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Abstract

We consider the Boltzmann equation for a gas in a horizontal slab, subject to
a gravitational force. The boundary conditions are of diffusive type, specifying
the wall temperatures, so that the top temperature is lower than the bottom one
(Benard setup). We consider a 2-dimensional convective stationary solution, which
for small Knudsen numbers is close to the convective stationary solution of the
Oberbeck—Boussinesq equations, near and above the bifurcation point, and prove
its stability under 2-d small perturbations, for Rayleigh numbers above and close
to the bifurcation point and for small Knudsen numbers.

1. Introduction

The asymptotic kinetic approach in a sharp mathematical form has its roots
in works by Grap [15,16], Kocan [22], and GuirauD [17] in the late 1960s and
early 1970s. The approach soon led to the first global existence result for the space-
dependent Boltzmann equation [29]. The area has been steadily expanding ever
since, with the focus on global well-posedness, detailed properties of the solutions
and their fluid limits, using a wide variety of functional settings, each adapted to
particular types of problems.

In the present paper we study small Knudsen number solutions to the Boltzmann
equation in a slab with diffusive boundary conditions in the presence of a gravita-
tional field. It is based on a very precise study of the hydrodynamic moments, and
on new spectral results which require an L2 setting for velocity space. The broad
functional setting is the one from the monograph [24], which also contains further
details on the development of asymptotic kinetic theory up to that time. Much of the
more recent development requires stronger norms than ours, For a review of those
developments see Chapter 5 in [26), and Chapters 4 and 5 in [12] and references
quoted therein.
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In a previous paper [1] we have proved the existence and stability globally in
time, for small Knudsen numbers, of a positive one-dimensional stationary solution
to the Boltzmann equation, which is close to the hydrodynamic laminar solution
of the Oberbeck—Boussinesq (O-B) equations. At the hydrodynamical level there
is a bifurcation phenomenon: when the vertical temperature gradient exceeds a
certain critical value, the laminar one-dimensicnal solution loses stability and vari-
ous two- or three-dimensional pattern flows appear. In particular, the existence has
been proved of a two-dimensional roll solution of the O-B equatidhs close to the
bifurcation point. Its stability under suitable perturbations has also been proved.

In this paper we construct, by means of perturbative arguments (expansion
method), for small Knudsen numbers, a positive two dimensional solution to the
stationary Boltzmann equation, which is close to this roll solution. Moreover, we
prove its stability for long times under a suitable class of two dimensional initial
perturbations. These results are true for values of the Rayleigh number above and
close to the bifurcation value, provided that the force is small enough. To state our
result, we need to introduce some notation.

Consider a gas in a 2-dimensional box of height 2 d and length 2k, under the
action of a gravitational force g in the direction z. The upper and lower walls are
kepr at temperatures T and 7_ respectively, with Ty < T_, with no-slip condi-
tions, while periodicity is assumed in the horizontal direction. At the kinetic level,
the behavior of the gas is given by the following Boltzmann equation with bound-
ary conditions diffusive in the z direction and periodic in the x direction, written
in dimensionless form,

aF 1 oF 1 aF G aF

Uy -V —
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Here {7, fi, f, festandfor f(x,z,v', 1), f(x, 2, vh, 1), flx, 2 v, t) fX, 2, s, 1)
respectively, 52 = {w € B3 |w? = 1}, B isthedifferential cross section2B(w, V) =
|V - w| corresponding to hard spheres, and v, v, and v',v; are precollisional and
postcollisional velocities or conversely. The boundary conditions are such that the
condition of impermeability of the walls,

[ dvFudv =0, (12)
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is satisfied. The solution depends on the parameter & = 2/6Kn /5. where
Kn is the Knudsen number given in terms of €p, the mean free path of the gas in
equilibrium at temperature T_ and density . We have also put Ma = V675,
where Ma is the Mach number. With this choice, the Rayleigh number ([27,28]) is
Ra = @ . independent of £. Throughout the paper, we will fix the parameter
G such that G £ Gy with Gy suitably small. Fix f = %—d where «, is the critical
wave number for the first bifurcation. The lincar analygis of the O-B equations
with rigid—rigid boundary conditions, (3.1) below, describing the behavior of the
fluid at the hydrodynamic level, gives a critical value ¢, and acorresponding critical

Rayleigh number Ra, {8]. The parameter A will be chosen in an interval [A., (1 +

16G (272
8)A.], for § small and with A, determined by the condition that Ra, = ﬂ

is the critical value. With these choices, at the hydrodynamical level, two roﬁ solu-
tions will appear at the bifurcation point, rotating clockwise and anticlockwise,
respectively. These solutions are constructed perturbatively for 8 small in a rigor-
ous way [18, 19] and their local non-linear stability has been proved for small initial
perturbations with the same period as the roll solution [20].

The clockwise solution ki, for example, is of the form

hy = he + 8 heon + O(8%), (1.3

where f¢ is the laminar solution and hg,y, is the eigenfunction corresponding to the
least eigenvalue of the linearized Boussinesq problem around the laminar solution
{see Section 4 for the precise definition).

In this paper, we construct a stationary solution F; of the Boltzmann equation,
which, for & small, is close to the hydrodynamical solution (say, the clockwise one
for sake of definiteness) in the sense that it can be written as a truncated expansion

2
ing, Fy = M+ ef, + O} with M = T and

sl

2

where pq, u,, Ty are expressed in terms of £1,. Moreover, we prove the kinetic non-
linear stability of F, under suitable initial perturbations.

We study the Boltzmann equation for the perturbation & = M~Y(F — F,) with
the initial datum

13
fT:M(pW'i‘H.\"U'i‘I\'lvl )

5
Doix,z.0) = Zg”(b(”)(o, x,z,v) + & ps, (1.4)

n=I1

where ®HO, x, z, v) is the nth term of the expansion introduced in the next para-
graph, computed at time ¢ = (), and the e-dependent ps is arbitrary but for having
total mass [ dedxdzMps = 0 and satisfying (3.8).

We write also the time-dependent solution in terms of a truncated expansion
ineg

5
O, x,z,0) = > "0, x, 2 v) + eR(L X, 2,0), (X2 €Qu, (15)

n—1
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where €2, = [—pum, ux] x [—m, w]. The first term of the expansion in £ is

o = p! 44! -u+91%_-§,

where the fields p!(z, x, 2), u'(t, x,2),8' (¢, x, 2) are solutions of the hydrody-
namic equations for the perturbation, with initial datum (u(’,, 9(}). The initial data
are chosen as follows: let (utl,, 6(;) be an initial perturbation of the convective solu-
tion (s, 8,) sufficiently small to ensure that the solution (u(z, x, z¥, £(7, x, 2N =
{ug(x, )+ Wt x,2), 0,(x,2)+90 ¢, x, 2)) of the initial boundary value problem
for the O-B (3.1) equations exists globally in time and converges to (us, 8;) as
t — +00.

The next orders involve kinetic corrections in the bulk as well as boundary
layer corrections. In fact, at next orders, the standard Hilbert expansion bulk terms
do not satisfy the diffusive boundary conditions, and boundary layer correction
terms must be included to restore the boundary conditions. These are computed
solving suitable Milne problems in the presence of a force F and a source term

$. Under suitable assumptions this problem has z-smooth solutions when 7") is a
potential force decaying fast enough at infinity [7].! We give, in Section 3, a proce-
dure to compute the @,,’s in the time dependent case and show that they have good
enough properties as consequence of the smoothness of the hydrodynamic solution.
In particular, they inherit the smallness and decay properties of the hydrodynamic
solution, such as the exponential decay in time. The main difficulty is then the con-
trol of the remainder R asymptotically in time. The equation for the remainder R is
a weakly non-linear Boltzmann equation with a source B, generated by the terms
of the expansion. Since it is weakly non-linear, it is enough to get good estimates
for the associated linear problem, which is of the form

a 1 8 b ] 1
S R+ (vxaR + vza—zR) - M"’Ga—w(MR) = 5LR+ '}?-J((I)H, R)+ B,
where L is the linearized Boltzmann operator, defined in Section 2, and J(® 4, R)
is a linear operator depending on the perturbed stationary solution and on the first
terms of the expansion. The operator L is non-positive on Ly(R3, Mdv), but has a
non-trivial null space Kern(L). The linear operator J($y, R) is at least of order
¢ but it is the main contribution for R € Kern(L). The control of the component
of R in the orthogonal to Kern(L) is given by the well known spectral inequality
for L (see for example [24]),

—(f Lf)Z2 C{1 = PYfiv(1 = P) ), (1.6)

where (f, Lf) is the scalar product in La{R3, Mdv), P is the projectoron Kexrn(L),
wv) = IIR-‘ duy fsz dw%l(u — v,) - @|M (v.). On the oiher hand, itis easy to check
that

1 In this paper the assumption on the force has to be modified, asking for a suitable power
decay of the force at infinity. This condition is certainly fulfilied in the application to the
present case as well as in [117 and [1]. The authors in [7] thank Xiongfeng Yang for pointing
out this mistake.

- - -
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Using this (and ignoring the boundary contributions) one gets the differential
inequality

1d

EanfﬁéCHfﬁg+/len
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with{ - 12,2 the norm in La(£2, X R3, Mdxdzdv). This produces bounds growing
exponentially in time, which are not sufficient to our purposes. To avoud this we use
a spectral inequality for the operator Ly {(f) = Lf + e (®y, Pf). The inclusion
of the second term in the new operator simplifies all the arguments in the control of
the remainder. The price to be paid is that L s is not self-adjoint and its null space
is more complicated. This inequality is an important new ingredient for proving
stability results in the Boltzmann equation framework. In {2] there was no need to
use this inequality to get the global stability result because in that paper it was pos-
sible to take advantage of the fact that the constant C in the previous inequality can
be taken as small, while the parameter controlling the bifurcation can grow beyond
the bifurcation value. In the Rayleigh-Benard setting, there is no such freedom.

To study the hydrodynamic part of R, PR, we use a duality argument which
was introduced by Mastova [24]. To illustrate how it works, let us consider the
typical equation one has to study in the stationary case

1 0 I
V. R—eG——(MRY=-L;R +q,
U Ve & MBU;( ) : J q

with prescribed incoming data at z = +m, periodic in x. One also considers the
dual equation

1 9

V.6 — &G
v Vet =G

(M) = ;—LW +h,

with vanishing incoming data at z = =, periodic inx. By taking the inner product
of the first equation by ¢ and the second equation by R and summing, one gets
an estimate of 4| in terms of g and ¢ with suitably smal) coefficients. For that,
we need G small, but we can still have a large Rayleigh number by increasing A.
Then one chooses i = PR and thus shows that | P R|| can be bounded in terms of
ll¢]l and || i. The equation for ¢ is studied by means of Fourier anatysis, which
provides a good control on ¢ but for the O-moment. The estimate of the O-moment
is based on a direct approach, by means of rather explicit calculations of the first
few moments of the solution, using o.d.e. analysis for the one-dimensional case.
This allows a reasonably simple analysis when the incoming data are prescribed.
Dealing with diffuse reflection requires more technical steps. This method has been
exploited in [2] and has been extended in [1] to the one-dimensional Benard prob-
lem, which is more difficult 1o deal with because of the presence of the force and
the diffusive boundary conditions. In this paper, we extend the one-dimensional
analysis to the two-dimensional case by using, both in the conductive and convec-
tive case, the fact that for & < R.(1+8)and § small, the contributions due to the
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inhomogeneity in the x variable are small and can be incleded perturbatively. A
by-product of this analysis is the extension of the result in [1] to two-dimensional
initial perturbations.

Finally, control of the nonlinearity requires L™-estimates (in space), which are
more intricate by the presence of the force. We use techniques based on the study
of the characteristics, which are no longer straight lines because of the presence of
the force. This is controlled by looking at the characteristics in the phase space as
in[1,11}. i

The main result of this paper is summarized in the following theorem.

Theorem 1.1. Assume that the gravitational force is such that G < Gy, with Gy
small enough, and 3. € [A;, (1 + 8)A;). Then, there are 3y and g9 small enough
such that for § < 8, there exists a positive steady solution F; to the Boltzmann
equation, such that for ¢ < g,

I M7UF, — (M + &f)] 225 &2

Assume also that the initial perturbation matches the expansion up to order &*
as detailed in Section 3 below, and is small as detailed in Section 4. For such
perturbations the stationary solution is stable uniformly in ¢ for e < go.

Here, stable means that the perturbation vanishes asymptotically in time. This is a
consequence of the inequality

+c0
/ dt/ d.xdz/ du[d(t, x, , 2, VIPM (V) < 00, (1.7)
0 Qp R3

which is proved in Section 4, and of the regularity of the solution which follows
from our construction.

The positivity of the stationary solution is obtained by using the methods in
[5]. We remark that the method presented here for proving stability strongly relies
on the fact that the problem we are dealing with has suitable stability properties
at the fluid dynamic level, which we show to be preserved in the kinetic setup by
means of a perturbative analysis starting from an Hilbert-type asymptotic expan-
sion plus boundary layer corrections. The preservation of fluid dynamic stability at
the kinetic level also occurs in the Taylor—Couette case discussed in [2], where the
bifurcation phenomenon also arises. :

The paper is organized as follows: in Section 2 we construct the stationary solu-
tion as a Hilbert asymptotic series in £. For sake of brevity, we choose not to give,
here, the construction of the terms of the expansion; instead, we refer for that to
Section 3, where we explicitly show the analogous construction in the time-depen-
dent case. We do complete the proof of the existence of the solution in the stationary
case in Section 2 by proving the main theorem on the remainder. In Section 4 we
deal with the remainder in the time-denendent case and nrove the stabilitv result.
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2. Stationary case

In this section, we treat the stationary case. Here (and also in Section 4), for
sake of simplicity, we consider a square box [—, 7]? instead of a rectangular box
[—pr, ur] x [—m, ) and hence the x-derivative in the equation will have a factor
J in front.

We write Fy = M(1 4 ®%} in terms of a truncated expansion in the Knudsen
number £ plus a rest tere:

5
ei(x,z,0) = 2 el 0 x, 2, v) + eRye(x, 2 ).
I

The expansion will not be given explicitly here since all the ideas and details are
in the previous paper [1]. We only remark that the construction of the Cbi" )5 relies
on the solution to a Milne problem with external force given in [7]. Moreover,
in the next sections we will provide more details on the analogous expansion in
the time-dependent case. In this section we study the equation for the remainder,
beginning with some results on linear existence together with corresponding a pri-
ori estimates. The section ends with an existence proof for the nonlinear stationary
rest term.

We denote by H = Li,([l@) the Hilbert space of the measurable functions on
R3 with inner product (-, -) = (-, M )2, where (-, - )2 is the standard L? inner
product and || - ||2 the standard L2%-norm, while || - || is the norm corresponding to
(-, ).

The linearized Boltzmann operator is defined, for any f in a dense subset of
H, as:

Lf =2M~'Q(M, M§). @.1)

It is well-known that it can be decomposed as L = —vI 4+ K, where [ is the
identity, K a compact operator and v{v), defined in the Introduction, is a smooth
function satisfying the estimates vo(1 + [v]) £ v(v) = vi(1 + [v]) for some
positive vg and vy. The operator L is a non-positive self-adjoint operator with
domain Dy = {f € H||Ivif] < +ool. :

The functions Yo =1, ¥| = ¥ = U, Y2 =¥y = Uy, Y3 =¥z = ¥, Yu =
ﬁ (v? — 3) form an orthonormal basis for the kernel of L in #, Kern(L). For any
function in H, introduce the orthogonal spliting f = fi+ fL == Pf+({ —P)f,
where fj is cafled fluid dynamic part and is given by

4
A o) =2 " fidy, fi= . J=0004

i=0

while the non-hydrodynamic part f; satisfies (f1,¥;) =0, j=,0,...,4. P
denotes the projector from H on Kerni(L). Note that the range of L is (/ — P)H.
We will also use the same symbol for the projections when dealing with functions
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depending on x, z, . We remind the reader that the operator L satisfies the spectral
inequality (1.6).

Forl £ g £ 4oo,let L4 be the Banach space of the measurable functions from
[—7, 71? in H, identified with the space of measurable functions from [, 7% %
R} in B with norm

' |
N7
N fllg2= (/3%3 dvM(v) (fl dedzlf(x,z, v)|6r) ‘?') .-

L9 == (f  [-7, 7 x B > R| || f llg.2< +00}.

that is

Moreover ( -, - )2.2'is the cotresponding inner product for g = 2.

