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Abstract. This paper studies a Boltzmann Nordheim equation in a slab with two-dimensional
velocity space and pseudo-Maxwellian forces. Strong solutions are obtained for the Cauchy problem
with large initial data in an L'NL*> setting. The main results are existence, uniqueness and stability
of solutions conserving mass, momentum and energy that explode in L if they are only local in
time. The solutions are obtained as limits of solutions to corresponding anyon equations.

1 Introduction and main result.

In a previous paper [1], we have studied the Cauchy problem for a space-dependent anyon Boltzmann
equation,

atf(t,l’,’U)—FUlaxf(t,l','U) = Qa(f)(tam7v)a f(O,ZL‘,U) = fO(xaU)a (t,fL‘) S RJr X [Oa 1]a v = (U17U2) € RQ-
(1.1)

The collision operator @, in [1] depends on a parameter « €]0, 1] and is given by
Q)0 = [ Bllo =l )l FADFa() = 1. Falf)PalFldv.d,

with the kernel B of Maxwellian type, f’, f., f, f« the values of f at v/, v, v and v, respectively,
where

vVV=v—(v—v,n)n, V,=v.+ (v—vi,n)0,
and the filling factor Fy,

Fo(f) = (1= af)*(1+ (1 —a)f)' .

Anyons are other types of particles that occur in one and two-dimensions besides fermions and
bosons. The exchange of two identical anyons may cause a phase shift different from 7 (fermions)
and 27 (bosons). In [1], also the limiting case o = 1 is discussed, a Boltzmann-Nordheim (BN)
equation [11] for fermions. In the present paper we shall consider the other limiting case, a = 0,
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which is a BN equation for bosons.

For the bosonic BN equation general existence results were first obtained by X. Lu in [7] in the
space-homogeneous isotropic boson large data case. It was followed by a number of interesting
studies in the same isotropic setting, by X. Lu [8, 9, 10], and by M. Escobedo and J.L. Veldzquez
[5, 6]. Results with the isotropy assumption removed, were recently obtained by M. Briant and A.
Einav [3]. Finally a space-dependent case close to equilibrium has been studied by G. Royat in [12].
The papers [7, 8, 9, 10] by Lu, study the isotropic, space-homogeneous BN equation both for Cauchy
data leading to mass and energy conservation, and for data leading to mass loss when time tends
to infinity. Escobedo and Veldsquez in [5, 6], again in the isotropic space-homogeneous case, study
initial data leading to concentration phenomena and blow-up in finite time of the L°°-norm of the
solutions. The paper [3] by Briant and Einav removes the isotropy restriction and obtain in poly-
nomially weighted spaces of L' N L* type, existence and uniqueness on a time interval [0, Tp). In
[3] either Th = oo, or for finite T the L>-norm of the solution tends to infinity, when time tends
to Tp. Finally the paper [12] considers the space-dependent problem, for a particular setting close
to equilibrium, and proves well-posedness and convergence to equilibrium.

In the papers cited above, the velocity space is R3. The present paper on the other hand studies
a space-dependent, large data problem for the BN equation with velocities in R%2. The analysis is
based on the anyon results in [1], which are restricted to a slab set-up, since the proofs in [1] use
an estimate for the Bony functional only valid in one space dimension. Due to the filling factor
F,(f), those proofs also in an essential way depend on the two-dimensional velocity frame. By a
limiting procedure relying on the anyon case when a — 0, well-posedness and conservation laws are
obtained in the present paper for the BN problen.

With

UV — Uy

cos=n- ,
v — vy

the kernel B(|v — vi|,n) will from now on be written B(|v — v4|,#) and assumed measurable with

0 < B < By, (1.2)

for some By > 0. It is also assumed for some v,/,cg > 0, that

B(|v —v4|,0) =0 for |cos 0] <+, for 1—|cosf| <+, and for |v—v.| <7, (1.3)
and that
/B(]v—v*\,ﬁ)d9203>0 for |v — .| > 7. (1.4)

These strong cut-off conditions on B are made for mathematical reasons and assumed throughout
the paper. For a more general discussion of cut-offs in the collision kernel B, see [8]. Notice that
contrary to the classical Boltzmann operator where rigorous derivations of B from various potentials
have been made, little is known about collision kernels in quantum kinetic theory (cf [13]).

With v; denoting the component of v in the z-direction, the initial value problem for the Boltzmann
Nordheim equation in a periodic in space setting is

O f(t,z,v) + 10, f(t,z,v) = Q(f)(t, z,v), (1.5)
where
ANE) = [ Bl O SR = 1F(F(f)dvsdo, (1.6)
R2x[0,n]



and

F(f)=1+1. (1.7)
Denote by
fﬁ(t,x,v) = f(t,x +tv,v) (t,z,v) € Ry x [0,1] x R% (1.8)

Strong solutions to the Boltzmann Nordheim paper are considered in the following sense.
Definition 1.1 f is a strong solution to (1.5) on the time interval I if

feCH I LY([0, 1] x R?),
and

d .y _ # 2

af =(Q(f))", onIx0,1] xR”. (1.9)
The main result of this paper is the following.

