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Abstract. We complete the result in [2] by showing the exponential decay of

the perturbation of the laminar solution below the critical Rayleigh number and

of the convective solutions above the critical Rayleigh number, in the kinetic
framework.

1. Introduction. The arising of convective motions in a fluid between two ther-
mal walls under the action of the gravity field g, when the bottom wall is hotter
than the top wall, is one of the classical examples of bifurcation of a stationary
solution in Fluid-Dynamics and is known as the “Benard problem”. The bifurca-
tion is driven by a parameter Ra, the Rayleigh number which is proportional to
the product of the gravity and the temperature difference. It consists in the fact
that, when the Rayleigh number Ra is below a critical value Rac, the incompressible
Navier-Stokes-Fourier system (INSF) in an external gravity has only the conductive
solution, characterized by vanishing velocity field and a linear temperature profile.
Instead, when Ra crosses the threshold Rac convective solutions appear with non
vanishing velocity field. With the increase of the Rayleigh number, a large variety
of complex phenomena occur. Here we wish to restrict our attention to a small
right neighborhood of Rac, where only the first bifurcation occurs and the laminar
solution bifurcates: above Rac both the laminar and the two convective motions,
corresponding to clockwise and anti-clockwise rotation, are stationary solutions, but
only the last two are stable.

The analysis of the linear and non linear stability of the stationary solutions to
the Benard problem, at the level of Fluid-Dynamics, has been performed in a vast
literature ([4, 6, 8, 9, 10, 13, 11]). The same problem, in the framework of the
Boltzmann equation, has been addressed in [1, 2], where the stationary solutions to
the Boltzmann equation (1.1), both below and above the critical Rayleigh number,
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have been constructed and their asymptotic stability has been proved, without
computing the rate of decay of the perturbation.

The aim of this paper is to complete the result in [2] by proving exponential
decay rate of the perturbation. Unfortunately, the key spectral inequality we used
in [2] is incorrect. Therefore, we begin with fixing this error by giving the correct
inequality, then we modify consequently the proofs given in [2]. This requires a slight
change of perspective. As already mentioned, the Rayleigh number is proportional
to the product of the gravity times the temperature difference. Therefore, in order
to achieve a supercritical Rayleigh number, either we consider a sufficiently small
gravity and a corresponding temperature difference, or we fix a sufficiently small
temperature difference and deal with a corresponding gravity. The former point of
view is the one used in [2]. In this paper, due to the extra terms deriving from the
corrected spectral inequality, we adopt, at least in two dimensions, the latter point
of view, which requires minor modifications in several lemmas.

To be more specific, we state the main problem. We follow as closely as possible
the notation of [2] to which we will also refer for many details which are just a
repetition of the arguments given there.

We look for the solution to the initial-boundary-value problem for the Boltzmann
equation with diffuse reflection at the boundary modelling two thermal walls the
bottom one at temperature T− = 1 and the top one at themperature T+ = 1−2πελ:

∂F

∂t
+

1

ε
v · ∇µF −G ∂F

∂vz
=

1

ε2
Q(F, F ),

F (0, x, z, v) = F0(x, z, v), (x, z) ∈ [−π, π)× (−π, π) ≡ Ω, v ∈ R3, (1.1)

F (t, x,∓π, v) = M∓(v)

∫
wz≶0

|wz|F (t, x,∓π,w)dw, t > 0, vz ≷ 0, x ∈ [−π, π),

where µ = h
d is the aspect ratio of the convective cell, ∇µ = (µ∂x, ∂z) and v · ∇µ =

µvx∂x + vz∂z. Indeed, we have rescaled the variables z to make the width of the
slab 2π and the variable x so that all the functions are periodic in x with fixed
period 2π. Moreover,

F0 ≥ 0, M− =
1

2π
e−

v2

2 , M+(v) =
1

2π(1− 2πελ)2
e−

v2

2(1−2πελ) .

The parameter ε = `0
d is the ratio between the mean free path and the width of the

slab, T+ and T− > T+ are the temperatures on the top and bottom plates, G =
1
ε
dg

2T−
is the rescaled gravity field, λ = 1

ε
T−−T+

2πT−
measures the rescaled temperature

gradient. Moreover,

Q(f, g)(z, v, t) =
1

2

∫
R3

dv∗

∫
S2

dωB(ω, v − v∗)
{
f ′∗g
′ + f ′g′∗ − f∗g − g∗f

}
.

