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A large data existence result for the stationary
Boltzmann equation in a cylindrical geometry

Leif Arkeryd and Anne Nouri

Abstract. An L1-existence theorem is proved for the nonlinear stationary Boltzmann equa-

tion with hard forces and no small velocity truncation—only the Grad angular cut-off—in a setting

between two coaxial rotating cylinders when the indata are given on the cylinders.

1. Introduction

General L1-solutions for stationary, fully nonlinear equations of Boltzmann
type, have so far been obtained by weak compactness techniques. Examples are ex-
istence results far from equilibrium for the stationary Povzner equation in bounded
domains of Rn, as obtained in [3], [15], and general L1-solutions of the stationary
nonlinear Boltzmann equation in a slab, as studied in [2] and [4]. Also half-space
problems for the stationary, nonlinear Boltzmann equation in the slab with given
indata can sometimes be solved by such techniques; see [5] for a collision operator
truncated for large velocities and for small values of the velocity component in the
slab direction. For more complete references the reader is referred to the above
cited papers.

For bounded domains in Rn, a general existence result was obtained in [6]
for the stationary Boltzmann equation under a supplementary truncation for small
velocities. The removal of the small velocity cut-off for the nonlinear, stationary
Boltzmann equation with large boundary data, remained an open problem in more
than one space dimension. The present paper studies that problem in a particular
R2 case, a two-roll configuration without any small velocity truncation, using a
generalization of the techniques from the slab case. Also recall that the close to
equilibrium Rn-situation is better understood, since there more powerful techniques
such as contraction mappings, can be used. In that case a number of existence
results are published, see [11], [12], [13], [14], [17] and others. In particular, see [7]
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and [16] for the present two-roll problem close to equilibrium.
The set-up for the two-roll problem is as follows. Consider the stationary

Boltzmann equation in the space Ω between two coaxial cylinders,

(1.1) v ·∇xf(x, v)=Q(f, f), x∈Ω, v ∈R3,

for axially homogenous solutions f . We may then take Ω⊂R2 as the annulus
between two concentric circles of radii rA<rB . The nonnegative solution f(x, v)
represents the density of a rarefied gas with x the position and v the velocity.
Solutions are here understood in the weak sense, which is somewhat stronger than
the renormalized one or equivalently the mild, exponential, iterated integral form
(cf. [9] and [1]). The operator Q is the nonlinear Boltzmann collision operator with
angular cut-off,

Q(f, f)(v)=
∫
R 3

∫
S2

B(v−v∗, ω)(f(x, v′)f(x, v′∗)−f(x, v)f(x, v∗)) dv∗ dω,

where v′=v−(v−v∗, ω)ω, v′
∗=v∗+(v−v∗, ω)ω. The function B is the kernel of the

classical nonlinear Boltzmann operator for hard forces,

|v−v∗|βb(θ) with 0≤β < 2, b∈L1
+((0, 2π)), b(θ)≥ c> 0 a.e.

The solutions considered, are axially and rotationally uniform functions with respect
to the space variables. Denoting by (r, θ, z) and (vr, vθ, vz), respectively, the spatial
coordinates and the velocity in cylindrical coordinates, the solutions are thus func-
tions f(r, vr, vθ, vz). As boundary conditions, functions fb are given on the ingoing
boundary ∂Ω+ at A and B, equal to fA>0 and fB>0 defined on {(rA, v);vr>0}
and {(rB , v);vr<0}, respectively. Solutions f(r, v) to (1.1) are sought with profiles
fA and fB on the inner and the outer cylinders, i.e.

(1.2) f(rA, v)= kfA(v), vr > 0, f(rB, v)= kfB(v), vr < 0,

for some positive constant k. The test functions ϕ are taken in L∞(�Ω×R3) with
v ·∇xϕ∈L∞(Ω×R3), continuously differentiable along characteristics, with com-
pact support in Ω×R̃3, and vanishing on {(rA, v);vr<0}∪{(rB , v);vr>0}. Here
R̃3=R3\{v ;vr=0}.

The main result of this paper is the following result.
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A large data existence result for the stationary Boltzmann equation 31

Theorem 1.1. Suppose that∫
vr>0

vr(1+|v|2+log+ fA(v))fA(v) dv

+
∫

vr<0

|vr|(1+|v|2+log+ fB(v))fB(v) dv <∞.

Then, for any m>0, the equation (1.1) has a weak L1-solution fm satisfying (1.2)
with k=km>0, and

(1.3)
∫ rB

rA

∫
R 3

fm(r, v)r(1+|v|)β dv dr =m.

The weak compactness arguments in the proof below do not provide continuity
for the map m �→km. Connected to this, the theorem does not state the existence
of a solution with arbitrary indata. Instead a particular moment is fixed, leaving
only the profile of the arbitrary indata free at the boundary.

Entropy related quantities are widely used to study kinetic equations and ki-
netic formulations of conservation laws. In the context of stationary kinetic prob-
lems, it is often the entropy dissipation term that provides the most useful control.
That was the case in the Povzner and Boltzmann slab papers [2], [3], [4], where this
term was an important tool to obtain existence results for (1.1) under (1.3) via weak
L1-compactness. In the present paper the same approach is generalized from the
slab case to cylinders. Approximations of the problem at hand are first constructed
in Section 2, similarly to those earlier papers. Starting from those approximations,
Section 3 is devoted to taking the approximations into true solutions through a
sequence of limit steps.