Theorem 1.1 Assume (1.2)-(1.3)-(1.4). Let fo € L>([0,1] x R?) and satisfy

(14 v|*) fo(z,v) € L*([0,1] xR?), / sup fo(z,v)dv = ¢y < 00, ir[lf ]fo(x,v) >0, a.a.v € R%

z€[0,1] z€[0,1
(1.10)
There exist a time Too > 0 and a strong solution f to (1.5) on [0, Tss) with initial value fo.
For 0 <T < Ty, it holds
FHe N[0, T ); L'(]0,1] x R2)) N L2([0,T] x [0, 1] x R?). (1.11)
If Too < 400 then
limys 7, || F(£-50) 2o (0,1)xr2) = +00- (1.12)

The solution is unique, and conserves mass, momentum, and energy. For equibounded families in
L>([0,1] x R?) of initial values, the solution depends continuously in L' on the initial value fo.

Remark.

A finite T, may not correspond to a condensation. In the isotropic space-homogeneous case con-
sidered in [5, 6], additional assumptions on the concentration of the initial value are considered in
order to obtain condensation.

The paper is organized as follows. In the following section, solutions f, to the Cauchy prob-
lem for the anyon Boltzmann equation in the above setting are recalled, and their Bony functionals
are uniformly controlled with respect to «. In Section 3 the mass density of f, is studied with
respect to uniform control in a. Theorem 1.1 is proven in Section 4 except for the conservations of
mass, momentum and energy that are proven in Section 5.



2 Preliminaries on anyons and the Bony functional.

The Cauchy problem for a space-dependent anyon Boltzmann equation in a slab was studied in [1].
That paper will be the starting point for the proof of Theorem 1.1, so we recall the main results
from [1].

Theorem 2.1
Assume (1.2)-(1.8)-(1.4). Let the initial value fo be a measurable function on [0,1] x R? with values
in |0, é], and satisfying (1.10). For every « €)0, 1], there exists a strong solution f, of (1.1) with
1
fEec (0,00 LY([0,1] X R?)),  0< folt,--) < ~ fort>0,

and

/ sup Fi(s, @, 0)dv < cqlt), (2.1)
(s,x)€[0,t]x[0,1]

for some function c(t) > 0 only depending on mass and energy. There is t,, > 0 such that for any
T > ty,, there is np > 0 so that

1
foc(ta'v') S a —nr, te [tm7T]

The solution is unique and depends continuously in C([0,T]; L'([0, 1] x R?)) on the initial L'-datum.
It conserves mass, momentum and energy.

The conditions fy € L>([0,1] x R?) and (1.10) are assumed throughout the paper.

To obtain Theorem 1.1 for the boson BN equation from the anyon results, we start from a fixed
initial value fo bounded by 2 with L € N. We shall prove that there is a time 7 > 0 independent
of 0 < a < 27571, 50 that the solutions are bounded by 2%*! on [0,7]. For that, some lemmas
from the anyon paper are sharpened to obtain control in terms of only mass, energy and L. We
then prove that the limit f of the solutions f, when a — 0 solves the corresponding bosonic BN
problem. Iterating the result from T on, it follows that f exists up to the first time T, when

limy g || falt ) llzoe(o,1)xr2)= 0

We observe that

Lemma 2.2
Given fo < 2V and satisfying (1.10), there is for each a €]0,2 571 a time T, > 0 so that the
solution fo to (1.1) is bounded by 2Lt on [0,T,].

Proof of Lemma 2.2.
Split the Boltzmann anyon operator @, into Q, = QF — Q. , where the gain (resp. loss) term Q}
(resp. Q) is defined by

QF(f)(v) = / B fLEa(f)Fa(fu)dvad0  (resp. Q@ (f)(v) = / BY fFalf)Fa(f!)do.d6). (2.2)



The solution f, to (1.1) satisfies

¢ ¢
fi(t,:n,v) = fo(x,v) +/0 Qo(fa)(s,z + svi,v)ds < fo(z,v) +/0 QL (fa)(s, 7 + svy,v)ds.

Hence

sup f& (s, x,v) < fo(z,v) / QL (fa)(s,z + sv1,v)ds (2.3)

s<t

t
= fo(z,v) + / /Bfa(s, T+ sv1,0") fo (8,7 + 501, V,) Fo(fa) (8,2 + sv1,0) Fo(fa) (8, © + sv1,vs)dv,dfds
2(1-2a) [t
<ol 4 @<f - 1) / /fa(s,x + sv1,v")dv,.dfds,
«Q (6% 0

since the maximum of F, on [0,1] is (1 —1)!72* for a €]0, 5[. With the angular cut-off (2.2),

vy — v’ is a change of variables. Using it and (2.1) for ¢ < 1 leads to

sup ffy(s,m,v) <2k ye
s<t,x 0}

2(1—2«
Byca(1) (l 1) ( )t
(0%

La3—4a(1 _ a)2(2a—1)

cBoca(1) b

< ol+l for t < min{1,

The lemma follows. u

The estimate of the Bony functional

1
:/ /|v — V2B faforxFolf) Falfl ) dvdv.dfdz, t >0,
0

from the proof of Theorem 2.1 for f, < 21 | can be sharpened.