We also need a function space for the boundary functions. We denote by Ri
the sets v = (v, vy, v;) such that v, 2 0. We consider the functions on [—7m, 7] %
(=7} x B3 U[—m, 7] x {m) x R? and define the norm

2\ %
| fllg2~= Sup(/ dv|v;|M(v) (/ dx| f(x, Fm, v)l“')q) .
+ R-l [—m.r]

The Banach space Lt is the set of such functions with finite || - [}2,2,~ norm. The
ingoing and outgoing trace operators y* are defined by

lem—r, fveRy,.
yr = L= T
fle=n, lfUER:F.

The function space where the stationary solution will be constructed is the space
WA = (f i [=7, 7P x R} > R|vif e L9, v iDf e L9, y*f e L)

Note that the norm || - {|3.2.~ is defined only for incoming velocities. In the sequel,
with an abuse of notation, we will denote by || ¥~ f |l2.2.~ the | - [2.2.~-norm of
Sv~ f, where § is the reflection of the z component of the velocity.

We do not explain here how to construct the terms of the expansion <D§" ), We
simply state a theorem about their properties. We assume that the Rayleigh number
Ra is in (Ra,, Ra. + &) with § > 0 and sufficiently small and will consider, for
sake of definiteness, the clockwise convective solution corresponding to it.

Theorem 2.1. The functions d)_g"), n=1,...,5and v, can be determined 50 as
to satisfy the boundary conditions

Mz(v)
M(v) w50
F Y lx, Fr. vt > 0,0, 2 o,

@ (x, Frr,v) = lw, M@ (x, Frr, w) — Y e (x, F, w)ldw

- - ~

and the normalization condition fps . o dudxdz®™ = 0, so that the asymp-
totic expansion in & for the stationary problem (}.1), truncated to the order 5 is
given by

5
FOe) (5 2 vy = M(v)(l +> oM r,z, v)).
n=1
The " functions satisfy the conditions
[ & z2< 00, | ™ fooz<o0, n=1,....5.

Moreover the ®®)’s differ from those of the laminar solution by O(8).

The Yy - functions are such that Yy ¢lig 2,~. ¢ = 2, 00 are exponentially small
ase — Qand fmg dvv, M (W, . = 0. Finally, there exists a stationary solution to
{1.1) in the form

Fy = FEP 4 eR, ..

The remainder R, simply denoted by R, solves the boundary value problem

? ] _B(MR)
—R+v,—R—eGM ' ———~
Hbx ax v 9z £G dv;
5
1 , .
=ELR+ZEJ"‘J(<DU), R+ J(R, R+ A, (2.2)
i=1
M=(v 1-
R(x,¥m, v)= Mz(v) [0z | M (w) (R(x, Fa, wit—Pe(x, F7, w)) dw
M) Ju.s0 £
1 -
— -g—y‘iﬁ(x, Fm,v), forv, 20 andx e [—m,7] 2.3)

- 2
where %1}/& = — Zf,:] &My e, J(h, g) = EQ(Mh' Mg) and A is a smooth func-

tion bounded in| - g2 g =2, 00, such rhatf

doM{()A = 0.
B3

We do not give here the explicit expression of A, for which we refer to {1]. It has
to be considered as a known term in the rest of this section as well as the ®U)'s.
The terms of the expansion contribute to A together with their space and velocity
derivatives. It suffices to know that A has a finite || - [|l5.2-norm. Note that M and
M_ differ just by the normalization and that the v, ;’s are known functions expo-
nentially small in £ due to the boundary layer corrections in the expansion. With
these boundary conditions the remainder satisfies the impermeability condition

/ dvv. MR =0, 2.4)
R!

at the watls.
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Now we start the analysis of the equation for the remainder R. The first impor-
tant result is a spectral property for the operator L ; below: fix x, z and define, for
each f € H

Lyf=Lf+ eNPf, {2.5)
with

5
N=1J@. ) q=ZE”_]¢§.ﬂ). .
n=1
Note that in the time-dependent case, the form of g will be slightly different but
without affecting the argument below.
The operator L ; is not symmetric in H. We denote by L% its adjoint. To char-
acterize the kernel of L, Kern(L ;), note that the functions

¥; =; — eL7INY;, (2.6)

are in Kern(L;), where, for f € (/ — P)H, L~ f denotes the unique solution of
Lg = f orthogonal to Kern(L). In fact, L,¥; = L; — eNPy; + eNPyj —
efNP[L™! N Py} = 0, because ; are in Kern(L) and the last term is zero since
P kills the terms in the range of L=,

Ttis easy to check, by using (1.6), that, at least for £ sufficiently small, they actu-
ally span Kern(L ;). Indeed, suppose that there is g € Kern(L ) withflgi|| =1
such that (g, ¥;) = 0. This implies g = ¢ Zj=o(8lg LNy ;) ;. Moreover,
0=(g,L;g)=(g1,Lgi)+#(gs. Ngy). Thereforeby (1.6),C = —(gr.Lg1) =
£ Z?:o(gb Ny )(gr, L™ ' Nyrj) S ae?, for some positive o independent of &
This is in contradiction with C > 0 for & sufficiently small.

Let P; denote the orthogonal projection onto Kern(L ). Since the range of

Lyis (I = P)YH, it follows that Kern(L}) = PH = Kern(L).
Consider the space A generated by (o, .., ¥4, L' Nvpo, ..., L7 Ny} We
decompose this space into Kern(L ) and its orthogonal complement in A, Lj.
Moreover, (/ — P)H can be decomposed in the span of {Nyr. ..., Ny} and
its orthogonal complement, L,. It is easy to check that

H =Kern{L;,)® L, @Ln.

Indeed itis enough to show that N, £ =0,....4 is a combination of L~! Nirj's
andu € L,

4
N = ae L7 Ny +u, (Ngpow) =0, £k=0,....4,
=0

We take the inner product with Ny

4
(N, Nyre) = D e j (N, LT N Y.

j=0

The matrix with elements (Ny/;, L~'N+y) is non-singular, hence the oy ; are
uniquely determined, as is u as a consequence.

JaLauIItLy 1nn l\a!llell_]J\.zllﬂlU LA VLU [N

Proposition 2.1. (Spectral gap property of L;) There is eo > 0 such that, for
0 < & < £q, there is ¢ independent of £, (x.z} and 8, for which the following
inequalities hold:

—(Lyp,9) = qe(v(l — Pre, (I — Pre), 2.7
—(Ly¢,¢) 2 clv(d — P)p, (I — P)y). (2.8)

Proof. First take (x, z) and the Rayleigh number fixed. It is then enough to con-
sider the set H of all functions ¢ = (J — P;)g = ag, -+ by, where ¢ € L, and
@o = (I — P)p, € L,, and with v%% and ¢ of norm one and a® + b? = 1. First
notice that (ve, @) is uniformly bounded in . It remains to show that the left-hand
side has a positive bound from below. But ¢ can be decomposed as a sum of an
element @ in Kern(L) with norm of order £, and an element L™INgi; in the
spanof {L™'Nvp, ..., L~ N ). Then

—(Lp,p)=— (aLson + bNg12 + beNen, ap, + ber + bL‘1N§012)

= —a* (Lo, @) — B*(N@12, L™ Npy2) — b2 (Nep1. L7 Nop)
> Cla> (o, o} +H (L™ No12, LI Nei))+eb*(Non, L™ Non).

The first equality follows from the fact that ¢y is in Kern(L) and is orthogonal
to the range of L; the second equality is due to the fact that (9, Ngy2) = 0=
(0. Ng11) by the definition of L,; the bound (1.6) has been used to obtain the
inequality. Since the last term is of order &2, it follows that for £ > 0 and small
enough

C
—(Lyp, 9) 2 g(az(vm, @1} +b2L T 'Noia, L™ \Ne)) Z e,

for some ¢ > 0. The first inequality in the proposition then follows, since the con-
stant depends continuously on (x, z) and the Rayleigh number is in a compact set.
The second inequality is obtained by similar arguments. O

We only consider Rayleigh numbers in a suitably small neighbourhood of the
first bifurcation point, and take G sufficiently small as specified in the sequel. Con-
stants which, independently of the parameter &, can be made sufficiently smalt
for the purposes of the proofs, will generically be denoted . We will first give
estimates in the linear case. The argument is inspired by the approach in [24] and
heavily relies on the study of the space Fourier transform of R. We use the following
definition of Fourier transform: forany £ € Z

1 .
FfE)y= §]|— ]dxe—’“f(x).

When we want to specify that the Fourier transform is taken with respect to
the variable x we write F.. In the sequel, if f is a function of (x, z) € [—7, al%,
FlEe, &) = (FyFof)(Ex, &,). Finally, if £ is a function of x, z and v, we define
{f) as the zero order Fourier coefficient of f, that is
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1

{f) :=W

/ Gz ndedz, aave R (2.9)
[—m.m]

and f = f —(f).

An important teol in the analysis is the Green inequality, which we will use
extensively in the rest of the paper in various situations.

Consider the linear boundary value problem

d b a(M 1 ’
w Ly ¥ oM L e 0T @i
0x az dv, £

with [ Mgdv = 0 and prescribed incoming data
flx, L7, v) = p(x, 27, v) v, 0. {2.11)

Due to the Gpresence of the force G, the argument requires some care. We introduce
k{z) = €f @+ Then we multiply (2.10) by 2 f M« , integrate over [ —r, 72 xR3,
and integrate by parts to get the Green identity

1 | I .
N2y~ f Bon ——fiLif2 = (8. Foa+ Ik plE~ (212)
Apply the spectral inequality (2.7) to obtain, for small 7,
L .2 c 11 2
f«2y f||22~+— | «ZvI(f — Ps)f |2, (2.13)
= C(S i KTy~ I(I —Ppg 5, +n lI K’PJf ||22
—"’(EPJ’S’ ||22 +||’(IP||22~ : (2.14)

Finally, since 1 < k(z) < &*7C

, we conclude that, for some constant C it results
in: :

7 — 2 c 1 2
1y ™ F am +5 V2T = POS 132
1 1
<C (s lv=2( —Pg I3, +n il Prf i3, + I Prg I3, +||p||%~2_~).
(2.15)

Inequality (2.15) and its variations will be referred to in the rest of the paper as
Green’s inequality and used extensively, with L% sometimes replacing L ;. In the
last case the projector in the right-hand side has to be replaced by Py = P.

Lemma 2.1. Let ¢(x, z, v) be solution to

de 9 a(M 1
A ¢ _ o1 3MO) _ “Lig+g, (2.16)
ox 0z v, £
periodic in x of period 2m, and with zero ingoing boundary values atz = —m, x.

Then, for some small 1

v = PYg s £ C{s 1V = P)g oo
T Pghatuel< Po>la).  @17)
I Pollae S (v b = Pog lha 4+ 1 PR T
+0 1< Po >z ). @.18)

Proof of Lemma 2.1, The method from [24] (a variant of {24] Scn 5.3) can be
adapted to the present setting to obtain the existence of a solution to {2.16), if one
includes the above spectral estimate for L%, and the new characteristics curves due
to the force term.

We write (2.16) in Fourier variables. For § & 72 — (0, )],

o e 4 000 = %E‘;Jr eGM™ %’@ +2— (=DEulr. (2.19)
Here
gl
Introduce
V= e v, @=, 2= Tip+eGMT (T) — =Dl

Z=e"Thg+g—(~D%ulr, Z'=e'Lhg+3 U=GE-v")7"
Let x be the indicatrix function of the set {u € R3] | £-v* |< «lf]), for some
positive @ to be chosen later. Let £ (v) = (14 | v [)*. For § # (0, 0)

4

PO S

j=0

fwdvx(v)q)(f?, V)M (v} (v)

4
Sell toax® U D I x4s¥s IS eV i s ® Il

j=0

We use this estimate with the following choice of &, & =1 { ;P 1= 2=s 27 |-
We also introduce an indicatrix function x; with @ = /31. We fix 8, so that
¢~/8) << 1. Then we find from the above estimate that the P-part of the right-
hand side, || P(x;®) ||, can be absorbed by || P (x| ®) || in the left-hand side. The
estimates hold in the same way when x; is suitably smoothed around }/'éT |£]. For
the remaining x“x{® = (1 — x3(1 — x1)®, we shall use that & = -/ Z. Then

c wr e |l VToglr 112
I PXEXTD) 12 S e ll foezx{x0 1PN ¢=sZ" i +—51|—;|—5— +£GlO|
2
c v |r
ez P LRV DL ey

_I%‘Iz 811812
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with

23

DM . .
(a 208 (j%—xfx‘(qa-—UZ)Mdv) .

4
o= [vixx
j=0
We replace o by || ¢ ;@ [[7!]| £-4Z’ || in the denominator. That gives
| Il 12
S1l€1?
+31 1| {5 = PYO 1) +£G|O).

hP® I < el fos® I 62" || +

Hence,

I Vvl 12

I POIP < c((ll PO+ 14l = PY® D 82/ § o+

+8 | st = PYO |I? ) + &GO

Consequently,

Il /Tolr I
511812

+ || s = PYO |2 ) +eG|@)|.

| PO | < c( I ¢-sZ' 12 + A+l eos (T = PY® |l 252" ||

We next discuss the term £G|©)|. The first integral can be bounded by £ times an
integral of a product of M, 1 + |£,], a polynomial in v, | ¢ | and U or U2, So this
factor is bounded by £c || @ ||. And so,

I /Tozlr |12

s T Pe ||2).

I Po P e (n (s Z' I +
Therefore for £ £ (0, 0},

1 ———
] |Po(E, vyMdy £ ¢ (8—2 I eos LS @&, ) 12 + I (F — PYOE, ) |

/ol 12
e
We remember that the zerc Fourier mode of }?Zo is zero by definition. Hence, taking

& small enough and summing over all 0 # & € Z2, implies, by Parseval’s theorem
and the spectral estimate on L%, that ’

+ + 1 vT28(E, ) Ilz). (2.21)

f(ﬁ?p)z(x,z, v)Mdvdxdz £ ¢ (giz]u((l — PYe) (x, z, v)Mdudxdz

+ /u—igz(x, z, V)Mdvdxdzt || y e II§,2.~) -
(2.22)

DMLY BUL BAUF VISR ATl el et 1o

Tnequatity (2.15) implies (2.17). Replacing (2.15) in (2.22) gives (2.18), and this
concludes the proof of the Lemma 2.1. O

Remark. The statementof Lemma 2.1 still holds if we replace the operator L* with
the operator L ; and the operator P with £;, with some minor modification, The
main change is due to the fact that one has to use the basis functions in Kern(L ),
namely the ¥ ;’s, instead of the y;’s. They depend on (x, z), therefore we fix a point
{xp, zo) and use the t,f_f ;'s computed at this point and the corresponding projector
P;g. Then the argument of the proof can be repeated word by word. Atthe end, we
replace Pyo with P; since Py — Pjo = O(e).

Put H(R) = 33_ &1 (@, R) and decompose H in accordance with the
operator L. Set Hy(-) = H(-)— J{g. P-). We notice that H;{-) is of order zero
in £ and depends only on the nonhydrodynamic projection (f — P).

To pass from the linear results to the non-linear case we will use an iteration
procedure that wilt lead to Theorem 2.2, below. To separate the difficulties coming
from the non-linear term and from the boundary conditions, we split the remainder
R into two parts, R; and R3, solutions of two different equations. In the equation
for R, the boundary conditions are of given indata type and the nonhydredynamic
known term is included, while in the equation for Rz the boundary conditions are
of diffusive type and the known term is absent. The equation for Ry will be given
later (see Equation {2.25)). We start with a discussion of the equation for Ry,

py 10MRD) 1

aR aR
‘ ' e = LRI+ HiR) +g, (223)

Hvsgy Ty —50
1-
Rilx,Fm.v) = HEIII(I, Fx.v), v, 20

Here R, is periodic in x of period 2w, and L; = L{-) + &J{q, P-) has been
introduced earlter. An existence proof for this problem can be obtained similarly
to that for ¢ above.