2. Approximations

Without loss of generality we can restrict the discussion to the case m=1.
Denote by f∗=f(x, v∗), f ′=f(x, v′), and f ′

∗=f(x, v′∗). Let s>1/�>0, and let
χs

�(v, v∗, ω) be a C∞-function, such that 0≤χs
�≤1 is invariant with respect to the

collision transformation J(v, v∗, ω)=(v′, v′∗,−ω), as well as to an exchange of v and
v∗, and such that

χs
�(v, v∗, ω)= 1, if |vr| ≥ s+

1
�
, |v∗r| ≥ s+

1
�
, |v′

r| ≥ s+
1
�

and |v′
∗r| ≥ s+

1
�
,

χs
�(v, v∗, ω)= 0, if |vr| ≤ s, or |v∗r| ≤ s, or |v′

r| ≤ s, or |v′
∗r| ≤ s,

and define χs :=χs
∞. Set �χs(v)=1 if |vr|≥s and �χs(v)=0 otherwise. Denote by

Qs(f, f)(r, v)=
∫
R 3×S2

χs(v, v∗, ω)B(f ′f ′
∗−ff∗) dv∗ dω.
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Lemma 2.1. For any 0<s<1, there are a function fs and a real number ks>0
which form a solution to

sfs+v ·∇xfs =Qs(fs, fs), (x, v)∈Ω×R3,(2.1)

fs(x, v) = ksfb(x, v), (x, v)∈ ∂Ω+,(2.2) ∫
Ω×R 3

�χs(1+|v|)βfs(x, v) dx dv =1.(2.3)

Moreover,

(2.4) 0<ks <c0,

∫
Ω×R 3

|ṽ|2fs(x, v) dx dv≤ c1k
s,

and

(2.5)
∫

Ω×R 6×S2
χsB(fs′

fs′

∗ −fsfs
∗ ) log

fs′
fs′

∗
fsfs

∗
dx dv dv∗ dω≤ c2k

s,

where ṽ=(vr, vθ), and c0, c1 and c2 are positive constants independent of s.

Proof. Only the main lines of the proof are given, similar arguments being
developed in [6].

Let 0<j, p, n, µ∈N and �≥1 be given, as well as a positive C∞ regularization
b̃ of b. Let K be the closed and convex subset of L1(Ω×R3)×R+, defined by

K =
{

f ∈L1
+(Ω×R3) ;

∫
Ω×R 3

�χs(1+|v|)βf(x, v) dx dv =1,

f(x, v)= 0 for |vr|<s

}
×[0, c3].

Here

c3 =
e(1+8π2n3jµ|b̃|L1/3)2rB∫

Ω×{v;|ṽ|≥1} �χ
s(1+|v|)β(fb(x−s+(x, v)v, v)∧j) dx dv

,

fb is the ingoing boundary value fA, fB, and

s+(x, v) := inf{s∈R+ ; (x−sv, v)∈ ∂Ω+}, fb∧j =min{fb, j}.

Similarly, take
s−(x, v) := inf{s∈R+ ; (x+sv, v)∈ ∂Ω−},

where ∂Ω− denotes the outgoing boundary.
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Define the map T on K by

T (f, k)=
(

�χsF∫
Ω×R 3 �χs(1+|v|)βF (x, v) dx dv

,
1∫

Ω×R 3 �χs(1+|v|)βF (x, v) dx dv

)
,

where F is the solution to

sF +v ·∇xF =
∫
R 3×S2

χs
�χ̃

pnBµ

[
F

1+
kF

j

(x, v′)
f ∗ϕ�

1+
f ∗ϕ�

j

(x, v′∗)

−F (x, v)
f ∗ϕ�

1+
f ∗ϕ�

j

(x, v∗)

]
dv∗ dω, (x, v)∈Ω×R3,(2.6)

F (x, v) = fb(x, v)∧j, (x, v)∈ ∂Ω+.

Here,

Bµ(v, v∗, ω)=max
{

1
µ

,min{µ, |v−v∗|β}
}

b̃(θ).

The function χ̃pn(v, v∗, ω) is taken in C∞, such that 0≤χ̃pn≤1, invariant with
respect to the collision transformation J(v, v∗, ω)=(v′, v′∗,−ω), and invariant under
an exchange of v and v∗. Moreover, it satisfies

χ̃pn(v, v∗, ω) = 1, if v2+v2
∗ ≤

n2

2
,

1
p
≤

∣∣∣∣ v−v∗
|v−v∗|

·ω
∣∣∣∣ and |v−v∗| ≥

1
p
,

χ̃pn(v, v∗, ω) = 0, if v2+v2
∗ ≥n2 or

∣∣∣∣ v−v∗
|v−v∗|

·ω
∣∣∣∣≤ 1

2p
or |v−v∗| ≤

1
2p

.

The functions ϕ� are mollifiers in x defined by

ϕ�(x)= �2ϕ(�x), 0≤ϕ∈C∞
0 (R2), ϕ(x)= 0 for |x| ≥ 1,

∫
R 2

ϕ(x) dx=1.

The function T maps K into K. Indeed, from the exponential form of F ,
obtained by integration of (2.6) along characteristics,

F (x, v)≥fb(x−s+(x, v)v, v)e∧j exp

(
−ss+(x, v)

−
∫ 0

−s+(x,v)

∫
R 3×S2

χs
�χ̃

pnBµ
f ∗ϕ�

1+
f ∗ϕ�

j

(x+tv, v∗) dv∗ dω dt

)
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for (x, v)∈Ω×R3. Hence,

F (x, v)≥ (fb(x−s+(x, v)v, v)∧j) exp
(
−

(
1+ 8

3π2n3jµ|b̃|L1

)
2rB

)
, x∈Ω, |ṽ| ≥ 1.

