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Abstract: This paper deals with mathematical questions for Bose gases below the tem-
perature Tprc where Bose-Einstein condensation sets in. The model considered is of
two-component type, consisting of a kinetic equation for the distribution function of
a gas of (quasi-)particles interacting with a Bose condensate, which is described by a
Gross-Pitaevskii equation. Existence results and moment estimates are proved in the
space-homogeneous, isotropic case.

1. Preliminaries

Starting from a detailed effective Hamiltonian for a Bose fluid, and motivated by consid-
erations about the relevant physics, simplified models for classical fields can be derived
in well-defined (formal) limits (cf. [BCEP, S1]), or obtained by physics arguments for
more direct approximations of the original potentials and operators. There for suffi-
ciently low temperatures only interactions between thermally excited (quasi-)particles
and condensate are of practical importance, as discussed in the papers [K,KK,HM,E,
KD,ZNG,IT,ITG] and their references.

The present paper considers one such situation involving transfer of atoms between
the two components, so that in particular no conservation laws for an individual com-
ponent should be expected in the transient evolution. The model is based on the
Beliaev-Popov approximation of the Bogoliubov Green-function description which
ignores off-diagonal correlations, and the Thomas-Fermi approximation which neglects
a quantum pressure term. The simplified two-component model obtained consists of a
kinetic equation for the distribution function of a gas of (quasi-)particles interacting with
a Bose condensate, which in turn is described by a Gross-Pitaevskii equation (cf. [PS]).
In the local rest frame, the kinetic equation is ([ITG])

ad
a_J; +Vp(Ep+vsp) Vi f — Vx(Ep+vsp) - Vpf = C(f ne). (L.1)
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Here vy is the superfluid velocity, E, the (Bogoliubov) excitation energy, and the colli-
sion term becomes

C(f.in:)(p) = nc/ |AI28(p1 — p2 — p3)8(E1 — E2 — E3)[8(p — p1)

=3(p — p2) —8(p — p)I((A + f1) f2 /3
= fil+ f2)(A + f3))dp1dp2dp3. (1.2)

The transition probability kernel |A|? is given by the scattering amplitude
A= (u3 — v3)(uiuz + v1v2) + (w2 — v2)(uru3 + v1v3) — (U1 — v1)(U2V3 + V2u3).
Here the Bose coherence factors u and v are

éE,+ E
2 _ ¢ P2y

2 _
p 2Ep’ p p ’

u

with €, = % + gne, n. the non-equilibrium density of the atoms in the condensate, m
the atomic mass, and g a scattering length defined later.

The collision operator C(f, n.) can be formally obtained (cf. [ST,EMV,N]) from
the Nordheim-Uehling-Uhlenbeck collision operator

Cnuu(f)(p)= BS(p+ ps« = p' + p)S(E(p)+ E(px)=E(p') + E(p)))
R3IxR3xR3

(/A DA+ L0 = FL0+ 100+ 1)) dpudp'dp,
with
(O (AN A1)

Assuming that a condensate appears below the Bose-Einstein condensation temperature
T Ec, which splits the quantum gas distribution function into a condensate part 1.6 ,—q

and an L'-density part f(¢, x, p), we obtain
Crnvu(f +nedp=0) = Cnuu (f) + C(fine) +nZA +nlB +nedp=oD,

where a simple formal computation shows that A = B = 0. At the low temperatures con-
sidered, the number of highly excited (quasi-)particles is small, and the Cnuu collision
term can be neglected relative to the collision operator C.

The usual Gross-Pitaevskii (GP) equation for the wave function ¥ (the order param-
eter) associated with a Bose condensate is

oY h? )
ih— = ——AxY + (Uexr + gl¥ )Y,
ot 2m

i.e. a Schrodinger equation complemented by a non-linear term accounting for two-
body interactions. U,y; is an external potential, and with a the s-scattering length of
the interaction potential and g = ‘%. In the present context the GP equation is further
generalized by letting the condensate move in a self-consistent Hartree-Fock mean field
2gin = 2g [ f(p)dp produced by the thermally excited atoms, together with a dissi-
pative coupling term associated with the collisions. It is useful to split the equation for
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W = J/nee'? into phase and amplitude variables (polar representation or the Madelung
transform, cf. [ZNG]), leading to

an.
3_ +Vx  (nevg) = _/C(f7 ne)dp,

! (13)
a0 _ mv? '

E - Mc ) )
with u. alocal condensate chemical potential.

2. A Space-Homogeneous Isotropic Case; the Mathematical Setting

This paper is the first part of a study of the Cauchy problem for the two component
model (1.1), (1.3) of a kinetic gas of quasi-particles interacting with a GP condensate.
The focus is on the space-homogeneous isotropic case and the superfluid rest frame
(condensate velocity vy = v,6 = 0), i.e. the equations

af
== C(fmo). @.1)
dn,
:t =— / C(f. ne)dp. 2.2)
with initial values
FP.0) = £l p D). ne(0) =nei. 2.3)

Here f(p, t) is the density of the quasi-particles, n.(¢) the mass of the condensate, and
the collision operator C is given by (1.2).

The papers [E,ITG] consider the low temperature situation where the temperature
is smaller than 0.4Tggc, with all |p;| << po, i.e. where physically all quasi-particle
momenta are much smaller than the characteristic momentum pg = /2mgn, for the
crossover between the linear and quadratic parts of the Bogoliubov excitation energy of
the quasi-particles;

2 2

4
p &n p P
E(p) =/ +=<p*~clpl(l+ ) =clpl(1+-—=) 2.4)
4m m 8gmn, 4p;
with ¢ := /£ the speed of Bogoliubov sound. Setting m = \/LE gives pp = c.

The right hand side of (2.4) is usually taken as the value of E(p) in applications with
|pl << po. The Bose coherence factors can then be taken as

[ 8 E(p) _ [ s 1 [E() _1
2E(p 2gn.’ 2E(p 2gn.’ ’

which gives

A=

1 VERIERED | e \/ E(py) / E(p))
23 (gno)3 E(p)E() \ E(p)E/DL)

TSR
EGPE(D,)
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And so recalling that E(p,) = E(p’) + E(pl), we obtain

1 VEPIEPHEDY)

A=— 3
22 (gne)?

