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Abstract. We study a finite Larmor radius model used to describe the ions distribution function in the core
of a tokamak plasma, that consists in a gyro-kinetic transport equation coupled with an electro-neutrality equa-
tion. Since the last equation does not provide enough regularity on the electric potential, we introduce a simple
linear collision operator adapted to the finite Larmor radius approximation. We next study the two-dimensional
dynamics in the direction perpendicular to the magnetic field. Thanks to the smoothing effects of the collision
and the gyro-average operators, we prove the global existence of solutions, as well as short time uniqueness and
stability.

Résumé. On étudie un modèle à rayon de Larmor fini décrivant la fonction de distribution des ions dans un
plasma de coeur de tokamak. Il consiste en une équation de transport gyrocinétique couplée à une équation de
quasi-neutralité. L’équation de quasi-neutralité donnant peu de régularité au potentiel électrique, on introduit un
opérateur de collisions linéaire adapté. On étudie alors la dynamique du système dans la direction perpendiculaire
au champ magnétique. L’effet régularisant des opérateurs de collisions et de gyro-moyenne permet de démontrer
l’existence globale de solutions ainsi que leur unicité et stabilité locales en temps.

1 Introduction.

The model studied in this paper describes the density of ions in the core of a tokamak plasma. In such a highly
magnetized plasma, the charged particles have a very fast motion of gyration around the magnetic lines, called
the Larmor gyration. A good approximation is then to consider that the particles are uniformly distributed
on gyro-circles, parametrized by their gyro-centers and Larmor radii rL, that are proportionnal to the speed of
rotation u. In what follows we will forget the physical constant of proportionality and take rL = u. The models
obtained in that new variables are kinetic in the direction parallel to the magnetic field lines, and fluid (precisely
a superposition of fluid models) in the perpendicular direction. For a rigorous derivation of such models and a
more complete discussion on their validity, we refer to [5] and our previous work [6], in which the derivation is
performed from a Vlasov equation in the limit of a large magnetic field.

Such gyro-kinetic models are usually closed by an electro-neutrality equation. The derivation of the elec-
troneutrality equation from the Euler-Poisson system has been performed in [3]. Existence of weak entropy
solutions to the Euler-Poisson system has been proven in [4]. The electroneutrality equation provides few regu-
larity to the electric field, so that the well-posedness of gyro-kinetic models is unknown, at least to our knowledge.
In this article, we add a ’gyro-averaged’ collision operator to the model and study the dynamics in the directions
perpendicular to the field only.

Let us now describe the model precisely. The ion distribution function f(t, x, u) in gyro-coordinates depends
on the time t, the gyro-center position x ∈ T2 and the velocity of the fast Larmor rotation u ∈ R+. The electric
potential Φ depends only on (t, x). They satisfy the following system of equation on Ω = T2 × R+,

∂f

∂t
+ (J0

u
∇xΦ)⊥ ·∇xf = βu∂uf + 2βf + ν

�
∆xf +

1
u

∂u(u∂uf)
�

, (1.1)

(Φ− Φ ∗x HT )(t, x) = T (ρ(t, x)− 1) , (1.2)

ρ(t, x) =
�

(J0
u
f(t, x, u)2πudu), (1.3)

f(0, x, v) = fi(x, v), (x, u) ∈ Ω, (1.4)
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where β and ν are two positive constants, ρ is the density in physical space, T is the ion temperature,

J0
u
h(xg) =

1
2π

� 2π

0
h(xg + ueiϕc) dϕc , (1.5)

is the well known zeroth order Bessel operator [12] and

HT (x) =
e−

|x|2
4T

2π
3
2
√

T |x|
. (1.6)

We also used the notation b⊥ = (−b2, b1), for any vector b = (b1, b2) of R2.

This model without the Fokker-Planck operator (ν = β = 0) has been studied in a previous work [6] - to
which we refer for an heuristic derivation of the electro-neutrality equation (1.2) - and is used by physicists
for simulations, for instance in the Gysela code [7]. Here we just mention that (1.2) is obtained in a close
to equilibrium setting, with an adiabatic hypothesis on the distribution of the electrons ne = n0exp(− eΦ

Te

) ≈
n0

�
1+ eΦ

Te

�
, and an hypothesis of adiabatic response of the ions on the gyro-circles which gives rise to the Φ ∗HT

term. As usual with the quasi-neutrality equation, there are no good a priori estimates on the regularity of
E = −∇Φ.

Remark that although equation (1.1) is derived from a Vlasov model (a rigourous derivation of a more general
3D model is performed for fixed field E in section 2), it is of ’fluid’ nature. In fact there is no transport in the
velocity variable u, and the position of the gyro-center is transported by the eletric drift (J0

u
E)⊥. Therefore the

equation is similar to the 2D Navier-Stokes equation written in vorticity. More precisely, we have a family of
fluid models depending on a parameter u, which are coupled thanks to diffusion in the u variable, and by the
closure used for E described below.

Moreover, we prove in the following that thanks to the gyro-average operator J0
u
, the equation has almost

the same regularity as the two-dimensional Navier-Stokes equation in vorticity. In fact, for a fixed u > 0, the
force field J0

u
∇xΦ belongs naturally to H1 if f ∈ L2 with some weight, but unfortunately for small values of u

the H1 bound explodes. That is why we obtain results a little poorer as those known for the two-dimensional
Navier-Stokes equation (which are global existence, uniqueness and stability) and prove only global existence,
short time stability and uniqueness and, in the case β = 0 the global stability and uniqueness for small initial
data.

To state our results properly, we will need the following definitions and notations :

• In the sequel, the letter C will represent a numerical constant, that may change from line to line. Unless
it is mentioned, such constants are independent of anything.

• L2
u
(Ω) = L2(Ω, udxdu) is the space of square integrable functions with respect to the measure udxdu.

• We shall use various norms on T2 or on Ω. To avoid confusion, we will use the following convention. All
the norms performed on the whole Ω will have their weights with respect to u as additional index. For
instance � · �2πu, � · �H

1
2πu(1+u2)

. All the norms without any index are norms on T2 (in x) only, and thus
usually depends on u.

• For any weight function k : R+ �→ R+, the norm � · �2,k is defined for any function f on Ω by

�f�2,k =
��

�f(·, u)�2k(u) du

� 1
2

.

• The most useful weights will be m(u) = 2πu(1 + u2) and m̃(u) = 1 + u2.

• We change a little the duality used to define distributions in the following definition.

Definition 1.1. Using distributions with the weight u means that duality is performed as

�f, g�u =
�

fg dxgdv||udu or �f, g�u =
�

fg dxg udu .

in the 3d or 2D cases.
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This definition may seem a little artificial because the simple definition of derivative with respect to u is
not valid. Instead,

�∂uf, g�u = −�f, ∂ug�u − �
f

u
, g�u .

However, this weight respects the underlying physics (u is in fact the 1D norm of a 2D velocity variable)
and has many advantages. For instance the operator (1/u)∂u(u∂u) is self-adjoint with this weight.

Our precise results are the following. First we prove global existence under the hypothesis �fi�2,m < +∞.

Theorem 1.1. Let fi satisfy �fi�2,m < +∞. Then there exists at least a weak solution f ∈ L∞(R+, L2
u
(Ω)) ∩

L2(R+, H1
u
(Ω)) to (1.1)-(1.2) with initial condition fi, which also satisfies all the a priori estimates of Lemma

3.8, 3.9, 3.10 if the hypotheses on the initial data are satisfied.

Then we prove short time uniqueness and stability under the additional hypothesis �∇xf�2,m < +∞. In the
case β = 0 it also implies global uniqueness and stability for small initial data.

Theorem 1.2. Let fi satisfy
�fi�2,m + �∇xf�2,m < +∞ .

Then the positive (or infinite) time τ� defined in Lemma 3.10 is such that the weak solution to (1.1)-(1.4) ,
defined in Theorem 1.1, is unique on [0, τ�] .

