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STATIONARY SOLUTIONS OF BOUNDARY VALUE PROBLEMS
FOR A MAXWELL-BOLTZMANN SYSTEM MODELLING

DEGENERATE SEMICONDUCTORS *

A. NOURI AND V. POUPAUD

Abstract. One of the most accurate models for carrier transport in semiconductors is based on
the Maxwell-Boltzmann system. Degeneracy effects are taken into account by the nonlinearity of the
collisions operator. We use two recent techniques developed for the study of kinetic models, upper
solutions and mean compactness results, to prove existence of stationary solutions with arbitrary
large boundary data, in any kind of geometries.
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Introduction. For bulk components, the drift diffusion equations give the basic
model for the transport of carriers. However, transport phenomena that occur in
submicron devices are due to hot and ballistic electrons. In these conditions, it is well
known that the drift diffusion model is no longer valid. The physics description needs
kinetic models. This paper is devoted to the analysis of one of the most accurate
kinetic models, the Maxwell-Boltzmann system.

We use the upper solutions technique of [8] to construct solutions for station-
ary boundary value problems. In a previous paper [10] we analyzed the Maxwell-
Boltzmann system for semiconductors but with a nondegeneracy assumption. Com-
pared to this previous work, the new difficulty is to control the nonlinearity of the
collision operator that takes into account the degeneracy effects. The main tools
for that are the mean compactness results of [4] and a monotonicity property of the
nonlinear collision the operator.

1. The kinetic model and the main result. In kinetic theory, the transport
process of charged particles in a self-consistent electromagnetic field is modelled by
the Vlasov-Maxwell equations. In semiconductor statistics [2], [3], the distribution
function depends on the position x and the wavevector p, instead of the velocity, as
in classical theory, in order to take into account some quantum phenomena. Then the
velocity and the energy of an electron are given functions of the wavevector. They are
related by the relation

1
Vp(p),v(p)

where (p), the energy of the particles, belongs to (Cg(IR3))3, v(p) is the velocity, and h
is the reduced Planck constant. For instance, with the parabolic band approximation,
we get
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where m* is the effective mass of electrons. Then we find the classical identity

But another model, often used in semiconductor physics, is given implicitly by

(.a) () +()

where c is the coefficient of nonparabolicity. Hence, for the sake of generality, we will
consider an arbitrary band diagram g(p). We only assume that there is a constant D
such that for any unitary vector e of 3, and any positive reals R and /,

meas{Ipl _< R and Iv(p). e] <_ /} < c(R)7.

This means that the velocity v cannot be concentrated along one direction. This
assumption is needed for using a compactness property on averages on p of solutions
of transport equations. Clearly, it is satisfied if g is given by (1.2) or (1.4).

Then the distribution f f(x,p) is determined as follows. Let gt be an open
bounded set of R3, modelling the device geometry. Let E_ denote the subset of the
boundary where the velocities are inward:

(1.6) r_,_ {(x,) e 0n s. v(). ,(x) < 0},

where u(x) is tile unit outward normal to Oft.
The distribution f solves the following Vlasov-Maxwell equations"

(.7) (). vf(x,) + F(x,). Vf(x,) C(f)(x,), x
q
[N(x)- p(x)] x(1.8) -Axe(x) e--

(1.9)
q
[v(x) ()(1.10) F(x, p) -The constants q, st, and #r are, respectively, the cilarge of the electron, the permit-

tivity, and the permeability of the semiconductor. Tile function N is the given doping
profile. We assume N in L(ft). The operator C is intended to model the collisions
between the electrons, impurities, and phonons of the semiconductor [7]. It is defined
by

(1.11)

C(f)(x,p) J[a s(p,p’)[m(p)f(x,p’)(1 f(x,p)) m(p’)f(x,p)(1 f(x,p’))] dp’.

The function rn is a Maxwellian:

(1.12) rn(p) exp(--g(p)/O),

where 0 is a physical constant related to the fixed temperature of the semiconductor.
The terms (1- f) in (1.11) come from Pauli’s exclusion principle. They express the
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fact that there is at most one particle for a given quantum state (x,p). Thus, the
physically admissible distribution f will satisfy

(1.13) 0 <_ f _< 1.