And so, ∫
Ω×R 3

�χs(1+|v|)βF (x, v) dx dv≥ 1
c3

.

By a monotone iteration scheme applied to (2.6), it is easy to see that T is well
defined. As in [6], the map T is continuous and compact for the strong L1 topology.
Hence the Schauder fixed point theorem applies. A fixed point

(f, ks,j,n,p,�,µ), with ks,j,n,p,�,µ =
1∫

Ω×R 3 �χs(1+|v|)βF (x, v) dx dv
,

satisfies

sf+v ·∇xf =
∫
R 3×S2

χs
�χ̃

pnBµ

(
f

1+
f

j

(x, v′)
f ∗ϕ�

1+
f ∗ϕ�

j

(x, v′∗)

−f(x, v)
f ∗ϕ�

1+
f ∗ϕ�

j

(x, v∗)

)
dv∗ dω, (x, v)∈Ω×R3,(2.7)

f(x, v)= ks,j,n,p,�,µfb(x, v)∧j, (x, v)∈ ∂Ω+,∫
Ω×R 3

�χs(1+|v|)βf(x, v) dx dv =1,

with 0<ks,j,n,p,�,µ<c3.
Again following the proof in [6], a strong L1 compactness argument can be used

to pass to the limit in (2.7) when � tends to infinity. It gives rise to a solution f of

sf+v ·∇xf =
∫
R 3×S2

χsχ̃pnBµ

(
f

1+
f

j

(x, v′)
f

1+
f

j

(x, v′∗)

−f(x, v)
f

1+
f

j

(x, v∗)
)

dv∗ dω, (x, v)∈Ω×R3,(2.8)

f(x, v) = ks,j,n,p,µfb(x, v)∧j, (x, v)∈ ∂Ω+,(2.9) ∫
Ω×R 3

�χs(1+|v|)βf(x, v) dx dv =1.(2.10)
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Here 0<ks,j,n,p,µ<c3, since the norm of F is bounded from above.
For γ a unit vector in the plane, let Ωγ denote the line segment which is the

orthogonal projection of Ω onto a line in R2 orthogonal to γ. For any x∈Ω, denote
by xγ its orthogonal projection on Ωγ . The length of Ωγ is |Ωγ |=2rB . It follows
from (2.10) that∫

Ωγ

∫
{τ ;xγ+τγ∈Ω}

∫
R 3

�χs(1+|v∗|)βf(xγ +τγ, v∗) dv∗ dxγ dτ =1.

Hence there is a subset Ω̃γ of Ωγ with |Ω̃c
γ |< 1

2 |Ωγ | such that for 2≤|v|≤4, ṽ/|ṽ|=γ,
it holds that∫ 0

−s+(x,v)

∫
R 3×S2

χsχ̃pnBµ
f

1+
f

j

(xγ +sv, v∗) dv∗ dω ds

≤
∫ 0

−s+(x,γ)

∫
R 3×S2

χsχ̃pnBµ
f

1+
f

j

(xγ +τγ, v∗) dv∗ dω dτ < c|b̃|L1 , xγ ∈ Ω̃γ .

By the exponential form of (2.8), (2.9) and (2.10),

1 >

∫
|vr|≥s
|ṽ|>1

2≤|v|≤4

∫
x∈Ω

(1+|v|)βf(x, v) dx dv

≥ ks,j,n,p,µe−(2rB+c|b̃|L1 )

∫
|vr|≥s
|ṽ|>1

2≤|v|≤4

∫
xγ∈Ω̃γ

(1+|v|)βfb(x−s+(x, v)v, v)∧1 dx dv.

Hence the family (ks,j,n,p,µ) is bounded from above by a constant c0, uniformly with
respect to s, j, n, p, and µ. Denote the solution of (2.8) by f j . Multiplying (2.8) by
1+log(f j/1+f j/j), then integrating the resulting equation over Ω×R3, and using
Green’s formula, implies that

s

∫
Ω×R 3

f j(1+log f j)(x, v) dx dv≤ c<∞,

uniformly with respect to j. And so, as in the time-dependent case (cf. [8]), the
weak L1-limit f of f j when j tends to infinity, satisfies

sf+v ·∇xf =
∫
R 3×S2

χsχ̃pnBµ(f(x, v′)f(x, v′∗)−f(x, v)f(x, v∗)) dv∗ dω,

(x, v)∈Ω×R3,

f(x, v)= ks,n,p,µfb(x, v), (x, v)∈ ∂Ω+,(2.11) ∫
Ω×R 3

�χs(1+|v|)βf(x, v) dx dv =1,
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with 0<ks,n,p,µ≤c0. Here 0<ks,n,p,µ is a consequence of Green’s formula.
Given s>0, write fn,p,µ for f in (2.11) to stress the parameter dependence.

Multiplying (2.11) by 1+v2 and by log fn,p,µ, then integrating both resulting equa-
tions over Ω×R3 and using Green’s formula implies that

s

∫
Ω×R 3

(1+v2+log fn,p,µ)fn,p,µ(x, v) dx dv <∞,

uniformly with respect to n, p, µ, and b̃. And so, when b̃ tends to b, n and p tend
to infinity, and µ tends to zero, the weak limit fs of fn,p,µ satisfies

sfs+v ·∇xfs =
∫
R 3×S2

χsB(fs′
fs′

∗ −fsfs
∗ ) dv∗ dω, (x, v)∈Ω×R3,

fs(x, v) = ksfb(x, v), (x, v)∈ ∂Ω+,(2.12) ∫
Ω×R 3

�χs(1+|v|)βfs(x, v) dx dv =1,(2.13)

with ks≤c0. Moreover, ks>0 and∫
Ω×R 3

|ṽ|2fs(x, v) dx dv≤ c1,

for some c1>0, uniformly with respect to s. Indeed, multiplying (2.12) by 1+v2

and integrating it over Ω×R3 leads to

(2.14)

s

∫
Ω×R 3

(1+v2)fs(x, v) dx dv+
∫

∂Ω−
|v ·n(x)|(1+v2)fs(x, v) dx dv

= ks

∫
∂Ω+

v ·n(x)(1+v2)fb(x, v) dx dv

≤ c0

∫
∂Ω+

v ·n(x)(1+v2)fb(x, v) dx dv.