Lemma 2.3
For a <27 L1 and T > 0 such that falt) < oL+1 for 0 <t <T, it holds

T
/ Bu(t)dt < cy(1+T),
0

with ¢, independent of T and o, and only depending on [ fo(x,v)dzdv, [ |v|?fo(x,v)dzdv and L.

Proof of Lemma 2.3.

Denote f, by f for simplicity. The proof is an extension of the classical one (cf [2], [4]), together
with the control of the filling factor F,, when v € R?, as follows.

The integral over time of the momentum [ vy f(¢,0,v)dv (resp. the momentum flux
[v3f(t,0,v)dv ) is first controlled. Let 8 € C1([0,1]) be such that 3(0) = —1 and B(1) =
Multiply (1.1) by 8(z) (resp. v13(x) ) and integrate over [0,¢] x [0,1] x R2. Tt gives

//vlfTOvdvdT— /5 foxvda:dv—/ﬁ F(t,z,v)dzdv

+/O /5’(g;)y1f(r,x,v)dxdvdr),




( resp.
/Ot/U%f(T,O,’U)d’UdT = ;(/B(x)vlfo(x,v)da:dv - /ﬁ(m)vlf(t,x,v)d:cdv

+/Ot/gl(x)vff(r,x,v)dxdvdf)).

Consequently, using the conservation of mass and energy of f,

|/0t/111f(7',0,v)dvd7'| + /Ot /v%f(T,Ojv)dvdT <c(1+1). (2.4)

Here c is of magnitude of mass plus energy uniformly in «. Let
Z(t)= / (v1 —ve) f(t, 2, 0) f(t, y, ve)dzdydvduv,.
a<y
It results from
() = — /(vl —va1)2 f(t, 2, 0) f(t, z, v, ) drdodu, + 2/1)*1(1)*1 —v1) f(¢,0,vs) f(t, z,v)dzdvdv,,

and the conservations of the mass, momentum and energy of f that

t 1

/ / /(vl —v41)2f (s, 2,0) f (s, z, v )dvdv.dzds

0o Jo

< 2/fg(x,v)dxdvf\vllfo(x,v)dv+2/f(t,a:,v)dwdv/]vﬂf(t,a:,v)dxdv
t

+ 2/ /v*l(v*l — 1) f(7,0,vs) f (1, 2, v)dxdvdv.dT
0

< Q/fo(x,v)dmdv/(l + [v]?) fo(x, v)dv + 2/f(t,x,v)dxdv/(l + [v[A) f(t, 2, v)dzdv
t t

+2/ (/ 02, £ (7,0, v.)dvy) dT/fo x,v dxva/ (/U*lf(T,O,’U*)d’U*)dT/’Ulfo(.’E,v)dﬂSd’U

//UlfTOUdUdT+’/ /vlfTOUdvdTD

And so, by (2.4),
1
/t/ /(vl —va1)2 £ (5, 2,0) f (8, 2, vs)dvdvsdads < c(1 +t). (2.5)
0 JO

Denote by u = ffv}{l Y. Recalling (1.2) it holds

t
/ / /(m —u1)?Bf f Fo(f)Fol(fL) (5, 2, v, vy, 0)dvdv,.dfdzds
0o Jo

= C/t/l /(Ul — 1) f fu(s, z, v, v, )dvdv,dzds
/ / / V1 — Vs1)2f fo (5, 2,0, v ) dvdv,dads

e(1+1). (2.6)



Here c also contains sup F,(f')Fu(f!) which is of magnitude bounded by 22%. So c is of magnitude
22L (mass+energy) and uniformly in . Multiply equation (1.1) for f by v?, integrate and use that
[03Qa(f)dv = [(v1 —u1)*Qa(f)dv and (2.6). It results

/ t / (v1 — u1)2Bf fLEo(f)Falfo)dvdv.dfdads
' t

= /U%f(t7$,7))dxdv — /U%fo(x,v)dxdv =+ / /(/Ul _ ul)QBff*Fa(f/)Fa(fi)dl‘d’Ud’U*dedS
0

< Co(l + t),

where cq is a constant of magnitude 22/(mass-+energy).
After a change of variables the left hand side can be written

/ t / (V) — u1)2Bf fo Fo(f))Falfl)dvdv.dfdzds
0

_ / t / (c1 — ma[(v — v) - 1) 2Bf £ Fa(f) Eu( f)dvdv,dfdads,
0

where ¢; = v1 — uq. And so,

/t/nﬂ(v —v,) - n))?Bf foFo(f)Fo(fL)dvdv,dfdzds

0

<co(l+1t)+ Z/t/clnl[(v —vs) - n|Bf fo Fo(f) Fo(fL)dvdv.dfdxds.
0

The term containing n?[(v — v) - n)? is estimated from below. When n is replaced by an orthogonal
(direct) unit vector ny, v' and v/, are shifted and the product ff.F,(f")F.(f.) is unchanged. In

R? the ratio between the sum of the integrand factors n?[(v — vy) - n]? + n2 | [(v — vi) - n ]* and

|v — v4|?, is, outside of the angular cut-off (1.3), uniformly bounded from below by 7/2. Indeed, if 6

(resp. 1) denotes the angle between ﬁ:g*' and n (resp. the angle between e; and n, where e is a

unit vector in the z-direction),

v — U : .
n)? +n?] 2 = cos? 6 cos® 6 + sin? 0y sin? @

7./’7)
oo "

> 42 cos? 0y ++/(2 — +) sin? 6,
>~2 4 <|cosb] <1—4', 6 €l0,2n].