The nonhydrodynamic part of Ry is estimated similarly to the corresponding
proof for Lemma 2.1,

1 c 1
Iy R 3 +=— || vI(I — PR, |3
B Iy~ Rl +282 [l vz IR 54

_1 ] 1
=cC (n vTI(I - Prg I3, +oo I PRy 1, 507 I Prgli3s

L )
&3 23~ )
for small n = 0. Here we have used the fact that
|
I(Ry, Hy(RDY22l € CU wIU — PR 3, +&2 11 PR IR ,).

A priori bounds for £ R; will be based on dual techniques involving the problem
(2.16). Consider first the problem for R without the term H(R). It holds
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Lemma 2.2. Set h :== P; Ry, Then there is &y > 0, such that for 0 < § < 8,

] 1 1 _
A ILS CUlv I — P 113, +3 Il Prg 2, +5 ¥ 13 2.)-

Proof of Lemma 2.2. The function Ry is 2 -periodic in x, and here solution to

3R oR MR 1
vy — + 1, ]—SGM_l—(———]-)-=—LJR1+g, (2.24)
0x az v, £ .

1
Rilx, Fr,v) = —Ew(x, Fr,v), vy 20

Let ¢ be a 2w -periodic function in x, solution to

99, , % 18Mp) 1
— sGM —L h,
mingy TVg v, vt
with zero ingoing boundary values at z = —m, .

We consider the equation for By multiplied by Mx¢ and the one for ¢ multi-
plied by M« Ry, and add them. After integrating on [—n, #]% x R and integrating
by parts, we obtain,

(R
/dxdzdex( (v, nga) _ecX U“P)) /dxdzdex

[_—;—((1 - PleLi(I ~ PpR)+ ;(1 —POR L - P)QO+K8¢>+MR|]-

Using again the bound 1 £ ¥ £ 2 and the assumption & = P, R|, this

gives .

K

2

b od = PYp ||% L+ i - P 1B,
K& : 2 '

I _ K3 L
nhung Iy R, + T @13, + IvIU — PHRy 2,

4o I vi(f ~ PYg |12 +‘92 | vig |2 X2 Il Pyg I3
rrere——— U — — —
T @22 7K4 ¢ il2,2 5 78 122

1 &2 ]
— [ Po 2, +=—— || v |34,
+ 5K, I Pellz, +2K2 Il vig 154

for arbitrary positive constants K;, j = 1,...,4. It then follows that
K
| & ||%,2§C[ (E_ 1) (R "'J D~ +(€K1+K4+K3€) v 7(1 Ple ||22
' 1 I i 1 n 5
—t =+t —+ =+ = h
+(£K| + £k, + eK5 K4 EZK]) I "2‘2
K\ K3
+ (T +ot Kz) I P2 I3,

2
2 Mo E L) Py (12
+{(m K1+ mKs) Ilhllz_g-l-n(m +K1+K4+K9 I (P} ll5.
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For an estimate of the final (Pg)-term when G is small and the Rayleigh number
for the rolls lies in the neighbourhood of the bifurcation point, we may apply an
exact, direct approach based on ordinary differential equations. Namely, {¢).(-) .=
f @(x, )dx satisfies a I-d stationary laminar indata problem, similar to Equa-
tion (3.5} in [1]. The present case is different from the one in [1] because there
will be new contributions coming from the terms in the expansion depending on x,
for example the term g in the J-term. Since the first order of the £ expansion is of
order 8, the same is true for the higher order (in £) terms. The new contributions can
all be considered as deviations from their x-independent values at the bifurcation
point, hence are of order . We include them in the estimate as 1 | ¢ [|2.2, 7 small,
and obtain

I (P} lla = c Il {Pyix 225 Il {Pe)x 22 +& | @ H2.2)
e C
- | e N2z +7 1@ 22 - FAl22+0ll¢l22.

WA

For details cf. Lernma 3.5 in [1].
Choosing ¢ << 1, then K| and K3 (resp.K>) of order £~! (resp. £=2), 57 of
order £, and using Lemma 2.1, the inequality of Lemma 2.2 follows. 0

Remark. From here on, small factors 5 in the estimates will depend also on the

small &g.
In the following lemma we get the final estimates for R;.

Lemma 2.3. If R| is a solution to the system (2.23), then

1 1 ] R
[vIR {22 & C(II VI = Ppg 2 +~ HPrgllza+e"1 |y II2,2.~),

I/\

|
TvER floo2 &

('- v ?(f — Fylg II22+ 7 I Prgllza+e v 58 lloo,2

5 -
+e 2y ||2.2.~)-
Proof of Lemma 2.3. Consider first the sclution to (2.23) with H; = 0. It satisfies
_ _1 1
(¥~ Rillza~+e7 | vi{l — PR |22

b - L )
< C(E ¥ oo~ +e7 1072 — Ppg Il

1
+mdl PrRy 2z +H | Prg llzz )_-

forany 7y > 0. By Lemma 2.2 and some additional computations using the solution
formula,

L ] 1 _l +
I vIR 2= ¢ S Hv2R 22 +ellvTig floo2 + By TR ho2~ )

It is easy to see that adding the term H;(R|) does not change the above results.
That proves the lemma. 0O
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Now we study R, the other part of the remainder. Denote by

Me(v)
M) W, 50

I -
J e, Frv)y= (Rl(_x, Fr,w)+ glﬁ(x, . w)) |w,iMdw, v; 20,

the incoming data for R» which is a solution to

IR AR (MR 1
o OB 08 am 2R L e R - 225)
ox oz v, £
M
Ry(x,Fm, v) = [ (x, Fr,v) + Mzv) Ra(x, Fr, wilw, | Mdw,
M(u) nr 50
v, 2 0. (2.26)

Existence and unigueness for (2.25) follow as in the laminar case, ¢f. [1]. The fol-
lowing a priori estimates hold for Rz. By Green’s formula and the definition of

Hi(R2) = Hi((1 — P)Ry),
c | -
Iy~ R2 I35~ +- I vI — PORy 25l y R 1135 +eGcl| Py Ra|I3 5

Here we face a problem of diffusive boundary conditions. The ingoing flow is given
for ¢ and for R but not for R». The following bound is proved as in equation (4.23)
in [11],

q:/ Muv,R3(x, +m, v)dv §csn[ luz|M R2(x, %7, v)dv
i v 20

| 7 .
+— Ju | M(f ™ (x, 47, v))2dv.
'5'77 U3>

The computation in [11] has to be adapted to the fact that the boundary conditions
for Ry are not purely diffusive but contain the given data f~. From Green’s formula
we have also

¢ I
D puia = PR 1305 [ ((0e REGx, =, 00) = (v5, B Gx, 7, 0)
Then, using the previous bound, we get for any 7 > 0,
Dk - PR By Seen Y [ o MREGr . vy
£ ' + Jv.20
1 -
+— 0 f W - 2.27)
En

We need to estimate the terms invelving the outgoing parts of Rz in the right-hand
side in terms of ||R2[2.2 and || f ~lf2,2.~. This is done separately at 7. We start
with 7. Consider the equation for Rz, multiply by « M R; and integrate in velocity
over the region v; 2 g. Then integrate over space, using a smooth cut-off function
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x{z) which is 0 in a small interval close to —m and 1 close to 7. Finally, integrate
over g, for gg < ¢ = 0and gy small enough. We gel

0 b
f dg f dv / drvc (MR, m,v) £ 280 vk — PRy 12,
4o v:2g —n £ '

0
—/ dq/ du/ dxdzk(z}x’(z)szRzz+csG | R2 |l% 5 -
g0 024 [-7.m|? )

The term on the left-hand side equals

o n
Clgol Il v~ Rz 135 + / dqf dvf dxv, MR3(x, 7, v).
] g <v, <l ¥4

I —

" Here, in the last term, we can replace Ry by the ingoing boundary data so to estimate

it as

1] T n
/ dq/ dvf dx [M"'f dw/ dxw, MRa(x. 7, w)
G g <y <0 - iy 20 -7

+ Mf @)

< ctqo)[I 7 Rz B + 1/~ B2 ],

with c(go) = o(|qo[). Adding a similar estimate at —7 gives

C !

- 2 —

1Y R 502 5 12U = PORy 52 +C | f7 I +C 1l PrR2 1S,
(2.28)

Replacing in (2.27) we get

I | ¢
- 103U = PRy I3, enC Il PiRa I3 o I 152~ (229

We shall next prove an a priori estimate for the hydrodynamic part of R;. First
we consider the 1-d (x-independent) case and then include in the argument the
missing terms which, as explained before, will be of order §. The extension of the
1-d results to the 2-d case will be based on perturbative arguments in §. To take into
account these terms of order §, we add to the right-hand side an inhomogeneous
term g with [ Mg dv = 0, which will be of use later on in the proof of Lemma 2.5,

Lemma 2.4, Let Ra(z, v) be solution of the 1-d problem and f~ be defined as

before,
AR L HMRy)
Vi T eGM Bk ;LJ Ra+ Hi(R2) + g1, (2.30)
Mz (u)
Ra(Fm,v) = M) Juoso Rao(Fr, wilw iMdw + f~(Fr,v), v, 2 0.
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K g10= [g:duMg) =0, then it holds that
[ _ 1
| PR I3,S — 07 B+ 11072 15 .

Proof of Lemma 2.4. Here, L, is generated by a function g, independent of x,
defined by § = g + O(38). In the same way, in the term H) we retain only terms of
order zero in &, which are independent of x, and include the remaining terms in g|.
In this way we reduce the equation to a 1-d equation with a given ferm.

Consider equation (2.30) for kz = F. Ry, the Fourier-transform in z of Ry, It
satisfies the equation

a

vz

vt R —eGM ™ S (MR)=e""L R+ Hi(R) —vr (=% 441 (2.31)

with r{v) now denoting the difference between ingoing and outgoing boundary
values,
r(vy = Ra(m, v) — Ra{—m, v). (2.32)

For £, # 0 we use the method of Lemma 2.1 with L instead of its adjoint. Con-
sider the ingoing boundary values as known, and follow step by step the proof of
Lemma 2.1 with obvious changes. Let L ;g be the operator defined in (2.5) with g
taken at a fixed (xq, zp). Define P;q as the orthogonal projection on Kern(L yp).
We reach the analogue of (2.21),

~ ] .‘_,_,_‘——_
/]PjoRz(Ez, nEMdu £ C(s_?- I &y R2(Es ) 1P

I Pro(xSxCver) I7
811&;1*

v e ) 12+ ) v (R 9 112 ) (2.33)

+ | (= Pro)Ra(E, ) I +

For an estimate of the r-term, we express it with the £, = 0 term in the Fourier
series for (2.31),

e § . e
vr (V) = '(];LJRZ(O, v)+ sGMflg(MRz(O, v)) + g100, v) + Hi(R2)(0, v).
Z
(2.34)

Inserting this into (2.33), and summing over §; # 0, resulis in
e 1
f(PmRZ)Z(z, v)Mdvdz £ C (;5/ v((f — P;)R2)%(z, v)Mdudz

+/v"lg.2(z, v)Mdudz + &% || Ra II%,z)-

We are left with the Fourier component P ég(fz) for & = 0. Estimate sepa-
rately the (/ — P)-component and the P-component of PjoR2(0, ). For (I —
PYP;oR2(0, -) we obtain

I (F = PYPsoRa(0, ) IS Celll v3U — PRy llaa + | PrR2 I22)-

The £-moments are the more involved, so each will be discussed separately. We
start from the v,-moment of R2(0, v}. Multiply (2.30) by M and integrate over
z € [—m, z] and v. Since g1g = 0, we have

/U;MRz(Z, v)de x/ [ (—m, viu,Mdv.
. v, >0

Given two functions 2(v) and f( -, v) weusethe notation f;,(-):= fdvh(u)f(-, v).
In particular, for & = ¢, j =0, ..., 4, we also use the notation f;. We have

| Ry, ()] = V veM Ra(z, v)dudz] = CHl £ 2~ -

To estimate the moments of &7 (0, v) we use the identity

R0, v) = A= D Rotr v)(— 1), (2.35)
&0
where A(v) = %(Rg(n, ) + R2{—m, v}), which follows from"
Ra(m, v} + Ra(—m,u) = Y Ra(, (™5 +¢775),
£ eZ

by solving for the £, = O coefficient.

We write A = Ro(—m, v) + %‘r(u) forv, > 0and A = Ro(m,v) — %r(u) for
v, < 0.

We consider first the ¥4-moment of R2(0, v), denoted by §24. We notice that

~ | - - ~
Ry i(0) = —=Roa(0) [ vZv?AMdv + R, (0), (2.36)
5 JE 2 2w A

where ﬁg- = (1 - P)R; and A and B are nonhydrodynamic solutions to
L{v.A) = v.(v> =5T), L(vev;B) = vyv.. (2.37)
Hence, we are left with the control of ,QQU_ZA(O). For that, we use (2.35). A multi-
plication of (2.35) with Muf/i followed by a v-integration, gives
k?.ufﬁ(o) = Avgﬂ - Z ﬁzugj@z)("])&i
E£0

Let us first consider the contribution Az 7. Using the relation

1
A=RyEm ) F Er(”) forv, 0,
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we notice that the first part is computed in terms of the outgoing flow and then
can be bounded in terms of fdvv.fﬁMf’ and fuzzo UEA Ra(txm, v)Mdu.
Then, we multiply (2.30) by M x v, A and integrate over v; > O (similarly at —),
to get the bound

- 2 1 |
/ vSARg(:I:n', Mdvl S PrR2 [|§|2 +C(? flvi(d — PHR2 |i%_2
v, 20 .

L

1
+ lvT2gy ||%_2).

The second part, namely the vzzi-moment of the r-term, is estimated as before
using (2.34). A . .
In order to control R, 1(£) for &; # 0 we take the inner product of (2.31) with

A,

- . a — ,
(—Dferpz +iE V2 A, Ray(E) + &G / 7 (W AOM Ry(Edv

= A TIRIED) + 81 0, 4C) + 0, H R ED.

Hence
" (- D% ieG 3 .
Rgite) = S inga+ [ o R M ot
A TR ED) — w8y i) — — 0 A (R ED).
g&; £, £

Combining this with (2.35) and noticing the pairwise cancellation of the r-terms
with positive and negative £’s, gives

N 1 |
|Ry25 @ < c(g I vEd - PR I3,

| -2
+ lviigia ||%‘2 +nll PrR2 ||%_2 +If ||2‘~),
and so using (2.29) and (2.36)
- 9 1 ! 2 ! 2 —2
[Ru(®]* = ¢ po) v I = PR 52+ 1 v 2g1e 2 HI S llz~
+nll PiR2 13,

1 _1 2
< (8—2 IF= 13+l v 2g1s ||%,2) +nll PsRe I3,

The v,- and v,-moments are analogous to each other, so we only discuss the former.
This can be treated similarly to the previous R4 (0) case but with A = Ry(Fm, v)&
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%r(v), v, £ 0. The Ry-term is now ingoing, and its inner product with v, gives
zero, The r-term is estimated as before, For the sum in (2.35) of the other Fourier
coefficients, we notice that Ry, (£) = Rz, (EY— Ryy 2, (£), and we can proceed

as before. Since P P; ﬁz differs from Pﬁ'g by terms of order £ which are already
under control, we can summarize the results so far as

/ (125, OF + R34, O + 1Ry, OF + 1Ry, ) 02

1 ] 5
<e (?2 13, + v ey ”%,2) +alR I3, @39

Finally for the f:’zo(O)-momem, start by considering (2.30) with the new bound-
ary conditions

RZ(—TE U) = f_(_ﬂ, U), Uy > 07 - (2.39)
M, (v)

Ry, v) = M)
=1}

[Rafm, w) — f~ (=7, w)] w, M(w)dw, v, <0.