It follows from (2.13) and the left-hand side equality in (2.14) that ks>0 for
s>0. Then, denote by (vx, vy, vz) the three components of the velocity v in cartesian
coordinates with (vx, vy) parallel to Ω. Multiply (2.12) by vx and integrate it
over Ωa×R3, where Ωa is the part of Ω with x1<a. Set Sa :={x∈Ω;x1=a} and
∂Ωa :=∂Ω∩�Ωa. This gives

(2.15)
s

∫
Ωa×R 3

vxfs(x, v) dx dv+
∫

Sa×R 3
v2

xfs(a, x2, x3, v) dx2 dx3 dv

−
∫

∂Ωa×R 3
vxv ·n(x)fs(x, v) dx dv =0.
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Integrating (2.15) over [−rB , rB ], leads to∫
Ω×R 3

v2
xfs(x, v) dx dv≤ 2rBs

∫
Ω×R 3

(1+v2)fs(x, v) dx dv

+
∫ rB

−rB

∫
∂Ωa×R 3

vxv ·n(x)fs(x, v) dx dv da < c′1k
s,

by (2.14). Analogously,
∫
Ω×R 3 v2

yfs(x, v) dx dv is bounded from above, uniformly
with respect to s. And so, the boundedness in (2.4) follows. Finally, Green’s formula
for fs log fs implies that, for some c2>0,

(2.16)
∫

Ω×R 6×S2
χsB(fs′

fs′

∗ −fsfs
∗ ) log

fs′
fs′

∗
fsfs

∗
dx dv dv∗ dω≤ c2k

s,

uniformly with respect to s. This ends the proof of Lemma 2.1. �
Lemma 2.2. There is a constant c3 such that∫

R 3
v2

rfs(r, v) dv≤ c3k
s, a.e. r∈ (rA, rB).

Proof. Multiplying (2.1) by 1+v2 and integrating over Ω×R3 leads to

(2.17)
∫

v·n<0

|v ·n|(1+v2)f(rA, v) dv+
∫

v·n>0

v ·n(1+v2)f(rB, v) dv≤ cks.

In cylindrical coordinates, fs is a solution to

(2.18) sfs+vr
∂fs

∂r
+

1
r

(
v2

θ

∂fs

∂vr
−vθvr

∂fs

∂vθ

)
=Qs(fs, fs).

Multiplying (2.18) by vr and integrating over (rA, r)×(0, 2π)×R3, gives by (2.4),
(2.14), and (2.17) that∫

R 3
rv2

rfs(r, v) dv≤
∫
R 3

rAv2
rf(rA, v) dv−s

∫ r

rA

∫
R 3

tvrf
s(t, v) dv dt

+
∫ r

rA

∫
R 3

v2
θfs(t, v) dv dt

≤ cks+cs

∫ rB

rA

∫
R 3

(1+v2)fs(t, v) dv t dt

≤ c3k
s

for some constant c3. �
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Lemma 2.3. Let α be the angle of aperture of the cone starting at (rB , 0)
(in cartesian coordinates), with axis Ox (where O denotes the origin), and tangent
to the circle of radius rA. For any x in Ω, denote by C̃x the cone with axis Ox,
summit on the outer cylinder, and tangent to the inner cylinder. Denote by Cx

the homothetical cone with 1
2α as angle of aperture. Then for any δ>0, there is a

constant cδ>0 such that

fs(x, v)≥ cδk
sfA(v), a.e. x∈Ω, vr > 0, v ∈Cx, δ≤ |v| ≤ 1

δ
,

fs(x, v)≥ cδk
sfB(v), a.e. x∈Ω, vr < 0, v ∈Cx, δ≤ |v| ≤ 1

δ
.

Proof. It follows from (2.1) written in exponential form with the collision fre-
quency ν, that

fs(x, v)≥ cksfb(x−s+(x, v)v, v)e−(s/δ)2rB−
∫ 0
−s+(x,v) ν(fs)(x+tv,v) dt

, δ≤ |v| ≤ 1
δ
.

Then,∫ 0

−s+(x,v)

ν(fs)(x+tv, v) dt≤ c

∫ 0

−s+(x,v)

∫
R 3

|v−v∗|βfs(x+tv, v∗) dv∗ dt

≤ cδ

∫ 0

−s+(x,v)

∫
R 3

(1+|v∗|)βfs(x+tv, v∗) dv∗ dt

≤ cδ

∫ 0

−s+(x,ω)

∫
R 3

(1+|v∗|)βfs(x+sω, v∗) dv∗ ds,

where ω=v/|v|. And so, by the change of variables s �→r=|x+sω|, with Jacobian
|Ds/Dr|=|x+sω|/|(ω, x+sω)| uniformly bounded from above by the definition of
the cone Cx,∫ 0

−s+(x,v)

ν(fs)(x+tv, v) dt≤ cδ

∫ rB

rA

∫
R 3

(1+|v∗|)βfs(r, v∗) dv∗ r dr≤ cδ. �

3. Passage to the limit

For proving the existence Theorem 1.1, it remains to pass to the limit in (2.1)–
(2.3) when s→0.