Moreover, this solution is stable on [0, τ�] in the following sense. Assume that (fn)n∈N is a family of solutions
given by theorem 1.1 with initial conditions fn

i
satisfying

lim
n→+∞

�fn

i
− fi�2,m = 0 , and sup

n∈N
�fn

i
�L2

m
(L4) < +∞ .

Then
lim

n→+∞
sup

t∈[0,τ∗]
�fn(t)− f(t)�2,m = 0 .

Remark 1.1. The above theorems will remain globally true if a sufficiently regular source term s is added in the
right-hand side of (1.1). The regularity required is :

• Existence result :
�

T

0 �s�22,m
< +∞, for any T > 0.

• Uniqueness result :
�

T

0 �∇xs�22,m
< +∞, for any T > 0.

The only difference is that it is no longer true that τ∗ = +∞ for small initial conditions in the case β = 0. All
the other conclusions are valid, and only require a simple adaptation of the following proof. That case with a
source term is physically important since in tokamak plasmas, particles are injected in the core of the plasma.

This local result has some more consequence when relating it to the a-priori bounds of Lemma 3.8, satisfied
by any solution in the sense of 1.1, that imply that �∇xf�2,m is almost surely finite for any weak solution. Both
theorems for instance imply that any solution is stable on a dense subset in time, and may explode only on a
small subset (in some sense).

In the next section the diffusive operator of (1.1) is rigourously derived from a linear Vlasov-Fokker-Planck
equation in the limit of a large magnetic field. In the third section, some useful lemmas are established, proving
regularizing properties of the gyro-average operator, global preservation of some weighted norm of f , the short
time preservation of the m-moment of ∇xf by the system (1.1)-(1.2), and controlling the electric potential by
the physical density. This allows to prove the global existence (Theorem 1.1) of solutions to the Cauchy problem
in the fourth section and their short time uniqueness and stability (Theorem 1.2) in the fifth section. Finally
some useful properties of the zeroth order Bessel function J0 together with a version of the Sobolev embeddings
on T2 are proven in the appendix.
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2 Derivation of the gyro-Fokker-Planck operator

In this section, we rigorously justify the form of the Fokker-Planck operator appearing in the right-hand side of
(1.1). The usual collision operator for plasmas is the nonlinear Landau operator originally introduced by Landau
[9]. Because of its complexity, simplified collision operators have been introduced. An important physical
litterature exists on the subject, also in the gyro-kinetic case (See [2] and the references therein). In this paper
we choose the simplest possible operator, namely a linear Fokker-Planck operator. The reasons of this choice are:

- Its simplicity, that will allow to focus on the other difficulties of the model.
- The fact that physicists studying gyro-kinetic models for the core of the plasma mainly assume that the

dynamics stays close to equilibrium, in which case a linear approximation of the collision operator is relevant.
- The aim of the paper is not a precise description of collisions. In fact, even if they exist in tokamaks, being

needed to produce energy, their effect is small compared to the turbulent transport. However, we are interested
by their regularizing effect, since the electro-neutrality equation (1.2) does not provide enough regularity to get
a well-posed problem. This is a major difference to the Poisson equation setting.

We start from a simple model for a 3D plasma, i.e. a linear Vlasov-Fokker-Planck equation with an external
electric field, an external uniform magnetic field and linear collision and drift terms, and obtain in the limit
of large magnetic field a 3D (in position) equation analog to (1.1). In particular, we show that a usual linear
Fokker-Planck term on the speed variables turns into an equation with diffusion terms both in space and Larmor
radius variables in the limit.

Precisely, for any small parameter � > 0 we study the distribution f�(t, x, v) of ions submitted to an exterior
electric field E(t, x) (independent of �) and an uniform magnetic field B� = (1/�, 0, 0). We also model collisions
(with similar particles and the others species) by a simple linear Fokker-Planck operator. To avoid any problem
with possible boundary collisions, which are really hard to take into account in gyro-kinetic theory, we assume
that (x, v) ∈ T3 ×R3, where T3 is the 3D torus. When the scale length of all the parameters are well chosen (in
particular the length scale in the direction perpendicular to the magnetic field should be chosen of order � times
the length scale in the parallel direction, we refer to our previous work [6] for more details on the scaling), the
Vlasov equation that f� satisfies is

∂f�

∂t
+ v�∂x�

f� + E ·∇vf� +
1
�
(v⊥ ·∇x⊥f� + v⊥ ·∇v⊥f�) = divv(βvf�) + ν∆vf� , (2.7)

where β, ν are two positive parameters, the subscript � (resp. ⊥) denotes the projection on the direction parallel
(resp. on the plane perpendicular) to B, and the superscript ⊥ denotes the projection on the plane perpendicular
to B composed with the rotation of angle π/2. In others words if v = (v1, v2, v3),

v⊥ = (v1, v2, 0), v|| = (0, 0, v3), v⊥ = (−v2, v1, 0) .

The next results require the additional notation,

J̃0
u
g(xg, u, v�) =

1
2π

� 2π

0
g(xg + ueiϕc , uei(ϕc−π

2 ) + v�e�) dϕc , (2.8)

with the convention eiϕ = (cos ϕ, sin ϕ, 0). This defines a gyro-average performed in phase space, that will be
used as an initial layer to adapt the initial condition to the fast Larmor gyration.

Theorem 2.3. Let E ∈ L∞
t

(L2) and f� be a family of solutions to equation (2.7) with initial condition fi ∈ L2

satisfying sup
t≤T

�f�(t)�2 ≤ �fi�2 for any T > 0. Then the family f̄� defined by

f̄�(t, xg, v) = f(t, xg + v⊥, v)

admits a subsequence that converges in the sense of distributions towards a function f̄ depending only on
(t, xg, u = |v|, v||) and solution to

∂tf̄ + v� ∂x� f̄ + J0
u
E� ∂v� f̄+(J0

u
E)⊥ ·∇xg

f̄ =

β(v||∂v||
f̄ + u∂uf̄ + 3f̄) + ν

�
∆xg⊥

f̄ +
1
u

∂u(u∂uf̄)
�

,
(2.9)

in the sense of distributions with the weight u, with the initial condition J̃0
u
(fi).
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Remark 2.2. The reason for the change of variables is that the 1/�-term in equation (2.7) induces a very fast
rotation in the perpendicular direction both in the x and v variables,

v(t) = v0eit/� , x(t) = x0 + v0⊥ + v0ei(t/�−π/2) .

But in the gyro-coordinates this fast rotation is simply described by a rotation in v,

v(t) = v0eit/� , xg(t) = x0
g
.

Remark 2.3. The final diffusion appears in all dimensions except the xg ||
one. It does not mean that there

is no regularization in that direction. Indeed, the models have diffusion in v|| , which after some time provides
regularity in the xg ||

direction. This mechanism is well known for the Fokker-Planck equation (see for instance
[1]). However, we are not able to prove this phenomenon in the non-linear setting because the electric field of the
model lacks regularity. This is the reason why we will only study the 2D model.

Proof of Theorem 2.3. We proved in a previous work [6] that, provided f0 ∈ L2 and E ∈ L1
loc

(R, L2), a sub-
sequence of f� solutions of (2.7) without the collision term converges towards a solution of (2.9) without the
collision term. In order to simplify the presentation, we will neglect the electric field and the parallel translation
terms. To obtain the result in full generality, the only thing to do is to add the argument given in our previous
work to the one given below. For the same reason, we shall also not treat the problem of initial conditions.

