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ANTIPLANE SHEARING MOTIONS
OF A VISCO-PLASTIC SOLID*

J. M. GREENBERGt AND ANNE NOURIt

Abstract. The authors consider antiplane shearing motions of an incompressible isotropic
visco-plastic solid. The flow rule employed is a properly invariant generalization of Coulomb sliding
friction and assumes a constant yield stress or threshold above which plastic flow occurs. In this
model stresses above yield are possible; but when this condition obtains, the plastic flow rule forces
the plastic strain to change so as to lower the stress levels in the material and dissipate energy. On
the yield surface, the flow rule looks like the classical one for a rate independent elastic-perfectly
plastic material when the velocity gradients are small enough but differs from the classical model for
large gradients.
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1. Introduction. In this note we consider antiplane shearing motions of an in-
compressible isotropic visco-plastic solid. This work generalizes and compliments
earlier work of Greenberg [1], [2], where he considered simple shearing flows for such
materials. The flow rule we employ is a properly invariant generalization of Coulomb
sliding friction and assumes a constant yield stress or threshold above which plastic
flow occurs. As with most such theories, we assume a multiplicative decomposition of
the deformation gradient into an elastic and plastic part, and we assume further that
the deviatoric part of the Cauchy Stress tensor depends only on the elastic portion of
the deformation gradient. For antiplane shearing motions this decomposition presents
no precedence problems; i.e., does the elastic deformation precede the plastic or vice
versa? One key feature of this model is that stresses above ,yield are possible. When
this condition obtains, the plastic flow rule forces the plastic strain to change so as
to lower the stress levels in the material and dissipate energy. The principal difficulty
in formulating this model occurs when the stress is at yield. Motivated by results of
Seidman [3], Vtkin [4], and Filippov [5] on sliding modes induced by discontinuous
vector fields, we are led to the flow rule advanced in (2.38). On the yield surface, this
flow rule looks like the classical one for a rate independent elastic-perfectly plastic
material when the velocity gradients are small enough but differs from the classical
model for large gradients. This rule differentiates between loading and unloading and
generates an energy identity which guarantees that uniqueness obtains for initial and
initial-boundary value problems.

The organization of this paper is as follows. In 2 we develop the appropriate
equations describing antiplane shearing flows in visco-plastic solids. Section 3 focuses
on the uniqueness issue. Our basic estimate is that the energy associated with the
difference between two solutions generated by the same data is nonincreasing. This
estimate relies in an essential way on the definition of the plastic flow rule. In 4 we
examine a one-dimensional signalling problem and discuss (1) the structure of this
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944 J.M. GREENBERG AND A. NOURI

solution, and (2) a procedure to analytically obtain an approximate solution. We
also compare this solution with what obtains for the more studied model of a rate
independent elastic-perfectly plastic material where uniqueness fails. Section 5 deals
with a numerical experiment for a two-dimensional signalling problem in the corner
domain r > 0 and r/2 < 0 < 2r. Here the stresses are singular as one approaches the
corner and care must be taken in the implementation of the boundary conditions.

We note that in the last several years there have been a number of other efforts
aimed at capturing the essence of plastic flows. Antman and Szymczak [6], [7] have
advanced a finite deformation theory of such materials which is similar in spirit to ours
but differs in a number of essential ways. Their model is formally rate independent
where ours is not but their model also requires a history dependent strain hardening
mechanism. The predictions of the two theories are often qualitatively different; these
differences arise since in their model the imposition of large loads tends to elevate the
yield stress and create a temporally constant permanent plastic deformation, whereas
in our model such loading would generate a constant plastic deformation rate and thus
a plastic deformation which varies linearly in time. This may be seen by examining
the solution constructed in 4. Other efforts on elasto-plastic modelling may be found
in Coleman and Owen [8], Buhite and Owen [9], Coleman and nodgdon [10], and
Owen [11].

2. Model development. We say that a body is undergoing antiplane shear if
material points 1el 4- 2e2 4- 3ea move to x x el 4- x2e2 4- x3ea with

(2.1) Xl 1, X2 f2, and X3 3 + (1, 2, )

under the action of a Cauchy stress tensor of the form

T -Tr(el @ el 4- e2 (R) e2 4- ea (R) ea)
(2.2) 4-(Sllel ( el 4- $22e2 )e2 4- ’33e3 ()ea)

4-q31(el @ e3 4- e3 @ el) 4- S32(e2 @ e3 4- e3 (R) e2).