Lemma 3.1.
sup

0<s<1
ks = k0 <∞.
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Proof. It follows from Lemma 2.3 that

fs(r, v)≥ cksfA(v), a.e. r∈ (rA, rB), vr > 1
2 , v ∈C, 1

2 ≤ |v| ≤ 2,

so that
1=

∫ rB

rA

∫
R 3

�χs(1+|v|)βfs(r, v) dv dr≥ cks,

and
ks ≤ k0 :=

1
c
. �

Lemma 3.2.
lim inf

s→0
ks > 0.

Proof. We shall prove Lemma 3.2 by contradiction. If lim infs→0 ks=0, then
there is a sequence (sj)∞j=1 tending to zero when j→∞, such that kj :=ksj tends to
zero when j→∞. Fix ε
1. Prove that for j large enough, f j :=fsj and �χj :=�χsj

satisfy ∫ rB

rA

∫
R 3

�χj(1+|v|)βf j(r, v) dv dr < 5ε,

contradicting ∫ rB

rA

∫
R 3

�χj(1+|v|)βf j(r, v) dv dr =1.

By Lemma 2.2, given c′>0 there is c>0 such that

(3.1)
∫

c′|vr|>
√

v2
θ+v2

z

v2f j(r, v) dv≤ c

∫
R 3

v2
rf j(r, v) dv≤ ckj .

Let us next prove that for λ�10,

(3.2)
∫

√
v2

θ+v2
z >λ

s<|vr|<
√

v2
θ+v2

z /10

(1+|v|)βf j(r, v) dv dr < 2ε,

by splitting the integral into two pieces,∫
√

v2
θ+v2

z >λ

λ/10>|vr|>s

(1+|v|)βf j(r, v) dv dr,

and ∫
√

v2
θ+v2

z>10|vr|>λ

(1+|v|)βf j(r, v) dv dr.
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For each of these two pieces, construct j-dependent v∗-set V∗⊂C and ω-set Γ⊂S2,
with measures bounded from below by a positive constant, such that

|v−v∗| ≥ c|v|, |v′
r| ≥ c|v|, |v′

∗r| ≥ c|v|, v∗ ∈V∗, ω ∈Γ.

Hence, for any L>1,

(1+|v|)βf j(r, v)≤ c(1+|v|)βf j(r, v)
f j(r, v∗)

kj

≤ cL(|v′
r|β+|v′

∗r|β)f j(r, v′)
f j(r, v′

∗)
kj

+
cχs

kj log L
|v−v∗|βb(θ)(f j(r, v)f j(r, v∗)−f j(r, v′)f j(r, v′

∗))

×log
f j(r, v)f j(r, v∗)
f j(r, v′)f j(r, v′

∗)
.

And so, using (3.1)∫
√

v2
θ+v2

z >λ

s<|vr|<
√

v2
θ+v2

z /10

(1+|v|)βf j(r, v) dv dr≤ cL

λ2
+

c

log L
<ε,

and ∫
√

v2
θ+v2

z >λ

s<|vr|<λ/10

(1+|v|)βf j(r, v) dv dr≤ cL

λ2
+

c

log L
<ε,

by first choosing L large enough, and then λ large enough. Similarly∫
√

v2
θ+v2

z ≤λ

s<|vr|<
√

v2
θ+v2

z /10

(1+|v|)βf j(r, v) dv dr < cLkj +
c

log L
<ε,

by also choosing j large enough. This completes the proof of Lemma 3.2. �

Lemma 3.3. The family (�χsfs) is weakly precompact in L1((rA, rB)×R3).

Proof. First, ∫
|vr|≥s

�χsfs(r, v)r dr dv≤ 1.

It follows from the proof of (3.1) and (3.2), that it is enough for δ>0 to consider
|v|≤1/δ. There, let us prove the equiintegrability of (χ̄sfs) by contradiction. Sup-
pose that for some ε>0, there is a sequence (f j)∞j=1 from the family (fs), and a
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sequence of subsets Aj of {(r, v);|vr|>sj and |v|<1/δ} such that |Aj |<1/j and∫
Aj

�χjf j(r, v) dv dr>ε. Consequently,∫
(r,v)∈Aj

fj(r,v)>εj/2

f j(r, v) dv dr >
ε

2
.

For (r, v)∈Aj such that f j(r, v)> 1
2εj, choose v∗∈C with 10/δ<|v∗|<11/δ. In the

v∗-volume thus created, there is a subvolume V∗ of measure uniformly bounded
from below by a positive constant, such that for v∗ in this subvolume, there is a
set Γ⊂S2 again of positive measure uniformly bounded from below, such that for
(v∗, ω)∈V∗×Γ and using Lemma 2.3, v′ and v′

∗ satisfy

|v′
r|>

1
δ
, |v′

∗r|>
1
δ
, f j(r, v′)<c, f j(r, v′

∗)<c,

f j(r, v)≤ c(f j(r, v)f j(r, v∗)−f j(r, v′)f j(r, v′
∗)),

and
f j(r, v)f j(r, v∗)
f j(r, v′)f j(r, v′

∗)
>cj.

Moreover, |v−v∗|>1/δ. And so,

(3.3)
f j(r, v) <

c�χj

log j
|v−v∗|βb(θ)(f j(r, v)f j(r, v∗)−f j(r, v′)f j(r, v′

∗))

×log
f j(r, v)f j(r, v∗)
f j(r, v′)f j(r, v′

∗)
.