So consider the above Vlasov Fokker-Planck equation without electric force field nor parallel translation,

∂tf +
1
�
(v⊥ ·∇x⊥f + v⊥ ·∇v⊥f) = divv(βvf) + ν∆vf . (2.10)

The first step is to use the change of variables (x, v) → (xg = x + v⊥, v). Since

∇vf = ∇v f̄ −∇⊥
xg

f̄ ,

∆vf = ∆v f̄ + ∆xg⊥
f̄ − 2∇v ·∇⊥

xg
f̄ ,

∇v · (vf) = v ·∇v f̄ + 3f̄ − v ·∇⊥
xg

f̄ ,

equation (2.10) becomes

∂tf̄� +
1
�
v⊥ ·∇v f̄� = −β

�
v ·∇v f̄� + 3f̄� − v ·∇⊥

xg
f̄�

�
+ ν

�
∆v f̄� + ∆xg

f̄� − 2∇v ·∇xg
f̄�

�
. (2.11)

By hypothesis f̄� is bounded in L∞
loc

(R, L2
x;v). Therefore, at least a subsequence of (f̄�) converges weakly to some

f̄ ∈ L∞
loc

(R, L2). Passing to the limit in (2.10), it holds that

v⊥ ·∇v f̄ = 0 ,

since all the other terms are bounded. For v = (ueiϕ, v||) where ϕ is the gyro-phase, the previous equality means
that f̄ is independent of the gyro-phase (in the sense of distribution and thus as an L2 function).

Equation (2.10) tested against a smooth function g independent of the gyro-phase writes
�

f̄�

�
∂tg − β(v ·∇vg − v ·∇⊥

xg
g)− ν(∆vg + ∆xg⊥

g − 2∇⊥
xg

·∇vg)
�

dxgdv = 0 . (2.12)

We may also pass to the limit when � tends to zero in this equation and obtain that the same equality holds for
f̄� replaced by f̄ , considered as a function defined on T3 × R3.

For the change of variable v = (ueiϕ, v||),

∇vg = (eiϕ∂ug + ieiϕ∂ϕg, ∂v||
).

Hence, for any function g independent of the gyrophase ϕ, it holds that

∆vg
g = ∂2

v||
g +

1
u

∂u(u∂ug) ,

(∇⊥
xg

·∇vg
)g = ∇⊥

xg
· (eiϕ∂ug) = eiϕ ·∇⊥

xg
∂ug,

v ·∇vg = v||∂v||
g + u∂ug .
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The other terms appearing in (2.12) remain unchanged. Then,
�

f̄
�
∂tg − β(v||∂v||

g + u∂ug − ueiϕ ·∇⊥
xg

g)− ν(∂2
v||

g +
1
u

∂u(u∂ug)

+ ∆xg⊥
g − 2eiϕ ·∇⊥

xg
∂ug)

�
dxgdv||2πududϕ = 0 .

(2.13)

Since f̄ is independent of ϕ, performing the integration in ϕ first makes the term containing ϕ vanish. So the
function f̄ of the five variables (xg, u, v||) satisfies

�
f̄
�
∂tg − β(v||∂v||

g + u∂ug)− ν(∂2
v||

g +
1
u

∂u(u∂ug) + ∆xg⊥
g)

�
dxgdv||udu = 0 . (2.14)

It exactly means that f̄ satisfies the equation

∂tf̄ = β(v||∂v||
f̄ + u∂uf̄ + 3f̄) + ν

�
∂2

v||
f̄ + ∆xg⊥

f̄ +
1
u

∂u(u∂uf̄)
�

, (2.15)

in the sense of distributions with weight u. It is the equation (2.9) without parallel transport nor electric field.

If we look at solutions of this equation invariant by translation in the direction of B, we exactly get the
2D-model announced in the introduction. Formally, if f̄ is a solution of (2.9), then

f(t, x⊥, u) =
�

f̄(t, x⊥, x|| , u, v||) dv||dx||

is a solution of (1.1). Such an assumption on f is reinforced by experiments and numerical simulations, where it
is observed that the distribution of ions is quite homogeneous in x� .

3 Some useful lemmas

We prove here some a priori estimates useful for the proof of our theorems. In order to simplify the proof of some
of the following Lemmas, we sometimes use the following formulation of (1.1) with the genuine two-dimensional
velocity variable. Denote by f̃(t, x, �u) = f(t, x, |�u|), �u ∈ R2. It is solution (in the sense of distribution with usual
duality) of the following equation with 2D in space and velocity variables,

∂tf̃ −∇⊥x (J0
|�u|Φ) ·∇xf̃ = ν(∆xf̃ + ∆�uf̃) + β(2f̃ + �u ·∇�uf̃). (3.16)

Heuristically, a radial in �u solution of equation (3.16) is a solution of (1.1). For instance we can state a precise
Lemma in the case where Φ is fixed and smooth.

Lemma 3.4. For a fixed smooth potential Φ, f is the unique solution of (1.1) with initial condition fi if and
only if f̃ is the unique solution of (3.16) with intial condition f̃i.

Proof of the Lemma 3.4 : The proof relies on the uniqueness of the solution to (3.16) (See [8]) and the con-
servation of the radial symmetry of the solution.

3.1 Regularizing properties of the gyro-average operator.

In this section, some regularizing property of the gyro-average operator are proven. They are based on the fact
that Ĵ0 ∼ k−

1
2 for large k (the precise bound are proved in the appendix A), which implies that J0 maps Hs onto

Hs+ 1
2 . It is important since the formula (1.2) giving the gyro-averaged potential in terms of the distribution f

involves two gyro-averages, and thus a gain of one derivative for the gyro-averaged potential w.r.t. f . However,
the regularizing properties of J0

u
are bad for small u, which raises difficulties.

The first lemma of this section gives the regularity of the gyro-averaged potential in term of the potential
Φ. The second one gives the regularity of the density ρ in terms of the distribution f . We will need the two
following definitions before stating them.
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Definition 3.2. Let f be a measurable function defined on Ω. Denote by

�f�L2
m

(Hs) =
��

�f(·, u)�2
Hsm(u) dw

� 1
2

the norm with the weight m(u) = 2πu(1 + u2).

For any U > 0, let F be a measurable function defined on ΩU = T2 × [0, U ]. Denote by

�F�H
1
U

=

��

T2

�
U

0

�
|f |2 + |∇xf |2 + |∂uf |2

�
2πu du

� 1
2

.

The lemmas stating the regularity of Φ and ρ are the following.

Lemma 3.5. For any s ∈ R, u > 0 and Φ with 0-mean, it holds that

i) �J0
u
Φ�Hs ≤ �Φ�Hs ,

ii) �J0
u
Φ�

H
s+ 1

2
≤ 1√

u
�Φ�Hs ,

iii) �∂uJ0
u
Φ�Hs ≤ 1√

u
�Φ�

H
s+ 1

2
.

As a consequence, for any U > 0,

iv) �J0
u
Φ�H

1
U

≤ 2
√

πU�Φ�
H

1
2
.

Lemma 3.6. For any s > 0, if
�

f 2πu dxdu = 1 and ρ is defined by (1.3), then

�ρ− 1�
H

s+ 1
2
≤ 2

1
4 π�f�L2

m
(Hs). (3.17)

Proof of Lemmas 3.5.
Denote by Φ̂(k) the k − th Fourier coefficient of Φ. Then

�J0
u
Φ�2

Hs =
∞�

k=1

|J0
u
(k)|2|Φ(k)|2 ≤

∞�

k=1

|Φ(k)|2 = �Φ�2
Hs ,

using the bound �Ĵ0�∞ ≤ 1 proved in Lemma A.12. For the second inequality, use ii) of Lemma A.12 in

�J0
u
Φ�2

H
s+ 1

2
=

�

k �=0

| ˆJ0
u
Φ(k, u)|2(1 + |k|2)s+ 1

2

=
�

k �=0

|Φ̂(k)|2|Ĵ0(|k|u)|2(1 + |k|2)s+ 1
2

≤
�

k �=0

|Φ̂(k)|2(1 + |k|2)s

�
1 + |k|2
2|k|2u2

≤ 1
u
�Φ�2

Hs .