With this A, the collision operator becomes

E E E
C(f,nc)(p)=/x ””g?j;’ 3 51— pa — p2)8(EL — Es — E)S(p —p1)

—=8(p—p2) —8(p— p)IA+ fO) fofs — il + )1 + f3))dpidp2dps,  (2.5)

where x denotes the truncation for |p;| < A, 1 < i < 3. The choice of the positive
constant A will be discussed below.

The opposite limit of intermediate temperatures compared to Tpgc, and where all
momenta | p;| >> po,is considered in [E,ZNG] with the dominant excitation of Hartree-
Fock single particle type. Expanding the square root definition of E in (2.4), we may

2

approximate £, by é’—m + gn. leading to a collision operator of the type

C(fone) = ke /R A= pr = pIB(E)  Ea = EYIB(p — 1)
—5(p— p2) — 8(p — N+ ) fofs — fi(1+ f)(1+ f))dprdpadps

(2.6)

(for the ‘partial local equilibrium regime’ of [ZNG], see also [ITG], with only collisions

between excited particles and the condensate). Here x is the characteristic function of

the set of (p, p1, pa2, p3) with |p|, |p1l, | p2], | p3] = o for a given positive constant «.
In the general case, the collision operator is

C(fn)(p) = ne / APS(p1 — pa — p3)S(E1 — Ez — ED)IS(p — p1)
5(p— ) — 8(p — PN+ f) fofs — fi(l+ )L+ fa)dprdpadps,  (2.T)

with the excitation energy E defined by

2
| p7 | gne
E(p) = .
Py =Irly 5+

As follows from the definitions of A and E(p) above, the kernel |A|? is bounded by a
multiple of

|A]? = (% A 1)('5% A 1)('5% A 1),

in the physically interesting cases when asymptotically all | p;| << po, all | p;| >> po,
or one |p;| << po and the others >> pq. The three cases are relevant for low respec-
tively intermediate temperatures compared to T ¢, and (the third case) for the collision
of low temperature phonons with high temperature excitations (atoms). The asymptotic
situation of two |p;| << po and one p; >> po (with unbounded A) is excluded by the
energy condition.
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In the main part of this paper we shall use | A|? as the kernel in the collision operator
and prove the following result.

Theorem 2.1. Let ne; > 0 and fi(p) = fi(Ipl) € L' be given with f; nonnega-
tive and f;(p)|p|**" e L' for some y > 0. For the collision operator (2.7) with
the transition probability kernel |A|?, there exists a nonnegative solution (f,n.) €
([0, 00): L}r) x C1([0, 00)) to the initial value problem (2.1-3). The condensate den-
sity ne is locally bounded away from zero fort > 0. The excitation density f has energy
locally bounded in time. Total mass Mo = ne;+ [ fi(p)dp is conserved, and the moment

I pI?*Y fdp is locally bounded in time.

In the low temperature case with the collision operator taken as (2.5), if the math-
ematical condition corresponding to the physics requirement |p| << pq is taken as
Ipl < p% := A, the proof of Theorem 2.1 simplifies. It holds that

Theorem 2.2. Let n.; > 0 and f;(p) = fi(|p]) € L' be given with f; nonnegative.
There exists a nonnegative solution (f, n.) € Cc([0, o0); L}r) X Cl([O, o)) to the ini-
tial value problem (2.1-3) for the collision operator (2.5). The condensate density n. is
locally bounded away from zero for t > 0. The excitation density f has energy bounded
globally in time. Total mass Mo = n; + [ fi(p)dp is conserved.

An existence result was obtained in [N] for (2.1-3) in the intermediate temperature
case, with the collision operator (2.6) without the cut-off function y, and considering the
excitation density f in the measure sense. For (2.6) with the cut-off function y included,
existence also holds in the present L!-setting.

Theorem 2.3. Let n; > 0 and f;(p) = fi(Ipl) € L' be given with f; nonnegative
and f;(p)|p|**Y € L' for some y > 0. There exists a nonnegative solution (f,n.) €
C([0, 00); Ll) x C1([0, 00)) 10 the initial value problem (2.1-3) for the collision oper-
ator (2.6). The condensate density n is locally bounded away from zero fort > 0. Total
2
mass My = nei + [ fi(p)dp is conserved together with the integral [ £— fi(p)dp +
s8nci [ fi(p)dp +gMo([ fi(p)dp + 3nc) of energy type. The moment [ |p|**Y fdp is
locally bounded in time.

Also the recent paper [S2] considers the spatially homogeneous and isotropic kinetic
regime of weakly interacting bosons with s-wave scattering. It has a focus on post-
nucleation self-similar solutions. Another recent paper, [EPV], studies linearized space
homogeneous kinetic problems in settings related to but not identical to the ones dis-
cussed here, and with a focus on large time behaviour.

3. Proof of the Main Theorem

The collision operator in the general case is

C(f.ne)(p) = nc/ |AI*8(p1 — p2 — p3)8(E\ — E2 — E3)[8(p — p1)
—8(p — p2) = 8(p — PN+ f1) fof3 — fi(l + f2)(1 + f3))dpidpadp3, (3.1)

with the kernel

AP = ('jy‘l_l A 1)(5’% A 1)('5% A 1),
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and the excitation energy E defined by

2
p 8¢
E(p,nc) = E(p) = Ep = |p| w2

The constants m and g are taken as % in the rest of this section. Adding (2.2) and (2.1)

integrated with respect to p, it follows that n.(t) + | f (¢, |pl)dp = Mo, i.e. total mass
is conserved. It holds that

/(p(p)C(f, ne)(p)dp = nc/ 1A21(p(p1) — @(p2) — 9(p3))8(p1 — p2 — P3)
S(E(p1) — E(p2) — E(p3))(fafs — fi(l + f2 + f3))dpidp2dps.

The energy (resp. the condensate density) is bounded from above (resp. from below)
locally in time as follows.