Integrate (3.3) over X :={(r, v, v∗, ω);(r, v)∈Aj , v∗∈V∗ and ω∈Γ}. Hence,

c
ε

2
<

c

log j

∫
X

χj |v−v∗|βb(θ)(f j(r, v)f j(r, v∗)−f j(r, v′)f j(r, v′
∗))

×log
f j(r, v)f j(r, v∗)
f j(r, v′)f j(r, v′

∗)
dr dv dv∗ dω

≤ c

log j

∫
Ω×R 3×S2

χj |v−v∗|βb(θ)(f j(r, v)f j(r, v∗)−f j(r, v′)f j(r, v′
∗))

×log
f j(r, v)f j(r, v∗)
f j(r, v′)f j(r, v′

∗)
dr dv dv∗ dω

≤ c

log j
.

This leads to a contradiction when j→∞. �
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By Lemma 3.3 there is a sequence (f j)∞j=1 from the family (fs) and a func-
tion f , such that limj→∞ �χjf j =f weakly in L1((rA, rB)×R3). It follows from
Lemma 2.2 and the proof of (3.1) and (3.2), that the limit f satisfies the moment
condition (2.3). So Theorem 1.1 holds, if

∫ rB

rA

∫
R 3 Qj±(f j , f j)ϕ(r, v) dv dr have the

limits
∫ rB

rA

∫
R 3 Q±(f, f)ϕ(r, v) dv dr. For this we first prove the following four lem-

mas.

Lemma 3.4.

lim
ε→0

sup
S⊂(rA,rB)

|S|<ε

∫
S×R 3

�χj(1+|v|)βf j(r, v) dv dr =0,

uniformly with respect to j.

Proof. Analogously to the proof of Lemma 3.2, for each (r, v)∈S×R3, de-
termine subsets V∗ of C and Γ of S2 of positive measures, such that for each
(v∗, ω)∈V∗×Γ,

|v−v∗| ≥ c(1+|v|), |v′
r| ≥ c|v|, |v′

r| ≥ c, |v′
r∗| ≥ c|v|, |v′

r∗| ≥ c,

and for any L>1,
(3.4)

�χj(1+|v|)βf j(r, v)≤ cL(|v′
r|β +|v′

∗r|β)f j(r, v′)f j(r, v′
∗)

+
c�χj

log L
|v−v∗|βb(θ)(f j(r, v)f j(r, v∗)−f j(r, v′)f j(r, v′

∗))

×log
f j(r, v)f j(r, v∗)
f j(r, v′)f j(r, v′

∗)
.

So by Lemma 2.2 ∫
S×R 3

�χj(1+|v|)βf j(r, v) dv dr≤ cL|S|+ c

log L
.

The result of Lemma 3.4 follows, by first choosing L large enough, and then |S|
small enough. �

Lemma 3.5. Given η>0, there is an integer j0 such that for j>j0 and outside
of a j-dependent set in r of measure smaller than η,

lim
λ→∞

∫
√

v2
θ+v2

z >λ

�χj(1+|v|)βf j(r, v) dv =0

uniformly with respect to r and j.
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Proof. For each (r, v) with
√

v2
θ +v2

z >λ, choose v∗ in a subset of C of measure
uniformly bounded from below by a positive constant, so that for a subset of ω∈S2

of uniformly positive measure,

c|v′
r|> |v′|> c̄

√
v2

θ +v2
z , f j(r, v′)≤ 1,

c|v′
∗r|> |v′

∗|> c̄
√

v2
θ +v2

z , f j(r, v′
∗)≤ 1,

and for any L>1,

�χj(1+|v|)βf j(r, v)≤ c�χj(1+|v|)βf j(r, v)f j(r, v∗)

≤ cL|v′
r|βf j(r, v′)f j(r, v′

∗)

+
c�χj

log L
|v−v∗|βb(θ)(f j(r, v)f j(r, v∗)−f j(r, v′)f j(r, v′

∗))

×log
f j(r, v)f j(r, v∗)
f j(r, v′)f j(r, v′

∗)
.

It follows from (2.5) that uniformly in j,∫
R 6×S2

χj |v−v∗|βb(θ)(f j(r, v)f j(r, v∗)−f j(r, v′)f j(r, v′
∗))

×log
f j(r, v)f j(r, v∗)
f j(r, v′)f j(r, v′

∗)
dv dv∗ dω≤ cη

outside of a set S′
j⊂(rA, rB) of measure η. Hence,∫

√
v2

θ+v2
z >λ

(1+|v|)βf j(r, v) dv≤ cL

λ2−β
+

cη

log L
, x∈S′c

j .

The result of Lemma 3.5 follows, by first choosing L large enough, and then λ large
enough. �

Lemma 3.6. Given λ>0 and ε>0, there is an integer j0 such that for j>j0
and outside of a j-dependent set in r of measure smaller than ε,

lim
i→∞

∫
√

v2
θ+v2

z ≤λ

|vr|<1/i

�χj(1+|v|)βf j(r, v) dv =0

uniformly with respect to r and j.

Proof. Given 0<η2<η, r and j, either∫
√

v2
θ+v2

z <λ

|vr|<1/i

�χj(1+|v|)βf j(r, v) dv≤ η2,
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or ∫
√

v2
θ+v2

z <λ

|vr|<1/i

�χj(1+|v|)βf j(r, v) dv >η2.

In the latter case, ∫
√

v2
θ+v2

z <λ

|vr|<1/i

fj(r,v)≤η2i/4πλ2+β

�χj(1+|v|)βf j(r, v) dv≤ η2

2
,

∫
√

v2
θ+v2

z <λ

|vr|<1/i

fj(r,v)≥η2i/4πλ2+β

�χj(1+|v|)βf j(r, v) dv≥ η2

2
.