The new boundary values are constructed in'such a way that Ivz<0 Ra(—m, v)u,
Mdu = Oand this property will allow the new boundary conditions to be equivalent
to the old ones. In fact, since [, _, M4 (v)v.de = —1,

/R‘ v Ra(m, v)M(v)de = / v, Ra (e, v)M (v)dv +/ v, Ra(m, v)M (v)dv

2 <l v, >0

n, =0
+/ v Ra(m, V)M {(vde
=0
= / we f{(—m, v)M (v)dv.
w >

Existence and uniqueness for the new problem are well known. We shall ver-
ify that the new problem also satisfies the old boundary conditions of (2.30). At
z = —m, for v; > O the new ingoing boundary condition for R is Ra(~m, v) =
f~(—m, v)), which coincides with the second equation in (2.30) since /27 N
Ra(—m, w)|w |Mdw = 0. At z = 7 the new ingoing boundary condition is

1. <)

Ry(m, v) = M—‘M+/ [Ra(m, w) — £ (—m, w) ] w,M{(w)dw, v, <O0.
. 1wy =0

This coincides with the old boundary condition at 7, given by the second equation
in (2.30), that is with

Ro(m, vy = f(m,v)+ MM, / Ro(mr, wIM (whw dw, v, <0,

dan N
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provided that

—f (r.v)= MMy [ (—m, whw,M{w)dw, v, <0,

;>0
or, recalling the definition of £,

/ (R;(Jr, w) -+ v w)) M(w)w dw .
w->0

= / (R] (—m, w) -+ W( ) M{w)w,dw. (2.40)
1w, <}

To check this, we note that from the assumption that the inhomogeneous term g in
the equation for R is such that fm_q duM(v)g(v) =0, it follows that

(v, Ri(mr, v)) = (v, Ry(—m, v)).

"Then, using the boundary conditions for R; this becomes
"
MR (m, v)v,dv — M(v)y—{x, vyvdv
u. >0 u-<0 £
+/ M(v)z(rt, v){(—m, v)vdv —/ M{WR | (—nr, v)v,dv =0.
v >0 3 v, <0

Using (Y (£, v), v,) = 0, the claimed equivalence follows. Thus Ry with the new
boundary conditions equals the unique solution to (2.30).
We write (2.30) with R’2 = Rou{z). The left-hand side becomes

R, IR
- eG——=2
@ (vZ 3z v,

Multiply the equation for R, by Mv.«(z) and integrate over [—m, z] x R3. The
left-hand side gives

fR’z(z,u)Mug-du—/’R;(—n, vMuidu

—&G dz’ /RQ(Z VM 2du + SG/ dz’ /Rz(z vIMdu.
g

-

SincefduungMdu = Ry + %%i + fdvvaZLMdv, by integrating the equation

again over the interval [—m, ], we control |!§20(0)| in terms of known quan-
tities plus terms bounded in the || - [l2.2-norm, multiplied by a factor £, and
the integral f Ri(—m, v)M vgdv. The contribution due to the incoming part is
given by f~. Therefore, we need an estimate of the outgoing boundary term

fv, <0 Fa(—m, U)Mvzzdu. To do this, we repeat the steps above but this lime integrate
over {[—m, 7] x R?; v. > 0}, to get on the left-hand side

/ R (n, v)Muzzdu — / Ry(—m, v}Mvzzdv
>0

>0

m T
—&G dz’/ Ry(Z, v)Mugdv + &G dz'/ RY(Z, v)Mdv.
-7 >0 -1 >0

Since R; solves the problem with modified boundary conditions, the incom-
ing part in — can be bounded by || f ™ [|2.2.~. Therefore we get an estimate of
fu_>0 Ra(ar, v)M uzzdu in terms of the norm of £~ and again quantities bounded in

the || - [}z,z-norm multiplied by a factor £. To obtain the estimate Offu«[} Ry(—m, v)
Mvzzdv, we integrate over [—m, ] x R3. The final estimate is

n 1 1 y
[Rap(0)] £ C(g £ M~ +- | vi(f — PRz 22
1
+nll Rallaz+ 1l v Zgf2.2).

By combining with the other moment estimates (2.38), and using (2.29), we obtain
that

- _ _1
| PsRy 35S — 1 F7 1B + 10728 1, (2.41)
This completes the proof of the lemma. O
Based on this 1-d analysis, it follows in the 2-d case that

Lemma 2.5. The solution R to (2.25) safisfies

1 _
PR 3aS e i 1

Proof of Lemma 2.5. Consider equation (2.25) for the Fourier transform in x, z of
R2, Ry = ]:x-FzRZ»

ik, + Eu) R

 J— JMR
= TR+ ey 2R

+ Hi(R2) — uor €y, 0)(— D%, (2.42)
r(E, v) = FyRylr, 7, 0) — Fx RolEx, —7, v). (2.43)

Inthe case £, # 0, £, # 0 we can reach, as in the case of Lemma 2.4, a bound like
(2.33). If we consider the Fourier components with £ large, we see that in (2.33)
the r-terms are multiplied by a small number for & large, and then can be estimated
by using (2.28), by n || Rz [|l2.2, with a small 7, plus the earlier terms. We notice
that in the case & = 0, equation (2.42) reduces to (2.31). Hence, we can apply
Lemma 2.4 to R2(0 &L v) = ng(x z. v)dx and, taking into account that g is

of order 4, get a bound for the Fourier components Py kg(ﬂ, &), for 8 small. The
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remaining components in the case &, # 0, &, &; bounded, can be estimated in the
following way.

We start from the moment Rgu1r Notice that ry, (£,) = fv_ (&), where f
the function defined as

(Fx S WEe v} foruy; <0,
(Fy )&, —m,v) forv, > 0.

Hence, by integrating (2.42) we obtain
|11 Rav, (Ex, O)) E CIF; (50

Then, we look for a bound for Rz,, (&:, &) when £; # 0. We use the function B
introduced in (2. ’%7) B being the solution of the equation L(UJr sz) = Uy Vz.

We have (u v B Rz) (v va (I—P)R2)+(1}/x,vxv B)(y{rx, Rz) where
¥j, j = 0,...,4 are as usval the vectors of the orthonormal basis in Kern(L).
We multiply (2 42) written for &; = 0, by sz (Yrr. vy vff?) and integrate over
velocities. We first use the relation so obtained for &, = 0 and obtain,

e, n=

1 —— -
Irag(6e)l S ¢ (E 1 v 3Ly (= Pp)Ra(Ex, 0) |2 +€G | Raté, 0) |12

+ 1 @D+ By TR E O) 2 + 1 (7 — PYRa(En, 0) ll2 ) :

having used the fact that [r, | £ c|f;_|. We use again that relation for & # 0.
Since (v} B, Ry) = (U3 B, (I — P)Ry) + (R, ¥)(¥;, v B), we obtain in this way
an expression for &; ﬁzv: (&x, E;), for £, # 0, in terms of quantities under control,
since with the previous subtraction we have removed from the equation the term
(Y., R2). As aresult, for &, # 0,

n 1 1 —
|6, | Rou,(Ex £ | S C (E Nv 3L, (7 = PRyE &) |
T E (R, 82 || + 6 | Roee, £2) 1

l L ——— ~
+- vIIL(I = PryR2(Ec, O) || +& | Ra(E, ) I

L = -
+ §vTTH{R)E O) [ &N fTER) )
Notice that the last term is bounded because &, is bounded in this part of the proof,

the terms with £ large having been estimated before.
in the same way the v,-moment can be controlled when &; # 0,

N 1 —
&1 Roy, (65, £2) | = C (E v 2L (7 — Pr)Ra(En ) |

v (R E £ | +e 1| ReEe, ) )
| ——e -
o1 vE L (F = Pr)RatEr, 0) [l + £ || RatEe. 0 I

+ 1 v E A (R, 0) | +|ft;(-sx)|) .

For the v,-moment Rgv: (&¢. 0), by using the proof of Lemma 2.4,

[Rau, (£x, O] S el (&) | + | FxRay (& 1)

To proceed, we observe that

2z
1 —
| FeRa ) IS C | < EZII vIL (T = PRy £ |2
| 1
o kel . z
+ (DI TTHRDEE P + e (D] 1Rl 8 1P

23 &

1 —— . .
+— IV LT = PRy O +2 | ol O 1+, 61
+ 1 v T H (R O |

And so,

R0, &0 01 £ € (I F~ €D I+ 1l Ra Nz

—

] § ——
- (Z v 1L (T PRy, &) 12
£

4
n (Z 102 H (RD)Ex, £2) ||2)

&
1 1 s
+ o IV TIL (= PR, 0) |
+ 1 v ARG 0 1)

To estimate ﬁg,,y(gx, 0), we use the method of Lemma 2.4, that is the proof of
(2.38). Then, to get the estimate for £; % 0, we multiply (2.42) by vyv; and use
vrty: € (Kern(L)}! to estimate the term in r as

| o
Iry20, (B = C(; lv™ 7Ly (T = P Ra(Ee, ) ll2 + ¢ || RotEn ) 2

+ v TH (R EO) 2 + | (= PHRE O) |12 )
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So, with C depending on &,

N 1 J———
I Rou, (6,00 ll2 5 € { =3 172 Ls (T = P RaE £ 1)1

.
13
2
+ v T H (RDE: &) 113
£ *
3
+ 0 Rk, &) 113
£

1 | —
to lv™ 2Ly — PR E O) ll2 +2 | R2(6:. 0 |2

+ v EARDE O Iz + I U = PHR2E O) ).

and similarly for ﬁgu), (&, &) when g, # 0.
For the ¥4-moment we shall use

. 1 - - .
Ry 5(6) = %Rn(s)/vf_vaMdv-i- Ray 27 (E). (2.44)

Here, in the 2-d case,

a
ov;

Ezﬁzugﬁ(f) = £ Ry, , 4(E) + (—1)5-*-:'%33 + isG/ (v A)M Ry (£)dv
— ~(2A, TR — iCv:A, Hi(R)E)).

The additional term, in comparison with the 1-d case, belongs to R, , and can be
estimated by (2.29). An estimate of the boundary term r ;4 can be obtained by

multiplying (2.42) with v, A for £, = 0 and integrating. For &, # 0 this gives

~ I i
Ryp24lr- P £ C (5—2 lvIt — PRy 5+ Il R ||%.2)

with C depending on £. Using (2.44) the same estimate holds for Raa(ky, £;). For
&, # 0 the Fourier component R, ; (£, O) can be expressed by (2.35) and (2.42),

including the patrwise cancellation of the r(&,) terms. Treating the A-term as in
the 1-d case, gives

R 1 1 A_
IRy 5(Ec. ON* S C (8—2 I vl — PR 13, +&% | R 50+ 1 7 (&) i|%~)

with C depending on &,. Again by (2.44) the same estimate holds for Ry (Ex, D).

The Yo moments when &; % 0 may now be obtained by multiplying (2.42)
with v, and iniegrating. Arguing as above and using the earlier estimate for the
W4-moment we get

~ [ 1 9 -
|Ran(Es, )P S C (; Ivi(f — PRy |3, +e2 I R2 152+ 1| £ (o) ||%~)

with C depending on £. And so there only remains the 1y moment for Rg (&, 0}
when £, # 0. Multiply (2.42) for § = (&, 0) with v, and integrate. For the bound-
ary term ry_,,_ (€.}, multiply (2.42) for £ = (&,, 1) with v, and integrate. All terms
in the upcoming expression for ry , (£;) are then under control. This gives

- 1 | 2
|R20(E, O < ¢ (5—2 I vIU — PRy 72 +62 Il Re I35 + 1| F 60 H%N)-
Combining all the above estimates gives the statement of the lemma,

c -2
WPsR I32Z = I 7 I
a
The step from L2 to L% for R2 follows as in the R|-case. These estimates together
give

Lemma 2.6. A solution to the Ry-problem satisfies

i _1 1
| v — PRy N3, < c (s lv=2d — Pg 13, +- |l Prg 03
FLI )
g2 2.2~ §>
2 1 - 2 1 2
I PiR2 3, =c Z o727 — Prlg 5 +8—3 | Prg I3,
I 7 o2
+ = ~ ]
p Il 52 )

1 1 | 1
| v2Ro ”go_z Sec (; v 2 — Pplg ||%_2 +€—5 | Prg f|§‘2

| 1 _
+ e lvTig 2., IV ||%,~) .

The previous estimates can be used to prove

Theorem 2.2. There exists a solution R in L%,,([—Jr, 7] x BY) 10 the rest term
problem

v v —eom-t 2R e R+ H(R) + £a, - (245)
£

-

A

Rix, Fm, v) = /

i-
(R(xs :FT{’ w) + -W(Ir :FJL w))lelM*dw
i S0 £

1-
—=y{x, Fa,v), v, 20,
£
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Proof of Theorem 2.2. The rest term R will be obtained as the limit of the approx-
imating sequence {R"}, where R® = 0and

G aMRh
S———-— =

it . VR::+1 _ - _LJRM-H T H}(R"+l)+ J(R”, Rr:) + ea,
v, £
-1 M:F 41
R™(x,Fm,v) = — (R" " (x, Fm, w)

M w. S0
¥ .

+ —(x, T, ww Mdw
&

- E(x, T, v), v, 20
&

Here (I — P;)g = (I — Py)a is of order four, and Psg = e P o of order five. In
particular, the function R' is solution to

RY 1
o VR! —MEGM‘I%M—)- = —L;R' + Hi(RY) + sa,
du; £
M
R'(x,Fm, 1) = —- (R'(x, ¥, w)
M w50
+ e, o, w)) M —dw
— K(x, F, ), v, 20
£

Splitting R! into two parts Ry and R2, solutions of (2.24) and (2.25) with g = ex in
(2.24), then using the corresponding a priori estimates, Lemma 2.3 and Lemma 2.6,
together with the exponential decrease of ¥, we obtain, for some constant-¢y,

1 5 1 7
ViR oS 167, VIR [l22S 16,
By induction for ¢ sufficiently small,

- s .
IvERS oS 26167, jSn+1,
[ VIR — R 228 e2g | VIR — R" D Y22, n 21,

for some constant ¢2. Namely,

1

nt2 +1
Lon w2 — prtly — gm! JM(RHE — R'TTY)
g .

du,

_ lLJ(R'H.Z _ Rn+1) RN lH] (R"+2 _ RH'H) + lG”'H’
g? £ £

(Rn-!-z _ Ri!+l)(x1 ¥, U) — % - (Rn+2 _ R”+I)(x, :FJT» w)lwle_dU),
ur S0

v, 2 0.

Here, G"t! = (I — PYG"H! = J(R*) 4 R, R**) — R™). It follows that

) 1 _ )
I vI(R™? — R"™) 22S e 726G 22

) 1 ! ]
See2 (|I VIR™! |lca + | VIR iloo.l) I vE(R™ = R") 2.2

A

cas? | VIR = R") a2 .
Consequently,

| | ;
VIR oy < [ vR(R™2 = R™1) o 44 | vE(RZ = RY) |12z

1 7
4 IR 222 2cqe2,

for £ small enough. Similarly || Rit2 Hoo.2 = 2c|£%. In particular {R"} is a Cauchy
sequence in L2, ([—m, ]? x R3). The existence of a solution R to (2.45) follows.
]

From here Theorem 2.1 follows, and as a consequence the first part of Theo-
rem 1.1,

3. Stability: the expansion

In the previous section we have constructed a statiohary solution £ of the
Boltzmann equation close to the clockwise roll hydrodynamic solution A;. In the
next two sections we study the behavior in time of a small perturbation of F; by
writing the perturbation as a truncated e-expansion and, in particular, in this sec-
tion we show the decay to zero in time of the first terms of the expansion. This
result relies crucially on hydrodynamical stability under smail perturbations of
the hydrodynamic roll solution /;. Hence, before starting the construction of the
Boltzmann solution, let us recall some known hydrodynamic resulis. The Ober-
beck-Boussinesq (O-B) equations [6] with periodic and rigid boundary conditions
(see [21]), describing the hydrodynamic behavior of the fluid in the present setup
in dimensionless form, are:

dhu—+u-Vu=nou—Vp—eG8,

5 5.

~040 +u - 99+ hur) = kD6, 1)
divu =0.

where ¢ is the unit vector in the positive z-direction, u € R? and 6 € R are the
velocity field and the deviation from the linear temperature profile respectively, 7
and £ are the dimensionless kinematic viscosity and conductivity respectively. The
initial conditions are

wix,z,0) =uplx,z), divug=0, @{x, z,0) =6{x,z)

 forany x,z € 2, = (—umx, ur) x (—m, w). The boundary conditions for this

problem are



wix,—m, ) =ulx,7,t)=0(x,~m,t)=0(x,m,1:)=0,
(3.2)

x €[-m ], t>0.