Here, 7r is the hydrostatic pressure and S is the deviatoric stress tensor and satisfies

(2.3) trace(S) $11 + $22 + $33 O.

Relative to the above basis, the matrix representation of the Cauchy stress is given
by

ff=-r 0 1 0 + 0 $22 $32
0 0 1 31 32 $33

and relative to the same basis the deformation gradient is given by

(2.5)
1 0 O).T’= 0 1 0

F31 F32 1

el 0 e2 1 and e3 0 are the standard basis elements for R3 and
0 0 1

e (R) ej eiej
3- are the standard basis elements for linear operators from R3 to R3.
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where

0 and F32-- 0(2.6) f31-- 0Xl 0x--"
Noting that matrices

1
.dog o

a

satisfy the commutation relation

oo)1 0
b 1

we feel justified in decomposing the deformation gradient " into its elastic and plastic
parts : and P by

def def(2.8) :-- 0 1 0 and :- 0 1 0
e31 e32 1 P31 P32 1

where

(2.9)
1 0 0)Y P P 0 1 0

e31 q- P31 e32 q- P32 1

For such antiplane shear flows one need not make any assumption about the prece-
dence of the elastic and plastic parts of the flow.

Our basic constitutive assumption is that under a change of reference frame E
transforms in the same way as F and that the deviatoric stress S is an isotropic, frame
indifferent, trace free function of the elastic deformation gradient E.2 The constraint
that S is an isotropic, frame indifferent function of E implies that must have the
functional form

(2.10) S aI +/3ET + .-T-1
or

(2.11)3

(1S=a 0
0

1 0 + 0 1 e32 +’ e31e32 l+e2 -e32
2 2 10 1 e31 e32 1+e31+e32 -e31 -e32

where a, , and are functions of the invariants of T, in this case the scalar

el + e322 Equation (2.4) implies that ,921 ,12 0 and this, in turn, implies that
? 0 while the condition that traces 0 implies that a -/(1 + ((el + e2)/3)).
Combining these identities with (2.11) yields

(2.12) 8=3 0
0 e31
+

+e32

2 E is the tensor whose matrix representation relative to the basis elements e (R) ej is given by

(z8).
3 For details see Gurtin [12].
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In the sequel we shall assume that f is a positive constant. Equation (2.12) implies
that we may regard the elements $31 and $32 as basic descriptors of our system. In
terms of these and : take the form

(2.13)

and

(2.14)

1 0 0 /0 1 0
$31 $32

1

We now turn to the equations of motion. Equation (2.1) implies that the Eulerian
velocity field u is of the form

(2.15)

where

(2.16) oU(Xl, X2, ll) _-7- (Xl, X2, ;I);

and (2.16), when combined with (2.6), implies that

(2.17) 0F31 (u
0

o1 (Xl

and

(2.18) 0F32 Ou
O.

Or1 Ox2

Additionally, (2.9)and (2.14)imply that

31(2.19) F31 -[- P31

and

32(2.20) F32 / P32-

Balance of momentum in the el and e2 directions implies that

(2.21)
0 (Tr + (S1-[-$322)) 6q ( (S1+S2))30Xl 3

71"+ ---0

or equivalently that

7l" 71"0(X3, t)- (SI -- S2) (Xl, X2, t)
3
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whereas balance of momentum in the ea direction yields

0U (31 0S32 (71"0(2.23) P00 0Xl 0X2 --0X"
Here, P0 is the constant mass density of the material. Since 070/013 depends on X3
and tl, whereas all quantities on the left-hand side of (2.23) depend .only on 11, 12,
and tl, we conclude that for antiplane shearing flows Oro/Ox3 is independent of 13.
In what follows we shall assume this quantity is zero.