Lemma 3.1. Let the initial data (f;, n¢;) satisfy 0 < ne; < Mo and n; +f fillphdp =
M. Then there is Ty > 0 such that n.(t) > % and f E(p,nc) f(t, p)dp is bounded
from above on [0, To] for any nonnegative solution (f, n¢) to (2.1-3).

Proof of Lemma 3.1. 1t follows from (2.2) and (3.1) that for any nonnegative solution
(f, ne) to (2.1-3),

2= [PLADAPLA DL A 10— 2 = po)3(Er - B2~ By

Vie T me e

(f2fs+ fi2f2+1))dpidpadps =: X1 + X2 + X3.

Using spherical coordinates for p»> and p3, with axis directed by p, and azimuthal angle
@3 for p3, setting | p| = r, and then performing the change of variables 3 — s = cosgs,

o0
X1§2k/
0

1
n=/&mmm
-1

where

Fi(s) := \/(rzz + r32 +2rar38)% + nc(;’z2 + r32 +2rpr3s) — Sy,

S = \/rét +ncr22 +\/r§1 +ncr32.

F1 vanishes for a single value s; of s. Straightforward computations show that |s1| < 1.
Moreover,

2(r22 + r32 +2ryr3s) +ne

/
Fi(s) = rar3
\/(r22 + r32 +2r138)2 + nc(rz2 + r32 +2rpr3s)

\/(r22 + r32 +2rpr3s) +ne

,/r22 + r32 +2ryr3s

> 13
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And so,

Hence,

X < 2k/oo
0 ne

2k 2

< =( [ ra.pap)”

Similarly,

X2§2k/ 2
0 «/_

where

1
Yy = / 5(F3(s))ds.
-1

F(s) := \/(r12 + r22 +2r1128)2% + nc(r]2 + r22 +2rirms) — S,

SH = \/rf +ncr12 — \/rg +ncr22.

F> vanishes for a single value s, of s. Straightforward computations show that |sp| < 1.
Moreover,

2(1’2 +r24 2rirs) +n
Fi(s) = rir 12 <

\/(rlz + r22 +2r11r28)2% + nc(rl2 + 1’22 +2r1rs)

\/(rlz + r22 +2riras) +ne

= rirn
rl2 + r22 +2r1rps
And so,
1
Y < —,
rira
2
X2 = —( / f(t. p)p) .
Finally,

X3§k/
\/—/ rlf(trl)/

+k/‘/n7 rlf(t r1) / f / r2dr2 dr1
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ko [V ko [r°
< — i f(t, r)dry + E/ ri f(t, r)dr
ne Jo Ve

< kg / F@, pyp+ P21, p)dp

k
2 ne
prf(t, p)dp.

k
< Mok .
= Mo nc+2ﬁ
And so,
3
)] < KM + Mond + i [ 521 prap). (3.2)

Denote by G(t,n) = [ E(p,n) f(t, p)dp. Then

3G M
6 _ / Lf(;, p)dp € [0, 70].

on 2/ p%+n
Hence,
G(t.ne(1)) < G(t,ne) + Mg.
Moreover,
d
EG(I’ nei) = / Ipl P2 +neiC(f, ne)(t, p)dp

|p1| | P2l | p3l

e D D

(|Pl| p}+nei —|paly/ p3 +nci — | p3l p§+nci)

8(p1 — p2 — p3)8(p1ly/ pT +ne(®) — |paly/ p3 +ne(t)

—=1p3ly/ pI+nc)(fofs — fill + fo+ f3)dpidpadps
= ne [1AP (111G} 41 = o+ e = 12l 03

P+ 1) = 13l p3 + s = p +ne0)

8(p1 — p2 — p3)8(Ipily/ p +nc(t) — | p2ly/ p3 +ne (1)

—|p3ly/ P3 +nc)(fofs — fil + f> + f3)dpidpadps.

It follows from

PIN P2+ et =\ P2 + 1)) < Inei = ne()] < Mo, p € B,

and similar computations as in the control of X, X and X3 above, that

Ve jn_C/ﬁf(r,p)dp)

G ’ ci
Vv ’(I)+—(j/ni )). (33)

LGt ne)| < 24, (r>(4M3
di s Nei )| = one nc(t)

4M3
< ZkMonc(t)(n o
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And so,

3 3 3
G(t,nc(t)) < MG+ G0, nei) exp (MG 1) + k(8Mg +2Mg +2M3 ) (exp M t) — 1).
(3.4)

The lemma follows. 0O

If the solution exists on [0, T'[, then it follows from a refinement of (3.2) in the proof of
Lemma 3.1 thatinf|o 7| n.(¢) > 0.Foracontradiction assume thatlim inf; . 7 n.(¢) = 0,
which implies lim;_. 7 n.(¢) = 0. By (3.4), the energy is uniformly bounded on [0, T[.
By (2.2) and (3.1),

;im = /( Pl P2 3L sr = b — py)s(Er — s — E3)

Ve Ve Ve
(f2f3 = i fa+1))dpidpadps.

This gives

—(l)—16ﬂ /0 y( Al)f(t y)/

+22+2 1 247242
/y 72 yusi 1 [y2 + 2% +2yz28) N 1))dzdy
IF (S])I  Fj(s)l ne

_/(“"' /\1)(|p2| /\1)(|p3| ADS(p1 — p2 — p3)S(E1 — Ez — E3)

Ve Ve Ve
x fidpidp2dps. (3.5)

But 51 > s7, since

207427+ 2yzs1) = \Jn2 + 4(EQ) + Q)P — ne = \/n2 + 4(E(y) — E@)? — n
= 2(y +22 4+ 2yz82).

Moreover, F 1’ = F2/ is a non-increasing function. And so, for (y, z) # (0, 0),

1 247242 1 2422+2
1 [yirZa vz 1 sl
|F (sl ne | F>(s2)] ne

is positive. Thus, the first term in the r.h.s. of (3.5) is continuous and positive for ¢ €
[0, T'[. Hence for some k > 0,

n1) = k — 2Mon? — i / P2, p)dp

fort < T, with the integral [ p? f(t, p)dp bounded. This contradicts lim,_, 7 n.(t) = 0.

Lemma 3.2.