The function s is given and satisfies

(1.14)
(1.15)

> o,
m(p)s(p,p’) e L2(I 6),

and the collision frequency is assumed to be bounded:

(1.16) a(p) L3 s(p, IY)m(p’)dp’ e L(I3).

We recall the null-space of the operator C, which gives the thermal equilibrium dis-
tributions (see [9])" it consists of the Fermi-Dirac distributions

(1.17)
-1

The concentration p and the flux j depend on the particle distribution f through the
relations

The system (1.6)-(1.9) is completed with the boundary conditions

(1.19) f(x,p) go(x,p), (x,p) e E_,
(x) Co(x),

(1.21) B(x) v(x) b(x), x

In order to allow the extension of the boundary data, we assume the following.
(H1) t’/is a smooth bounded set of IRa. Its boundary 012 is compact and connected.
(H2) o E H1/2(0)CI L(Of).
(H3) b g-1/2(Ot2); (b, 1)H-1/,I_I1/ O.

Then there are two functions (I)o and Bo such that:

.4)0 e Hi(a) i’1

Bo E H(div, curl, g/),

-AOo qN, Oo/oa o,
r

Vx.Bo=0, VxABo=0, Bo-=b.
Finally, we assume that the boundary distribution go is nonnegative and bounded by
a Fermi-Dirac distribution:

(H4) 0<go < l+exp
g’(p)- a

We now state the main result of this paper.
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THEOREM 1.1. Under the assumptions (H1)-(H4), the stationary Vlasov-Max-
well system (1.7)-(1.10), (1.19)-(1.21) has at least one solution (f,,B) belonging to
L2(f x ]R3) x Hl(f) x H(div, curl, f) and verifying

0 < f < 1 4-exp
(p) (I)0(x) u q

where

Remark. There is no uniqueness of the solution of the system (1.7)-(1.10), (1.19)-
(1.21). We give the following counterexample, based on the idea of trapping particles
with a potential created by a background charge density. Let no be an arbitrary
positive real number. Define by

(1.23) --Axe qn0, /0f 0.

We let the background charge density N be equal to

-1

dp 4- no

and we define (I)1 by

q
(1.25) --ix(I)l --N, (I)I/OF 0.

r

Then fl 0, associated with (I)- (I)l, and

f2 1 + exp

associated with (I)2 , are two solutions of (1.7)-(1.10), (1.19)-(1.21).
The paper is organized as follows: in 2, a modified Vlasov-Poisson problem is

solved and a maximum principle property is stated, in order to obtain uniform bounds
on the concentrations and the fluxes of the modified problem. Then 3 is devoted to
the proof of the full stationary Vlasov-Maxwell problem. Finally, 4 details some
compactness results used throughout the paper.

2. A modified Vlasov problem. In this section, the electrostatic potential
and the magnetic field B are assumed to be known, such that

(.) e c(), B e (c(e)).

Because zero lies in the spectrum of Vlasov operators, uniqueness fails for boundary
value problems. Therefore [1], we add an absorption term and solve the following
system:

,y(z,) + v(p) v,y(x,p) + F(x,p) Vf(z,p) C(y)(x,p), x e , p e ;

(.) Y(,p) ao(x,p), (z,p) e _,
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where F is given by (1.10).
THEOREM 2.1. Under the assumption (H4) the problem (2.2) has, for every a >

O, a unique solution in the set of the square integrable functions on x ]3 that satisfies

O<f<G,.

Let us introduce the Maxwell-Boltzmann distribution

(p) + ()-(2.3) G,(x,p) 1+ exp
/9

u e [-x, +c].

This distribution solves the Vlasov equation and will be used as an upper solution in
the proof of the existence of a solution of (2.2). It will provide a priori estimates on
the density p and the flux j that will be useful in the following. In order to obtain
some maximum principle, we assumed (H4); it is then possible to bound go by G,,
where

q
(2.4) t,,-- ,- 11o11.
Next we prove the uniqueness of the solution of (2.2), using a monotonicity property
of the collision operator. A similar strategy of proof has been used in [8].