We now turn our attention to "yield condition" and the flow rule for the plastic
strain tensor :P of (2.8)2. We assume that yield is determined by whether the scalar
SI -- S2 exceeds a threshold S2 or not. This assumption relies on the special form
of , (see (2.13)) and is equivalent to a yield criteria determined by the norm of S,
where

(2.24) llSl12 def 2

or one based on the maximum shear stress

(2.25) S,2 def
max IISe-(Se,e)ell

{el.=l}

In the sequel we let H denote the Heaviside function

(2.26) H(x) :----def { 0,1, x>0X< 0

and define 1 and 2 by

"-$321 (S321
(2.27) /)1 - -o H(x S) dx

and

$31 --$322 U x S dx

where S > 0 is the "yield stress."
We shall confine our attention to the Coulomb type sliding law

(2.29) P31 1

1 /To 031
$31 H(S + S2 Sy2)ZT0

and

(2.30) 0P32_ 1 01
OI To 032

$32 H(S _+. S2/T0

though much of what we say applies equally well to the flow rule

(2.31) 0P31 Sy
01 flTo oqS31 flTo4S1 -1- S2
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and

The constant/3 is the shear modulus in (2.12), Su is the yield stress, and To > 0 is
a fixed relaxation time. The flow rule is defined for S1 + S2 S2 and the problem
remains to define it on the yield surface.

We first note that if $321 + $322 S2, we can combine (2.17)-(2.20) and (2.29) and
(2.30) to obtain the following system for $31, $32, and u:

1 0S31 OqZt -31H(l -- S322 Sy2)(2.33)
# Ot OXl- #To

1 0S32 Ou -$32H(S + S2 $2)(2.34) Otl Ox2 To
and

Ou OS3i(2.35) Po Otl OXl OX2
O.

Equations (2.33) and (2.34) imply that for $32 / $322 # S2,

(2.36)

Ou Ou )o (s + s)= 2# s- +

(s + S#)H(S# +S S)To
and (2.36), together with the results of [3], [4], [5], motivates our extension of the flow
rule on the yield surface Sl + S2 Su2. We extend (2.29) and (2.30) to the yield
surface S321 + S2 S2 by

(2.37)
Op3 aS31 and 0P32 aS32
Otx #To Ot #To

where

(2.38) a

1 ifSI+S2=S2 and
i)u Ous -f + s - >

if 1 - S2Ou Ou
0 < Sl +sb- <

0 ifSg +S2=S2 and
Ou Ou

S31 -Xl -’[-" S3222 <0.

2
4

and

4 The relations (2.37) and (2.38) transform in a frame indifferent fashion.
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In the sequel we shall confine our attention to the extended flow rule (2.29), (2.30),
(2.37) and (2.38). The relevant equations are

1 0S31 Ou c$31
(2.39)

/3 0tl OXl- To’

1 032 32(2.40)
/3 I 0X2- /3To’

0U 031 032(2.41) P00 0Xl 0X2
0,

where now

(2.42)
1 if321-}- 2 > Sy2,

To ( Ou
i irs+S2=S2 and S31

S31Xl -{-S32X2 if S1 -}- S2 Sy2

flTo ( Ou
+$32Ox) _< i,

and

0 if,_qgl q-Sg2=Sy2 and

0 ifSl +S2 <Su2,

and these are solved together with appropriate initial and boundary conditions. Hav-
ing solved the above system for $31, $32, and u we recover the deformation gradients
F31 and F32 by solving

(2.43) 0F31 Ou
0 and 0F32 Ou

0
01 OX (,1

together with appropriate initial conditions. The plastic strains P31 and P32 are then
given by

3231 and P31 F32(2.44) P31

These equations should be contrasted with what obtains in the more commonly stud-
ied theory of rate independent elastic-perfectly plastic materials. In that theory (2.37),
(2.39)-(2.41), (2.43) and (2.44) still hold but c is given by
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if S +S S2 and

To ( Ou
0 -- --y2 S31X

ZT0(0 ifSg+S2:S2 and S3-x+S32-x2 <0,

0 ifSl +$322 <Sy2.

The unboundedness of a on the yield surface $321 + $322 S2 presents difficulties
not encountered in our model. In particular, across nonstationary shocks where F31,
F32, u, $3, and $32 experience jump discontinuities, we must admit jumps in the
plastic strains P3 and p32. The reason for this is that in the classical rate indepen-
dent theory--a as in (2.45)--we must allow "dirac" type singularities in the terms
aS3/flTo and aS32/flTo and therefore, we cannot conclude that

Here, c is the normal velocity of the shock wave and n=(n, n2) is the unit normal to
the shock. In our model c is bounded, no "dirac" type singularities arise in the terms
o$31/T0 and oS32/flTo, and thus (2.46) holds. This implies that with our model all
nonstationary shocks satisfy c2 1; that is, they propagate with the speed of elastic
signals. With our model, the only surfaces across which the plastic strains can jump
are stationary, i.e., c- 0. Such jumps are also allowed in the classical theory.