For the third estimate of Lemma 3.5, remark that
�
∂u

ˆJ0
u
Φ

�
(k) = ∂u

�
Ĵ0(|k|u)Φ̂(k)

�
= |k|Φ̂(k)Ĵ0

�
(|k|u)

and use the bound iii) of Lemma A.12 to get

|(∂u
ˆJ0
u
Φ)(k)| ≤

�
|k|
u

|Φ̂(k)| .
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From this, we obtain

�∂u(J0
u
Φ)�Hs ≤ 1√

u
�Φ�

H
s+ 1

2
.

The point iv) uses the previous inequalities. First remark that the norm ��H
1
U

is also equal to

�F�H
1
U

=

��
U

0

�
�∂uF (·, u)�2

L2 + �F (·, u)�2
H1

�
2πu du

� 1
2

.

Using this formulation and ii)- iii) leads to

�J0
u
Φ�2

H
1
U

=
�

U

0

�
�∂uJ0Φ�2

L2 + �J0Φ�2
H1

�
2πu du

≤ 2π�Φ�2
H

1
2

�
U

0

1 + 1
u

u du ≤ 4πU�Φ�2
H

1
2
,

which gives the desired result and ends the proof of Lemma 3.5.

Proof of Lemma 3.6.
Denote by ρ̂(k) the k-th Fourier term of ρ with respect to the space variable, i.e.

ρ̂(k) = 2π

�
J0(|k|u)f̂(k, u)u du.

By the Lemma A.12,

|ρ̂(k)| ≤ 2π

� |f̂ |(k, u)u
(1 + u2|k|2)1/4

du.

It follows from the inequality below

∀ k ∈ Z∗, 1 + |k|2

1 + u2|k|2 =
1
u2

1 + 1
|k|2

1 + 1
u2|k|2

≤ 2
u2

, (3.18)

that for k �= 0,

(1 + |k|2)
2s+1

4 |ρ̂(k)| ≤ 2
5
4 π

� ∞

0
|f̂ |(k, u)(1 + |k|2) s

2
√

u du

≤ 2
5
4 π

�� ∞

0
|f̂ |2(k, u)(1 + |k|2)su(1 + u2) du

�1/2 �� ∞

0

du

(1 + u2)

�1/2

= 2
1
4 π

�� ∞

0
|f̂ |2(k, u)(1 + |k|2)s2πu(1 + u2) du

�1/2

.

Hence, since ρ̂(0) =
�

T2 ρ(x) dx = 1 by mass conservation,

�ρ− 1�
H

s+ 1
2

≤ 2
1
4 π

����
�

k �=0

�� ∞

0
|f̂(k, u)|2(1 + |k|2) s

2 2πu(1 + u2) du

�

≤ 2
1
4 π

�� ∞

0
�f(u)�2

Hs2πu(1 + u2) du

�1/2

,

and Lemma 3.6 is proved.
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3.2 Control of the potential by the density.

Denote by LT the operator that maps any function Φ on T2 with zero mean to 1
T

(Φ−Φ ∗x HT ) and by Hs

0(Td)
the space of Hs functions with zero mean. This section is devoted to a proof of the boundedness of L−1

T
from

Hs

0(Td) onto Hs

0(Td). Recall that in a Fourier setting (See the Appendix of [6] for more details), the operator
HT = I − TLT is the multiplication by

ĤT (k) =
2
T

� +∞

0
J0(ku)2e−u

2
/T u du.

The precise results are stated in the following lemma.

Lemma 3.7. The Fourier multipliers ĤT (k) satisfy,

|1− Ĥ(k)| ≥ |k|2T
4

�
1− e

− 1
|k|2T

�
, k ∈ Z2 \ {(0, 0)}.

As a consequence, the operator L−1
T

maps any Hs

0 , s ∈ R, into itself with norm

�L−1
T
�H

s

0
≤ cT :=

4
1− e−

1
T

. (3.19)

Remark 3.4. Lemma 3.7 shows that �L−1
T
� is bounded for small T , and of order T for large T , the physical

case of interest. The boundedness of the spatial domain is essential. When defined on the whole space R2 rather
than on the torus, the operator L−1

T
is not bounded. Its norm explodes in the low frequency range.

Proof of the Lemma 3.7 Two bounds on J0(l) are used, namely one of the bounds of Lemma A.12 for l ≥ 1 and
the following bound given by the Taylor expansion of J0 near 0 for l ≤ 1,

0 ≤ (J0(l))2 ≤ 1− l2

4
, if 0 ≤ l ≤ 1 .

Consequently,

|ĤT (k)| ≤ 2
T

� 1
|k|

0

�
1− (|k|u)2

4

�
e−u

2
/T u du +

√
2

|k|T

� ∞

1
|k|

e−
u
2

T du

≤ 2
�

w

0

�
1− x2

4w2

�
e−x

2
x dx +

√
2w

� ∞

w

e−x
2
dx

≤ 1− 3
4
e−w

2
− 1

4w2
(1− e−w

2
) +

√
2w

� ∞

w

e−x
2
dx,

where w = (|k|
√

T )−1. Now, using the bounds 2− 1
2 < 3

4 and

w

� ∞

w

e−x
2
dx ≤

� ∞

w

xe−x
2
dx =

e−w
2

2
,

it holds that
1− |ĤT (k)| ≥ 1

4w2
(1− e−w

2
).

This is the first claim of lemma 3.7 The function of w in the right-hand side of the previous inequality on |Ĥ(k)|
is decreasing and goes from 1

4 at 0 to 0 at +∞. Consequently its minimal value is obtained for large w i.e. for
small |k|, namely |k| = 1. Precisely ,

1− sup
k �=0

|ĤT (k)| ≥ T

4

�
1− e−

1
T

�
.

Since the Fourier representation of L−1
T

is the multiplication by T (1− Ĥ(k))−1 we obtain that in any Hs

0 , s ∈ R,

�L−1
T
�H

s

0
= sup

k �=0

T

|1− Ĥ(k)|
≤ 4

1− e−
1
T

,

which is the desired result.
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3.3 Propagation of L2
m and L2

m(L4) norms of f .

The two following lemmas will be useful in the sequel.

Lemma 3.8. Assume that �fi�22,u
< +∞. Then, any solution of (1.1) and (1.4), for regular potential φ, satisfies

�f(t)�22,u
+ ν

�
t

0
e2β(t−s)�∇x,uf(s)�22,u

ds ≤ e2βt�fi�22,u
.

Assume moreover that �fi�2,m < +∞. Then any solution f satisfies

�f(t)�22,m
+ ν

�
t

0
�∇x,�uf̃(s)�22,m̃

ds ≤ �fi�22,m
+ (2ν + β)

e2βt − 1
β

�fi�22,2πu
, (3.20)

with the convention that e
2βt−1

β
= 2t if β = 0.

Lemma 3.9. Assume �fi�L2
m

(L4) < +∞ and f is a solution of (1.1) with initial condition fi with a regular
potential φ. Then f satisfies

�f(t)�L2
m

(L4) ≤ e(β+2ν)t�fi�L2
m

(L4). (3.21)

Remark 3.5. A more careful analysis will show that

�f(t)�2
L2

m
(L4) ≤ �fi�2L2

m
(L4) + (2ν + β)

e2βt − 1
β

�fi�2L2
2πu

(L4) ,

but the simple estimate of Lemma 3.9 will be sufficient.

Proof of Lemma 3.8 Multiply equation (3.16) written in 4D by f̃ . Using the notations

u = |�u|, g(t, u) =
1
2
�f̃(t, ·, �u)�22, (3.22)

and integrating in the x variable leads to

∂tg − ν∆�ug = −�∇x,�uf̃(t, ·, u)�22 + β(4g + �u ·∇�ug). (3.23)

Multiplying the previous equation by k(�u), where k is a smooth function on R2 with compact support and
integrating it in the velocity variable �u leads to

∂t

��
g(t, u)k(�u) d�u

�
+

�
�∇x,�uf̃(t, ·, u)�22k(�u) d�u =

�
(ν∆�uk(�u) + 4βk(u)− β div(k(�u)�u))g(t, u) d�u.