Let us prove the existence of a solution of (2.2). We need the following com-
pactness result, which is an easy variant of the mean compactness results of [4], [5],
and [6].

PROPOSITION 2.2. Let (fn), (gn), and (hn) be bounded sequences of L2( ]13)
that satisfy:

(e.5) v(p). Vxfn divpgn + h,

in the sense of distributions.
Then, for any Hilbert-Schmidt operator K defined on L2(6), the sequence

(K(f,(x, .))) is relatively compact in L2(f 3).
The proof of Proposition 2.2 is given in 4.
Proof of Theorem 2.1. The system (2.2) to be solved gives

[a+a(p)+,k(f)]f(x,p)+v(p).Vxf(x,p)+F(x,p).Vpf(x,p) tt(f)(x,p) on fxR3,

(2.6) f/E_ go,

with a defined as in (1.16) and

(e.7) ,(f)(x,p) f s(p,p’)[rn(p) rn(p’)]f(x,p’) dp’,

(.8) #(f)(x,p) f s(p,p’)m(p)f(x,p’)

Let us denote

(2.9) 7(f)(x,p) () tt)(f)(x,p) + a(p) Jf s(p,p’)m(p’)[1 f(x,p’)] dp’.
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Solving (2.6) results in determining a fixed point of the following operator T. Let us
denote

X {(L,M) e L2(txlR3)L2(tIR3)" 0 _< M _< #(G,) and L-M/o"

Clearly, X is a closed convex set of L2(t ]R3) L2(Ft ]R3). For every (L, M) in X,
let f be the unique solution in L2(gt ]R3) of

[a+a(p)+L(x,p)]f(x,p)+v(p).Vxf(x,p)+F(x,p).Vpf(x,p) M(x,p) on gtlR3,

f is well defined since a + a + L is positive and v and F belong to C1(1R3)3 and
Cl(gt IR3)3, respectively. Moreover, since M and go are nonnegative, then f _> 0.

We define the operator T on X by

T(L,M) (A(f),#(f)).

Let us now show that T maps .X in X. G, f is a solution of

(2.11) (a+o’+L)(C,.- f)+v.Vx(Cdz,.- f)+F.Vp(Cdz,.- f) aG,,+LG,.-M.

Since, thanks to (1.17),

(a..) ( + )(ao.))ao.. C(Go..) O.

we obtain

aG,+LG,,-M aG,,+[a+L-M-9/(G,,)]G,,+(#(G,,)-M)(1-G,,) >_ O.

Moreover, the boundary condition on G, f gives us

(a,,. f)/r._ a,. go,

which, from hypothesis (H4), is nonnegative. Hence G, f >_ 0, so we have

(2.14) 0 _< f _< G, on t IR3.

Since # and , are, respectively, increasing and decreasing,

(2.15) 0 <_ #(f) _< #(C,)

and

(2.16) (f) cr + A(f) #(f) >__ (a,).

Finally, #(f) belongs to L2(f ]t(3) because

(2.17) II#(f)l12 II(P,P’)m(P)IIL=()IIflI2 cllfll2.

A sinilar proof establishes that ,(f) belongs to L2(gt R3).
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Let us prove the continuity of the operator T. Let (Ln), (Mn) be convergent
sequences in L2(Ft x 3) towards L and M, respectively. Knowing that go belongs
to L2(E_;-v u(x)dvda(x)), the associated solutions fn of the system (2.10) form a
bounded sequence of L2( x 3); therefore, there is a subsequence (fnk) of (fn) which
converges to some f in L2(gt 3) weak. Passing to the limit in (2.10) as nk tends
to infinity gives

[(x+a(p)+L(x,p)]f(x,p)+v(p).Vzf(x,p)+F(x,p).X7pf(x,p) M(x,p) on f]3,

(2.18) :/E_ go,

thus f is unique and the complete sequence (fn) converges weakly to f in L2(f 3).
Moreover, A and # being linear functionals, (A(fn)) and (#(fn)), respectively,

converge weakly to A(f) and #(f) in L2(t I3).
In view of (2.14), fn satisfies

(2.19)

Thus (fn) is bounded in L(t x 3). On the other hand,

v(p) Vxfn(x,p) -Vp[F(x,p)fn(x,p)] + gn,

with (f), (Ff,), and (gn) (-(c + a Ln)fn + Mn) bounded in L2(f 3).
Then, according to Proposition 2.2, (,k(fn)) and (#(f)) belong to a compact

set of L2(f R3). So, in view of the weak convergence of (A(fn)) and (#(f)) in
L2(12 I3), the complete sequence (A(f)) and (#(fn)), respectively, converges to
A(f) and #(f) in L2(gt 13). This proves the continuity of T.

