chain  $\tilde{c}$  and define a function

$$H_{q-1}(M \setminus X) = \ker(H_{q-1}(M \setminus X) \rightarrow H_{q-1}(M)) \rightarrow \mathbb{Z}$$

as follows. Take a class  $z \in H_{q-1}(M \setminus X)$ , represent it by a chain  $\tilde{z}$ , find a chain w such that  $\partial w = \tilde{z}$ , and map z to the intersection index  $\#(w, \tilde{c})$ . The result will coincide with  $(-1)^q \operatorname{lk}_{c,X,M}(c)$ .

# The Leray-Hirsch principle.

In order to prove theorem 1, it suffices to construct classes

$$\mathbf{a}_{i}^{d,n} \in H^{2i-1}(\Pi_{d,n} \setminus \Sigma_{d,n}), i = 1, ..., n + 1$$

that give nonzero multiples of the canonical multiplicative generators

$$\mathbf{c}_{il}^m \in H^{2i-1}(\mathrm{GL}_{n+1}(\mathbb{C}))$$

when pulled back under (any) orbit mapping  $g \mapsto g_{e^*} f$ .

For a subvariety X of  $\mathbb{C}P^n$  we set  $V_{d,n,X}$  to be the subset of  $\Pi_{d,n}$  consisting of all  $(f_1, \ldots, f_k)$  such that  $\mathrm{Sing}(f_1, \ldots, f_k) \cap X \neq \emptyset$ .

$$\Sigma_{\underline{d},n} = V_{\underline{d},n,\mathbb{C}P^n}.$$
  
codim $\Pi_{\underline{d},n} V_{\underline{d},n,\mathbb{C}P^i} = n + i - 1.$ 

Set

$$\mathbf{a}_{i}^{d,n} = \operatorname{lk}_{\left[V_{d,n}\in\mathbb{R}^{n+i-1}\right],\Sigma_{d,n},\Pi_{d,n}}$$
.

We compute the pullbacks of  $\mathbf{a}_{i}^{d,n}$ 's under an orbit mapping  $g \mapsto g \cdot f$ . For simplicity suppose k = 1 (projective hypersurfaces in  $\mathbb{C}P^{n}$ );  $\underline{d} = (d), d > 2$ .

Induction on n.

The case n = 0 (empty hypersurfaces in  $\mathbb{C}P^0$ ).

$$\Pi_{(d),0} = \{x_0^d\} \cong \mathbb{C}, \Sigma_{d,0} = \{0\} = V_{(d),\{0\},\mathbb{C}P^0}.$$

The action of  $GL_1(\mathbb{C}) \cong \mathbb{C}^*$  is

$$z \cdot x_0^d = z^d x_0^d, z \in \mathbb{C}^*.$$

The pullback of  $\mathbf{a}_1^{(d),0} = \operatorname{lk}_{\left[V_{(d),0,\mathbb{C}P^{0+1-1}}\right],\Sigma_{(d),0},\Pi_{(d),0}}$  under an orbit mapping is  $d\mathbf{c}_1^1$ . Set  $\mathbf{m}_1^{(d),0} = d$ .

How to pass from n to n+1?

Suppose that the pullback of  $\mathbf{a}_{i}^{(d),n}$ , i = 1, ..., n + 1 is  $\mathbf{m}_{i}^{(d),n} \mathbf{c}_{i}^{n}$ ; with  $\mathbf{m}_{i}^{(d),n} \neq 0$ . Define the suspension map  $S: \Pi_{(d),n} \to \Pi_{(d),n+1}$  by

$$S(f) = f + x_{n+1}^d.$$

Set

$$L_1 = \{(0: \cdots : 0: z_{i-1}: \cdots : z_n)\} \cong \mathbb{C}P^{n-i+1} \subset \mathbb{C}P^n,$$

$$L_2 = \{(0 : \cdots : 0 : z_{i-1} : \cdots : z_{n+1}) \cong \mathbb{C}P^{(n+1)-i+1} \subset \mathbb{C}P^{n+1}.$$

Set-theoretically,

$$S^{-1}(V_{(d),n+1,L_2}) = V_{(d),n,L_1}$$
.