We conclude this section by writing down a dimensionless version (2.39)-(2.44).
We let

x= -To’ Y=V flTo’ t=oo
v= u, va= fl, ra= fl,

and observe that (2.39)-(2.42) transform to

OT31 OV
Ot OX

(2.49) 0T32 OV
Ot Oy

where

(V CT31 0T32
Ot cox Oy =0,
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and

1( Ov Or)
1( Ov
y2 "r31 Xl -I- T32-x2 >1,

if T32 + r322 T
2 and

O 2y2 T31-Xl -I-T32-X2 < 1,

0 ifT" +r322=T2 and 1( Ov Or)
0 ifT"1+T2 <T2.

The transformed versions of (2.43) and (2.44) are

(2.52) OF31 Ov 0F32
Ot Ox

0 and
0t

and

v
=0

Oy

(2.53) P31 F31 T31 and p32 F32 r32.

3. Uniqueness results. Our task in this section is to establish the following
THEOREM 3.1. Let be an open domain in R2 with smooth boundary Of. Then,

there is at most one piecewise smooth,5 Lo( solution (T3:, T32, V) to (2.48)--(2.51)
satisfying

(3.1) lim (T3:, r32, v)(x, y, t) (Tgl T302 vO)(x y)
t__0+

(3.2) lim (nlT3 + n2T32)(X, y, t) f (X, y, t),
(,u)ea;(,u)oa

(3.3) lim v(x, y, t) f2(x, y, t).
(,u)ea;(,u)oa:

Here O 01 02, 0 02 is at worst a finite collection of points, n=(n, n2)
is the unit exteor nodal to 0, and the fi’s are smooth functions in Loc(0i
[0,)).

Proof. We first note that if (T, T2 Vb) and (T, T2 Va) are two solutions to
(2.48)-(2.51), then their differences satis

o (- 1)-
o

(a.4) o ( ) -( "2)’

(3.)
0 (b ) 0
0-- -y vb va b

T 2
aT2

0 (b_o)_ o (:_::)_ o (b_g) 0"0-
5 This formulation admits shocks which propagate with normal velocity c satisfying c2 1.
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Here, &b and &a represent the bounded function & defined in (2.51) evaluated at
(3bl, r3b2, Vb) and (’rl z’2 va), respectively. The last three identities imply that

(3.7)

We now claim that

def(3.8) p’--" (T3bl Tl b
Tb31 aaTl 4- (T2 T2 bT2 aT2

is nonnegative. In verifying this assertion there is no loss in generality in assuming
that

(3.9) 0 < &a <_ &b < 1.

We first note that p may be rewritten as

(.0) [(1 ) +( )]
4-(b a) [(T3bl)2 a b )2 a b+ ( T2T2

If & 0, then (TI)2 / (’2)2 < Ty2 and b a b, + < v/() + () a.d,T T
therefore, (3.10) implies that

(3.11) p > &bv/(T3bl)2 4- (T3b2)2 V/(T3bl)2 + (T352)2 TU

If &b 0, then (3.10) implies that p 0, whereas if 0 < &b < 1, (2.51) implies
that V/(T3bl)2 + (T3b2)2 > TU, and (3.11) then yields p > 0. We now turn to the case
where 0 < &a < &b < 1. If &b &a, the nonnegativity of p follows from (3.10),
and thus to complete the verification that p >_ 0 it suffices to consider the case where
0 < &a < &b < 1. Here we know that (Ttl)24-(Tt2)2 Ty2 and (T3bl)24-(T3b2) 2 > Ty2. The

a b V/(T3b)2 4- (T352)2, impliesformer identity, along with (3.10) and TxTb3 4-T2T2 <_ T
that

v > ao [( ,): +( ):]

+(-o)V/(,) + () (v/() + ()-),
and (3.12), 0 < &a < &b < 1, and (T3b)2 + (T3b2)2 > 2 complete the proof of the
assertion that p is nonnegative.