Here h′, h′∗, h, h∗ stand for h(x, z, v′, t), h(x, z, v′∗, t), h(x, z, v, t), h(x, z, v∗, t) respec-
tively, S2 = {ω ∈ R3 |ω2 = 1}, B is the differential cross section 2B(ω, V ) = |V · ω|
corresponding to hard spheres, and v, v∗ and v′, v′∗ are pre-collisional and post-
collisional velocities or conversely. Note that the boundary conditions are chosen
so that the impermeability condition∫

R3

dvFvz = 0 (1.2)

is formally satisfied at the boundaries.
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A comment is in order about the assumptions on collision cross section and
boundary conditions: the method presented here can be probably extended to colli-
sion cross sections corresponding to hard potentials with Grad angular cutoff. This
would require extra technical efforts and we prefered to restrict ourselves to the sim-
plest case. It does not seem possible to include soft potentials with cutoff and non
cutoff potentials in this treatment. About boundary conditions we remark that the
Benard setup requires thermal walls that could also be modeled by a combination
of diffuse reflection and elastic or reverse reflection. Unfortunately the boundary
terms due to elastic or reverse reflection are too singular to be treated with our
methods, hence we have to confine our analysis to the purely diffusive boundary
conditions. Purely elastic reflection or reverse reflection are not considered because
they do not model thermal walls.

We note that above definitions of the parameters correspond to the choice ε =

2Kn
√

6
5π where Kn is the Knudsen number. We have also set the Mach number

Ma = ε
√

6
5 . With such a choice of the parameters, the Rayleigh number is given

by (see for example [14])

Ra = 32Gλ, (1.3)

independent of ε. As mentioned before (see e.g. [4]), there is a critical value of
Ra, denoted by Rac, such that the laminar solution to the hydrodynamic equations
becomes linearly unstable. In the rest of this paper λ > 0 will be a fixed value,
smaller than a suitable λ0 that will be specified later, and G will be the control
parameter of the bifurcation, which will occur when G crosses the threshold Gc
such that 32λGc = Rac. Moreover, we will use the notation δ = (G−Gc)G−1

c , and
our analysis will hold either for 0 ≤ G ≤ Gc or for δ > 0 sufficiently small. We
stress that the smallness of the parameters λ and δ is independent of ε, so that the
results we obtain are valid also in the limit ε→ 0, the hydrodynamic limit, with λ
and δ small but fixed.

We now recall the Fluid-Dynamics results for the Benard problem relevant to
our purposes. We refer to [6, 7, 8] for more details. The laminar solution to the
INSF system is characterized by the temperature field Tl = −λ z+π2π and ul = 0. We
write the INSF system for the deviations from the laminar solution. They are:

∂tu+ u · ∇µu = η̂∆µu−∇p− ezGθ,
∂tθ + u · ∇µθ + λuz = k̂∆µθ in Ω = [−π, π)× (−π, π) (1.4)

∇µ · u = 0,

with u a vector in R2 whose components are ux and uz respectively, u · ∇µ =
µux∂x + uz∂z, ∆µ = µ2∂xx + ∂zz, ez the unit vector in the positive z direction.
p is the pressure of the incompressible fluid, θ is the deviation from the linear

temperature profile, η̂ is the kinematic viscosity and k̂ is the heat conductivity
multiplied by a factor 2

5 .
The INSF system (1.4) has to be solved with homogeneous boundary data:

u(t, x,±π) = 0, θ(t, x,±π) = 0, x ∈ [−π, π), (1.5)

and periodic boundary conditions in the variable x. The couple h = (u, θ) denotes
the solution to the problem (1.4),(1.5). For G ≤ Gc, the laminar solution, h = 0
is the only steady solution and it is stable up to the critical Rayleigh number.
Moreover, there is δ1 > 0 such that, if G ∈ (Gc, Gc(1+δ)) for δ < δ1, then there are
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two periodic roll solutions, hs, with period which fixes the aspect ratio µ, rotating
clockwise and anti-clockwise respectively, such that

hs = δhcon + δ2hR, (1.6)

where hcon are the eigenvectors corresponding to the least eigenvalues of the lin-
earization of the problem (1.4),(1.5) around the laminar solution h = 0. The re-
mainder hR is in a suitable Sobolev space (Hk(Ω))3 with its Sobolev norm bounded
uniformly in δ: namely, there is a constant C such that, for any δ < δ1,