But the intersection multiplicity of  $V_{(d),n+1,L_2}$  and the image of S is d-1. Due to the commutative diagram

$$GL_{n+1}(\mathbb{C}) \xrightarrow{\text{orbit}} \Pi_{(d),n}$$

$$\downarrow \qquad \qquad S \downarrow$$

$$GL_{n+2}(\mathbb{C}) \xrightarrow{\text{orbit}} \Pi_{(d),n+1}$$

we obtain

$$S^*\left(\mathrm{lk}_{\left[V_{(d),n+1,L_2}\right],\Sigma_{(d),n+1},\Pi_{(d),n+1}}\right) = (d-1)\,\mathrm{lk}_{\left[V_{(d),n,L_1}\right],\Sigma_{(d),n},\Pi_{(d),n}}$$

Any  $\mathbf{a}_i^{(d),n+1}, i=1,\dots,n+1$  pulls back under an orbit map to  $\mathbf{m}_i^{(d),n+1}\mathbf{c}_i^{(d),n+1}$ 

with

3

$$\mathbf{m}_{i}^{(d),n+1} = (d-1)\mathbf{m}_{i}^{(d),n}.$$

The case of  $\mathbf{a}_{n+2}^{(d),n+1}$  has to be considered separately. Set

$$x_0 = (0, \dots, 0, 1),$$

and define

$$F:\Pi_{(d),n+1} \rightarrow \mathbb{C}^{n+2}$$

by  $f \mapsto df|_{x_0}$ . We have

$$V_{(d),n+1,\{(0:\cdots:0:1)\}} = F^{-1}(0).$$

Hence,  $\mathbf{a}_{n+2}^{(d),n+1}$  is the restriction of  $F^*(\operatorname{lk}_{[\{0\}],\mathbb{C}^{n+2}})$  to  $\Pi_{(d),n+1} \setminus \Sigma_{(d),n+1}$ . Fix an  $f_0 \in \Pi_{(d),n+1} \setminus \Sigma_{(d),n+1}$ .

The image of  $\mathbf{a}_{n+2}^{(d),n+1}$  under the orbit mapping  $g \mapsto g \cdot f_0$  is just the image of the canonical generator of

$$H^{2n+1}(\mathbb{C}^{n+2} \setminus \{0\})$$

under the mapping

$$g \mapsto d(g \cdot f)|_{x_0} = g^T \cdot df|_{g \cdot x_0}$$
.

This mapping factorises as follows.

$$g \mapsto (g^T, \text{the last column of } g) \mapsto (g^T, df_0|_{\text{the last column of } g})$$
 $\mapsto g^T df_0|_{\text{the last column of } g}$ 

Here the second arrow is

3

$$\mathrm{Id}\times(x\mapsto df_0|_x)$$

and the third one is  $(g, x) \mapsto g \cdot x$ .

The image of the canonical generator of  $H^{2n+1}(\mathbb{C}^{n+2}\setminus\{0\})$  under the above composition is  $((d-1)^{n+2}+(-1)^{n+1})\mathbf{c}_{n+2}^{n+2}$ , hence the image of  $\mathbf{a}_{n+2}^{(d),n+1}$  under any orbit mapping is  $\mathbf{m}_{n+2}^{(d),n+1}\mathbf{c}_{n+2}^{n+2}$  with

$$\mathbf{m}_{n+2}^{(d),n+1} = (d-1)^{n+2} + (-1)^{n+1}.$$

What has all this to do with automorphism groups? Suppose that

- R: GL<sub>l</sub>(C) → GL<sub>N</sub>(C) is a representation such that R(λI<sub>l</sub>) = λ<sup>8</sup>I<sub>N</sub> where I<sub>l</sub> and I<sub>N</sub> are the identity operators.
- U ⊂ C<sup>N</sup> is an open GL<sub>ℓ</sub>(C)-invariant subset that does not contain 0.
- a<sub>i</sub> ∈ H<sup>2i-1</sup>(U), i = 1,..., l are classes that pull back to m<sub>i</sub>c<sup>l</sup><sub>i</sub>, i = 1,..., l under an orbit map.
- For any x ∈ U and x̄ ∈ U/C\* the stabilisers Stab(x) ⊂ GL<sub>l</sub>(C) and Stab(x̄) ⊂ PGL<sub>l</sub>(C) are finite.

Then

For any x ∈ U, #Stab(x) is a divisor of

$$\prod_{i=1}^{I} m_i$$
.

If l ≥ 2 and for any i = 2,..., l there exists a class b<sub>i</sub> ∈
 H<sup>2i-1</sup>(U/ℂ\*) that pulls back to r<sub>i</sub>b<sub>i</sub> under U ⇒ U/ℂ\* with
 r<sub>i</sub> ≠ 0, then #Stab(x̄) divides

$$\frac{1}{l} \prod_{i=2}^{l} m_i r_i.$$