Here the notations are as in the Introduction. For a proof of the existence of a global
in time solution for small initial data see, for example, [13]. The laminar solution
is the trivial stationary solution ¥ = & = Q. It is the unique solution for Ra £ Ra,
and is asymptotically stable for Ra < Ra. [13,8]. After Ra,, a pair of new sta-
tionary solutions appear. In [18,19] it is proved that there exists &y sugh that for any
0 < § < 8y, there are two stationary roll solutions (#], 6T} cerresponding to the
Rayleigh number Ra = Ra:(1 + 8), of the form

uF(x,z) = T8 Co ¢ + 0(5%),

(3.3)
0F(x,2) = F8 Co T + O(87).

Here Cp is a positive constant, the couple (¢, t) is the eigenfunction corresponding
to the smallest eigenvalue dp of the linearized problem, namely the solution of

AAP — Vp=e,Gr, diveg=0, kAT =dyo,,
(@, 0)x, —m)=(¢.D)x,7)=0, (¢, tHx,2.0)=(, T)x+um,z,0.

In [20] both sclutions are proved to be stable for small perturbations (see also [25]).
All the previous results are stated in the Sobolev spaces Hz, but, by general theo-
rems on PDE of parabolic type [23] (or by the method in [14]), the regularity can be
extended to higher Sobolev spaces Hy. Hence we can state the stability theorem ina
form suited to our purposes. Let (#;, 8;) € (Hy)?, k large enough, be the clockwise
solution of (3.3). :

Theorem 3.1. Let (u, 0) be the periodic solution of the following equation
uu+u; - Vutu Vu,+u-Vu=nAu—-Vp—e¢,60,
5 5.
E(afé? Fus - VO +u- VO + Au;) = EkAB,
divu =0,

u(x,z,0) = uo(x,z), B(x,z,00 =0p(x,2), (x,z) €[—pr, pr]x[-m, 7],
ulx, -z, =u{x, m,)=0x, —m, ) =0(x, 7, y=0, xe[-mna], t>0

If (1o, 60) € (H)3, k sufficiently large, and || ug fm, + | 60 lm < no, for
ng small enough, then, (u,8)(x,z,1) is in (H)? and lim;_o0o(u, 0)(t,x,2) =0
exponentially in time in (Hy), for any k&' < k.

Notice that the convective solution Agane = (1, T ) in the Introduction, (1.3),
is related to u;, O, in (3.3) through the shift 7; = 6; + A(z + 7).

In the previous section, we have constructed a positive stationary solution of
the Boltzmann equation (1.1) as F; = M(1 4+ @{}. Here, we want to study the
evolution of positive perturbations of F;. The perturbation @, defined through

A Dty

F = M(lA+ ®¢ + ©F), with F a solution to (1.1), has to solve the initial boundary
value problem

apt | G IMDF) 1
M VDt - L  {Ldf 4 J(DF, D)+ J(DE, DY),

ar T2 M dv, 3 (L7 + J( )+ (05, )

D0, x,2,v) = Lo(x, 2, v), (x,2) € (—m, 7)% v e R, (3.4)

[w | M, x, £, w)dw,
ur, 20

.50t >0x¢e[—n ]

M
Q8(t, x, 7, V) = —=

We consider the following initial perturbations

F(0,x,z.v) — F; := (0, x, z, v) = {olx, 2, V),

s {3.5)
folx,2,v) = Z‘E"q’(")((’,x,-z, v) + % ps,
n=1 .
where
1
b3
FQ, -, -, 320, | ps llec,2:=sup / sup  prlx,z u)Mdv ) <o,
>0 (x.2)e[—m.7)?
3.6)

for some constant ¢. The nonhydrodynamic part of the functions CD(")(D, x,z,v)is
determined by the expansion as explained below, together with some terms of the

hydrodynamic part. We will denote by 11.(") (r, x, z) the coefficients of the functions

¥; in the hydrodynamic part of & (1, x, z, v). The functions 1,.(”(1‘, x, 7} will be
determined hy the selution (i, 8) in Theorem 3.1. Finally, we require

/ Lolx, 2, )M yp(v)dxdzde = 0.
[—m.m 2R3

Since the Boltzmann equation conserves the total mass, it follows that ©f will
satisfy

/ MO (x, z, v)g(v)dudxdz =0, 1> 0.
[-m.m |2 «R?

We write an g-expansion for @ in the form

5
®F(t,x,z,v) = Z DY, x, z, v)e" + e R(t, x, 2. V).

n=I1

For the proof of stability we need to show that @) (¢, x, z, v) converge to zero,
when time tends to infinity in a suitable norm. To this end, we will explicitly con-
struct the first terms of the expansions. The behavior of the higher order terms
will then be evident from this analysis. This construction is by now standard and
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contained in many papers. We give here a sketch of the argument for sake of com-
pleteness, and closely follow the analysis in [1]. :

In the following, we use the notation (h) = fR-‘ dvf(v). By plugging the expan-
sion into (3.4), as a first condition, @ has to be a combination of the collision
invariants ¥;, i =0, ..., 4

2
d’(”:(pf+u'-v+6‘iv|2_3),

so that p! = [0(1) ul = llm, 0= 12(”, wl = 13“),8’ = %I}I).We require that

u', 0! satisfy the initial and boundary conditions in Theorem 3.1 and, as a con-
sequence, do not need boundary layer correction to the first order in &, Tndeed, in
z = —x the solution is already of the right type. On the other hand, M + £®t),
when evatuated for z = m, cannot satisfy the boundary conditions, but differs from
it by terms of order &2, which will appear in the corrections of higher order. Hence,
for n > 1 the higher order corrections are decomposed into a bulk term 8™ and
two boundary layer terms b:(:).

To determine the functions p', 1! and 6", which give @ (= B(), we con-
sider the equation obtained by equating the terms of the next order. Note from the
previous sections that the stationary solution can also be expanded in &, and denote
by CD,EH) the terms of this expansion. The equation which we get at the next order,
by ignoring boundary layer corrections, is

9 3 y

uxa(b(]) + vza—CD“) = LBD 4+ j(@W, oMy 4 s &), 3.7y
Z ;

It can be seen as an equation in B®, whose solvability-conditions give the usual

incompressibility condition and the Boussinesq condition
divu = 0, vl + o =o0. (3.8)

The Boussinesq condition fixes p! = —8', up to a constant. To determine #' and
u#! we look at the solvability condition at the next order in £. Indeed, once (3.8) is
satisfied, we can deduce from (3.7) the following expression for B2, where £~!
denotes the inverse of the restriction of L to the orthogonal of its null space,

4
2] — 2
B [u v~ y@® ey_ @M, ‘1’.5”)]'+Z vi 19, 2).
i=0
(3.9)
The coefhicients I,.(Z] are undetermined at this point and will be partly fixed by the

solvability condition for the equation at the next order in £ and the rest of them in
some later step,

.?..B“) +u.-VEE _ LGi(MB“)) =™ 4 _,r(cp(z) CD([))
at M dv; ’

+ (@@, o) 4 J(a}, o3y,
(3.10)

The solvability conditions for this equation,
W -(?—B“}+U-VB(2)—LGi(MB(”) =0, i=0,....4, (311)
8t M b

produce the equations for ! and @'. Let us fix i = 1,2, 3 in (3.11). Then the first
term gives the time derivative of u!. The third one reduces to 0 fori = 1, 2, and
to —Gp' for i = 3 after integrating by parts. The term {v @ v B} gives rise to
dissipative transport terms and a term which can be interpreted as the second order
correction to the pressure P2, The term J(@®), Cbp)) in (3.9) produces the linear
transport terms, depending on the stationary flow. The result is

aiu1 +ul Va4 ut Vu_l + u}, V! = ﬁ&u; — VP -I-e;_Gp].

t

Using the Boussinesq condition we replace the term Gp! by —G8' + const. The
constant can be absorbed in the pressure term that we rename p.

Remark. There are constants (one coming from the Boussinesq condition, another
from the pressure condition) at any order which will be determined in the end by
the total mass condition. Since we are asking that the total mass of the perturbation
is zero we can put to zero all the constants.

To get the equation for the temperature, one has to look at Gi)fori =4.1t
is actually more convenient to replace 4 with the equivalent 4 = %(u2 —5). We
have ' :

. 5 . |
==6", G ,— =—uG,
(¥4, 1) 3 (UM aszl) :
P op() Sroal b 201 4 Llgl 4 gl
(vifg, B) = ——z—kVB + 4 & +u b +0u.
Putting all the terms together, we get

Sla Irgl fggl Igg! b3l
—[= VO, | — Gu. = kA8,
2[819 +u V8 +u, VO +u Vo, 4y =3
This equation has to be solved with boundary conditions pl(1, 1) =0for¢ > 0,
and an initial condition 9{;, which is completely arbitrary.

Remark. In the previous equation there is a term —Gu! which does not appear in
the usual O-B equations. This term can be absorbed by changing the boundary con-
ditions. Here Bx', u_l are the hydrodynamic terms of first order in £ in the expansion
of &,, and hence they coincide with u;, T in (1.3). The boundary con_ditions for T,
are: Tp(x, —m,t) = 0, Ty(x, 7, t} = 20, The shifted temperature Ty = Ty — Gz
will satisfy the usual Boussinesq equation, in which the term G, is missing and
there is a different boundary condition, 7;(x, 7, £} = (24 — G)z. This aspect was
discussed in [11]. It was pointed out that starting from the compressible Navier—
Stokes equation or the Boltzmann equation in the scaling we are considering, one
obtains a set of equations which differ from the usual O-B ones for this shift in
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the boundary condition for the temperature. By scaling the variables, this amounts
to the usual O-B equations in dimensionless form, with a new Rayleigh number
given by Ra(1 — G). We conclude that nothing changes in our analysis,

To summarize what we have so far, (!, ') has to satisfy the O-B equations in
Theorem 3.1. By fixing the initial conditions so that the assumptions of the Theorem
are satisfied, we get that (u',8') vanishes exponentially in time, with its spatial
derivatives. Since ¢! differs from p] by a constant, which can be taken as zero, we
may conclude that for ¢ € [1, +oa}, | ¢ ll4.2 is finite and copverges to zero
exponentially in time.

The second order term in the expansion, @@ _is not yet completely determined.
Equation (3.11) withi = Ogives & p' = div /®, fixingdiv 12 Moreover, acom-
bination of Iéz) and If) contributes fo the pressure p which is determined by the
previous equations, so that these parameters are not independent.

The nonhydrodynamic part of B® is a linear function of the derivatives of
ol 2! which are, in general, different from zero at the boundaries. Therefore the
non-hydrodynamical part of BY is completely fixed (even at time zero) and vio-
lates the boundary conditions. We need to introduce bg} to restore the boundary
conditions by compensating for the non-hydrodynamical part of B®@ which is not
Maxwellian. We explain how to find the correction @ The correction bf) is found

in a similar way. Here L™ = 2M-LQ(M_, M_ ). We choose p? by solving, for
any ¢ > 0, the Milne problem forz— = 0,

d 5 1 a
 h G —(MK)=L"h R = _h = 3.12
vigh =800 G (M) . (vch) -/devuc 0, | (3.12)
where z— = &~ '(z + 7) is defined as the rescaled z variable near the bottom

plate, and G~ is a smooth force rapidly decaying 1o zero far from the bottom
plate, indeed, the gravity force has been decomposed into three parts, a force con-
stant in the bulk and two boundary parts G* (see [9-11] for details). We impose

" the boundary condition at z~ = 0 in such a way that the incoming flux of k at .

4= —m, v, > 0, is given by (/ — P)B@ (-1, v 1). The results in [7] tell us that
as z~ — -+oo the solution approaches a function q(_z)(v, ) in Kern L™. Note
that in qE” there is no term proportional to 3 because of the vanishing mass flux
condition in the direction of the z axis {v;k) = 0. Thus we sel b(_z)(x, z_,u, 1) =
hix,z_,v,1}— q?) (x, v, ), which will go to zero at infinity exponentially inz”.
This produces a term b(_z) (x, 2rs~t v, 1) = Ya{x, m, v, 1), exponentially small
in £~ on the opposite boundary. Scaling again to the variable z, the resulting term
in the expansion is thus o® = B@ 4+ bf) + 5% and is such that in z = —7, for
example, it has zero non-hydrodynamic part, while the hydrodynamic part is

4 : :
©D(x, —m, 1) = 3 1P 0x, = () + 5P (x, 257 vr) =4,
i=0
v, >0, 1 >0

We are not vet done, since M &2 (x, -7, v) is not Maxwellian for v; > 0, (as it
should be in order to satisfy the boundary conditions) because of the presence of
terms proportional to ¥;, i = 1,2, 4 in q(_z) and bf)(r, x, 2~ 1. The latter is not
important because it is a correction exponentially small in & and will be compen-
sated for in the remainder. The former will be compensated for by the coefficients
It.(z), i # 0,3, which can be chosen arbitrarily on the boundaries. Moreover, we

have to choose 13(2) = 0 on the boundaries, because (vzq(_z)) = 0. We are left with

OO, x, 41,0, S 0) = 0EMa + Yoa(x. 7, 0,0), @) = 121 - @),

where V¥, ; are terms exponentially small in &. Finally, we impose the imperme-
ability condition (v, ®®) = 0 by choosing

0y = — v MO (e, x, £, v) — Yool x, 2, 0dy, v S 0, t=>0
: 20 -
(3

The coefficients 1,.(2), i=1,2,40f the hydrodynémical part of B are deter-
mined by the compatibility condition for the equation at next order in g,

(w,-, [%B{z) +v-vBY 4+ GaiB@D =0,

[

where

3 I
B =1~ ]:Efb“) +v-VB® + HGa—t:(;\dcp“)) - J(@®, B2

4
3
—J(@{", By — s (o, B.&”)] +> w1
i=0

together with the boundary conditions I,.Q) = (q{_z)),-, i =1,2,4 Then Iéz) is
found up to a constant that is chosen so that the total mass associated to @@ van-
ishes. Proceeding as in the determination of the Boussinesq equation, we find now
a set of three linear time-dependent nonhomogeneous Stokes equations for I,-(z),

B,p2+divu2+div(p'u1)+div () = Ny,
gl =u? Vi +u' Vu = foud — VPP +Gp? + Vdivit + N,
2 2
807 + 3 [div W+ (o) +8")div uz] + (36" + Sdiv )
<2 2 2
=k§[A9 + (VY1 + Na,

where Mg, N depend on the third order spatial derivatives of p', 61 and N depends
on the third order spatial derivatives of u'. We recall that P? is determined by p,
which has been found in the previous step by solving the O-B for u', 8!, On the
other hand, P2 = p? + 02 + p'@" allows us to eliminate p? from the previous
equations. Replacing div (u3), as given from the first equation, in the last one, and
using the condition on P2, we get a set of two coupled equations for 82, u? with a
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constraint on dive?. P* plays the role of Lagrangian multiplier for this constraint.
The nonhomogeneous term is controlled by the results at the previous step and
hence is known to decay 1o zero exponentially in time, in the right norms. Then,
general theorems for the Stokes equation assure the existence of a solution for the
chosen boundary conditions, vanishing exponentially in time.

Once B is completely determined, the last equation gives the non-hydrody-
namical part of B®. As before, we introduce the terms bf) to compensate for
{{ ~ P)B® on the boundaries 7 = . The term 55 is found as a selution of
a Milne problem with a source term, which depends on the previous boundary
corrections biz " and &) The procedure can be continued to any order.

We notice that (/ — P)® " at time zero are not arbitrary, since they depend on
®"—1) and its derivatives. We can, instead, assign at time zero 1‘.("),1' =1,2,4.
Notice that the rest term R at time zero is of order &%, By using the results in [7}
and the exponential decay in time of ®" we can state the following theorem -

Theorem 3.2. Assume that at time zero, for some suitably large k,
| MO IO, x,2) 2< 00, i=1,2,4, n=1,..5,

where 3% denotes any space derivative of order k. Then, it is possible to deter-
mine the functions ™, n = 2, ..., 5 in the asymptotic expansion satisfying the
boundary conditions

o™, x, Fr,v)
_ Mi(v)

= [w 1M [q’(")(r,x, F, w) =y (L, x, Fr, w)] dw
M(v) 1w, S0 _

+]lb—f1..‘?(t,x1:|:nav)y t>01 UZEO} t>0,
the normalization condition fm_z ey MPddpdzdx = 0, tel", and
I 2™ f222< 00, || @ loo,00,2< 0.