2
[ ccrnowant <k( [ swp)” s ke [ 5 wrap.
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Proof of Lemma 3.2.

[p1] /\1)(|p2| /\1)(|p3| Al

I/C(f, ne)(p)dp| < nc/<f P o2

8(p1 — p2— p3)S(E(p1) — E(p2) — E(p3)(faf3 + fi(l + f2 + f3))dpidp2dps.
(3.6)

To control the f> f3 term of (3.6), use spherical coordinates for p and p3 with the axis
for p3 directed by p, and denote by ¢3 the azimuthal angle related to p3. Then

/( P2 3L s = =SB — E(pa) — E(ps))

Ve Ve Ve
><f2f3dp1dP2dP3

S s /r%(ji_c

where

A1) f3Y1dradrs,

1

1
Y, = / 8(\/(r22 +75 +2r2r38)2 + n(ry + 13 +2ror3s) — Ey — E3)ds < .
~1 ; rar3

And so,

e [ 2L AN A 31 = p2 = pand (D) = EGr) — E(p)

Ve Ve Ve
x f(p2) f(p3)dpidp2dps3

< k( / F(p)dpy.

In the same way the other quadratic terms of (3.6) can be bounded by k(| f( p)dp)>.
Finally,

APy APl B sy = by — p3)SE(pY) — E(pa) — E(p3)

e M M e

x fidpidpadp;

<knc/r1f1 /rl

Lemma 3.3. Given 0 < n, < M), there is a constant k such that for any n € [ny, My]
and isotropic functions (f, g) € L}r(R3) X Li(R3) with L' norm bounded by My,

ne

p*f(p)dp.

O

/I(C(f, n) — C(g,m)(p)ldp = k/(l +/npHI(f = ) (p)ldp (3.7)

with k independent of n, f, g.
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Proof of Lemma 3.3. Denoteby w(f) = (f2f3— fi(1+ f2+ f3)). Then by computations
similar to those used in the proof of Lemma 3.2,

/ I(C(f.n) = C(g.m)(p)ldp

skn/|p1|A1|p2|A1|p3|A18<p1 — p2— p)S(E| — Es — E3)
x|u(f) — u(g)ldprdpadps
sk(/ fdp+/gdp)/|f<p> —g<p>|dp+kﬁ/p2|f<p> — ¢(p)ldp.

Lemma 3.4. For any y € [0, 1],
/ P12 £, pydp < / P17 fi(p)dp + Mot sup( | (14 p?) (5. p)dp)*.
s<t

Proof of Lemma 3.4. Let y € [0, 1] be fixed. Multiplying the equation satisfied by f
by | p|**?” and integrating it on (0, r) x R> leads to

t
/ |pI*** f(t. p)dp + / ne(s) / |AP(p1 P — | p2 P
0
—|p3I***) f18(p1 = p2 + p3)8(E1 = Ey + E3)dpidpydpsds
t
= / \pI*** fi(p)dp +/0 m(s)/ JAP(p1 P = 1p2 P = |pslP™) (2 f3
= f1(f2+ f3))8(p1 = p2 + p3)d(E1 = E2 + E3)dp1dpadpsds. (3.8)
It is sufficient to prove that there is a positive constant K such that
0< r12+2V — r22+2y — r32+2y < 12(1 +r22)(1 +r32),

when E| = E; + E3. Indeed, the second term in the left member of (3.8) will then be
nonnegative, whereas the second term in the right member will be bounded from above

by Mot sup,, ([ (1 + p?) f (s, p)dp)*. Since

,/n2+4Ei2 —n

ri:fa 15153’

(3.8) holds if there is a positive constant K such that

0< (\/n2 +4(Ey + E3)? — n)“y - (,/n2 +AE2 — n)HV - (,/n2 +AE2 — n)Hy
< K(,/n2 +4E2 —n +2) (,/n2 +4E2 —n +2), (Es, E3) € (Ry)>. (3.9)

To prove the left inequality of (3.9), consider the function
I+y 1+y
g(x, E3) == ( n2+4(x+E3)2—n) —(m—n)
1+y
—(m — n) , x>0.
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Then,

24 4(x + E3)2V/n? +4x2 9
LT R LS TNy
4(1+y) ox

where

C = (x+EVn2+ 4x2(\/n2 +4(x + E3)? — n)y

¥
—x/n2 +4(x + E3)? (\/n2 +4x2 — n)

x+E3 n? +4x2 -1
x n2+4(x+E3? —

(x + E3)2 - n% +4(x + E3)?
n? +4x2

is nonnegative if

which is true, since

X

is equivalent to

2n2E3x +n2E§ > 0.

L. Arkeryd, A. Nouri

And so, the function g is non-decreasing in x. It follows from g(0, E3) = O that g is

non-negative.

For the right inequality of (3.9), it is by symmetry enough to consider E3 < x. The
inequality is obtained by proving that g is bounded from above by a multiple of the

function % defined by

hix, E3) := (\/n2+4x2+2—n)(,/n2+4E§+2—n), x> 0.

For h we notice that (\/n2 +4y2 —n+2) > 2 (> y)fory < n (y > n). It follows that
h(x, Ez) >4forx, E3 <n,h(x, E3) >2-xforx >n, E3 <n,and h(x, E3) > x - E3

for x, E3 > n.

For x, E3 < n, g(x, E3) is positive and bounded from above by some constant c.