Let us show the compactness of T. If (Ln) and (Mn) are bounded in L2(f
the associated sequence (fn) is bounded in L2(gt 13), so Proposition 2.2 implies that
T(L,, M) belongs to a compact set of L2(gt 3). Therefore, the Schauder fixed point
theorem gives the existence of a solution of (2.2).

We now prove the uniqueness of the solution of (2.2). Let f and g be two solutions
of (2.2). A small computation leads to

(2.21)

C(f) C(g) Jt/s s(p, p’){ (f g) [m’(1 f’) + mg’] (f’- g’)[m(1 f) + m’g]} dp’,

where f’ denotes f(x,p’).
For any function h and with the help of the symmetry of s, we get

(2.22) /3[C(f) C(g)]hdp jf3 jf3 s(h h)(f g)[mt(1- ff + mgt] dpdlY.

For any small and positive 5, we define the odd function sg and the function abs by

{-(x-1/2x2) ifxE [0,],(2.23) sgb(x)
1 if x > -and abs (x) xsg (x).
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We choose h sg(f g). In view of (2.14), we obtain

(h h’)(f g) abs(f g) sg(f g’)(f g) > -2.

Then (2.22) implies

[c(/) c(a)]a(y ) dp< ecS,

where c is the constant given by

(2.26)

Since f and g are solutions of (2.2),

(y ) + v(p) v(y a) + F. V,(y ) C(y) C(a).

Multiplying this equation by sg(f g) and integrating it on f ]t(3 leads to

(f-g)sg(f--g)+jf v(p). abs(f-g) fR3 [c(y)-c(a)]a y-a).

But

Then

f -g=O onE_.

(2.28) a jfx (y g)sg(y g) < cS.

As 6 tends to zero, we get

(2.29) af3 If gl 0,

so f =g.

3. The Vlasov-Maxwell problem. This section is devoted to the proof of
Theorem 1.1. First let us give a sketch of this proof. We regularize the force field
and add an absorption term in order to be in the frame of 2. We solve the regu-
larized problem by means of the Schauder fixed point theorem and obtain a solution
(f,, B). Seeing that the potentials and (I)0 satisfy

--AxCa q(N-pa), Ax(I)0---- qN,
Er r bolon 0 1o,

the following inequality holds:
q _< q(I)0.

It follows that the maximum principle of 2 applies to (fa, Ca)" uniform bounds on
the flux j and the concentration pa are obtained, which gives compactness properties
for F in L2(f ]1(3).
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Finally, we pass to the limit in the modified system: we overcome the problem of
passing to the limit in the nonlinear collision operator with the help of the compactness
result given in Proposition 2.2.

We define a regularized force field in the following way. For any c > 0,

q
[VxCa() v(p) A Ha(B)],

where the modified magnetic field Ha is obtained by regularizing in the classical way:

B is the prolongation of B by zero outside , and a is a regularizing sequence:

To get a regularized potential Ca of such that Ca belongs to Cb2(2), and Ca/on 0
and qCa _< q0 as soon as /0 0 and q <_ q0, we choose

Ca 0 + (I aA)-2(0 0),

where the operator A is considered an unbounded operator on L2()) whose domain
is H2(fl)g H(fl). We remark that (I- aA)-2(o- 0) belongs to H4(fl), then to
C(fl). Thus, in order that Ca belongs to C()), we assume that

(Hh) @0 e C(2).
Then the properties of the above regularization are summarized in the following
lemma.