Here,

1
fe'e) Z
||f||2.2,22(f f / [fis.x,z, v)izM(u)dsdxdzdv) ,
o Je,/r3

3z
| f lloooc2 =sup(/}R sup |f{t, %, 2, v)IzM(v)dv) .

=0 3} {r.2)eQy,

4. Stability: the remainder

We recall that @, the solution to (3.4), is written as ®* = Z?:l g Pl 4 gR.
In the previous section we have constructed the terms ®U} and shown that they

i

decay to zero in suitable norms. In this section we construct the rest term R, the
solution of

aR 1 R . lv aR MGMMIB(MR)
"5?+s’”*ax e 9z dv,
1 1
= %LR-l— R B+ -HR)+ A,
E £ E
R(0,x,z,v) = Rolx, z, v) = £* ps(x, z,v), (4.1)

Rt,x, Fm,v) = Me (R(t, x, Fr, w) + %(:, X, Fr, ww, | Mdw

M w50

—'K(t,x,:Frr, v), xel-mmn], t>0v >0
£
Here (1, x,£m,v) = 3, "t x, £m,v) is the Knudsen part of the

asymptotic expansion from (¢, x, T, v), exponentially small when evaluated at
(t,x,4m, v). A contains all the terms fully coming from the asymptotic expan-

sion,

H(R) = :;—J(R, D + d,),

where @ = Z? ®UWei and [ psMdxdzdy = 0. We shall require that the initial
value of ®* be close to zero, and in the sequel introduce smallness assumptions.
The following norms will be used,

e W 1
[ R [2e22= (/ f f / R%(s,x,z, v)M(v)dsdxdzdv) ,
0 JoaJ—n JR?
g g %
I R |loc.2,2 = sup (/ / f R%(t,x,z, U)M(v)dxdzdv) .
>0 \J—n S5 JR?
I

b
I R lloo.co.2 = sup (/ sup R, x,z, v)M(v)dv) ,
R

=0 3 —maxr,zem
|

t n Z
L f o = ( f f f b M) | fs,x, =, 0) dvdxds)
0 J—m Ju>0

1
p:4 Z
+(/I/ / v | M) | fs,x,m,v) |2dvdxds) s
0 J—m Ju-<0 .

n 7
I £ lloo.2.~ = (SUP/ / v M) | f(t,x, —m,v) |2 dxdu)
- Ju:=0

t=>0
1

n 2z
+(sup/ f . | v | Mu) | f(2, %, 7, 0) 2 dxdu) .
>0 J—x Ju <

We will prove the existence of ®F and the stability result(1.7). We follow closely
the approach in Section 2, starting from dual, space-periodic solutions to a linear
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problem (in the rescaled time variable T = £~ 1¢#) discussed in the following lemma.
We use the notations introduced in Section 2,Ly=L{-)+ &f(q, P-), but here
the function ¢ has the expression g = £~ (® + ®,) which is also time-dependent.

Lemma 4.1. Let @(T, x, z, v) be solution to

a 3 i) M 1
—¢+u ux—g—i—uz—@—eGM“l (My)
T dx a9z v,

periodic in x of period 2r, with zero initial and ingoing bounda¥y values at 7 =
—n, %, and g x-periodic of period 2m. Set § = ¢ — {p) = ¢ — (21)~2 J pdxdz.
Then, if e < &9, 8 < 8o, for g9, 8y small enough, there exists np small such that,

11 ooz S ¢ (82 1V = Phg laaz2 +677 || Pg 22
+ned | < Py >l22),
V3 = P)p 22z S s 1v7 20T = Phg l222 + | Pg I
e ll< Pp =22 ),
I P llzzs € c(1v73U = P)g) a2z +&7" Il Pg l22a
+nll< Py >l22 ).

Proof of Lemma 4.1. A variant of the method in [24, Scn 7.3} can be adapted to
the present setting, with a force term, to obtain the existence of a solution to (4.2).
Denote by ¢(T, &, v), & = (&, £;) € Z? the Fourier transform of ¢ with respect

to space, and define g analogously. Then for £ #£ (0, 0},
g 1

L 1 H (M P)
a7 £

Z

Lhg—ik v+ eGM™ + 8 — elr(—1)%,

Here v* = (uuy, v;), v = Frop(T, 8¢, m,v) forv, > 0,r = Fepl(T, &, —m, v) for
v; < 0, with F; denoting the Fourier transform with respect to the x-variable. Let
£ be a truncation function belonging to C! (R) with support in (0, co], and such
that B(T) = | for T > 1o forsome 7y > 0.Let @ = ¢8. Then, for (0,0) £ £ € Z2,

(M@ 8B

¢ 1 _
N lT*Be+if M3 - O L ag o lrB(—1
0 = % TBp +i& v+ eGM 2o, +qaaf+gﬁ |o [rB(—1)

Let F be the Fourier transform in ¥ with Fourier variable o. We put

SM9) 6% v ap - Ivzl'"f’("“)&)’
dv, at

P=Fg, Z:f(s_]%—!—sGM*]
z=F (e L3Bp + 86 — lualrp(~ 1),
i

Z':f(e‘lf’ﬁa+§ﬁ), U =(io +ik-v*)7.

=-Lip+e 42)

Let x be the indicatrix function of the set {v; jo + & - vH | < a|.§_l}, for some pos-
itive & to be chosen later. Similarly to Section 2, the elements ¥g, ..., ¥4 are an
orthonormal basis for the kernel of LY. Let {(v) = (1+ | v [}*. For § # (0,0

4

I PGx®) ).

J=0

I |

/)(d)(cr, £, )y Mdy

4
Sl ggx® It D00 x4¥ 1S e | —sx @1l

J=0

Use this estimate on the support of x fore =|| {—s® |7 ¢-+Z" |} -

As in Section 2, the previous estimate also holds with respect to supp x; where
the indicatrix function x) is taken for & = /8. We fix §; so that c/8 << 1.
Then the above estimate gives that the hydrodynamic P-part of the right-hand side,

Nl PG ®) I, can be absorbed by || PG ®) |} in the left-hand side. The esti-

mates hold in the same way when ¥ is suitably smoothed around ﬁ |E|. For the
remaining (1 — x)(1 — x{)® = x“x{ P we shall use that & = —UZ. Then

| PxXE® 12 S ¢ (I x x50 1P + 1 Gax xf0 1) 1 6= Z' 1P 4

Lol FV/Tv:lBn) 1

BE|?
C I F/TodBr) 12, =
< 7 2 P 46
ST SR
where
4 =
- - - —j0(Meg) .38
— L€yt 17 ¥ Y mMd
o= 220/ij XIUJ-'(SGM ™ ”’af) v
J=
_ . *
X (/ Yix“xi(Fep — UZ)Mdv) .
We again replace « in the denominator by || {_, @ =" ¢—; Z' || That gives
| F{J/Toz1Br) |2
PRI S cll ¢ o® Il E-Z' | +—T§flf———
+V8 1 ¢l = PYP D) + 6.
Hence,
| Fv/Tuzd8r 112
P |3 < C((fl PO+ 1¢U-P)ONHCZ +—§T~|§-|2—

+81 ) eI — PYO | ) + 6.
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Consequently,
I F(/To180) 112
| Po? < c( o2 I +—W+ | 2ol = PYO I 252 |

F - P |? ) + 8.

Wg next discuss the term ©. The first term in the first integral cas be béunded by
£ times an integral of a product of M, 1 + |&,|, a polynomial in v, | F¢ | and U or
{72, So this factor is bounded by £C || @ ||. And so,

| Fv/TuelBr 112
811E1

4
- . an N
_—ZZfljfjx‘fo(_’F:pg) Mdv
j=0

x ( Vix x{(Fop ~ GZ)Mdu) :

| PePscC (n 2 17+ +1Ud-P® |12)

Therefore for &€ # (0, 0),
f (P®)(0, £, V)M duvde
1 e
:C (?/.dﬂf | {‘S(U)}.quﬂ) {c.§, )112 +/__d0( | ¢f — P)Yb(o,£&,) "2

| F /T lBr u2) 1. -
+ 51"5'2 +f ”U Igﬁ(r.?;', ) Il dT’)

4 56
—ZZfda/yﬁ_;x“xfﬁ (J-'qﬁ—,) Mdy
= Jat
x (/ ix“X{(FgB — ffZ)Mdv) :
Sending 1y to zero implies that
fwdff(Pq'o)z(i',E, WMdy < c(-'— /wdf (||; (u)ﬂ) (T,€ )1
0 = 82 o - J 3 +
+ U= PYG(EE ) 112)
(s ¢}
+/ df]u*'g?l(f,g, v)Mdv
0

| ST lr I
+/0 i ) (4.3)

Taking & and £ small enough and summing the previous inequality over all 0 #£
£ € Z?, implics, by the Parseval inequality, that

o
/ /(Pw)z(f,x, z, yMdudxdzdt
0

A

C('gl—z / / w((f — P)¢) (T, x, 7, v)Mdvdxdzd?
’ 0

oQ
+ / / vl g7, x, 7, V)M dudxdzdT+ || ¥ @ I3 2~ + 1 |;go1|%,2_2).
0

As in Section 2, to use an argument based on a variant of Green’s formula, we
multiply the equation (4.2) by 2pMx, and integrate over {0, T1 % [0,27]% x R3,
integrate by parts and obtain, by using the spectral inequality (2.8) and the bounds
1 £ k() €707,

_ 1 1
U y=e g, + 10135 ,, 5 103U =P 1725
_1 1
Sele | vEUE = PYg I3 50 +m I PO 3555 +o- 1 Pe 157 5.2

Inserting this into the previous inequality, the lemma follows. O

We next decompose the operator H in the remainder equation in accordance
with the operator Lj: H(-} = f(q, P ) + H(-). We notice that H(R) is of
order zero in &, and depends only on the nonhydrodynamic part ( — P)R. Asin
Section 2, to solve the equation for R we shall use an iteration procedure based on
the decomposition of R in the sum R; + Rz, where R; and R; are solutions of two
different problems. R solves

aR 1 1 3R, GaMR) 1 1 1

Ok long R g my, S L = LR+ -HI(R) + 8.

at +£v l+£vz gz M dv; £? / l+s 1 1)+eg
R1{0,x,z, v} = Rplx,z,v), (4.4)

1 -
Ri(t,x, Fm, v} = —gl,ff(t,x,:FJT, v, t=0v, 20

‘Here R| is periodic in x of period‘2n, and g is some given function, x-periodic of

period 27 with f Mg(-, x, z,v)dxdzdv = 0. For the existence of the solution, see
the discussion of (4.2). The equation for Rz will be introduced below in (4.7).

The non-hydrodynamic part of Ry is again estimated by Green’s formula; multi-
ply (4.4) by 2R M, integrate with respect to the variables (7, x, 2, v) over [0, T1x
[0,27]% x R?, integrate by parts and use the spectral inequality for L; and the
bounds 1 < k(2) < €207, to obtain, for every n1 > 0,

— - 1 l
Iy~ Rz, + 1 R I3+ 12U = POR 15722
1
<e (u Ro 12, +ellv I —Pog 37,5,

n 1 1 -
+ 5 PRI 5, o I P18 502t 1V uém_w). (4.5)
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An a priori bound for P; R, is obtained in the following lemma based on dual
techniques involving the problem (4.2). Consider first the problem (4.4) without
the term H{(R)).

Lemma 4.2, Set h .= P; Ry. Then
i
Fh Iz S c( I Ro 3, + I v™I( — Pg I3,

L4

1 2 [
+£‘_2 | Pig 522 +£—3|| ¥z~ )

Proof of Lemma 4.2. In the variables (T, x, z, v), the function R is 2 -periodic in
x and solution to

dR dR| IRy _IB(MR|) 1
gr THVe gy Tun gy TEGMT e = LRt e,
R1(0,x,z,v) = Rox. 2, v), (4.6)

- | _
Ri(T,x,Fm,v) = —;w(r,x, Fr,v), T>0,v,20

Let ¢ be a 2;r-periodic function in x, solution to

g be  dp aMg) 1
b uve— +v— —eGM™! =L}
gz TH UGy T, —¢ v, eI TR
with zero initial values and ingoing boundary values at z = —m, w. Multiply the

equation for ¢ by x M R| and the one for R by x My sum them.and integrate by
parts. Then, .

M R1p)

L

_ 0
fdrd_xdzdu (M—a—g(uszup) — &Gk ) +/dfdxdzx(z)éa—_(R|, P
T

= /dfdxdzdev[%(LJ((l — PORDI — P)o)

1
+E(U ~ PpYROLY( — PYp) + 8o + P Ry

This gives

K

5 ) 1 -
Ik lBe22 € 50 1 RIE ) 13, +a o) I3

— - 2_
+2K] Iy o "‘21’.2."*

K _ 2
+ = | ¥~ Ri Y30~

K3 1 r a 1 ! 2
+ >y vz — PR 3522 +Eg fvI(f — P ll5z22

Ka ~4 5 1 1 9
+ 5 lvTI{ —Prlg 3522 +m | vi{! —P)g 522

2.

3 i Ka i

+ o | vi 13+ N Prg W20 +o2 I Pe 32
2K4 2

2K»
2
£ § 2
+— |l v? :
2K, | vig ||2,2
for any positive constants K;, j = 1,...,4. All the terms computed at time 7 on

the left-hand side can be estimated using Lemma 4.1 and (4.5), leading to

I & 015205 c[(m +K3) | Ro 12,

K K - !
+ (5_21 + g_j) I ¥ 135 +(eKi+ Ko+ Kz} | v 21 — Prlg 3,22

Y LN . R NP
cK; | 2K,  eK3 K4 @ €XK) 222

K K3
+ (;’{- + E + Kz) | Psg ||%‘2.2 4+ Ps Ry ||%.2'2 (mK1+ mKa)

LI NI YR >||2]
N T K A

We are left with the term {Pysg). As in Section 2, we use an approach based on
ordinary differential equations for the Fourier transform with respect to the time’
and x-variables. Namely, the quantity {p) := @r)1 f @(-, x, -)dx satisfies a 1-d
problem including a small perturbation of magnitude é from the value at the bifur-
cation point. After a Fourier transform in time (Fourier variable &) the case of
lec| < g, with 0 < g sufficiently small, can be handled as in Lemma 2.2. For
the remaining o’s use the term ieo F; F fplo, £x, 7} L0 express the Yo-moment.
With ¢z = (v7, Ya)(v? A, ¥4)~!, project the equation along v, — c2v; A, and along
o and use the equation, leading to an expression for

a3 ?
FeFy | e—=Blpu, — 290, 5) + 5= (Byo + 02)
at : az
and
9 3
FeFe e (Byo) + —(Bou) )
at dz
with #; a nonhydrodynamic moment of g, thus to an expression for
— ieo(IFeFr (Bpo) + | Fe Fe(Byu))
0 *
+ 52((7:%}} (Bwg + L) (Fr Fe(Bou, V7).
(For details cfr Lemma 5.5 below). Estimating the ingoing terms, this results in

1
I {P@) llz.2 S ¢ || {Po)x 12,225 el {Po)x ll222 +& 1l vie l22.2)
[ 1 [N 1
s - i) lo224+0 I v2e iIZ.Z.LSE | £ 222+l vie 222 .
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So choosing & < [, then K| and K73 (resp.K2) of order &1 (resp. e~%)and 1 of
order £, leads to '

; t ]
2 -
IhhiaaSe (E I Ro W2+ v 2 = Pg 32 +5 | Prg 13

1 -
+ i I ||%,2,~ +n 1l {PsrRy) |I§.2.2)-

This ends the proof of Lemma 4.2, when coming back to the t-variable. O
We now give the final estimates for R;.