We thus require K > %. For x, E3 > n we start from

1+ 2 1+
(,/n2+4y2—n) J/=(2y)l+y( —n2+1—i) i’
4y 2y

n2 2

n

n 1 I+y
:(2y)l+y(l+—2(9—2+1)_7 ——) ,
yo 4y

8

which gives

2y

15 1+
eyt —a +y)3—2nyy > (\/m— n) T )™ — (4927
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It follows that

g(x, E3) <2177 ((x + Bl — xr E3‘+V) A +9)2n(x” + EY)
— o+ (x((x + E3) —x7) + E3((x + E3)? — Eg)) +(1+7)2n(x” + EY)
< 2P Eax¥ 4+ 2% px?

which is bounded by a multiple of A(x, E3) in this domain. This also holds for x >
n, E3 < n with an analogous proof. O

Proof of Theorem 2.1. By Lemma 3.1, for any fixed initial data f;, given n.; > 0, there
is a positive time Ty and n, > 0 such that any solution n(¢) of (2.1-3) is bounded
from below by 7, on [0, Tp]. Let I denote the closed and convex subset of C ([0, Tp])
consisting of the functions n in C ([0, Ty]) such that n(0) = n.; and "2—* < n(t) < Moy,
t € [0, Tp]. A local in time solution to Egs. (2.1-3) is found as a fixed point of the
following map. Let a (large) truncation value P be defined for the linear part of the
collision operator. Let ® be the map defined on /C by ®(n) = m, where

m(t) = Mo — / f@, pdp, tel0,Tp],

and f is the mild solution in C ([0, 10]; LY for some 7 defined below with 0 < 7y < T,
to

of
o = ¢ U, (3.10)
£, p)= fi(p),

with

cP(fin) = n/ |AI*8(p1 — p2 — p3)8(E1 — Ey — E3)[8(p — p1)
=38(p — p2) —8(p — p3)1(fafs — fi(f2+ f3))dpidpadps3
—n/x‘,,|<p|/i|26(p1 — p2— p3)8(E1 — Ex — E3)[8(p — p1)
—38(p — p2) — 8(p — p3)1fidpidp2dps.

Here x|p/<p is the characteristic function of the set where |p| < P. We notice that
the discussion after Lemma 3.1 also holds for (3.10). Writing Eq. (3.10) in exponential
form and estimating the solution from below by the term containing the initial value, it
follows that the bound of n from below, n., can be taken independent of P because the
first term to the right in (3.5) can in this way be bounded from below uniformly in P on
any time interval.

Given n, amild solution f for (3.10) can be constructed as the limit of the nonnegative
sequence (f;), defined by fo = f; and

afj+1
ot

+ i1 Cl (i) = CL (fj,n),
fi+1(0, p) = fi(p).

(3.11)
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The collision frequency is
CP(f.n) = nl2 / APS(p — p2 — p3)S(Ep — Ex — E3) frdpadps
+2 / |A*8(p1 — p2 — P)S(E| — Ez — E) fdpidp:
+/ Xipl<P|AI*8(p — p2 — p3)8(E, — E2 — E3)dpadps],

which preserves positivity together with the gain term CJ (f,n) = CP(f,n) +

fClP(f, n). For any nonnegative functions f, g € L' and any n € [0, Mp], it holds
that

/ (P (fm) = CP (g, ) (p)ldp

< kn(P2+/f(p)dp+/g(p)dp)/I(f—g)(p)ldp- (3.12)

¢
For 79 > 0 smaller than T (pdpiP™

is uniformly bounded by 2 [  f;(p)dp and converges in C ([0, 19]; L") to a mild solution
f of (3.10) (using (3.12) and induction), since

sup |(fje1 — [ )t = kto sup [(fj — fj—0D@ ), jeN

te[0,79] t€[0,10]

where c is a suitable constant, the sequence (f;)

The nonnegative solution f is unique in C ([0, 19]; L') by the L'-Lipschitz property
(3.12)of C* (-, n). The time-interval [0, o] can be so chosen that m (f) = ® (n)(t) > %n*
uniformly forn € K and 0 < ¢ < 19.

The map @ is continuous. Indeed, let (n, n) € K x Kandm = & (n) resp.m = ®(n).
Then for ¢t < 19,

t ~
/I(f—f)(t,p)ldpfkt I n =il |+k/o /I(f—f)(s,p)ldpds.

Consequently, for T small

sup /|<f—f)(t,p)|dp <kt |n—illc, (3.13)

tel0,7]
and so
m—mllco<kt||n—7 o .

The continuity of ® on [0, 79] follows. Moreover, the map ® is compact by Arzela-
Ascoli. Indeed ® (K) is bounded on [0, 7], since %n* < d(n)(t) < My fort € [0, 19],
n € K. Besides it is equicontinuous, since

[ (n) (1) — P(n) ()] = I/f(tl,P)dP—/f(tz,P)dpl

< Iti — 1| sup /IC(f,n)(t,p)IdP

t€[0,79]



Bose Condensates in Interaction with Excitations 779

<k( sw [ repapr e sup / f (e p)dp)) i = 1o

16[0 0] te[0,79]
= Z/ﬁ(p)dp(P2+2/ﬁ(p)dp) i —nl, nek.

Consequently, there is a pair of functions (fP, nf) e C([0, 1o], LY x C([0, 19]), such
that £ is nonnegative and satisfies (3.10) in mild form with a truncation for | p |> P
in the linear part of the collision operator, and n’ being a fixed point of ®, satisfies the
corresponding equation (2.2) in mild form. Since [ C¥(f?, n?)dp is continuous in 7,

the solution n” is continuously differentiable in ¢ and satisfies (2.2) in strong form. Also

fF satisfies (2.1), (2.3) for C* in strong form since

Lemma 3.5. The family (c? (fP, nf)(t)), t € [0, Tol, withvaluesin L', is t-continuous
in the L'-norm, uniformly with respect to P and t.

Proof of Lemma 3.5. Let us first discuss the time difference in the linear term from
CP(ff nlyt+n) —CP(fP nl) @), .