LEMMA 3.1. The map Fa Fa(,B) is continuous from HI() x L2() into

C( x 3). For any potential such that

CeHl(), /02-0, and q <_ qo,

the modified potential Ca a() satisfies

Furthermore, for any sequence (an, Cn, Bn) such that

On -’+ O

(n) is uniformly bounded in H2 (),
Bn -’ B in L2(),

Cn/O --0, Cn in HI(),

the regularized force field Fan (n, Bn) converges towards F (Vx- v(p) A B) in

For a proof of this lemma, we refer the reader to [8].
The modified Vlasov-Maxwell system. The regularized problem is

(3.2) afa + v(p) Vxfa+ Fa Vpfa C(fa)
f/r._ go.

on 2 3,
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The regularized force field is given by (3.1). The potential solves

(3.3)

The magnetostatic problem has to be modified because the flux of a solution of (3.2)
is no longer divergence free. Instead we obtain

cpa + Vz j 0.

But (3.3) shows that

+ 0.
q

Therefore, we define the new magnetostatic problem by

(3.4)

PROPOSITION 3.2 (existence for the modified problem). Let a > O. Under the
hypotheses (H1)-(H5), the modified Vlasov-Maxwell system (3.2)-(3.4) has at least
one solution (f,, B) e L2(ft x N3) x H2(ft) x Hl(gt), which satisfies uniformly
with respect to c"

(3.5) O_<f< l+exp
0

is uniformly bounded in H2(a); B Bo is uniformly bounded in Hi(a).
Proof of Proposition 3.2. Let S be the following nonempty convex closed set of

Hl(ft) n2(ft)

{(, B) E Hi(a) x L2(a)’/Oft 0 and q <_ qO0}.

We define a map on .=. in the following way. For every (, B) in S, let f,B be the
unique solution of the modified Vlasov-Maxwell problem (3.2). Then we define

Let (1, B1) be the solution of (3.3), (3.4) with the corresponding concentration and
flux. The map F is defined by F(, B) (1, B1). The following property and the
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Schauder fixed point theorem establish the existence of a solution (f,a, Ba) of
(3.2)-(3.4).

Property 3.3. F E --+ E is continuous and compact for the topology of Hl(ft x
a) L(ft Ia).

Let us first show the compactness of F. From (H2),and the maximum principle
established in Theorem 2.1, we know that

(3.6)

e(p) (x) ,
0

_
f,B

_
1 / exp

0

q
0(x) u

< l+exp
$(P)-K

Therefore, P,B and jck,B are uniformly bounded by a constant c depending only on
(I)0 o and u:

O <_ p,S <_ C and IJ,s <-- c.

Then the solution r/in HI (ft) of

--qP,B-Azrl r

is uniformly bounded in H2(ft) and satisfies q? <_ 0. Hence the function 1 (I)0 + r/
lies in a bounded set of H2(ft), which is a compact set Of Hl(ft) and satisfies

(/)1/Oft )0, q(/)l <__ q(I)0.

The function
j,s + C--Vx(I (I)0)

q

belongs to a bounded set of L2(gt) and satisfies

a--V(- O0 0.
q

Then the solution D of

[
Vx A D #rq Ijdp,B +
D. u O onOft

a--V(l (I)0 Vx. D 0,
q

belongs to a bounded set of HI(). Thus B1 B0 + D belongs to a compact set of
L2() and we have proved that (1, B1) lies in a compact subset of

Let us show the continuity of F. Let (n, Bn)in .. be such that en converges to in

Ul(t) and Bn converges to B in L2(Ft). Then Fa(n, Bn) converges towards Fa(, B)
in C(t R3). (3.6) implies that there is a subsequence fn f,Bn which converges
weakly in L2(gt 3) towards some f. Then, with the help of Proposition 2.2, A(fn)
and #(fn) converge towards A(f) and #(f), respectively, in L2(Ft a), so C(fn) con-
verges to C(f) in the distributional sense. It follows that f solves the Poisson equation
associated with (, B) and hence is equal to f,B. Then pn and in, respectively, con-
verge weakly to P,B and j,B in L2(t). Since the sequence F(n, Bn)
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belongs to a compact set of H1 (f)x L2 (t), the last convergences show that (n,1, Bn,)
converges to (,B) in H(t) x L2(t).