For any (xo, Yo) 2, ro > 0, T > 0, and 0 < t < T we let

(3.13) C(xo, Yo r0 t) def:= {(x,y)l(x x0)2 + (y y0)2 ( (r0 + T- t)2}.
The identity (3.7) implies that if (7"b3, Tb32, Vb) and (Tx, T2 Va) are two solutions

of (2.48)-(2.51) taking on the same data (3.1)-(3.3), then

1 fv ((T3b Ttl)2 4- (T3b2 Tt2)2 4- (vb va)2) dx dy(3.14)
(zo,o,ro,t)nf
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Here,

(3.15) OC(xo, Yo, ro, t) ((x, y)l(x xo)2 / (y yo)2 (ro / T

The vector ((x xo)/(ro + T- t), (y yo)/(ro + T t)) is the unit exterior normal
to OC(xo, yo, ro, t), and ds is arc length along OC(xo, Yo, ro, t). Since

--(Vb Va) ( (X Xo)(Tb31-- Tl) (Y Yo)(Tb32
(ro + T- t) + (ro + T- t)

> V/( Jl = +
1> ----((T3bl TI -- (T3b2 T2)2 -- (Vb va)2)
2

and since p >_ 0, we see that all three integrals in (3.15) are nonnegative and their
sum is zero. From this we obtain

(3.17) ; ((T3bl TI)2 -- (T3b2 T2)2 - (Vb va)2)dxdy O,
Jc(xo,Yo,ro,T)N

which is the desired uniqueness result.

4. A signalling problem. In this section we consider an elementary one-dimen-
sional signalling problem for the normalized system (2.48)-(2.53). The solution is of
the form

(4.1) (T31, T32, V) (T(X, t), O, V(X, t)), 0 < X < OC,

where T and v satisfy

(4.2)
OT OV
Ot Ox --&T, 0 < X < C,

(4.3)
Ov OT
Ot OX O, 0 < X <

and

(4.4)

1 if T2 > Ty2,
1 if r2 %2
r ov if T2 2

0 if r2 rv2
0 if T2 < Ty2,

and

and

and

r Ov
0-> 1,

rOv<lo_<_
<0,



95. J.M. GI:tEENBEI:tG AND A. NOURI

FIG. 1

(x#, x#)

and the initial and boundary conditions

(a.s) 0) (0, 0), 0 < < oo

and

(4.6) v(0, t) --To, where TO

We note that the results of the previous section guarantee there is at most one solution
to the above problem.

In the region 0 _< t < x, we have (T, v) _= (0, 0). Moreover, T / V is continuous
across the curve t x and thus satisfies T_(t, t) + v_(t, t) =-- O. The difficult part of
the problem is to show there is a curve t (x), 0 < x < x#, with -1 < d/dx <_ 0,
such that in the region x < t < (x) with 0 < x < x#, T and v satisfy

(4.7) T > Ty,

(4.8)
OT OV OV Ov
Ot Ox

--T and
Ot Ox =0’

the boundary condition (4.6) and T_(t,t)/ v_(t,t) 0. On the curve t if(x)
we have lim__,0+ T(X, ff(x) e) TU and )(x) def

:-- lim__.0+ v(x, if(x) e) satisfies
0 <_ d/dx <_ TU. In the region if(x) < t and 0 < x < x# we have T(x, t) TU and
v(x, t) 3(x), whereas in x# _< x < t, T T and v(x, t) )(x#) =.--Ty (see Fig. 1).

The existence of a curve t if(x) with the desired properties may be established
by converting the system (4.6), (4.8), and T_ (t, t) + v_ (t, t) 0 to integral equations
for T and v in x < t, verifying that for 0 < t- x << 1 the stress satisfies T > T,
and finally by obtaining qualitative information on the level line t J(x) defined by
lim,._.,o+ T(X, if(X) e.) Tu.
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Rather than perusing that approach we shall show how to obtain simple approx-
imate solutions satisfying (4.6)-(4.8) and T_(t, t)+ v_ (t, t) 0 as well as approxima-
tions to the level line t (x).