/ |/dp1dp2dp3X\p|<P|A|28(p1_p2_p3)8(E1_E2 — E3)[8(p — p1) —8(p — p2)

—8(p — p)IfL +h)_/dpldPZdP3X\p|<P|A|28(pl — p2— p3)8(E| — Ex—E3)

x[8(p = p1) = 8(p — p2) — 8(p — p)1S ®)ldp. (3.14)

We move the difference through, one factor at a time. We recall that f 1+
|p1?) £F (p, t)dp is uniformly in P and ¢ bounded, and that nf () is t-continuous uni-
formly in P. When the factor flP (t+h) — flP (t) appears, it is written as an integral

ftHh CP(fP, nf)(s)ds, using the mild form of the equation. Here ct (fP, nf) can be
estimated similarly to the proof of Lemma 3.1. Consider again the linear term

/ dS/dp/dpldpzdP3X|p\<P|A|25(P1—Pz—P3)5(E1 — E> — E3)8(p—p1)
t

/X|p1|<P|A|28(p/1 — phy — P3)S(E\ — E5 — E5)8(p1 — py) f (P, )dpidphdps.
(3.15)

Use the computation of X3 in the proof of Lemma 3.1 to estimate the outer integral with
respect to dpdpidpadps. This gives a bound

K /0 Y dnn /O " radr, / APS(p) — ph — PRS(E] — E5 — ENS(p1 — p))
x f(p}. $)dp\dpdp}
_ k/ooo an? [ V3PS = ps — pB(E} — B3~ EDS(o1 - b))
x f(p}. $)dp|dpdp}

=k / |AI8(p| — ph — PYS(E} — E5 — EL) f(p), s)dp)dphdp

></|P1|<3(pl — pdpi.
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Again using the X3-computation for the remaining integral gives the bound

k /0 drir2f (). s) / drsry < k / P10, Pf (). 5).

And so the final integration ftﬂh ds gives the bound hk supy; ;45 J P> f(p,s)dp. It fol-

lows that (3.15), uniformly in P and ¢, Ll-converges to zero when 27 — 0. That holds in
a similar way for the other terms in (3.14), and for the non-linear terms of C” (f¥, nl’).
O

The conservation of total mass follows from the fixed point property. The bounded-
ness of the energy of £ follows from the proof of Lemma 3.1. Using (3.4) the integrals

Ja+ p>) f Pdp are also uniformly in P bounded. Moreover, the estimate of Lemma 3.4
holds uniformly in P for f¥. Observing that n, is so chosen that for any P, nf > n, on
any subinterval [0, TO/] of [0, Ty] where n f exists, the result can for each P be extended
by iteration to the whole interval of time [0, Tp].

The f P>s are also the limits in C([0, Tpl; L{+p2) of increasing sequences ( ij ). It

will be used in the study of lim p_, f ¥ below, that such ff ’s share with the f’s any
uniform bound for (2 + y)-moments. The increasing sequences of approximations are
defined by £ = 0and

8f]+]
Jat
=Co(fF ny+2nf / |A X1p1<p8(p1 — p2 — P)S(E1 — Ex — Ep) fF dp1dpa,

Fh00. p) = fi(P)xipi<p- (3.16)

Sl (nF [ 1AP 010302 pr)3(E, — B2~ ExdpadpasCics”nD))

Here C; is defined by

Co(fon) = 2nl / APS(p — pa — p3)S(Ey — Es — E3) fadpadps
+ / |A*8(p1 — p2 — P)S(E1 — E2 — E)) fodpidp),
and
Co(fin) = nl / |AP8(p — p2 — p3)8(Ep — Ex — E3) f2 f3dpadps
) / APS(p1 — pr — PIS(E — Ex— Ep) fi fadprdpa

ey / APS(p1 — pa — PIS(E) — Es — Ep) frdprdpal.

Let us prove by induction that ( ij ), j € N, is an increasing sequence of nonnegative
functions bounded by 7. First, 0 < £ < fF and £ < f[', by definition of f{ and
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the nonnegativity of ¥ and flP . Then, assuming that fJP_ | = fjp and fDP_ = f P the
function f]+1 f~.P (resp. f¥ — f~jP) satisfies

P
D n
“T (ffa - ff)(nf/lAIZX|p|<p8(p —p2—p3)

x8(E, — Ey — E3)dpadps + Ci(f ¥, nl))
= Co(ff ) = Co(ff . nD). (Ffoy = F10.p) =0,

(resp.
afP =7 . ]
(- Dt / A Xip1<P(p — P2 — p3)
x8(E, — Ey — E3)dpadps + Ci(fF . nk))
= Co(fP nly = Co(FF 1 0Dy, (fF = FD) 0. p) = 0.)
Writing (/7 T f Py, p) (resp. (fF f P)(t, p)) in exponential form, and deducing

from the induction assumption that C (fP n, Py_cC (f L n P) (resp. C (f g Py~
C o(f ]P 11 ) is nonnegative, leads to the nonnegativity of (£ i+l f f )(t, p) (resp.
(f FP f ; )(t, p)). Its limit f FP satisfies the same equation as f P The collision operator

for the equation satisfied by f* — f7 is Lipschitz continuous similarly to (3.12), hence
ff=rr

It remains to prove that a subsequence of ( f L f ) converges in C ([0, Tp], L{ﬂ,z) X
C([0, To]), and that its limit solves the system (2.1-3). Using Arzela-Ascoli as above,
the sequence (n?)is compact in C ([0, Tp]).
Lemma 3.6. Given t € [0, Ty, the family (g¥ (1)) = ([|A*xp|<p8(p1 — p2 —
p)S(Ey — Ex — Ep)flp(l‘)dpldpg) is compact in L. This also holds for the family
(Ci(fP . nEy@)).

Proof of Lemma 3.6. By definition,

¢" (D) = xipp / APSES(p1 = pa + p)S(E1 = Ea + E)dpidp

1
= Xip|<P / AP £ (1) / 8(F(s) = O)dsdry,
—1

where

F(s) := \/(2|p|r1s —r? = pH2 —nQlplris —r} — pH +E, — E.
Then,

F(s) = 0 iif 2|plris —r} — p?)? —nQlplris —rf — p*) — (E, — E1)* =0
and 71 > |p|

n—Jn?+4(E, — E1)?

=:2|plrs —r? — p?
3 Iplr =P

iif 2|plris — r12 - p2 =

and r; > |p]|.
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Moreover,
pin (2@Iplns = rF = p) = n)
F'(s) = ,
F(s) — (Ep — E)
so that
o Aplny/n? +4E, — E1)?
[F($)] = )

|Ep — E1

And so, up to an angular factor,

Xipl<p [T <
" (p) = Lpi=P / APr S
Pl Jip)

|Ep - E1|
Jn? +4E, — E

_ Xlpl<P /+oo |A|2r1flp |E, — Eq]
\

Xl5|<1dr

Pl Jip) \/nZ +4(E, — E)?
XX 2r242p2an— BT A E,—ED2| <t pln 471
Moreover,
2rf +2p% +n — \/n? +4(E, — E1)?| < 4|pln
if and only if
Jn2+4(E, — E0? <207 v drr +207 4,
and

2r12 —drr +2r+n < \/n2+4(Ep — E)2.