By approximation, this is still true for functions k with unbounded supports. For k(�u) = 1,

∂t

�
e−2βt

�
g(t, u) d�u

�
+ νe−2βt

�
�∇x,�uf̃(s, u)�22 d�u ≤ 0.

Coming back to the 1D original quantities, it means that

�f(t)�22,u
+ ν

�
t

0
e2β(t−s)�∇x,uf(s)�22,u

ds ≤ e2βt�fi�22,u
. (3.24)

For k(�u) = m̃(u), then ∆k = 4 and

4m̃(u)− div(m̃(u)�u) = 2m̃(u)− m̃�(u)u = 2 .

Therefore,
�

g(t, u)m̃(u) d�u + ν

�
�∇x,�uf̃(t, ·, u)�22m̃(u) d�u ≤

�
g(0, u)m̃(u) d�u + 2(2ν + β)

�
t

0

�
g(s, u) d�u ds.
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In other words,

�f(t)�22,m
+ ν

�
t

0
�∇x,�uf̃(s)�22,m̃

ds ≤ �fi�22,m
+ 2(2ν + β)

�
t

0
�f(s)�22,u

ds .

Using the bound of equation (3.24), we get

�f(t)�22,m
+ ν

�
t

0
�∇x,�uf̃(s)�22,m̃

ds ≤ �fi�22,m
+ (2ν + β)

e2βt − 1
β

�fi�22,u
.

Proof of Lemma 3.9 . In order to simplify the presentation, we will first perform the calculations without
justifying every integration by parts and division. But once we obtain an a-priori result, we will explain the small
adaptations needed to make it rigorous. First, we denote by

α(t, �u) =
�

|f̃(t, x, �u)|4dx = �f(t, u)�44 , γ(t, �u) =
�

|f̃ |2|∇�uf̃ |2 dx.

Multiplying equation (1.1) by 3 sign(f)|f |3 and integrating with respect to x leads to

∂tα = −12ν

�
f2|(∇x,∇�u)f |2 dx + ν∆�uα + 8βα + β�u ·∇�uα . (3.25)

Hence, dividing by 2
√

α,

∂t

√
α =

∂tα

2
√

α
≤ −6ν

γ√
α

+
ν∆�uα

2
√

α
+ 4β

√
α + β

�u ·∇�uα

2
√

α
.

Now, we multiply by m̃(u) and integrate with respect to �u, so that

∂t

�� √
α m̃(u)d�u

�
≤ −6ν

�
γ√
α

m̃(u) d�u +
ν

2

�
∆�uα√

α
m̃(u)d�u + 4β

� √
α m̃(u) d�u + β

�
�u ·∇�uα

2
√

α
m̃(u) d�u.

With the help of some integrations by parts, we get that
�

�u ·∇�uα

2
√

α
m̃(u) d�u = −2

� √
α(m̃(u) + u2) d�u,

�
∆�uα√

α
m̃(u)d�u = −2

�
�u ·∇�uα√

α
d�u +

� |∇�uα|2

2α
3
2

m̃(u) d�u

= 8
� √

α d�u +
� |∇�uα|2

2α
3
2

m̃(u) d�u .

Thanks to that, the previous inequality simplifies in

∂t

�� √
α m̃(u)d�u

�
≤ −6ν

�
γ√
α

m̃(u) d�u +
ν

4

� |∇�uα|2

α
3
2

m̃(u) d�u + 2(β + 2ν)
� √

α d�u.

Next we can estimate |∇�uα| in terms of γ. In fact by Hölder’s inequality

∇�uα = ∇�u

��
f4 dx

�
= 4

�
f3∇�uf dx,

|∇�uα|2 ≤ 16
��

f4 dx

� ��
f2|∇�uf |2 dx

�
= 16αγ.

Therefore the second term in the right hand side of the previous inequality is controlled up to a constant by the
first one. We precisely get

∂t

�� √
α m̃(u)d�u

�
≤ −2ν

�
γ√
α

m̃(u) d�u + 2(β + 2ν)
� √

α d�u. (3.26)
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From this we conclude easily.

In the previous calculation, we have not justified all the integrations by parts. To make the argument rigorous,
a possibility is to choose a smooth function ξ1 from R+ into [0, 1] such that ξ1(u) = 1 if u ∈ [0, 1] and ξ1(u) = 0
if u ∈ [2,+∞), and define for all U > 0, ξU (u) = ξ

�
u

U

�
. Remark that |Uξ�

U
|∞ ≤ |ξ�|∞ and |U2ξ��

U
|∞ ≤ |ξ��|∞.

Then, we perform the previous calculation with the weight m̃U = m̃ξU and obtain a similar inequality as (3.26),

∂t

�� √
α m̃U (u)d�u

�
≤ −2ν

�
γ√
α

m̃U (u) d�u +
�
2(β + 2ν) +

C

U2

� � √
α d�u. (3.27)

Hence �f(t)�L
2
m̃U

(L4) ≤ e(β+2ν+ C

U2 )t�fi�L
2
m̃U

(L4), which gives the desired result letting U going to infinity.
The other point not rigorously justified is the division by

√
α that may be zero. However, since we have a

diffusion equation, it may be proved that for t > 0, α > 0 everywhere. Either we can use a family of smooth
approximations of

√
·. Or we can say that α + � satisfy (3.25) with an additional term that has the right sign,

so that it will satisfy (3.27). We will obtain the desired inequality letting first � go to zero then U go to infinity.
It is well justified since the maximum principle applies there so that any solution with a non-negative initial
condition remains non-negative.

3.4 Short time estimate of the m-moment of ∇xf .

The following lemma is central in the proof of the stability and uniqueness of the solution for short time.

Lemma 3.10. Assume that f is a solution of the system (1.1)-(1.4) satisfying �∇xfi�2,m < +∞ initially. Then
there exists a constant C∗ and a time τ∗ depending on (T, ν, �∇xfi�2,m, �fi�2,u), such that

�∇xfi�22,m
+

ν

2

�
τ
∗

0
�(∇x, ∂u)∇xf�22,m

dt ≤ C∗.

Moreover, if β = 0 and

�∇xfi�2,m�fi�2,u ≤
Cν2

c2
T

,

then τ∗ = +∞.

We also mention that the result is true if the definition of Φ in (1.2) is replaced by another definition which
still satisfies the bound given in Lemma 3.6 and 3.5. Precise bounds from below of τ∗ are given at the end of the
proof.

Proof of Lemma 3.10 : We take the x-gradient of equation (3.16), written in 2D in �u (with u = |�u|), and
obtain

∂t∇xf̃ −∇⊥
x

(J0
u
Φ)∇2

x,x
f̃ = β(2∇xf̃ + �u ·∇�u(f̃)) + ν∆x,�u(∇xf̃)−∇x(∇⊥

x
(J0

u
Φ)∇xf̃ .