This is where the condition v € R? is used.

That leads to the lower bound
t
/ / n3[(v — vi) - N> Bf fu Fo(f') Fo(fL)dvdv,.dfdads
0

12 t
= 72/ /’” — 0*Bf foFo(f") Fo(fl)dvdv.dOdads.
0



And so,
t /Ot / v = v*Bf fuFa(f') Fa(fl)dvdv.dfdzds
t
< 2co(l+1t)+ 4/ /(1)1 —u)n[(v — vy) - 0| Bf fuFa(f) Fa(f))dvdv.dodads
0

t
< 2co(l+1t)+ 4/ / <vl(v2 - v*g)nlng)Bff*Fa(f’)Fa(fi)dvdv*dexds,
0
since

/u1 (v1 — va1)n3Bf fo Fo(f') Fo(fL)dvdv,dodx
= /ul(vg — vs2)nino Bf f Fo (f ) Fo(fL)dvdv,dfdx = 0,

by an exchange of the variables v and v,. Moreover, exchanging first the variables v and v,

2 / t / v1(v2 — vs2)nine B fuFo(f') Fo(f1)dvdv,.dfdads
0
t
:/0 /(Ul — v41) (v — vi2)mina B f fo Fo (f) Fo(fL)dvdv.dfdxds
_% /0 t / (v1 — 0?03 Bf fuFu(f') Fo(fL)dvdv.dfdads

- /t/(v2 — 0,0) 3B f fo Fo(f)Fo(fL)dvdv,dfdazds

8me
< OT% 0

<50 44 T / / v = v:0)*n3 B fu Fol ') Fa( £} dvdv,dfdads.
472
It follows that

/t / |v — v *Bf fe Fu(f')Fo(fL)dvdv.dfdazds < ch(1 +t),
0

with ¢}, uniformly with respect to «, of the same magnitude as ¢y, only depending on [ fo(z,v)dzdv,
[1v]? fo(x, v)dzdv and L. This completes the proof of the lemma. [ |

3 Control of phase space density.

This section is devoted to obtaining a time 7" > 0, such that

t€[0,T),z€[0,1]
uniformly with respect to a €]0,27171[ . We start from the case of a fixed a < 27571, Up to
Lemma 3.3 the time interval when the solution does not exceed 2X*1 may be a-dependent. Lemma
3.4 implies that this time interval can be chosen independent of a.



Lemma 3.1
Given T > 0 such that f,(t) < 2EF for 0 <t < T, the solution f, of (1.1) satisfies

/ sup fg(ty Z, U)d.rdv < Cll —+ CIQT, a 6}0, 2_L_1|:’
t€[0,T]

where ¢ and ¢y are independent of T and o, and only depend on [ fo(z,v)dzdv, [ |v|*fo(z,v)dzdv
and L.

Proof of Lemma 3.1.
Denote f, by f for simplicity. By (2.3),

sup fH(t, z,0) < fo(z,v) / QI (f)(t,x + tvy,v)dt.

t€[0,T]

Integrating the previous inequality with respect to (z,v) and using Lemma 2.3, gives

/ sup fﬁ(t;vvdxdv</fowvdwdv+/ /B
0<t<T

ft, o+ tvg, ) f(t, o + tvr, VL) Fo (f)(t, @ + tor, v) Fo (f) (t, © + tvg, vs ) dvdv,.dOdxdt

/fo z,v)dzdv + — / /B’U—U*‘Q

ft,z, o) f(t,z, v ) Fou(f)(t, x, U)Fa(f)(t, x, vy )dvdvu, didzdt

"(14+T T
§/f0(m,v)dxdv+60(;2_ ):: G —;202 .

Lemma 3.2
Given T > 0 such that f(t) < 2L+l for 0 < t < T, and 8, > 0, there exist 65 > 0 and tg > 0
independent of T and o and only depending on [ fo(z,v)dzdv, [ |v]?fo(z,v)dzdv and L, such that

sup / sup fh(s,x,v)dzdv < &1, a€]0,27L7Y, telo,T].
|

z0€[0,1] J|z—zo|<F2 t<s<t+io

Proof of Lemma 3.2.
Denote f, by f for simplicity. For s € [t,t + to] it holds,

t+to
fﬁ(s,x,v):fﬁ(t—i—to,x,v)— Qa(f)(T,x—i-Tvl,U)dT
8t+t0
< fﬁ(t—i—to,x,v)—i— Q. (f)(r,x + Tv1,v)dT.
And so
t+to
sup  f(s,x,v) < fH(t 4 to, x,v) + QL (f)(s,z + svi,v)ds.
t<s<t+tg t



Integrating with respect to (z,v), using Lemma 2.3 and the bound 2%*! from above for f, gives

/ sup  f*(s, z, v)dxdv
|

r—x0|<d2 t<s<t+to

< / FHt + to, z,v)dzdy
|$ :l?o‘<52

t+to
+ / /Bfﬁ(s, 2,0)f(8, 2 + sv1,v) Fo (f) (8,2 + sv1, V") Fo(f) (s, 2 + svy, vl ) dvdv.dfdxds
t

t+to
< / FH(t + to, z, v)dzdy + 2 / Blv — v, |2 f4(s,2,0) f(s, 2 + sv1, vs)
|z—x0|<02