Straightforward computations show that the first inequality is satisfied for any (n, p, p1).
The second inequality is equivalent to

3 3
r? — 3rr13 + (4r2 + —n)rl2 — 3r(r2 + z)rl +rt 4+ Znr? >0,
4 2 4
which is also true for any (n, p1, p), since its left hand side is equal to
4 2 3
(ri—r)"+ @y —r)(rnr+ Zn).

And so,
|Ep - E1|

dl”l.

Xlpl<P roo 2
¢f(p) = ”—/ A (p1, p1 — p. P T
Pl Jip) Jn? +4E, — E

We next prove the L'-compactness of (g©)(r). First,

lim gl (p)dp =o.

K—+00 Ipl>K
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Indeed,

+00 r
/ ¢"(p)dp < k / P () / Fydrsdr,
|p|>K K K

+00 k
<k / ri fPrndr < e / P2l (p)dp,

K

which uniformly in P and ¢ tends to zero when K — +00.
Let us prove that for fixed K > 0,

lim / 187 (0 + W xXipeni<k — 87 (D) xipl<kldp =0, (3.17)

uniformly with respect to P and ¢. It holds that

Xip+h|<P  Xpl<pP dp
/ lgP(p+h)—gP(P)|dP§Mo/ | Hipthi<p _ Xipl<p AP
Ipl<K+1 Ipl<k+1 |p+hl pl|pl
- |Ep+n — Efl
+/f1P/ |A%(p1, p1 — p—h, p+h)| &
[pl<K+1 \/n2+4(Ep+h _ El)z

|E, — Ei] d
i 1L 4y + 0.

Jn2+4E, — 2 1P

~|A%(p1, p1 — p, D)l

The inner p-integral in the last term of the previous inequality tends to zero when h
tends to zero, uniformly with respect to p1, and so (3.17) follows.
For the family C;(fF, nf) it is enough to consider a sequence (P;) tending to infin-

. . P .. . S
ity, for which (n.”) is uniformly in 7 convergent. From there the proof is similar to the
previous case, since

. 2 [t |Ep — Eo
CusT ) = (2 [ 1A dr,
lpl Jo \/n2+4(Ep — E»)?
2 [t E>)+ E
+ = / AP 27 p drz).
lplJo

2 +4(Ey + Ep)?
O

We can now take a subsequence (g7, él(fP’, nf’), nf’) with P; tending to infinity,
converging for rational ¢ to a limit (g, /, n.), and will for such ¢ prove that (f%) is
a Cauchy sequence in L'. The Cauchy property for irrational ¢ then follows using
Lemma 3.5.

To prove that (f) is a Cauchy sequence in L', split 7 — £ into

Py

fPl/ _ fPI// — (fPI’ _ f/

~P/ ~P " ~P// 7
)+(fjl _fjl )+(fjl _fP/ )
By the estimate of Lemma 3.4 it is enough to prove the convergence on compact p-sets.
On any such set the factor f |A|2X|p|<p8(p — p2— p3)8(E, — E» — E3)dpadps in the
left hand side of (3.16) does not depend on P for P large enough.
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It follows from Egs. (3.10) and (3.16) for f Pr ﬁ'l, and from the cancelation of

the inhomogeneous term in the right hand side of the equation, that

llm (f‘Pl/ _ JZ}PI/

Jj—>+00

) =0,

uniformly with respect to I’ and 7. It remains to prove that for J given,

im  (f} —f") =0

l'—+00,l" —+00

in the L!-sense. Consider first the case J = 1. In (3.16) for ﬂp’/, the term

<Py Py =
fine! / |A1> x| p1<p8(p — p2 — p3)8(E, — E2 — E3)dpadps

. . Py . .
to the left can be written for n,, plus a term in n. — n.", which tends to zero in L,
when I’ — oo. The L' limit of the right hand side is n.g. So using the L'-conver-

= . =Py . x
gence of the Cp-term, (3.16) gives that f, " converges in L' to some f). It follows
that C’g ( flp’ , nf ') converges in L't Cg( f1 , n¢). We can now repeat the convergence

argument for fZP’ " By finite induction for j =1, ..., J, the desired convergence holds.
Also f =1lim fP e L', and

9 _
8—]:+f(nc/ |A*x8(p — pa — p3)8(E, — E2 — E3)dpadps + h)

= Co(fine) +2ncg. [0, p) = fi(p).

But the L'-convergence of (f") and Lemma 3.4 imply that

g= llilgogpl = zlggo/ |AP X xip1<P8(p1 — p2 — P)S(E1 — Ex — Ep) f dp1dpa

=/|A|2x8(p1 — p2— P)S(E1 — E2 — E,) fidprdpa,

h= lim Ci(ff nly = Ci(fne).
—> 00

And so (f, n.) satisfies (2.1-3) on [0, Tp] in mild form with the |p|2+y—m0ment of f
bounded in L. This can be continued up to any time 7', since by (3.5) inf,¢jo,7[ nc(t) > 0
for any time interval [0, T where ( f, n.) exists. The C!-properties of f, n. with respect
to time, follow as above for f P n f . O
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4. The Special Cases |p| << po and |p| >> po

In the case |p| << po the collision operator becomes

C(f.ne) = kn, / E(Pl)E(Png(m)
|pil=<r (gnc)

x[8(p—p1) =8(p—p2) = 8(p — p)I(A + f1) fof3 — fi(l + f2)
x(1+ f3))dp1dp>dps3

8(p1 — p2 — p3)8(E1 — Ex — E3)

1 p2 p2 p2
=kn.’ / Ip1l(1+ =25 [ pal (1 + =2 | p3l (1 + —=5)8(p1 — p2 — p3)
[pil<A 4170 417() 4170

x8(Ey — Ex — E3)[8(p — p1) —8(p — p2) — 8(p — p3)]
x(fofs — il + 2+ f3))dpidp2dp;3
1

=kn.? /I | E\E2E38(p1 — p2 — p3)8(c(Ey — Ex — E3)[8(p — p1)
Pil<A
—8(p — p2) —8(p — p)1(f2f3 — il + fo+ f3))dp1dp2dp3,

. ~ 2
with E(|p|) = |pl(1 + 4”73)-
Global conservation of total mass and of momentum are obtained as in the general
case. And so energy is globally bounded, since the p-domain is bounded.