We note that for each integer N _> 1 the system (4.8) has solutions

N

(4.9) VN --TO +E )(k) (t)x2k-1
k--1

and
N

(4.10)6 TN Ao(t) + E (k)x2k/2k
k--1

where the coefficients satisfy

(4.11)

(4.12) k + k 2k(2k + 1)Ak+l, 1 _< k _< N- 1,

and

(4.13) g + N ----0.

These solutions satisfy the boundary condition VN(0/, t) --To and have 2N + 1 free
parameters which are determined by insisting that the equation

(4.14) t) + t) o

is satisfied to O(t2N) as t 0+. The approximate curve t ,g(X) is subsequently
determined by solving TN(X,N(X)) Ty. An easy calculation shows that N(X)
O((To --Ty)/To) and dg/dx < 0 which guarantees that the number x defined by

,N(X) x is O((To- Tu)/To), and thus on the boundary x t, TN(t, t)+VN(t, t) is

at worst O((To- Tu)/To)2N+ for 0 _< t _< x. We continue the approximate solutions
to the rest of the region described by Fig. 1 via the extensions procedure used for the
exact solution; that is, for 0 < t < x,

(4.15) (TN, VN) (0, 0),

for JN(X) < t and 0 < x < x
(4.16) VN(X, t) VN(X, JN(X)) and TN(X, t) T,

and for x# _< x < t,

(4.17) VN(X,t) VN(X#,ffN(X#)) and TN(X,t) T.

We are then guaranteed that the error made in failing to meet the boundary condition
TN(t, t) + VN(t, t) 0 is at worst O((To Ty)/To)2N+ for all t > 0. We shall present
the details of this procedure for the case N 1.

In this case,

(4.18)

6 Here denotes differentiation with respect to t.
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and

(4.19) T1 (,’1,0 "- 1,1te-t + 0,1e-t) )l’le-tx2
2

and the insistence that Tl(t, t) + Vl(t, t) O(t3) as t --+ 0+ implies that

1,0 4. 0,1 TO

(4.20) Al,O )o,1 / 2A1,1 0

,0,1 51,1 0

and hence that

(3 + 5e-t)x)(4.21) vl TO --1 + 8

and

(4.22) T1 -- 3 + te- + 5e- 2

The approximate curve t ,71 (x) is obtained by solving TI(X, ,71(X)) Ty or equiva-
lently the equation

x2e-31 1 8Ty(4.23) 3 / 1e-J1 + 5e-J1
2 TO

The fact that 0 < Ty/To < 1 guarantees the unique solvability of this equation for
0 _< x << 1 and that 71(0) O(2((T0 %)/To)). A quick calculation also shows that

(4.24) d71 -2x
dx (8 4- 271 x2)

The number x, where 1(x)-- x satisfies

(4.25)

and for 0 < T0 TU small enough we are guaranteed that x O((To Ty)/To). This

estimate, when combined with (4.24), implies that -1 < d,l/dx for 0 _< x _< x.
Our final task is to show that the function

(4.26) I)I(X) def/’-T0--1+ (3 + 5e-Y (X) )x

satisfies

dOl(4.27) 0 <_ --x (x) _< %,

The defining relation (4.26) implies that

O<_x<_x.

(4.28)
d?)l (3+5e-J(x)) 5TOe-:Z()X[(X)
dx

(x) TO 8 8
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and this relationship, when combined with (4.23) and (4.24), implies that

(4.29) d01
dx

(x) TU -+- Toe--:II((X2 25rl) (8 + 2rl X2) + 20X2)
16(8 + 2, X2)

The fact that (x) > x for 0 < x < x O((To -Tu)/To) implies that the second
term in (4.29) is negative and this provides the desired upper bound for d/dx. The
desired lower bound is an immediate consequence of (4.28) and the bounds for d/dx.

We conclude this section by contrasting the above solution with what obtains if
we replace our flow rule--- given by (4.4)--with the one generated by (2.31) and
(2.32) and also by the flow rule associated with a rate independent elastic-perfectly
plastic material. In the former case, (4.2) is replaced by

(4.30)
0" Ov
Ot Ox --aTe,

and (4.4) is unchanged.
In the region 0 _< t < x we have (T, V) (0, 0), and T + V is continuous across

x t. For 0 _< x _< t _< 2(T0 TU)/TU we have

.ux Tut(4.31) V=--T0+--- and T=T0 2

for 0 < x < 2(T0 --Tu)/Tu and t > 2(’0 -Tu)/Tu we have

7"yX(4.32) v --To / --- and T TU,

and finally for 2(T0 --Tv)/T <_ X < t we have

(4.33) V=--Ty and T=Tv.