‖hR‖Hk(Ω) ≤ C. (1.7)

Furthermore, there are n0 and ζ1 such that if h0 ∈ (Hk(Ω))3 for k sufficiently
large and has Hk-norm smaller than n0, then the time dependent solution to the
problem (1.4), (1.5) is such that

‖h(t)‖Hk′ (Ω) ≤ Cδe−ζ1t (1.8)

for any k′ < k (see Proposition 3.1).

A stationary solution to the problem (1.1) is constructed by means of a truncated
expansion in ε with remainder, so that we have the representation

Fs = M + εfs +O(ε2). (1.9)

The first term of the expansion is the standard Maxwellian M

M(v) =
1

(2π)
3
2

e
−
|v|2

2 ; (1.10)

the first order correction is given by

fs = M
(
ρs + us · v + Ts

|v|2 − 3

2

)
(1.11)

where, for G ≤ Gc we have us = 0, Ts = Tl and ρs = −(λ + G)z is computed by
using the Boussinesq condition

∇(ρ+ T ) = Gez. (1.12)

When G > Gc and δ < δ1, us, Ts and ρs are computed in terms of hs.
The higher order terms will be described later. Now we are in position to state

the main theorem. In the statement we use the norm ‖ · ‖2,2 which represents the
L2-norm on the phase space Ω× R3 with weight M−1, and the norm ‖ · ‖2,2,2, the
L2-norm on Ω × R3 × R+ with weight M−1, including also integration of all the
positive times.

Theorem 1.1. There are λ0 > 0, δ0 > 0, ε > 0 such that, if 0 ≤ λ < λ0 and
G ∈ (0, Gc(1 + δ)) with δ < δ0, then there is a positive, locally unique, stationary
solution Fs to the Boltzmann equation such that for any ε < ε0,

‖Fs − (M + εfs)‖2,2 ≤ cε2. (1.13)

Furthermore, if the initial perturbation Φε0 to the stationary solution is such that
Fs+MΦε0 is positive and satisfies the conditions (3.2), (3.3), and the hydrodynamic
perturbation satisfies the smallness assumptions in Proposition 3.1, then the positive
solution to the time dependent problem (1.1) exists, and there are ζ̄ > 0 and c
independent of ε such that, for any ζ ≤ ζ̄,

‖(F − Fs)eζt‖2,2,2 ≤ c. (1.14)
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Section 2 is devoted to the construction of the stationary solution. In Section 3
we show the exponential decay of the perturbation.

2. Stationary solution. As discussed before, in this paper we want to show that
a small perturbation of the stationary solution Fs to the problem (1.1) decays expo-
nentially fast, as t→ +∞. However, since the paper [2] contains an inconsistency in
the construction of such a stationary solution, we need to review part of the proof
of the main existence result for the stationary solutions.

We recall the notation adopted for the norms: the norm in the bulk is defined,
for any 1 ≤ q ≤ +∞ as

‖ f‖q,2 =

(∫
R3

dvM(v)

(∫
Ω

dxdz|f(x, z, v)|q
) 2
q

) 1
2

.

The space of measurable functions on Ω×R3 with the above norm finite is denoted
by L̃q.

The boundary norm is defined as

‖ f ‖q,2,∼= sup
±

∫
R3
±

dv|vz|M(v)

(∫
[−π,π)

dx|f(x,∓π, v)|q
) 2
q


1
2

,

where R3
± is the set of velocities such that vz ≷ 0. The set of functions on [−π, π)×

{−π} × R3
+ ∪ [−π, π)× {π} × R3

− with bounded ‖ · ‖2,2,∼-norm is denoted by L+.
The stationary solution Fs corresponding to the laminar and convective solutions

to the INSF system will be constructed as follows: set

Fs = M(1 + Φεs).