Lemma 4.1.
| / C(fone)(p)dp| < ke / F(p)dp)(1 + / F(p)dp).

Proof of Lemma 4.1.

I/C(f, ne)(p)dpl < kne ™ /p1|<)» E(p1)E(p2)E(p3)
8(p1 — p2 — p3)8(E(p1) — E(p2) — E(p3))(f2f3+ f1(1 + f2 + f3))dpidp2dp3
= kng! /lpiISA E\E2E38(p1 — p2 — p3)S(E1 — Ex = E3)(fafs + il + o+ f3)
xdpidp2dps. 4.1

For controlling the f f3 term of (4.1), use spherical coordinates for p, and p3 with
the axis for p3 directed by p; and denote by ¢3 the azimuthal angle related to p3. Then

n;! / XE(pDE(P)E(p3)8(p1 — pa — pa)S(E(p1) — E(p2) — E(p3))
x f(p2) f(p3)dpidpadps

A 5 r 5 B N
= kn?! / 2Esf(p2) / P2 E3(Ey + E3) f(p3) Xdradrs,
0 0

where

1
~ ~ ~ kn,.
X=/ XS(E(,/r22+r32+2r2r3s)—EZ—E3)ds < nc,
— mnr3

1
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since

2

. . . ry + r32 +2rr3s
5(E(,/r22 + 12+ 2ror3s) — By — E3) = 5(s = §)
rr3 E/(‘/rz2 + r32 + 2ror3s)

4p(2)1 /r22 + r32 +2rr3s
= 3(s =13),

3 (4p5 + 3(r22 + r32 +2rr3s))

and

4p(2)r

———— <kr <kn.,, 0<r <A
4p3 +3r? -

And so,
kn ! / XE(pDE(p)E(p3)8(p1 — pa — p3)S(E(p1) — E(p2) — E(p3))
x f(p2) f(p3)dpi1dpadps

A s
< k/ rzE%fzdrz/ rE3 fadry < knc(/ f(p)dp)z.
0 0

In the same way the other terms of (4.1) can be bounded by kn, f f(p)dp or
kne([ f(p)dp)*. ©

Lemma 4.2. Given 0 < n, < My, there is a constant k such that for any n € [n,, Mo]
and isotropic functions (f, g) € L}r(R3) X L}r(R3) with L' norm bounded by My,

/I(C(f, n) = C(g, m)(p)ldp Sk/l(f—g)(P)IdP 4.2)

with k independent of n, f, g.

Proof of Lemma 4.2. Denoteby u(f) = (f2f3— fi(1+ f2+ f3)). Then by computations
similar to those used in the proof of Lemma 4.1,

/I(C(f,n)—C(g,n))(P)Idp
k o~ o~ - - -
< - / XE1E2E38(p1 — p2 — p3)8(Ey — Ex — E3)|u(f) — n(g)ldpidpadps
< kn(1+ / fdp+ / dp) [ 1f(p) — g(p)ldp.
[pI=<A [pI=A [pI=A

O

Lemma 4.3. Given T > 0, consider the problem (2.1-3) on the interval [0, T] with
0 <ng < Myandng; + fﬁ(|p|)dp = M. Then there is n, > 0 such that n(t) > ny
on [0, T] for any solution ( f, n¢).



Bose Condensates in Interaction with Excitations 787

Proof of Lemma 4.3. We know from Lemma 4.1 that

| / CUf o), pdp] < kne(r)( / £, pydp)(1 + / £t p)dp) < kMo(1 + Mone(o).

It follows that
dn,
dt

with f C(f,nc)dp bounded on [0, T]. And so n. is at most exponentially decreasing

ne
with respect to time. The lemma follows.

1
= —n¢- /C(f’ nC)dps
ne

After these preparations the proof of Theorem 2.2 becomes a simplified version of
the proof of Theorem 2.1.
For the intermediate temperature case of Theorem 2.3, we take

A =1 for |p| = o, |pil = & |p2| > @, |p3| = @,
|A]> =0 otherwise,

with the corresponding collision operator

Cfine) = n/ APS(p1 — pa — p3)S(E1 — E2 — E)8(p — p)
R3xR3xR3

—8(p — p2) —8(p — p)I(A+f1) 23 — [l + f2)(A + f3))dp1dp2dps.
(4.3)

Global conservation of total mass and of momentum are obtained as in the general case.
Moreover, multiplying (2.1) by p? and integrating, leads to

d
G [P pap =ne [ x5~ p2 = st = 3+ 4o

x(Ip11> = 1p2l* = 1p31)(fafs — fill + fo+ f3))dpidpardps
_2mgnc/C(f, ne)(t, pydp = 2mgnen.,.

Hence,
2 _ 2 2 2
/ p f, pydp = / p~fi(p)dp + mgn; (1) —mgng;. (4.4)
This implies that the integral
/ pPf(t. p)dp +mgnc() / f(@, p)dp + mgMo(2/ F @, p)dp +nc(r)

with kinetic and interaction energy components, is conserved.
The proof of Lemma 3.1 simplifies accordingly, as do the proofs of Lemma 3.2 and
Lemma 3.3, now leading to the estimates

2 kn,
[ ccrnawant < i( [ rwiap) + 2 [ 2 rap.
respectively
/ (C(f.m) — Clg. m)(p)ldp < k/(l 2PN~ 9(p)ldp.

Also the proofs of Lemma 3.4 and Lemma 3.5 simplify. From here the proof of Theorem
2.3 again becomes a simplified version of the proof of Theorem 2.1.
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