With this flow rule the curve t J(.) is the constant function J(x) 2(T0-
Tv)/Tv, 0 <_ X <_ 2(T0- Tv)/T. Equations (2.52) and (2.53), the initial conditions
(F31,P3)(x, 0) (0, 0) for x > 0, and (4.31)-(4.33) allow us to determine (F31,P3).
The result is

(4.34) (F31, P31)

(0, 0), 0 _< t < x,
+ x), 0 _< < t <

x)) (o-- < t(TO -- Ty X T01 Ty -- Ty -0 < x < 2(ro=)
r

o), < < t.

and

It is worth noting that the above solution is unique. This can be established using
the arguments of 3 directly on the system (4.30) and (4.3)-(4.6).

We now examine the signaling problem for a rate independent elastic-perfectly
plastic material. Equations (4.1)-(4.3) and (4.5) and (4.6) still hold, except now & is
given by

0 if T2 < Ty2

" 0v
(4.35) &= 0 ifT2=T2 and 3- <0,

r ov if T2 2 "r i:9v
3- =T and 0< O-"
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We also have

i)F31 i)v OP3(4.36) cot Ox =0’ Ot =aT, and F31=T+P31,

and these satisfy the initial conditions

(4.37) (F31, P31)(x, 0) (0, 0), x > O.

We seek solutions wih structure similar to that obtained for the previous two models.
Speeifieally, a shoek eurve t {(z) sueh ha in the region 0 < t < {(z),

(4.38) (F31, p31, T, v) (0, 0, 0, 0),

and in the region t > (x) the shear stress T is at yield, i.e.,

(4.39) T(X, t)= TU, (X) < t.

We interpret (4.3) and (4.36) as eonservation laws, and this, together with (4.38)
and (4.39), implies that on t {(),

(A0) -(, ()) + 0

and

d
(4.41) F(x,(x)) + v-(x,(x))x O.

Here, (v-, F)(x, (x)) lime_.o+ (v, F31)(x-e, (x)). The identity (4.39) so implies
that in t > (x) the velocity v is a function of x only. Near x 0 we choose

We now let

(4.47) x# A

(4.42) v(x, t) --To + AX, A > O.

With this choice we obtain

(4.43) Pal A(t (x)) + p_ (x)

and

(4.44) F31 Ty + A(t- (X)) + p_(x).

Equation (4.40), together with (0) 0, then yields

(4.45) (x) -(to x)
2ATy

and (4.41), (4.44), and (4.45)imply that

(4.46) p_()
(o ) .
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and note that

(a.as) _() > 0, O<_x<x#,

(4.49) p_ (x#) O,

and

(4.50)
d{
d--(x#) 1.

In the region (T (To Ax)2)/2ATu < t and 0 _< x < x# (To -u)/A our solution
is given by

(4.51) F31-- Ty -I- A It -I-
T( To AX 2 )2ATu

(4.52) P31--A It,-f- T( (To AX)2 )2ATy

(4.53) v --To + AX,

(4.54) T Ty.

The shock curve is continued to x > x# by

and in the region ((T} --T2y)/2ATy)t-(X--((To--Ty)/A)) < t and (To--Ty)/A X# < X,

(4.56) F31 Ty, P31 O, V --Ty, and T TU.

The line x x# (T0 Tu)/A is a stationary contact discontinuity and across it P3
jumps while the other fields are continuous. The interesting fact about the signaling
problem for this model is the lack of uniqueness of solutions; we have a compatible
solution for every A > 0. This observation points out one of the weaknesses of the
clsical model.

5. Computational experiments. In this section we present the results of a
computational experiment performed on the normalized system (2.48)-(2.52) when
the pressure gradient is zero. The results reported deal with a twdimensional gen-
eralization of the signalling problem of the previous section.