Lemma 4.3. The solution R\ to (4.4) satisfies
L
Il vIR; llz22 S C( I Rollzz + Ik vv(I — Pg llaz2
| 1 _
+= |l Pig llz22+— | ¥ fl22~ ),
£ 3
1
I R lloo22 S ¢ (II Ro 22 + I Vv — Pr)g 222 +'£‘ il Prg 222
1 _
+ — ¥ a2~}
el
1 _ 1 1
| vZRy o0z S € (8 Y1l Ro llzz + Il Ro lloo.2 += v 2 — Prlg ll222
1 1 -
+3 It Prgllzzz+eliv2glloooo2+e 21 ¥ 22~
1 _
+ =1y ||oo.2.~)-
&
Proof of Lemma 4.3. The solution R; of (4.4) without H)-term satisfies

] _ 1 I
NG ¥~ Ry llz.2~ +sup |l Ri(®) |22 +E |l vz{f = Pr)Ry 222

g 120

1 - ]
<c (n Rola +-7 1 bz + 10740 = Pk o2
&
+ L PR o2z —— 1 Pig
—\/E Ji 12,22 I’]ﬁ J8 12,22 ¢4,

for any n > 0. Moreover, it follows from Lemma 4.2 that
1 1
Il PrRidl2225¢ (II Ro llz2 + 1 v72 = Prg lla2 +7 I Prg 22z

i _
+ v v I12‘2.~) .

Choosing n = /¢ leads to the first two inequalities of Lemma 4.3. Then, to get the
L% estimates, one has to study the solution along the characteristics. This analysis
is complicated by the presence of the force, but can be done along the lines in [1];
the result is ‘

L 1 _1
I vZ Ry lloo.co.2 < C(E I Rl loo22 4+ RO, -} lloc2 +& | v728 koo.co2

+ I y* R llso2~ )

which leads to the last inequality of Lemma 4.3. Adding the term &' H(R)) does
not change these results. 0O
The remaining part Ry of R satisfies the equation
IR R, oRx G MR
Uy —— + U —— —
at ox dz M dy;
Ry(0,x.z,v) =0,
M:F(U)
M(v) 1w, 50

|
= ELJRz + H{R2),

(4.7)
(Ri(t,x, Fm, w)+ Ralt. x, F7, w)

Ra(t,x,Fm,v) =

1 -
+ -é-i,ll(t,x, Fr, w)) fw | Mdw, >0, v,20

Its analysis is more involved and requires a careful study of the Fourier transform
of Ry. As with the stationary case in Section 2, existence for the problem (4.7) can
be adapted from the corresponding study in [24], if one includes in that approach
the spectral estimate for Lz, and the characteristics due to the force term.

In (4.7} the given indata part is

M 1.

fx, ¥, 0) = — (R| (t, x, Fm, w) + -yt x, Fu, w)) |w:|Mdw,
M un 50 £
v, 2 0

By Green's formuta for (4.7), and noting that H1{R2) only depends on ({ — Pp)Ra,
we gel

_ ¢ 1
slR2OIF 2+ | ¥~ Re 130 +3 193U = Pr)R: 13,2251 ¥ R 1132 -
(4.8)

This estimate is not yet final. In fact, compared with the analogous estimate for
@ and R|, the boundary terms here are different, due to the diffusive boundary
conditions for R,. We follow the reasoning in the stationary case for (2.28)~2.29).
Taking into account the differences, like dependence on time, we get

C 1
g Ra113 (1) + - w2 = PRy 13,22
1 _
< el 13, 2. +Cen |l PrR2 113,22, 4.9)

- 1 -
Iy R WonE 5 17 o +C I PrR2 Myg2n - (410)
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The hydrodynamic estimates for R; are obtained similarly to the stationary case. We
again start with the 1-d (x-independent) case, with an inhomogeneous term gy which
will take into account the x-dependence in later proofs. Reduce the equation (4.7) o
a 1-d problem for [dxRy(z, x, z, v) ;= Ra(t, z, v), with an inhomogeneous term
g1 such that g1g = fpidvg) = 0:

BRg BRz LOMRy 1

—-eGM = - R ) )
Ty +v . eG av. SLJR2+H1( )+ g1 @D

Then, for the solution of this new problem the following lemma hblds:

Lemma 4.4.

Cr _ _1
| PrR2 13205 3 £ o 2 (W P2RY BBz + 1 w7281 125)

Proof of Lemma 4.4. The equation for the Fourier transform, R of Ralt, z, v) with
respect to the space variable z is

=& 'L Ra+ H (R —vr (— )%+,
(4.12)

I .8
85R2+va§zR2—£GM 18!)5

r(v) now denoting the difference between the ingoing and outgoing boundary
values,

r(v) = Ra{t,m, v} — Ra(t, —7, v). (4.13)

Starting from the method of Lemma 4.1 with L instead of its adjoint, and
considering the ingoing boundary values as known, we: reach (4.3)for &£, £ 0 with
obvious changes,

o0 ~ 1 [ S
/0 dr/IP;oRzlz(r,Ez. vMdy = C(E—Z/0 de (II LWL R, 5, ) |1

+ | (I = Pro)Ralt, &, ) u?) + /O dt / & 1P & v)Md

+/0 t(":s/];’z”z szl!ﬁzilz)).

Here, 51mllarly to Section 2, we have fixed z = zy, ¥ = £ in the basis elements
1{:1, . ytr4, writing Py for the corresponding kernel projection. At the end we
replace Pro w:th Py, smce P; — Pyg = O(c). The sum R = Ry + R, satisfies by
hypothesis (R(O O = R(](O) =0fort = 0. The coefficients in the asymptotic
expansion can be chosen so that, moreover, Ro(t 3y = 0 for r == 0. That gives an
estimate for Rzg(()) in terms of Rm

For an estimate of the r-term, for z = 7 we use (4.10) giving an estimate of
the outflow at 7 in terms of known quantities and PygR;. Then, for £, 2 £,, and £
large enough, the latter appears multiplied by a small factor and can be absorbed
by the total sum on the left-hand side, taken over &, = &.. Hence, for & large the
bound stated in Lemma 4.4 is proved.

For the remaining bounded number of £’s, each hydrodynamic mode is esti-
mated separately. We obtain estimates for all the hydrodynamic moments in terms
of }%20, which will be the last one to be estimated.

For the v;-moments multiply (4.12) by v, (resp. one), integrate with respect
to Mdv, and multiply with Rag (resp. Rz,, ). Use the notation [ f]_ = f({&) —
(- f(0). Combining the results, it implies that for each fixed &;

Eaa_t (ﬁzo[kzu:]i) = it Ryy [Row. Tt + i&fi’;‘% Rao
+ecf[kzo(gz)uz%wk;) dv
+[§lve]i/M {Uzr(—f)& + 1} dv.
We integrate over ¢ € {0,7], to get an estimate for the term iszlﬁzl,z (’g’z)l2 on

the right-hand side. The time derivative, then, produces a term Ekzo(fz)[ﬁzuz}:
computed at time ¢ which is bounded as

Cel|Rao(E)? + | Ray, (€)% + | Rou, (0N £ ]| P R2|I3 (D).

The latter is estimated by using Green’s formula for (4.11), getting
c _ -1 2 b
el PR, < - (65 g + 10200 1350) + 0 0 PIR2 g5

The other terms can be easily estimated, but for the one containing the boundary
r-term, which is equal to Ray_(5:)(Raw, (¢, ®) ~ R2, (¢, —%)). This term can be

estimated by _
. 1
/ (U|R2u1|2+ s u%w) dr.

In conclusion, we have that for &; 0
[t < ¢ [ (1 Rt P o+ | Ran o) P
+7 0 PRI, +% b I3 + v tg lI%,z) - (414)
We then compute 13’2.1,E (t,0) for & = 0. Multiply (4.11) by M, integrate over veloc-

ity and over 7' € [—m, z], followed by an integration over {—x, 7]. We get, after
multiplication by Ry, (¢, 0),

N AR . A . 7 z
eRyy (2, 0)_3.-1‘%2 + (R (1, 0))2 = Ry, (1, 0}/ dZ/ dz'duMg:
— -7

+2n}?2uz(r,0)/dvv;MRg(t, v,~7),
(4.15)
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where Ry = [” dz JZ, dz'duM Ry, Multiply (4.12) by Muv,, integrate over
velocity and muitiply by Rag,

— 3 A —_ I ”
ERZOE Ry, = Ryo (rug + / UzélMdv) + EGRgO-[Uzaa—MRg(O, vidu.
2 v,
Summing the last two equations,
d — . . S R
EE?(RZOsz:)'—i_ szz = R T2 +/Muzg|dv)
— f a n
-i-&‘GRzo/vz—MRz(O, vidv
du,

R i Z '
+R2v:/ dz/ dz'duMg,
- —ir

+ ﬁ’zu;%/dvszRz(t, v, —m). (4.16)

We use this relation to bound the time integral of R2 - We integrate over time, and
use inequality (4.10) to control the boundary term r 2 The result is

~ 1
/|R2u:(f, O)|2df = C(;/dl“Rzo"% + 0l PiRy i|%2
_1 LR
+lviig 13, + 10f 13 )

By Parseval identity, || R20li3 = 3. _ |R20 (€12 +| R20(0)|2. The last term is equal

to |R10{0)|? because fdzdvR{t,z,v) = 0. The sum for &, > &, was estimated
above. In conclusion,

. .
f IRy Pt SCL D [Rao(EIP+ I PrR 302 + 01l PR 1254
0<5z§§:

1 T
+ I vIgilaas+ 1 viU = P)Ry 124,

1 !
I = PR 222 41 f™ o | D)

For the control of v,-moments, we use ﬁ’gv, &)= éZulv, (£)— 2u w2 (&) (recall

that f vzuszv = 1). Multlp[y (4.12) by v, v, (resp. vxvz) integrate with respect

to Mdv, and multiply with Rzu u2 (resp. Rzuruv) Adding the resuits implies for
each &, that

a4 - A - 2, e B p
EE(RZ"-‘":R;"N;Z) = sz|R2u,v§| +153R;vxugR2”IU:

. aMR, . aMR:
+€G[( 2ue U.,UXUZ aUz +R?-U,rvsvxv§ 3012 dv

. |, .
+R§uﬂ@vaIvz (E LRy + H(Ry) + vr(-1)% +8l) dv

N 1 — e -\
+R2u1u;/vaU3 (ELJR2+H|(R2)+U37’(—')E‘+81) dv.

We do not estimate directly the terms involving higher moments of the boundary
term r. To remove these terms we subitract the same expression for £, = O multiplied

by (=1, geltling

.
SE(I sz,u - [R2uw-| )= ‘EZ[R"U(L!]* Rlurv’@c) +[35_ REL LJ[RZ""‘ -

+£G/l”§1!,xu5 *
" i)

_Ytdv

. [[— e .
+[R2u,u§1:/ Mu, v, (;[LJ R3]l + [Hi(R2)]- +lg|]—) dv

. | . e Y
+[Rz,,,.,:J-]vavf (;ILJRzl—i+IHI(RZ)L'HEIL) dv

Integrate with respect to r to obtain for £ £ 0
~ ~ |
[k orarsc [ (1Ru,@F 401 PR o+ v - PR 13,
+ i v Ié.’l ||22+ "UIU—PJ)RZ ||22)

‘We have used the fact that only (f — P) Rz contributes to !:’2,,‘,,,: and I:’z"_‘ug.

Now we discuss the estimate of lézvx for & = 0. To eliminate the outgoing
boundary terms, we multiply (4.11) by Mu; v, and consider first the equation we
get by taking the integral {” dz *_dz’ fg; dv and then the one we get by taking
the integral 27 [" dz [, <odv. By taking the difference of the two equations we
get for the left-hand side (but for the force terms)

a 7 z ..
£— (/ dvf dz dgvyv, M Ra(t, g, v) — 21’1’/ vy, M Ra(t, 0, v)clv)
at - -7 v <0
+ Ry 0202, 0).

The remaining ingoing boundary terms are zero. Now, notice that

f Vet M Ra(2, 0, v) = £ Ry, (1, 0) 4+ Rau (2,0),
v. <0
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where £ = [ _gviv.Mdv and R (t,0) = {, o vyu M Ry (2,0, v)dv depends

on the nonhydrodynamic part of R,. We multiply by fégux (¢, 0) and, by using the
equation for it, we get in the left-hand side (but for the force terms)

3 . .
e (DR2, 0, 0) = 2meL RS, 0 0) + Ao, Rayyu2

+D / dvvgv, (v~ Ra(r) — y~ Ro(—71)

-

where D := [ |7, JZ, vrv: M Ra(t, g, v)dgdzdy — 27 R (1, 0) is nonhydrody-

namic. We use again ﬁ’gux &) = f?zuwg &) — R’,ﬁ;v vl(&) and estimate ¥~ R2 by
" ne

(4.10). This gives

~ L
/IRzux(O)Izdr pS C/dr(n | PRz I35+ Il v = P)R2 5.2
| | 2 — 2 -4 2
t2 Wit — PR S, + U Tz v ig s )
'The vy-moments are analogous, hence for all &;

f | Ry, (EI20E + ] | Ry ()10
<c f (i PRy 12y + 1 £~ 13 + I v — PR2 1B,

1 1 L
+ g Vi - PRy 3, + 1 v 2gy I32)dr (4.18)

Consider next the yr4-moment for & # 0. Muluply (4.12) by vz/i (resp. v?}i),
and integrate with respect to Mdu. Similarly to the proof of Lemma 2.4, this gives

k) - A N
oo (A, RoE) + (—DFrzs + i£ (2 A, Ra(E2)

8 - A 1 -
+¢6G / —(AM Ragdv = Z(uiA Ly Rake))
+ (v A, FL(RD(ED) + (1A, 81),
3 - L3 -~
e OIA Ra(E) + (—NFrygi + it (v} A, Ra(£2)
hj - - 1 e
+eG / 2 2 AM)Ra()dy = ~(02A, LT Ra(E)
ov, £
+ 2A, I (RDED) + (W2A, §1).

Similarly to the v,-case, we manipulate the equations to remove the boundary
terms, leading to,

e%(u%z,,z A1 Rz 410 iE Ry 417 Rz 1(8:) — i8R 5 LEDRy, 71
+eG [ av ([ézvgj]i A (M1l + 1Ry 1) u‘f‘igi—z(méz]_))
=[Ry2417 / duMu, A (é[mzl— + (A (RD)- + [g_llﬁ)
+[Ry,, 5]~ / duMviA (i‘[ﬁz]— + A (R))- + [én_)* :
Tt follows that for £; # 0
/dr | Roa(®) P < CJdr( | Roa(0) 12 411 Rao(Er) 1 +1 | Rau, ©) I
+nl PR B2+ 11U = PRI |
P b= PR

+ 1 Bt v e B ). *.19)

For £, = O multiplying (4.11) with v, A and arguing similarly to the proof of (4.18),
gives

~ 1
/ |Roa(O)Pdt = ¢ f d (0] PR2 135 + 12U = PRz Iz
1 ! 2
t 3 | vi(d —P)R2 1132
_1
FF R 1R 1) (420
The only moments still to be estimated are the yo-moments for &; # 0.
With ¢z = (ug, 1}14)(1;3,4, 1[r4)" and ¢3 = (v;‘, 1)(uf, DL proceed §imi1arly

to the corresponding y/4-casc discussed earlier, but start from vy, — cav; A instead
of v, 4, and v2 — c3v] instead of v A. That gives

~ _l
Jar R isc fa(irriBa o PR+ v e 1
1 1 -
F U= PR gty 030 = POR I, + 0 77 ) (42D
The lemma is proved by collecting the estimates above. D

By using this 1-d analysis, it follows in the 2-d case that

Lemma 4.5. The solution Ry of (4.7) satisfies

1
| PrRz 115525 c(g | £~ 13 + 1| PaR ||%,z.z)-
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Proof of Lemma 4.5. We apply Lemma 4.4 to Ry(0, &, v) = [ dxRa(x, z, v) and,
taking into account that g is of order §, get a bound for the Fourier components
Py ﬁ‘g (0, £;), for 8 small. As discussed at the beginning of the proof of Lemma 4.4,
the components with £ large are under control, since the r-terms are small after
division by |§}2. The remaining components inthe case &, # 0,&,, &; finite, are esti-
mated by analyzing the equations for the moments of R; and applying Lemma 4.4
in a suitable way. The proof follows closely the one of Lemma 4.4, so we will not
give all details but only point out the differences. :

Consider first the v,-moment for £, = 0. Multiply the (sanal) Fourier version
of (4.7) by Mduv (resp. v, Mdv) and integrate. Combining the results

(R, OORS,, B, 00) = iy oy, (e, RS, G2, 0
+ ik B 5 (6, ) R20(Ex, O)
+é;ux(g,,,0)/duMuzr+§20(§x,0) dvMu,v.r”.
This gives
/ |Rou, [2(§:, 0)dr < € f dt (1R20 . 0) + 0 1| PR 152
+ 1 viE - PR 13, + 5 1 vid = PpRa 13,