Therefore, the Schauder fixed point theorem applies, which shows the existence
of a solution (fa, Ca,Sa) of (3.2)-(3.4). Moreover, f satisfies

s(p) n 0(x)-
0<_fa<_ l+exp

0

--1

as f,B does.
We then deduce from the proof of the compactness of F that Ca belongs to a

bounded set of H2(fl) and that Ba B0 belongs to a bounded set of H(f).
We now prove the existence of a solution of the complete Vlasov-Maxwell system.

We first assume that 0 satisfies (Hb). Let (fa, Ca, Ba) be the solution of the modified
problem for any a > 0. In view of the uniform estimates (3.5), there is a subsequence
an converging to 0, such that (f,,B), denoted by (fn, Cn, Bn), satisfies

fn -- f weakly in L2(Ft
(n) is uniformly bounded in H2 (t),
Bn --* B in L2(gt).

Cn/oa 0, Cn--* in Hl(gt),

Then q
(Vie v A B) in Loc(t 3)F, (,, B,) -- F -As in the proof of the continuity ofF, C(fn) converges to C(f) in the distributional

sense. Hence f is a solution of (1.7)-(1.10). Moreover, in view of (3.5) and the choice
of the constant ,

p(x) f fn(x,p) dp and jn(x)= f v(p)fn(x,p)dp
3 y]3

are uniformly bounded, so that

pn(x) -- p(x) jf3 f(x,p)dp in L(t) weak star,

and

j(x) j(x) Jt3 v(p)f(x,p)dp in L(f) weak star.

Then it is straightforward to pass to the limit in (3.3), (3.4) and obtain a solution
of the Vlasov-Maxwell system. To get rid of the restriction (Hb), we introduce a
sequence (I)0,n such that

0,n 6 C(fl), 0,n --+ 0 in H(fl), [[011o 1

and pass to the limit of the corresponding solutions (f, Cn, Bn).
Appendix: A compactness result. This section is devoted to the proof of

Proposition 2.2, which we now restate.
PROPOSITION 2.2. Let (fn), (gn), and (hn) be bounded sequences of L2( ]3)

that satisfy

(4.1) v(p). Vxfn divpgn + hn
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in the sense of distributions. Then for any Hilbert-Schmidt operator K defined on

L2(I3), the sequence (g(fn(x, ")) is relatively compact in L2(I IR3).
Proof of Proposition 2.2. Since K is a Hilbert-Schmidt operator, there is a kernel

in L2(I6) such that

(4.2) K" f -- K(f)(x,p) L3 (p’ q)f(x, q) dq.

Let CN be a sequence converging to in L2 (1R6) and verifying

i=M

(4.3) Cg(p,p,) E iN(P)iN(P’)’
i--1

where bg and N are compactly supported and indefinitely differentiable. The
Hilbert-Schmidt operator K is the uniform limit of the integral operators KN of
kernel CN, since the norm of KN -K is the norm of CN_ in L2(I6). From classical
compactness results (see [4], [5], and [6]), the sequences

((p) h(x,’p )i (p’)dpt)k>_

belong to a compact set of L2(IR6), so finite sums of such sequences also belong to a
compact set of L2 (6). By the diagonal process we construct a subsequence (fk,) such
that the sequence (KY(fk,))p>l converges.

Let us show that (K(fkp))p> is a Cauchy sequence in L2(6)

(4.4)
IIK(A.) K(A.)I[ _< [](KN K)(.fk,, A,)[[ + [[KN(.fk,,)- Kv(A.)[I

<_ 21IKN KIIM + IlKX(fk,) KN(fk.)ll,

where M is a bound of IIAIIL=(). > 0 being given, there is an integer No such that

(4.5) 2IlKNo KIIM < -.
(KYo(fk,)) being a Cauchy sequence, there is an integer P such that for every p _> P
andq>_ P,

(4.6) IIKNo(fk,) KNo(fk)llL( <
--2

Using (4.4)-(4.6) leads to

(4.7) IlK(A,) K(A.)IIL(.) _< a,

which proves that (K(fk,))p> is a Cauchy sequence in L2(I6), and ends the proof.
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