The experiment deals with the system (2.48)-(2.51) solved in the region r > 0
and r/2 < < 2r, where r x2 + y2. At time t 0 we sume that

(5.1) (T31, T32, V) (0, 0, 0)

for r > 0 and /2 < 0 < 2, and for t > 0 we sume that

(.) v , v(, -) 0, > 0,
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(xy

FG. 2

where TO > Ty, and again Ty > 0 is the yield stress.
The elastic version of this problem, namely, the system

(5.3) 0T31 Ov
Ot OX O,

(5.4) 0T32 OV
O,Ot Oy

0V (T31 (T32
(5.5) cot OX coy O,

together with (5.1) and (5.2), was considered by Keller and Blank [13]. They obtained
exact solutions to this and a number of other problems with self similar structure.
Relevant to us here is the singular nature of TI / T322 as r 0+. Their results
demonstrate that

This singular behavior also obtains for the plastic flow problem and forces us to
treat the boundary conditions in our numerical simulation carefully. Our integration
scheme for (2.48)-(2.51) is based on a symmetrized operator splitting algorithm for
the governing differential equations. At time t nh, n 0, 1, 2,..., our approximate
solution consists of lattice data

(5.7) (T3, 32, V)(nk,,) (T3, T32 V) ((2k 1)
h,

(2m 1__) h, nh)2 2

For the problem under consideration the boundaries are not part of the computational
lattice but are offset from it by a distance of hi2. The computational lattice is

(5.8) , {(k,m) k <_ 0 and m--0,1,+/-2,...} (2 ((k,m) k >_ 1 and m <_ 0}.

To update the data (5.7) we successively solve

(5.9) 0T31 OV 0T32 OV 07"31
Ot OX =0’ 0t =0’ and

0t Ox =0’ 0_<t_<:h,
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07.31 0T32 OV OV COT32=0, and =0, 0<_t_<h,(5.0) & 0, & Oy & Oy

and

0T32 OV
(5.11) 07"310 -&T31,

0t
--&T32, and 0, 0 <_ t _< h,

where of course & is defined in (2.51). For (5.9) we use the approximate solution
defined by (5.7) as initial data and let (T3, T2 V)(k,m) denote the value of this
solution at t h on the lattice 8. We then solve (5.10) using the (T,
as initial data and let (T23, T2 V2)(k,m) denote value of the solution at t h on
Finally, we solve (5.11) with (T321, T2 V2)(k,m) as initial data and let (T33 3, v3)(,)
denote the value of this solution at t h on S.

We then repeat the process solving (5.10) first with the data (5.7), and, we let
(TI,T2, V4)(k,m) denote the lattice update at t h. We then solve (5.9) using
(T341,7"342, V4)(k,m) as initial data and let (T, T2 V5)(k,m) denote the lattice update.
Finally we solve (5.11) with data (7.t, T2 v5)(k,,) and let (TI %62, V6)(k,,) denote

(nq-1)the lattice update at t h. The desired approximate solution (T3, T32, vj(k,m is then
obtained by averaging (TI T332, V3)(k,m) and (7.21,7.2, V6)(k,m); that is,

Of course, all of the intermediate updates are solved subject to the boundary con-
ditions of the original problem. Here these boundary conditions manifest them-
selves as reflection conditions at those lattice points that are a distance h/2 away
form the actual boundary. Formal accuracy could be maintained if we used either
(T331,7’332, v3)(k,m) or (T361, T362, V6)(k,m) for the updated approximate solution but either
of these updates alone would, over time, tend to introduce asymmetries into the ap-
proximates not present in the actual solution. These asymmetries are removed with
the algorithm employed.

The results of our experiment are shown in Figs. 3-7. Each snapshot shows two
different representations of the velocity field and the total shear stress, namely the
quantity v/TI + T2. This simulation was run with h 1/50, % 1, and TO 1.3.
The contours on the velocity plots are spaced 0.1 apart and run from v 0 to v 1.3.
The stress contours run from 1 to 3.2 in increments of 0.2. In these snapshots one
sees not only the plane wave solutions of the previous section but also the effect of
the corner singularity which are confined to the region 0 _< r _< t and 7r/2 < < 2r.

For comparison we have run the elastic version of this problem with the same
boundary conditions and same values of h, Ty, and 7.0. These results are shown in
Figs. 8-12.

It should be noted that for both problems the velocity fields satisfy the additional
condition

(5.13) lim v(r, O, t) O, < 0 < 27r
r-- + -and that our numerical solutions meet this consistency condition automatically.
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