For each (r, v) such that f j(r, v)≥η2i/4πλ2+β , using (2.3) and Lemma 2.3, consider
subsets V∗⊂C and Γ⊂S2 of measure uniformly bounded from below, such that

|v−v∗| ≥ c|v|, f j(r, v∗)≥ c, |v′
r| ≥ 1, f j(r, v′)≤ c′,

|v′
∗r| ≥ 1, f j(r, v′

∗)≤ c′, v∗ ∈V∗, ω ∈Γ.

Hence, for such r, v, v∗, and ω, and for i large enough,

�χj(1+|v|)βf j(r, v)≤ c�χj(1+|v|)βf j(r, v)f j(r, v∗)

≤ c�χj

log i
|v−v∗|βb(θ)(f j(r, v)f j(r, v∗)−f j(r, v′)f j(r, v′

∗))

×log
f j(r, v)f j(r, v∗)
f j(r, v′)f j(r, v′

∗)
.

It follows from (2.5) that there is a constant c′′ such that∫
R 6×S2

χj |v−v∗|βb(θ)(f j(r, v)f j(r, v∗)−f j(r, v′)f j(r, v′
∗))

×log
f j(r, v)f j(r, v∗)
f j(r, v′)f j(r, v′

∗)
dv dv∗ dω

is bounded by c′′, uniformly with respect to j, outside a j-dependent subset S′
j⊂

(rA, rB) of measure ε. Hence,∫
√

v2
θ+v2

z ≤λ

|vr|<1/i

�χj(1+|v|)βf j(r, v) dv≤ c′c

log i
+2η < 3η, r∈S

′c
j ,

for i large enough. �
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Lemma 3.7. The sequence of loss terms

Qj−(f j , f j) := f j

∫
R 3×S2

χsj |v−v∗|βb(θ)f j(r, v∗) dv∗ dω

is weakly compact in

L1

({
(r, v)∈ (rA, rB)×R3 ; |vr|>δ and |v|< 1

δ

})
.

Proof. It follows from (2.3) and Lemma 2.2 that∫
(r,v)∈(rA,rB)×R 3

|vr|>δ
|v|<1/δ

|v−v∗|βb(θ)f j(r, v)f j(r, v∗) dv dv∗ dr

≤ c

∫ rB

rA

∫
R 3

(1+|v∗|)βf j(r, v∗) dv∗ dr = c.

It remains to prove that, for any sequence of sets (Sj)∞j=1 with

Sj ⊂{(r, v)∈ (rA, rB)×R3 ; |vr|>δ and |v|< 1/δ}

and |Sj |<1/j,

(3.5) lim
j→∞

∫
Sj

Qj−(f j , f j)(r, v) dv dr =0.

First, for any sequence of sets Rj⊂(rA, rB) such that limj→∞ |Rj |=0, it holds that

(3.6) lim
j→∞

∫
Rj

∫
|vr|>δ
|v|<1/δ

Qj−(f j , f j)(r, v) dv dr =0.

Indeed, by Lemma 2.2∫
Rj

∫
|vr|>δ
|v|<1/δ

Qj−(f j , f j)(r, v) dv dr≤ c

∫
Rj

((∫
R 3

v2
rf j(r, v) dv

)

×
∫
R 3

�χj(1+|v∗|)βf j(r, v∗) dv∗

)
dr

≤ ck0

∫
Rj

∫
R 3

�χj(1+|v∗|)βf j(r, v∗) dv∗ dr,
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which tends to zero when j→∞ by Lemma 3.4. Then, let

Xj :=
{

r∈ (rA, rB) ;meas{v ; (r, v)∈Sj}>
1√
j

}
, S′

j := {(r, v)∈Sj ; r /∈Xj}.

Since |Xj |<1/
√

j ,

(3.7) lim
j→∞

∫
Xj

∫
R 3

Qj−(f j , f j)(r, v) dv dr =0.

Given ∆>0,

(3.8)
∫

S′
j

∫
|v∗r|>∆

�χj(v)(1+|v|)βf j(r, v)f j(r, v∗) dv∗ dv dr

≤ c∆k0

∫
S

′
j

�χj(v)(1+|v|)βf j(r, v) dv dr,

which tends to zero when j→∞, by Lemma 3.3. This also holds for

(3.9)
∫

S′
j

∫
|v∗r|>∆

�χj(v)(1+|v∗|)βf j(r, v)f j(r, v∗) dv∗ dv dr

by a similar argument. By Lemmas 3.5 and 3.6,∫
|v∗r|<∆

�χj(v∗)(1+|v∗|)βf j(r, v∗) dv∗

tends to zero when ∆→0, uniformly with respect to r outside a j-dependent small
set, that is taken care of by Lemmas 2.2 and 3.4. Hence,

(3.10) lim
∆→0

(
lim sup

j→∞

∫
Sj

∫
|v∗r|<∆

�χj(v)(1+|v|)β
�χj(v∗)(1+|v∗|)β

×f j(r, v)f j(r, v∗) dv∗ dv dr

)
=0.