If we now multiply by t∇xf̃ on the left and integrate in x, the function h defined by h(t, u) = 1
2

�
|∇xf̃ |2 dx

satisfies,

∂th(u) = β(4h(u) + �u ·∇�uh(u))ν∆�uh(u)− ν�∇x,�u∇xf̃�22 −
�

t∇xf̃ ∇x(∇⊥
x

J0
u
Φ)∇xf̃ dx. (3.28)

We may also multiply this equation by m̃(u) = (1 + u2) and integrate it in �u. Hence

1
2
∂t�∇xf̃�22,m̃

+ ν�∇x,�u∇xf̃�22,m̃
= (4ν + 2β)�∇xf̃�22,u0 −

��
t∇xf̃

�
∇x(∇⊥

x
J0

u
Φ)

�
∇xf̃ m̃(u) dx d�u. (3.29)

To go on, we need to understand a little better the matrix M(t, x, u) = ∇x(∇⊥
x

J0
u
Φ). First remember that

Φ = L−1
T

(ρ−1), and then remark that from their definitions, J0 and L−1 commute with derivation in x. Therefore
M = J0

u
L−1(∇x(∇⊥

x
ρ)). Using bounds of Lemmas 3.6 and 3.7 we obtain that

�M(t, u)�2 = �J0
u
L−1(∇x(∇⊥

x
ρ))�2 ≤

CcT√
u
�∇ρ�

H
1
2
≤ CcT√

u
�∇f̃�L

2
m̃

, u > 0.

So we may bound the last term of the right hand side of (3.29) by
��

t∇xf̃
�
∇x(∇⊥

x
J0

u
Φ)

�
∇xf̃ m̃(u) dx d�u ≤

�
�M(t, u)�2�∇xf̃�24m̃(u) d�u

12



We now use the Sobolev inequality �u�24 ≤ C�u�2�∇u�2 (valid for u with zero mean, as it is not so common on
the torus, we add the proof in the Appendix A), and get

��
t∇xf̃

�
∇x(∇⊥

x
J0

u
Φ)

�
∇xf̃ m̃(u) dx d�u ≤ CcT �∇xf̃�2,m̃

�
�∇xf̃�2�∇2

x,x
f̃�2

m̃(u)√
u

d�u

≤ CcT �∇xf̃�2,m̃�∇2
x,x

f̃�2,m̃�∇xf̃�2,
m̃

u

. (3.30)

In order to get a bound on �∇xf̃�2,
m̃

u

, we choose a smooth function φ : R → [0, 1] such that φ = 1 on [0, 1],
φ = 0 on [2,+∞) and �φ��∞ ≤ 2. Then, we use

�∇xf̃�2,
m̃

u

= �∇xf̃�2,u + �∇xf̃�2,
φ

u

+ �∇xf̃�2,
1−φ

u

.

First remark that �∇xf̃�22,u
≤ �∇xf̃�2,u0�∇xf̃�2,m̃, that �∇xf̃�2,

1−φ

u

≤ �∇xf̃�2,u0 by definition of φ and

�∇xf̃�2
2,

φ

u

= 2
�

h(u)
φ(u)

u
d�u = 2

�
h(u)φ(u) div�u

�
�u

|u|

�
d�u

= −
�
∇�u(|∇xf̃ |2) · �u

|u|φ(u) dxd�u− 2
�

h(u)φ�(u) d�u

≤ 2�∇xf̃�2,u0(�∇xf̃�2,u0 + �∇2
x,�u

f̃�2,u0) .

With the help of the Poincaré inequality �∇xf̃�2 ≤ �∇2
x,x

f̃�2 we finally get

�∇xf̃�22,
m̃

u

≤ C�∇xf�2,u0

�
�∇xf̃�2,m̃ + �∇�u∇xf̃�2,m̃

�

≤ C�∇xf̃�2,u0 �∇x,�u∇xf̃�2,m̃ . (3.31)

Therefore, using that into (3.30) we obtain

1
2
∂t�∇xf̃�22,m̃

+ ν�∇x,�u∇xf̃�22,m̃
≤ (4ν + 2β)�∇xf̃�22,u0 + CcT �∇xf̃�

1
2
2,u0�∇xf̃�2,m̃�∇x,�u∇xf̃�

3
2
2,m̃

. (3.32)

Now, we need to eliminate the term involving �∇x,�u∇xf̃�2,m̃ in the right-hand side, with the help of the
�∇x,�u∇xf̃�2,m̃ of the left-hand side. We will use the Young inequality xy ≤ 3

4x
4
3 + y

4

4 . Taking into account the
constants ν, cT we get

1
2
∂t�∇xf̃�22,m̃

+
ν

2
�∇x,�u∇xf̃�22,m̃

≤ (4ν + 2β)�∇xf̃�22,u0 +
Cc4

T

ν3
�∇xf̃�22,u0�∇xf̃�42,m̃

.

With the notations h = �∇xf̃�22,m̃
, a(t) = (4ν + 2β)�∇xf̃�22,u0 and γ = Cc

4
T

ν3(4ν+2β) it gives

1
2
∂th ≤ a(t)

�
1 + γh2

�
.

This implies that

arctan
�
γ

1
2 h(t)

�
≤ γ

1
2

�
t

0
a(s) ds + arctan

�
γ

1
2 h(0)

�
,

or equivalently

h(t) ≤
h(0) + γ−

1
2 tan

�
γ

1
2

�
t

0 a(s) ds
�

1− γ
1
2 h(0) tan

�
γ

1
2

�
t

0 a(s) ds
� .

Thus the existence time τ∗ satisfies

γ
1
2 h(0) tan

�
γ

1
2

�
τ
∗

0
a(s) ds

�
≥ 1.

Using the definition of γ, the a-priori estimates of Lemma 3.8 and the inequality tanx ≥ x we obtain the sufficient
condition

e2βτ
∗
�∇xf̃i�22,m̃

�fi�22,u
≥ Cν4

c4
T

, (3.33)
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or again for β > 0

τ∗ ≥ − 1
β

ln
�

Cc2
T

ν2
�∇xfi�2,m�fi�2,u0

�
.

In the case β = 0, (3.33) does not depend on τ . In that case, if

�∇xfi�2,m�fi�2,u ≤
Cν2

c2
T

,

then τ∗ = ∞.
The case of physical interest is when ν and β are small and cT large. In that case, we see that for very small

∇fi, the existence time is quite long.

4 Existence of solutions.

In this section, we prove the existence theorem 1.1. The proof will use the following notation and a preliminary
lemma. A priori estimates of the Lemma 3.8 on the solution (f, Φ) to 1.1-1.2 on [0, T ] lead to the definition of
the set K of functions f such that

�f(t)�2,m ≤
√

M, a.a.t ∈ 0, T,

where

M = �fi�22,m
+ (2ν + β)

e2βt − 1
β

�fi�22,2πu
.

For each n > 0, we also introduce an approximation of the potential Φn defined for any f ∈ L2
m

by

Φn(t, x) :=
�

|k|≤n;k �=0

eik·x 1
1− Ĥ(k)

� �
2πJ0

w
f̂n(t, k, w)wdw − 1

�
. (4.34)

Lemma 4.11. For any n ∈ N∗ and any T > 0, there is a unique fn in K ∩ L2(0, T ;H1
u
(Ω)) solution to (1.1)

with the potential Φ replaced by Φn = Φn(fn) and initial condition fi. This solution satisfies all the a priori
estimates of the previous section.

Proof of Lemma 4.11. Let S be the map defined on K by S(f) = g, where g is the solution in K ∩
L2(0, T ;H1

u
(Ω)) to (1.1) with the potential Φn(f) and initial condition fi. The existence and uniqueness of

S(F ) follows from [10] Thm 4.1 p 257, since ∇Φn is bounded in L∞(0, T ;H3(T2)) by cnM for some constant
cn. Then S maps K into K. Moreover, S is a contraction in L∞(0, T ;L2

u
(Ω)) for T small enough. Indeed, let

g1 = S(f1) (resp. g2 = S(f2)). By estimates very similar to the one performed in Lemma 3.6 it holds that

�(Φn(f1)− Φn(f2))(t, ·)�L∞(T2) ≤ c̄n�(f1 − f2)(t, ·)�2,m, t ≥ 0,

for some constant c̄n. Substracting the equation satisfied by g2 from the equation satisfied by g1 and integrating
over Ω leads to

e2(2ν+β)t

2
d

dt

�
e−2(2ν+β)t�g1 − g2�22,m

�

≤ −ν�(∇x, ∂u)(g1 − g2)�22,m
−

�
g2∇⊥(J0

u
(Φn(f2)− Φn(f1))) ·∇(g1 − g2) m(u) dxdu

≤ −ν�(∇x, ∂u)(g1 − g2)�22,m
+ c̄n�(f1 − f2)�2,m�∇x(g1 − g2)�2,m�g2�2,m

≤ c̄n
2

4ν2
�(f1 − f2)�22,m

�g2�22,m
≤ c̄n

2M

4ν2
�(f1 − f2)�22,m

.