[v—vs|>A

Fo(f) (5,2 4 sv1, v ) Fo(f) (s, z + svy, U*)dvdv*dedmds
t+to
+622L/ / Bfﬁ(s’x7 /U)f(s"’,c —+ 8’1}17’1}*)d’l)dv*d9dl‘d8
t [v—vs| <A

66(1 + to)
>\2

1 (14t
< i /02f0d$dv + 69282 + 0()\20)

Depending on 47, suitably choosing A and then d2, A and then £y, the lemma follows. ]

S/ FH(t + to, z, v)dzdo + +023Lt0)\2/f0(:c,v)dxdv
|x—x0]|<d2

+023Lt0/\2/f0(a:,v)dmdv.

The previous lemmas imply for fixed a < 271~ a bound for the v-integral of ff only depend-
ing on [ fo(x,v)dzdv, [ |v]*fo(z,v)dzdv and L.

Lemma 3.3
With T!, defined as the mazimum time for which f,(t) < 28 ¢ € [0,17], take T, = min{1,T"}.
The solution f, of (1.1) satisfies

/ sup fAt, zv)d < e, (3.1)
(t,x)€[0,Ta[%[0,1]
where c; is independent of o < 27L71 and only depends on [ fo(z,v)dzdv, [ |v|?fo(z,v)dzdv and

L.

Proof of Lemma 3.3.
Denote by E(z) the integer part of x € R, E(z) <z < E(x) + 1.
By (2.3),

sup f¥(s,z,v) < fo(z,v) /Q+ (s,x + svi,v)ds

s<t

= fo(:c,v)+/t/Bf(s,:v+svl,v’)f(s,x+svl,v;)Fa(f)(s,:c+svl,v)Fa(f)(s,a:+svl,v*)dv*des
0
< fo(z,v) + 22 A, (3.2)

where

A= / /B sup f7(r, x4+ s(vy —v)), ") sup f7 (1, + s(vy —v'41), 0. )dv.dbds.
7€0,t] T€[0,t]

10



For 6 outside of the angular cutoff (2.2), let n be the unit vector in the direction v — v, and n the
orthogonal unit vector in the direction v — v,. With e; a unit vector in the z-direction,

max(|n - e1f,[nL - e1) > \[

For d5 > 0 that will be fixed later, split A into Ay + Ay + Az + A4, where

t
A1 :/ / B sup f#(T,x + 8(1}1 — Ui),v’) sup f#(T,aj + s(vl . U/*l),vi)dv*dﬁds,
[n-e1|> -1, tlug—v}|>62

T€[0,t] T€[0,t]
t
As = / / B sup f#(r,x+ s(vp —v}),v") sup fF(1, 2+ s(vy — v's1),v.)dv,.dOds,
|n 61‘>% tlvp—vi|<d2  T€[0,¢] T€[0,t]
As = / / B sup f7(r,x+ s(vp —v}),v") sup f7(1, 2+ s(vy — v's1),v.)dv.dOds,
|ny - e1\> t|v1 vi[>d82  T€[0,] T€[0,t]

Ay = / / B sup f#(r,z 4 s(vy — v}),v") sup f7(r,x + s(vy — v's1),v.)dv.dbds.
[ng - €1|> t|v1 Vi< TE€[0,t] T€[0,t]

In Ay and Ay, bound the factor sup, ¢ i 2+ s(vy — vly),v.) by its supremum over x € [0, 1],
and make the change of variables

s—=y=uz+s(v; —v}).
with Jacobian

Ds_ 1 1 V2

Dy Joi—wi]l o —wd|(n, g=) el — Y

 To—vs]

| E

It holds that

B
Ay S/ ,(/ sup f#(ﬂy,v’)dy> sup  fH(r, X, v))dv.db,
thor—v; 1562 V1 = V1 \Sye(@att(or—v))) ref0,] (r,X)€[0,6]x[0,1]

and

Ao < - B(/ sup f#(v',y,v')dy> sup f#(r, X, v.)dv.db.
In- el|> t|U1 v [<82 ly—z|<d2 TE[0,t] (7,X)€[0,t]x[0,1]

Then, performing the change of variables (v, vi,n) — (v/, v}, —n),

/ sup Ajdv
z€[0,1]

B
g/ ———— sup </ sup f#(T,y,v)dy> sup 7 (1, X, v,)dvdv,db,
lor—vf [>62 |1 = V1] z€(0,1] N Jye(w,eri(v]—u1)) re(0,] (. X)€[0,4] x[0,1]
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so that

/ sup Ajdv
x€[0,1]
B
§/ —— sup (/ sup f#(T,y,v)dy) sup 7 (r, X, v,)dvdv.df
tlvy —v][>d2 |’U1 - Ul‘ z€[0,1] ye(z,x+E(t(v]—v1)+1)) T€[0,t] (7,X)€[0,¢] x[0,1]