But (3.5) follows from (3.6)–(3.10), and so the lemma holds. �
End of the proof of Theorem 1.1. It is a consequence of the weak compactness

of Qj−(f j , f j) and the inequality (2.5) that (Qj+(f j , f j)) is also weakly compact
in any L1({(r, v);|vr|>δ and |v|<1/δ}). This implies a (subsequence) limit when
j→∞ in the weak form of equation (2.1) for any test function ϕ with compact
support and vanishing on {(r, v);|vr|<δ} for some δ>0. Let us prove that

(3.11) lim
j→∞

∫
R 3

∫ rB

rA

ϕQj−(f j , f j)(r, v)r dr dv =
∫
R 3

∫ rB

rA

ϕQ−(f, f)(r, v)r dr dv.
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First, ∫
|v∗|>V∗

Bϕ(f j(r, v)f j(r, v∗)χj +f(r, v)f(r, v∗))r dr dv dv∗ dω

can be made arbitrarily small for V∗ large enough, since by Lemma 2.2,∫
|v∗|>V∗

Bϕ(f j(r, v)f j(r, v∗)χj +f(r, v)f(r, v∗))r dr dv dv∗ dω

≤ cδ

∫
|v∗|>V∗

�χj(v∗)(1+|v∗|)β(f j(r, v∗)+f(r, v∗)) dv∗ dr,

which by the proof of (3.1) and (3.2) tends to zero when V∗→∞. For V∗ fixed, let
{v∗ ;|v∗|≤V∗} be covered by

⋃
i Bn

i , where Bn
i :={v∗ ;|v∗−wn

i |≤1/n}. Using the av-
eraging lemma (see [10]) and a diagonal process,

∫
R 3 |v−wn

i |βϕf j(r, v) dv converges
a.e., hence for each n, and outside of an arbitrarily small set R⊂(rA, rB), uniformly
with respect to i. Consequently,

∑
i

∫
Rc

(∫
R 3

|v−wn
i |βϕf j(r, v) dv

)(∫
Bn

i

�χj(v∗)f j(r, v∗) dv∗

)
r dr

→
∑

i

∫
Rc

(∫
R 3

|v−wn
i |βϕf(r, v) dv

)(∫
Bn

i

f(r, v∗) dv∗

)
r dr dv, j →∞.

Using Lemma 2.2,

∑
i

∫
Rc

∫
Bn

i

(∫
R 3

(|v−v∗|β−|v−wn
i |β)ϕf j(r, v) dv

)
f j(r, v∗)r dr dv∗ → 0,

when n→∞. It follows that∫
R×R 3

ϕQ−(f j , f j)r dr dv−
∫

R×R 3
ϕQ−(f, f)r dr dv→ 0, when j →∞.

It remains to prove that

(3.12) lim
j→∞

∫
R 3

∫ rB

rA

ϕQ+(f j , f j)(r, v)r dr dv =
∫
R 3

∫ rB

rA

ϕQ+(f, f)(r, v)r dr dv.

For R>0, let fR=weak-L1 limj→∞(f j1fj<R). Split∫
R 3

∫ rB

rA

ϕ(Q+(f j , f j)−Q+(f, f))(r, v)r dr dv
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into I1+I2+I3+I4+I5, where

I1 :=
∫
R 3

∫ rB

rA

ϕ(Q+(fR, f)−Q+(f, f))r dr dv,

I2 :=
∫

fj(r,v′)>R

χjϕ(r, v)Bf j(r, v′)f j(r, v′
∗)r dr dv dv∗ dω,

I3 :=
∫

fj(r,v′)<R
|v∗|>V

χjϕ(r, v)Bf j(r, v′)f j(r, v′
∗)r dr dv dv∗ dω,

I4 :=
∫

v2+v2
∗>V 2+1/δ2

Bϕ(r, v)fR(r, v′)f(r, v′
∗)r dr dv dv∗ dω,

I5 :=
∫

fj(r,v′)<R

v2+v2
∗<V 2+1/δ2

χjBϕ(r, v)f j(r, v′)f j(r, v′
∗)r dr dv dv∗ dω

−
∫

v2+v2
∗<V 2+1/δ2

Bϕ(r, v)fR(r, v′)f(r, v′
∗)r dr dv dv∗ dω.

Let ε>0 be fixed. By the monotone convergence theorem,

(3.13) |I1| ≤ ε, R >R1,

for some R1>0. Again arguing as in the proof of (3.1), (3.2) and (3.11), we get

(3.14) |I2| ≤ ε, R >R2,

for some R2>0. Comparing the gain term with the loss term and the entropy
production term, it holds that for K>1,

(3.15)

|I3| ≤K

∫
|v∗|>V

ϕ(r, v)Bf j(r, v)f j(r, v∗)r dr dv dv∗ dω+
c

log K

≤ cδK

∫
|v∗|>V

�χj(v∗)(1+|v∗|)βf j(r, v∗)r dr dv∗+
c

log K
≤ ε,

for K, and then V large enough. Then,

(3.16) |I4| ≤ ε

for V large enough, by the integrability of (r, v, v∗, ω) �→Bϕ(r, v)f(r, v′)f(r, v′
∗). No-

tice that fR is also the weak∗ L∞-limit of f j1fj<R. Moreover, it follows from the
averaging lemma that∫

v2
∗≤V 2+(1/δ2)−v2

χjBϕ(r, v′)f j(r, v∗) dv∗ dω
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strongly converges in L1((rA, rB)×{v ;|v|<R}) to∫
v2
∗≤V 2+(1/δ2)−v2

Bϕ(r, v′)f(r, v∗) dv∗ dω.

Hence limj→∞ I5=0. And so,

lim
j→∞

∫
R 3

∫ rB

rA

ϕ(Q+(f j , f j)−Q+(f, f))(r, v)r dr dv =0,

by choosing R and V large enough so that (3.13)–(3.16) hold. The limits (3.11),
(3.12) are thus proved, which completes the proof of Theorem 1.1. �
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