And so,

�g1 − g2�L∞(0,T ;L2
m

) ≤ cTe2(ν+β)T �f1 − f2�L∞(0,T ;L2
m

).

Hence there is a unique fixed point of the map S on [0, T1] for T1 small enough. The bounds used for defining
T1 being independent of T1, a unique solution of the problem can be determined globally in time by iteration.
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The fact that this unique solution satisfies the a-priori estimates of the next section is clear since these estimates
only depend on the bound satisfied by Φ and not on its precise form.

Proof of Theorem 1.1
For any T,U > 0, the sequence (fn) is compact in L2

loc,u
([0, T ]× Ω) (Recall that ΩU = T2 × [0, U ]). Indeed,

it is bounded in L∞(0, T ;L2
u
(ΩU )) ∩ L2(0, T ;H1

u
(ΩU )). It follows from the interpolation theory that (fn) is

bounded in L
10
3

u ([0, T ] × ΩU ). Together with the boundedness of (∇xΦn(fn)) in L2
u
([0, T ] × ΩU ) (Lemma (3.5),

this implies that (∂fn

∂t
) is bounded in W

−1,
5
4

u ([0, T ]×ΩU ). By the Aubin lemma [10], it holds that (fn) is compact
in L2

u
([0, T ]× ΩU ), so converges up to a subsequence to some function f in L2

u
([0, T ]× ΩU ).

It remains to pass to the limit when n → +∞ in the weak formulation satisfied by fn. A weak form of (1.1)-(1.4)
is that for every smooth test function α with compact support in [0, T [×Ω,

�
fi(x, u)α(0, x, u)u dxdu +

�
t

0

�
fn

�∂α

∂t
+∇⊥

x
(J0

u
Φn(fn)) ·∇xα

�
u dxduds

=
�

t

0

� �
uν∇xfn ·∇xα + ∂ufn∂uα + βu2fn∂uα

�
dxduds . (4.35)

The passage to the limit in (4.35) when n → +∞ can be performed if

lim
n→∞

�
t

0

�
ufn∇⊥x (J0

u
(Φn(fn)) ·∇xαdxduds =

�
t

0

�
uf∇⊥

x
(J0

u
(Φ(f)) ·∇xαdxduds.

This holds since (fn) (resp. (∇x(J0
u
(Φn)(fn))) strongly (resp. weakly) converges to f (resp. ∇x(J0

u
(Φ(f))) in

L2
u
([0, T ]×ΩU ) for any U > 0. And since the fn satisfy all the a priori bounds, the limit f also satisfies them.

5 Short time uniqueness and stability of the solution.

In this section we prove the short time uniqueness and stability theorem 1.2.

Proof of Theorem 1.2. Denote by f1 (resp. f2) a solution to (1.1) for the field Φ1 (resp. Φ2), by δf = f1 − f2

and by δΦ = J0
u
(Φ1 − Φ2). Multiplying the equation satisfied by (1 + u2)δf by δf and integrating w.r.t. (x, u)

with the weight u leads to

1
2

d

dt
�δf�22,m

≤ −ν�(∇x, ∂u)δf�22,m
+ (4ν + 2β)�δf�22,u

+
�

δf∇⊥
x

(δΦ) ·∇xf2 m(u) dxdu

≤ −ν�(∇x, ∂u)δf�22,m
+ (4ν + 2β)�δf�22,u

+ �δf∇x(δΦ)�2,um�∇xf2�2,
m

u
.

To estimate �δf∇(δΦ)�2,u m, apply the inequality

ab ≤ ea − b + b ln b , a, b > 0,

to (a, b) =
��

∇xδΦ
6�∇2

x
δΦ�2

�2
,
�

δf

�δf�2

�2
�

for every nonnegative u and apply the Trüdinger inequality (See [11])

�

T2
e

„
∇xδΦ

6�∇2
x

ψ�2

«2

dz ≤ 2 . (5.36)

Therefore, using �∇2
x
δΦ�2 ≤ CcT√

u
�∇δf�2,m (Lemmas 3.6 and 3.5 and 3.7) and the Jensen inequality,

�δf∇x(δΦ)�22 = C�∇2δΦ�22�δf�22
� �

δf

�δf�2

�2 �
|∇xδΦ|

6�∇2δΦ�2

�2

dx

≤ C�∇2δΦ�22�δf�22
�

1 +
�

(δf)2

�δf�2
ln

�
(δf)2

�δf�22

�
dx

�

≤ Cc2
T

u
�∇xδf�22,m

�δf�22
�

1 + ln
�
�δf�4

�δf�42

��
.
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Integrating in u with the weight um, it holds using again Jensen inequality that

�δf∇(δΦ)�22,um
≤ 2Cc2

T
�∇xδf�22,m

�δf�22,m

� �δf�22
�δf�22,m

�
1 + ln

�
�δf�24
�δf�22

��
m(u) du

≤ Cc2
T
�∇xδf�22,m

�δf�22,m

�
1 + ln

�
�δf�2

L2
m

(L4)

�δf�22,m

��
.

Consequently,

1
2

d

dt
�δf�22,m

≤ CcT �∇xδf�2,m�δf�2,m

����1 + ln

�
�δf�2

L2
m

(L4)

�δf�22,m

�
�∇f2�2,

m

u

− ν�(∇x, ∂u)δf�22,m
+ (4ν + 2β)�δf�22,m

,

≤ Cc2
T

4ν
�δf�22,m

ln

�
2e�δf�2

L2
m

(L4)

�δf�2,m

�
�∇f2�22,

m

u

+ (4ν + 2β)�δf�22,m

and finally using the inequality �f(t)�L2
m

(L4) ≤ e(β+2ν)t�fi�L2
m

(L4) from lemma 3.9,

1
2

d

dt
�δf�22,m

≤ Cc2
T

4ν
�δf�22,m

ln

�
r2e2(β+2ν)t

�δf�22,m

�
�∇f2�22,

m

u

+ (4ν + 2β)�δf�22,m
,

where

r = e
1
2

�
�f1,i�L2

m
(L4) + �f2,i�L2

m
(L4)

�
.

Defining s(t) = 1
r2 �δf�22,m

e−2(β+2ν)t, we get

ṡ(t) ≤ Cc2
T

4ν
�∇f2�22,

m

u

s(t) ln
1

s(t)
.

It follows from the Osgood lemma that
s(t) ≤ s(0)e

−H(t)
, (5.37)

with H(t) = Cc
2
T

4ν

�
t

0 �∇f2(s)�22,
m

u

ds. We will show below that H is well defined on [0, τ∗], the interval of time
defined in Lemma 3.10. Then

�δf(t)�2,m ≤ e(β+2ν)t r1−e
−H(t)

�δf(t)�e
−H(t)

2,m
,

which implies the short time uniqueness and stability. Remark that the previous calculation does not use ∇xf1

and this is why we do not need an assumption on this quantity in the stability result.

It remains to prove that H is bounded on [0, τ∗]. In fact, using the inequality (3.31) proved during the proof
of Lemma 3.10, but rewritten in the 2D+1D setting, we get

�∇f2�22,
m

u

≤ C�∇xf�2,2πu �∇x,�u∇xf�2,m .