B 1
= / 7/|E(t(vll - 1}1) + 1)| (/ sup f# (T7 Y, U)dy) sup f# (T’ X7 v*)dvdv*de
Hor—v} [>6 [V1 — V1] 0 el (7,X)€[0,1] x[0,1]

1
< t(l—l—l)/B(/ sup f#(T,y,v)dy> sup 7 (r, X, v,)dvdv,df
2 0 €0, (1, X)€[0,t]x[0,1]

gBoﬂt(l—i—l)/ sup f#(T,y,v)dydv/ sup 7 (r, X, v,)dv,.
62" ) ey (r.X)€[0,6]x[0,1]

Apply Lemma 3.1, so that
1
/ sup Ajdv < Bomt(1 + 5—)(0’1 + 0’2)/ sup (7, X, vy)d,. (3.3)
z€[0,1] 2 (7, X)€[0,¢] x[0,1]

Moreover, performing the change of variables (v,v,,n) — (v.,v', —n),

B 2
/ sup Asdv < omv'2 sup </| sup f#(T,y,v*)dydv*)/( )sup f#(T,X,v)dv.
Y 7,X

z€[0,1] Y w0, <82 TE€[0,] €l0,6]x[0,1]
Given 6, = #, apply Lemma 3.2 with the corresponding d9 and tg, so that for ¢ < min{T ¢},
0
1
/ sup Agdv < / sup f#(r, X, v)dv. (3.4)
z€[0,1] (7, X)€[0,¢] x[0,1]

The terms A3 and Ay are treated similarly, with the change of variables s — y = x + s(v1 — vl;).
Using (3.3)-(3.4) and the corresponding bounds obtained for A3 and A4 leads to

/ sup f#(s,:c,v)dv < 2/ sup fo(z,v)dv
(s,2)

€10,t]x[0,1] z€[0,1]

+ 4Bymt(1 + i)(c’l + 0'2)/ sup f#(s,z,v)dv, t<min{T,t}.
92 (5,2)€[0,E] x[0,1]

Hence

. 92
sup f# s,z,v)dv < 4/ sup fo(z,v)dv, t < min{ty,
[ it 0 i oY) 10 8 Byr(a + (& + %)

}.
Since to, ¢} and ¢} are independent of a < 272~1 and only depend on [ fo(z,v)dzdv, [ |v|?fo(x,v)dzdv

and L, it follows that the argument can be repeated up to t = T,, with the number of steps uniformly
bounded with respect to a < 27L~1. This completes the proof of the lemma. [

We now prove that the positive time T, used above, such that f,(t) < 25+ for t € [0,T,], can be
taken independent of «.

12



Lemma 3.4
Given fo < 2L and satisfying (1.10), there is T €]0,1] so that for all o €]0,27 71, the solution f,
to (1.1) is bounded by 2X1 on [0,T).

Proof of Lemma 3.4.
Given a < 2_L_1, it follows from Lemma 2.2 that the maximum time T(; for which f, < 2L+l o
[0, 7] is positive. By (2.3),

t
sup f4(5,7,0) < folw,v) + /0 Q1 (fa) (52 + s01,0)ds = fo(z,v)

s<t

t
—i—/ /Bfa(s,x+31)1,v’)fa(s,ac+sv1,vi)Fa(fa)(s,m+svl,v)Fa(fa)(s,x—i—svl,v*)dv*dﬂds.
0

With the angular cut-off (2.2), v, — v’ and v, — v} are changes of variables, and so using Lemma
3.3, the functions f,, for a €]0,27 L~ ![satisfy

sup fi(s,x,v) < fo(z,v) + CB023Lt/ sup fal(s,z,v")dv
(s,x)€[0,t]x[0,1] (s,x)€[0,t]x[0,1]

< ol 4 CB(]23Lt01
1

<3025 ,t € [0, min{T,, W}] :

For all a < 27%~! it holds that T/, > W, else T! would not be the maximum time such

that f,(t) < 25+ on [0,T7] . Denote by T' = min{1, cq&)%} The lemma follows since T does
not depend on a. [ |

4 Proof of Theorem 1.1.

After the above preparations we can now prove Theorem 1.1. The conservations of mass, momentum
and energy will be proven in Section 5.

Proof of Theorem 1.1.
Let us first prove that (f,) is a Cauchy sequence in C([0,T]; L*([0,1] x R?)) with T of Lemma 3.4.

13



For any (a1, as) €]0,1[2, the function g = f,, — fa, satisfies the equation

01+ 01059 = [ By i = Fosfiss) Fo () For o vt
[ B = Fra o) P ) P

[ B s (B ) (P ) = P (F)) + Fo(n) (Fo () = Fo ()

b [ B e (B ) (B () = P (F) + Fos(fn) (Fo () = Folfz)

[ Bz (Far () (Far (£20) = Py (72)) + P (Fon (£r2) = Fo ()

= [ B e (Far (520 (Far (£20) = Faa(£2)) + FaalF2) (Fan

Using Lemma 3.3 and taking aq, o < 27571,

[ B(1orSore = oo o (Fo ) Fon (o)) o
< 022L</ sup fil(t,x,v)dv—i—/ sup f§2(t x,v) dv

z€[0,1] z€[0,1]

< 00122L/|gﬁ(t,:z,v)|dxdv.