+ 1 f~ IIZN). (4.22)
To bound the v,-moments for £, # 0, we use a vanant of the proof in Lemma 4.4.
Multiply the Fourier version of (4.7) by ((v ] gy~ = 2ByMdv and integrate.
That removes the hydrodynamic £,-term. To remove the v.r-term we also sub-
tract the same expression for £, = 0 multiplied with (—1)%. We use the notation
[f¥ := f(&) — (—1)%: f(£,, 0). Proceeding as in Lemma 4.4 gives
8—([Rzn(vx, v:B) — v23)}xIR2u ¥) = i&(Ray, (v2, v2B) — R2U33)[R2U r
tipube (1R, (02 02 B) = Ry gl + [R50 ') (RS,
N ,. - ~ . . n
+ &R ENIR20 (7, v7B) — Rp51" — GRS, I / v} B— (M{R;]")dv
= = Z
. . 3 AL
+eG[Rp0(8) — R,,zzg}x/ vzg(M[Rz]xdv)
Z
n l e _-
+ RS f M (—UEB[L;RQ]* - vﬁB[m(Rz)]x) dv
£ :
It follows after integration with respect to ¢ that for &, # ¢

f |Rp |2(E)dr £ C f dt(iézuf(sx,on |R20lP€) + n it PR2 113,

i i |
+ lvI¢i — PRy |13, +;5 ffuz(d — Ps}R2 II%‘z)- (4.23)

The moment ﬁ’g,,_t (£, 0) is under control by (4.22), and so the previous approach
for the v,-moment when &; # 0, gives

/ | Ry, [P(€)de < C / ar (1R201%®) + 1R2alP@) + nll PR2 I3
: 2+ I vE( = PR 13
+ [ vi{f — PRy |52 +8—2' fl vi( IR2 |32
+1 7 13-). (4.24)
The 1'%2:;,. (£)-moment for &; # 0 is similarly treated, starting from

2 Ry ) — (=15 R 8, O) R 6) = Ry 65,0

Inserting the corresponding right-hand sides and estimating the upcoming
moments, gives for &; £ 0

R . , ,

f |Rpu, B)dt £ C f dx(| Ra, () P+ 1| PRy W35 + 12U — PYR2lia
1 |

+ vI{f — PR 13, ) (4.25)

For the Rzu (£x, 0)-moment, use the procedure of Lemma 4.4 - with the term
i 1€y Fy Ry, (&5, -) added as an inhomogeneous term. Thus

5_/ dZ/ dq}_xRZO('ng '-?) = iﬂ»é&/ dZ/ dq}-.rRZUJ(Exa Q)
ar - - -

+ Ry (0, O) =21 | Mu,Fy f (&, —m)du.
N 0

v >

The equation for Ry,, is

- 3 .
8% ﬁ2vz = i€y Ropu (65, O) + rug(&x) + &G / Vg o 0, v)dv.

The resulting terms are of the same type we get before, except for

Z n z
/ " dz _/ dgFxRay, (6x,q)  and f dz / dgFx Rao(Ex, q).
— — - -7

The former can be controlled using the observation || Fx R2y, (6x. D ||%= ZE: Koy,
(&x, £,)|2, together with the estimates (4.22), (4.24) for the right-hand side. We con-
clude:

]Iﬁzuzlz(-fx,o)dt s C/df (II Rao 32 +0 0l PR ||%.2
1 |
+lvid = PR I3, 45 V30 = PR 12,
+ 15715 (426)
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For the moment ﬁ’gm (£, 0) we follow the correspondin g procecdure of Lemma 4.4.

The new terms which result from the x-derivative, Rz, v, (6x, 0) and Rzuxuyu (v, O,
are nonhydrodynamic, and so the estimate (4.18) also holds for this moment.

The 4-moments for &, # O are treated as in the 1-d case. The extra terms
resulting from the x-derivative, contain at least one nonhydrodynamic factor. The
resulting inequality is again (4.19).

The moment R24 {&¢, 0) is obtained as in the 1-d case, but here with an additional
term f |R20| {Ex, 0)dt to the right in the final estimate (4.20). Thug,

[1Reaitr, 0000 S € f de (1Rl 0,00+ 11 PR 1B
L . 2 1 1 3
F 19 = PRy 1y o 1l vHT = PRy 1B,
+e2 | ||§~). @27

We now discuss the moment l?zg(&x, 0 for £, # 0. For ¢|lo| > o and oy suffi-
ciently large, consider the equation (4.7) written in Fourier variables for the time and

x-dependence. Introduce also the cutoff function B as in Lemma 4.1. Use the term
ico F FePRo(0, £x. 2, v) 1O express the Yo-moment. For thls, project the equation
along v, — cav, A, and along c3yp + vy 2B with c3 = —(v2 vy, xB) > {Jtoremove a
F;FxB R2p,-moment. That leads to an expression for

9
FiFB (—I'EGF(szE —caRy, p) —inkl + a—z(Rzo + Cz)) :

and for

. . a {3
FiFeB (—teo(caRzo + Rzl,_gg) —ipE 3+ P (—Cstui -+ C4)) .

2

withg;, j=1,...,4 certain nonhydrodynamic morments of Ro. Thus we get an

expression for

3
—igacs (—mfxﬁkzoﬁ + mfxﬁRzuzP)

((frf B(Ra + 52)) (_53-7:.'-7'_xﬂ(R2v_ + 5“4)) )

After division by o and integration, the boundary term is multiplied by the small
coefficiento” 1. This can now be estimated separately at ~m and at r using Green’s
formula {4.10}. It follows that

(1 = Xo)Fe TR0 e ) 132 S € (o7 (1 FeRa(- £, ) 1322
= I (= POFRa(- &, ) 1320)

1 = PYFeRa( e ) 122)
(4.28)

The case of eo small requires a different argument. Consider equation (4.7)
and its Fourier transform in ¢, x and z. We dencte the total Fourier transform of a
function k, J—}'f‘}f i by h,and by hZ the Fourier ransform JF, . f. With 8 defined

in Lemma 4.1 put Ry = ﬂRg and R2 = ,BR; We have
siaﬁ_g A pvgi€y R+ iuz.fzﬁ’g + vz?(—l)'s:
— M Gay (MRy) + e L1 BRy + FH(Ro) + eR2d B = N
eio Ra® + Juvgits Ra? + 1,8, Ry’ (4.29)
= eM~\Ga, (MR + £ L, BRy + BH I (R)* + eRad f? == N
We notice that the right-hand sides contain only terms that can be estimated by
contributions involving either the nonhydrodynamic part or the hydredynamic part,
multiplied by a small factor.
For &£, = 0 we have
sic}: + uvxié_rRTz +v.f =N(o,&,0,v). (4.30)
We take the integral [* dz [° dg of (4.29)
T z = - -
—/ dz/ dg [EO’RzZ + [.LEXUXRQZ:I + {0, Ra(o, Ex, 0) — 2mivyr(—x)
-1 . T .
= dz/ dgN=. (4.31)
- -
Let W(jv]) be a smooth function such that
oo oo 5
f P (W'(0)YM(p)dp < o0, /0 P W(pIM(p)dp = 1,
0
o0
| e wome =o, (4.32)
0

o0 . o0
fo p W{p)M(p)dp = 3, fo PEW(pIM(p)dp = 0.

Then, multiply (4.31) by v, v. M W (Jv]) and integrate over v. The first term does

not contribute to the hydrodynamic part of ﬁ’;. The contribution to the hydrody-
namic part from the second and third terms are respectively

7 z —_—
/ dz [ dg(¥s, Rzz)uéx/duv}vfM(Ivl)W(lvl),

i, Br) / dvu2v2 MW (o).

Let us use the polar coordinates to compute the v-integrals

[ewtimaunwaon = [ awota? [ aontmiow e =o
2
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The vanishing of the integral is due to the second condition in (4.32). And so on
the left-hand side there are only boundary and nonhydrodynamic terms. We put the
latter on the right-hand side, denoted now by A/,

[ dvus v M)W (Jol)y ~ Ra(—7) = NE.
v, <0

The v-integral of the ingoing part of r times vy v?Mﬂul)W(lvl) is zero because of
the boundary conditions. In this way we have reached a control of the boundary

term ¥y~ Ry(—m). Now we reproduce this term by multiplying (4.30) by v, v, MW
and integrating over v; < Q,

i0 Ray, (0. &, O)er + ik Roo(o, &, O)cy
+ [ dvuM QoW sy Ao = N,
U <
where N incorporates A and all the other nonhydrodynamic terms and
2 ® s 2
) =/ dwwxwzf dpp" M ()W (0) =/ dwwlw;,
Sy 0 oy

where §; = {w € 8. w, < 0}, because of the first condition in (4.32). We have
used the second condition in (4,32} to cancel the remaining hydrodynamic terms
and, as before, the ingoing part does not contribute. The conclusion is

1 [0 Rau, @, 80, 0) + s Rao(o, £, 0)| = My = N} (4.33)

We will now obtain a second equation involving ézu_r and R with a similar proce-
dure. The two equations together will give us the wanted estimate for these terms.

Multiply (4.31) by v%vZ W{|v|) and integrate over v. The first and second term
do not contribute to the hydrodynamic part of R5. The contribution to the hydro-
dynamic part of the third term is

i(¥s + Yo R2) f o2 (s + Yo)M (WD W ().

The v-integrals in polar coordinates vanish because of the second and fourth con-
ditions in (4.32). The boundary integral is then given, as before, in terms of a
right-hand side, denoted by A%, involving non-hydrodynamic terms and A%,

P MWD Ram = M. (434)
. <0

The ingoing part vanishes this time because of the second condition in (4.32). Now
multiply (4.30) by v%v;M W and integrate over v; < 0,

LLEx_fgzu, (0, &, Me2 + EUEZ[}(C’ L Ex, Dy
+ f V202 M (o)W (Jol) Ra(—)dv = A,
e <0 )

where

00
C2=/ dwwﬁwZ/ dppTM(p)W(p) =3f dwwﬁwz
- o <

55 2

because of the first and third conditions in (4.32). This time the ingoing part

i dvnlIM (W (uhria(m)

v, <0

gives a contribution of order £ due to the presence of the Maxwellian M in the
boundary conditions. We put this term and all the other non-hydrodynamic terms
in the right-hand side term denoted by A. By using (4.34) we finally get

€280 Ray, (0, £z, 0) + 1 b Rao(0, &, 0) = N — NG (4.35)

Equations (4.33) and (4.35) give a system of two equauons that allow us to express
Rgl,}r and Rzo in terms of quantities under contro] provided that ¢ # ¢2. This can
be easily checked by direct computation.

As an end result, it holds for e¢ < o7 that

. 1
| Xoy RaoC, &, 0) 113 £ C(e_2 1= PR 1322

+ (I = PYRy W32z + 7 R2 325 ) (4.36)

The same estimate also holds for the yo-moment when &, # 0. The proof is
simpler. The boundary term this time is removed by subtracting the same equa-
tion for &, = O (limes (—1)%) and then multiplying first by v,v. MW and then by
vZv, M W. This gives two equations

ECC) [ézv,]- + cm&[@o]- =B, Eccz[fézux]- + cm&[fi’zo]— = By,
where [ f1_ = f(0, &, &, V) — (= 1)% f(o, £, 0, v).

The lemma follows by collecting the previous estimates. O
The above study of Rz leads to

Lemma 4.6, Any solution R to the problem (4.7) satisfies the a priori estimates
1 I
f v — PRI 2 S 6(8 I Roll3,+elv 2l — PO 1322
1 2 [T
+E It Prg llz22 +;5 ¥ 22~}
1 _t
| PRy 320 S ¢ (;(u Ro 132+ v = P)g 13 50)

1 i -
P ot 1 12 ).
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; 1 _ 1 -
| VR 0,002 < c(;— | R W20+ 1Y RillZonnt—z 190 1|§o,2_~)

Il

1 1 1
"(.?3 I Ro 13 + 1720 — Po)g 1322
i 1 _
+—5 1l Psg 132, 1Y K3, + 1l RollZa
_1 1 -
+e v 12 0o + ¥ ||§o,2,~.). :

Theorem 4.1. There exists a solution R to the rest term problem (4.1} such that

oo
f / / / IR, x, z, VM (u)dedxdzd < c”.  (437)
i} [-a.m)J|—ma] JR3

Proof of Theorem 4.1. Take the asymptotic expansion of fifth order in £. We shall
prove that R can be obtained as the limit of an approximating sequence, and that
R satisfies {4.37). Since R is a solution to the initial boundary value problem for
the rescaled rest term, (4.37) in turn implies the L%,-convergenoe to zero of R{1),
when time tends to infinity.

Let the approximating sequence {R"} be defined by RY =0, and

BRWH + lvu . VRH-l-l _ GM-[ 3(MR”+1)
at € du;

1
=

1 i
LJRH+1 + —H[(R"+])+ —J(RH,R")—I—A,
£ &
R"1(0, x, z, v) = Ro(x, z,v),

M
R\t x, F, U)=—:F (R"+I(I,.x,:|:7r,w)
M w50

I -
+ Eﬁf{l‘, x, Fmr, wh|w |Mdw

1 -
—Ed;(t,x,q:rr, v), xe€[-mm}, t>0,v,20

Here, the initial value Ry is of e-order four, A has been chosen so that [JJACx,
z, Mdxdzde =0, (f — Py)g = e(f — Pj)A is of order four, and Pyg = ePjA
is of order five.
The function R! is solution to
aR' 1 | B(MRY

I |
Al R —om' I = LR+ —H (R + A,
a = B, g2 £

RY(0, x,z, v} = Ro(x, z, v),

M 1-
R](I.- X, Fr, U) = _M—(U) (RI(I)X! :F:'Tv 'LU) + EW(LIr ¥, w))wCde
ES

Jin 50

l -
—Ew(a‘,x,:Frr, v, xel-m )], t>0, v,z0

Split R! into two parts Ry and B3, solutions of (4.4) and (4.7}, respectively, with g =
eA. Then using the corresponding a priori estimates, Lemma 4.3 and Lemma 4.6
together with the exponential decrease of i, and the g-orders of Rp and A, we get,
for some constant ¢,

1 5 | 7
I VIR flooco2S crs?, | WIR' f2228 cre?,
By induction,
1 5 .
I vIR! floooo2 € 2¢18%, jEn+1,
! 2 ] -1
B vI(R™ — R™) |02 S e26” | vI(R" = R" ) ll222, 720,

for some constant ¢o. Namely, if this holds up to " order, then
E(Rn+2 _ Rﬂ-l-l) + lvﬂ . V(Rf[+2 _ RM+1) _ E_a_(M(Rﬂ+2 _ Rri+]))
at £ M dv,
— %LJ(R’H-Z _ Rn+!) + lHl(er+2 _ Rﬂ+l) + _I_GH-H,
£ £ £
(R™2 — R0, x,2,v) =0,
M
(R™2—R™ (e, x, Frr,v)=—— / (R"F2—R"™)(t, x, T, w)lw, | Mdw
. MZF UJ;§0
xef[-mm], t>0 v, 20
Here
Gn+l = - P)Gﬂ-H — j'(Rn+1 L R" Rn+l _ R").
Tt follows that
§ v R — RPY) 2225 ce~t [ 0TE6" (o2

| 1 1 1
< ce™d (1 vER™ foncoz + I VIR looa} W R™ = R") 22
1
< o | vIR™ — R™Y 222 -
Consequently,

1 | 1
(VIR [lag2 < | vER™E = R flazz + -+ IR = RY) lla.22

1 7
+ | vIR! [2225 20187,

for £ small enough. Similarly | R"™? | so.002S 2c|£%. In particular {R"} is a
Cauchy sequence in L%,([O, +00) x € x R}, The existence of a solution R to
(4.1) follows, and the estimate (4.37) holds. This means that there is a sequence
of Lebesgue points in time, {1;}72, with #; tending to infinity with j, where the
| - [l2,2- norm of the solution R tends to zero. But the || R(z, - V2.2 for fixed ¢ 2 ¢;
is uniformly bounded by the norm at ¢; plus some tail integrals from ; to 0o, hence
tends to zero when time tends to infinity. O

This completes the study of the R-term and the stability theorem follows.
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