If we integrate that inequality with respect to time, we obtain
�

τ
∗

0
�∇f(t)�22,

m

u

dt ≤ 2
�

τ
∗

0
�∇x,�u∇xf(t)�2,2πu�∇xf(t)�2,m

≤ sup
t≤τ∗

�∇xf(t)�2,m

√
τ∗

��
τ
∗

0
�∇2

x,�u
f(t)�2,m dt

� 1
2

≤ C∗
�

τ∗

ν
.
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A Appendix

A.1 Bounds on the Fourier transform of the Bessel operator of zero order

In the following, we use the same notation J0 = J0
1 for the zero order Bessel operator and its symbol in Fourier.

Indeed, in the Fourier space, J0
1 that appears in the definition of the gyroaverage of the electric field, is the

multiplication by J0. Some properties of the function J0 are given in [12]. In this appendix, some bounds on J0

and its first derivative are proven.

Lemma A.12. J0 satisfies the following estimates for all k ∈ R,

i) |J0(k)| ≤ min
�

1,
1

21/4
√

k

�
,

ii) |J0(k)| ≤ (1 + k2)
− 1

4 ,

iii) |(J0)�(k)| ≤ min

�
1,

�
2
πk

�
,

iv) |(J0)�(k)| ≤ (1 + k2)
− 1

4 .

Proof of Lemma A.12
First Inequality : The bound |J0(k)| ≤ 1 is clear from the definition of J0,

J0(k) =
1
2π

� 2π

0
eik cos θ dθ =

1
π

�
π

0
cos(k cos θ) dθ . (A.38)

The bound by (
√

2k)− 1
2 is obtained as follows. J0 is solution of the ordinary differential equation

k2(J0)�� + k(J0)� + k2J0 = 0 , J0(0) = 1 , (J0)�(0) = 0 . (A.39)

The new unknown u =
√

kJ0 is solution to

u�� +
�

1 +
1

4k2

�
u = 0 . (A.40)

There are no exact initial conditions for u. However,

u(k) =
k→0+

√
k[1 + O(k2)] , u�(k) =

k→0+

1
2
√

k
[1 + O(k2)].

The second equation (A.40) admits the k-dependent energy,

H(k) = H(k, u, u�) =
u�2

2
+

u2

2

�
1 +

1
4k2

�
,

that satisfies

H(k)−H(k0) = −
�

k

k0

u2(l)
4l3

dl.

It follows from the behaviour of u near 0 that

H(k) =
k→0+

1
4k

+ O(k) .

Moreover the series expansion of J0 near k = 0,

J0(k) =
∞�

j=0

(−1)j
k2j

22j(j!)2

and its alternating character if k ≤ 2 imply that u2(k) ≥ k − k
3

2 (valid for k ≤
√

2). Using, the inequality and
the behavior of H near 0, we get for 0 < k0 ≤ k ≤

√
2 that

H(k) ≤ 1
4k0

+ O(k0)−
�

k

k0

�
1

4l2
− 1

8

�
dl,

H(k) ≤ 1
4k

+
k

8
, (A.41)
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since the first line is satisfied for any k0 > 0. Therefore,

u2(k) ≤ k
k2 + 2
4k2 + 1

, k ≤
√

2 .

A simple calculation shows that the function appearing in the right-hand side is increasing in k, so that

u2(k) ≤ 1√
2
, k ∈ [0,

√
2] .

For k ≥
√

2, simply remark that H is decreasing and that from (A.41)

u2(k) ≤ 2H(k) ≤ 2H(
√

2) ≤ 1√
2
.

In any case, u2(k) ≤ 2− 1
2 , which gives the desired inequality.

Second inequality : It is a consequence of the first, for k ≥ 1. For k ≤ 1, it may be obtained from a
comparison of the power series expansions of J0 and (1 + k)−1/4 around the origin. We get

J0(k) ≤ 1− k2

4
+

k4

64
≤ 1− k2

4
+

5k4

32
− 15k6

128
≤ (1 + k2)−1/4.

Third inequality : Taking the derivative of J0 in the definition (A.38),

(J0)�(k) =
i

2π

� 2π

0
cos θeik cos θ dθ = − 1

π

�
π

0
cos θ sin(k cos θ) dθ ,

from which it is clear that |(J0)�(k)| ≤ 1 for all k. Next we transform the previous integral in

(J0)�(k) = − 2
π

� 1

0

α sin(kα)√
1− α2

dα ,

=
j−1�

i=0

(−1)j

�
hi+1

hi

| sin(kα)|√
1− α2

α dα :=
j−1�

i=0

(−1)jsj ,

where (hi)1≤i≤j are the points where sin(kθ) vanishes and 1,

h0 = 0 < h1 =
π

k
< h2 =

2π

k
< . . . < hj−1 =

(j − 1)π
k

< hj = 1.

The previous sum has alternating signs, the larger terms occuring for large i. Its terms are with increasing
absolute values, except for the last one which is incomplete and may be smaller than the next to last term.
However,

−s1 ≤ s0 − s1 ≤
j�

i=0

(−1)jsj ≤ s0 − s1 + s2 ≤ s0,

so that

|(J0)�(k)| ≤ max(s0, s1) ≤
2
π

� 1

1−π/k

αdα√
1− α2

≤ 1
π

�
2π

k
− π2

k2
≤

�
2
πk

, k ≥ π.

This ends the proof of the third inequality.
The proof of iv) is similar to the proof of ii), since

�
2
π

< 2− 1
4 .
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A.2 A Sobolev inequality on the torus

On the whole space of dimension two R2, the Sobolev inequality �u�24 ≤ �u�2�∇u�2 holds. On a smooth
bounded domain Ω, we are more familiar with the inequality �u�4 ≤ C�u�H1(Ω). However, the more precise
version �u�24 ≤ �u�2�u�H1(Ω) can still be obtained using extension operator. As we need this precise version in
our article, we give a short proof of it on the torus.

Lemma A.13. Let u be a function on T2 such that �u�2 + �∇u�2 < +∞. Then

�u�44 ≤ �u�22
�
�u�2 +

����
∂u

∂x

����
2

� �
�u�2 +

����
∂u

∂y

����
2

�
.

and if u is of average zero, we can combine this inequality with a Poincaré inequality to obtain

�u�24 ≤ 3�u�2�∇u�2

Proof of Lemma A.13 We can see u as a periodic function on R2. For y ∈ [0, 1] and −1 ≤ x� ≤ x < x�+1 ≤ 1,
we have

u(x, y)2 = u(x�, y)2 + 2
�

x

x�
u(t, y)

∂u

∂x
(t, y) dt,

u(x, y)2 = u(x� + 1, y)2 − 2
�

x
�+1

x

u(t, y)
∂u

∂x
(t, y) dt,

u(x, y)2 ≤ u(x�, y)2 +
� 1

0
|u(t, y)|

����
∂u

∂x
(t, y)

���� dt .

The last line is obtained from the mean of the two first. As it is true for all x�, we may average the last inequality
on all x� ∈ [0, 1] and obtain

u(x, y)2 ≤
� 1

0
|u(t, y)|

�
|u(t, y)| +

����
∂u

∂x
(t, y)

����

�
dt := F (y) ,

where F is defined by the right-hand side and depends only of y. Remark that
� 1

0
F (y) dy ≤ �u�22 + �u�2

����
∂u

∂x

����
2

.

Very similarly, we obtain

u(x, y)2 ≤
� 1

0
|u(x, t)|

�
|u(x, t)| +

����
∂u

∂y
(x, t)

����

�
dt := G(x) ,

and � 1

0
G(x) dx ≤ �u�22 + �u�2

����
∂u

∂x

����
2

.

Eventually, we write
�

T2
u4(x, y) dxdy ≤

�

T2
G(x)F (y) dxdy =

�
G(x) dx

�
F (y) dy,

and obtain the desired inequality thanks to the bound on the L1 norm of F and G. The Poincaré inequality may
be proved in a very similar way.
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