We similarly obtain

/B<fé¢2f(/m*Fa1 (fa1*)|<Fa1 (fOQ) - Faz(faz)’))ﬁdxdvdv*da < CCl22L’a1 — 2|,

and

_Fa2(

fag*

[ B(Faa o For B ) Far(£e,) = Fon ()] dodudodt < ces2? [ [8(t,0,0) oo

The remaining terms are estimated in the same way. It follows

d
o7 / g% (¢, 2, v)|dadv < 66122L(/ 6% (t, =, v)|dzdv + |og — 0420.

Hence

lim sup /|g (t,z,v)|dzdv = 0.
(a1,02)=(0,0) tefo,T]

dv,.do

dv.df

)
)
)
)

) )dv.db. (4.

/| far = fao)¥(t, 2, v)|dzdv

And so (f,) is a Cauchy sequence in C([0,T]; L([0, 1] xR?)). Denote by f its limit. With analogous

arguments to the previous ones in the proof of this lemma, it holds that

lim / Q) — QUf)|(t, ., v)dtdirdv = 0.

Hence f is a strong solution to (1.5) on [0, 7] with initial value fy. If there were two solutions, their

difference denoted by G would with similar arguments satisfy

d
— [ G (¢, z,v)|dzdv < ce1 2% | |GE(t.zw)|dzdw,
dt

14

8)



hence be identically equal to its initial value zero.

Denote by F a given equibounded family of initial values bounded by 2%. Let f; resp. f» be the
solution to (1.5) with initial value fio € F resp. foo € F. The equation for g = f; — fo can be
written analogously to (4.8). Similar arguments lead to

Ccllt/|(f1 — f2)¥(t, x,v)|dzdv < 00122L/\(f1 — fo)(t, m, v)|dzdo,
so that

| (fr = f2)(E ) o, xr) < eca T2 | fio = f20 llz1(joyxr2y, ¢ € 10,77

This proves the stability statement of Theorem 1.1 .
If sup(y vy« f(T, 2, v) < 2LF1 then the procedure can be repeated, i.e. the same proof can

be carried out from the initial value f(T'). It leads to a maximal interval denoted by [0,7}] on
which f(t,-,-) < 28+l By induction there exists an increasing sequence of times (T;,) such that
f(t,-,-) <2F+7 on |0, T, n)- Let Too = limy, 4 o0 T,,. Either T», = +00 and the solution f is global in
time, or Ty, is finite and limy_,7, || £(t) [leo= 0o |

5 Conservations of mass, momentum and energy.

The following two preliminary lemmas are needed for the control of large velocities.

Lemma 5.1
The solution f of (1.5) with initial value fy, satisfies

1

/ / | sup fH(t, z,v)dvde < C—T, t€0,T7],
0 Jpl>x  te€[0,T)] A

where cp only depends on T, [ fo(z,v)dzdv and [ |v|?fo(z,v)dzdv.

Proof of Lemma 5.1.
As in (2.3),

sup fH(t,x,v) < fo(z,v) + / QT (f)(s,x + sv1,v)ds.
t€[0,T]

Integration with respect to (x,v) for |v| > A, gives

1
// |v| sup f(t:cvdvda:<// |v\foxvdvdw+/ /
0 Jv|>A  te€l0,T] [v|>X [v|>X

[v| f (s, 2 + svi,v") f(s, 2 + svi, V) F(f)(s, 2 + sv1,v)F(f)(s, 2 + sv1, vs)dvdv.dfdxds.

Here in the last integral, either [v/| or |v)| is the largest and larger than % The two cases are

symmetric, and we discuss the case |v/| > |vi|. After a translation in xz, the integrand is estimated
from above by

| s,z ) sup fE(E o).
(t,x)€[0,T]x[0,1]

15



The change of variables (v, v, n) — (v/, v, —n), the integration over

A T
» T 1 R2: LA REx [—=, —
(8,2,v,v5,w) € [0,T] x [0,1] x {v € ,|v|>ﬂ}>< x [ 5’ 2]

and Lemma 3.3 give the bound

T
S [rrrteamaas)([ s peregan) < T R, odea
A\ Jo (t2)

€[0,T]x[0,1]

The lemma follows. ]

Lemma 5.2
The solution f of (1.5) with initial val;ue fy satisfies

/
f ‘r
sup At z,v)do < —=, te€][0,T],
/|v|>)\ (t,x) \/X

€[0,T]x[0,1]
where ¢y only depends on T, [ fo(z,v)dzdv and [ |v|*fo(z,v)dzdov.

Proof of Lemma 5.2.
Take A > 2. As above,

/ sup FH(t, x,v)do < / sup fo(z,v)dv + cC, (5.1)
[v[>X (t,x)€[0,T]%[0,1] [v|>A z€[0,1]
where
C= sup / /Bf# s,z + s(vy — v)), ) f7 (5,2 + s(vy — vy),v.)dvdv.dbds.
|[v|>X z€[0,1]

For v/, v!, outside of the angular cutoff (1.3), let n be the unit vector in the direction v —v’, and n
the orthogonal unit vector in the direction v — v},. Let e; be a unit vector in the z-direction.
Split C as C' =), ;<4 Ci, where C} (resp. Ca, C3) refers to integration with respect to (vs,6) on

{(vi,0); n-er>—, [V >},

\[

/ 1 1 / 1
(resp. {(U*79);n' er > 1- X? |U/| < ‘UH}? {(’U*,H);TL €1 € [\ﬁa 1- X]a |’U,’ < |’U;|})a

and analogously for C;, 4 < i < 6, with n replaced by n,. By symmetry, C;, 4 < i < 6 can be
treated as C;, 1 <1 < 3, so we only discuss the control of C;, 1 <7 < 3.

By the change of variables (v, v.,n) — (v/,v},—n), and noticing that |v/| > % in the domain of
integration of C1, it holds that

€ < / / / Bf# (5,2 + s(v] —v1),0) 7 (5,2 + s(v] — v41), vs)dv.dOdsdv
|v|> S T€ 01] n-e1>

s

< / sup / / B sup f7(r,x+ s(v] —v1),v) sup 7 (7, X, v, )dv,dOdsdv.
|v|> 5 ©€[0,1] n-e;> 7 7€[0,T (7,X)€[0,7]x[0,1]
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With the change of variables s — y = z + s(v] — v1),

B
C1 < / sup / / ——— sup f*(r,y,v) sup 7 (7, X, v,)dydv,dfdv
|v|>i z€[0,1] /n- 61>7 y€(z,x+T(v]—v1)) |Ul U1| T7€[0,T (7,X)€[0,T]x[0,1]

/ / Ul — ) +1)| / B sup f*(r,y,v) sup (7, X, v,)dydv.dfdv.
|v|>— - Ul\ 7€[0,T] (7,X)€[0,T]x[0,1]
Moreover,

V2

|E(T(vy —v1)) + )| < Tloy —wi |+ 1< (T+ W)!Ui — vl

where v and v’ were defined in (2.2). Consequently,

1
Cy <c(T+ 1)/ / sup f7(r,y, U)dydv/ sup 7 (r, X, v,)dv,
o> 25 T€[0,T] (7,X)€[0,T]x[0,1]

oT +1)
+ / / \vl sup f (T,y,v)dydv/ sup F7#(7, X, v) dvs.
Jol>25

T€[0,T) (m,X)€[0,1]x[0,1]
By Lemmas 3.3 and 5.1,
C; < F(T + Deper (7).
Moreover,

B
Cs </ T
\v’|>>\,\v*\>\v|,n~612\/1—% "Ul - vl‘

sup / sup f7(r,y,v) sup 7 (r, X, v,)dydvdv,dd
y€(z,xz+T(v]—v1))

z€[0,1] T€[0,T] (7,X)€[0,7]%[0,1]
< (T + 1)/ dﬁ/ sup f#(1,y,v )dydv/ sup 7 (r, X, v,)dv,
7€[0,T] (r,.X)e[0,T)x[0,1]
(T +1)2e(T),
\5\( )2ei(T)

by Lemmas 3.1 and 3.3. Finally,

B

C T
(m,X)€[0,T]x[0,1] [v] — va

IA
—

A SnLeSys

sup </ sup f7(r, y,v*)dy) dvdv,df
z€[0,1] ye(z,x+T (v —vs1)) 7€[0,T]

<c(T+ 1)\5\(/ sup f#(r, X,v)dv) (/ sup f#(T,y,v*)dydv*>.

(1,X)€[0,T7x[0,1] |v*|>% T€[0,T]

”U*‘>

By Lemmas 3.3 and 5.1,

Cg < —(T-F 1) (T) cr.

vV

The lemma follows. ]
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Lemma 5.3 The solution f to (1.5) with initial value fy conserves mass, momentum and energy.

Proof of Lemma 5.3.
The conservation of mass and first momentum of f will follow from the boundedness of the total
energy. The energy is non-increasing since the approximations f, conserve energy and

1
lim / / I(f = fo)(t,z,v)||v]*dzdv = 0, for all t € [0, 7] and positive V.
0 J|<V

a—0

[v?]

Energy conservation will be satisfied if the energy is non-decreasing. Taking 1. = Theuz &S APProx-

imation for |v|?, it is enough to bound

[auwe.vpdndo = [ Boc(£ EFGIF) = 157D ) dedudo.ds

from below by zero in the limit ¢ — 0. Similarly to [8],

[ atvdsds =5 [ BELEEIFE () + 0l = (o) = b)) dododu.ds
elof[o.
(L+ oP) (1 +efon?)

> —/Bff*F(f’)F(fi) dxdvdv,db.

The previous line, with the integral taken over a bounded set in (v,v,), converges to zero when
€ — 0. In integrating over |v|? + |v4|? > 2A2 | there is symmetry between the subset of the domain
with |v|? > A\? and the one with |v,|? > A2, We discuss the first sub-domain, for which the integral
in the last line is bounded from below by

—c/]v*|2f(t,x,v*)dasdv*/ B sup f#(s,z,v)dvdd
[v[>X (s,2)€[0,t]x[0,1]

> —c/ sup f#(s,w,v)dv.
[v|>A 0<(s,z)€[0,t]x [0,1]

It follows from Lemma 5.2 that the right hand side tends to zero when A — oo. This implies that
the energy is non-decreasing, and bounded from below by its initial value. That completes the proof
of the lemma. ]
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