Then

Φεs(x, z, v) =

5∑
n=1

εnΦ(n)
s (x, z, v) + εRs,ε(x, z, v),

where Φ
(1)
s = fs and Φ

(j)
s , for j > 1 are constructed by means of a bulk-boundary

layer expansion already discussed in [5, 1, 2]. Here we summarize the relevant

properties of the Φ
(n)
s ’s in the following theorem taken from [2]:

Proposition 2.1. The functions Φ
(n)
s , n = 1, . . . , 5 and ψn,ε can be determined so

as to satisfy the boundary conditions

Φ(n)(x,∓π, v) =
M∓(v)

M(v)

∫
wz≶0

|wz|M [Φ(n)(x,∓π,w)− ψnε(x,∓π,w)]dw

+ψn,ε(x,∓π,w), t > 0, vz ≷ 0,

and the normalization condition
∫
R3×[−π,π]2

dvdxdzΦ(n) = 0, so that the asymptotic

expansion in ε for the stationary problem (1.1), truncated to the order 5 is given by

F (exp)
s (x, z, v) = M(v)

(
1 +

5∑
n=1

ε5Φ(n)(x, z, v)

)
.

If G ≤ Gc then the functions Φ(n)’s, corresponding to the laminar solution satisfy
the conditions

‖ Φ(n) ‖2,2≤ Cλ, ‖ Φ(n) ‖∞,2≤ Cλ , n = 1, . . . , 5, (2.1)
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for a suitable constant C. Moreover if G ≥ Gc and δ < δ1, then the Φ(j)’s differ
from those of the laminar solution by O(δ) and the inequalities (2.1) are replaced
by

‖ Φ(n) ‖2,2≤ C(λ+ δ), ‖ Φ(n) ‖∞,2≤ C(λ+ δ) , n = 1, . . . , 5. (2.2)

The functions ψn,ε are such that ‖ψn,ε‖q,2,∼, q = 2,∞ are exponentially small as
ε→ 0, and

∫
R3 dvvzM(v)ψn,ε = 0.

The space where the remainder will be constructed is the following:

Wq,− := {f : [−π, π]2 × R3 → R | ν 1
2 f ∈ L̃q, ν− 1

2Df ∈ L̃q, γ+f ∈ L+},

for q = 2 or q = ∞. Here, Df denotes first order derivatives of f and γ±f are
the ingoing (resp. outgoing) trace operators defined as the restrictions of f to the
ingoing (resp. outgoing) boundary, [−π, π)×{−π}×R3

+∪ [−π, π)×{π}×R3
− (resp.

[−π, π)× {−π} × R3
− ∪ [−π, π)× {π} × R3

+).
Before stating the main theorem of this section we recall the properties of the

linearized Boltzmann operator L,

LR = 2M−1Q(M,MR),

defined on a suitable dense subset of H = L2
M (R3), namely L2(R3) with weight

M . The space H will be equipped with the inner product ( · , · )H = ( ·
√
M, ·√

M )L2(R3).
The operator L has a non trivial null space. An orthonormal basis in the null

space is given by the functions ψ0 = 1, ψ1 = vx, ψ2 = vy, ψ3 = vz and ψ4 =
1√
6
(|v|2 − 3). The orthogonal projection on the null space of L is denoted by P .

For the operator L the decomposition L = −νI +K holds, where I is the identity,
ν is a positive function of |v| which, for hard sphere is such that ν ∼ (1 + |v|) and
K is a compact operator on H. Finally L is symmetric on H and the quadratic
form associated to L is negative semi-definite in the sense that there is a positive
constant C such that

−(f, Lf)H ≤ C((I − P )f, ν(I − P )f)H .

Now we state the main theorem of this section:

Theorem 2.1. There are positive ε0, δ0 and λ0 such that given λ < λ0, δ < δ0,
for any ε < ε0 there exists a stationary solution to (1.1) in the form

Fs = F (exp)
s + εRs,ε,

with Rs,ε ∈ W2,− ∩W∞,−. The remainder Rs,ε, simply denoted by R, solves the
boundary value problem

v · ∇µR− εGM−1 ∂(MR)

∂vz

=
1

ε
LR+

5∑
n=1

εn−1J(Φ(n), R) + J(R,R) + εA, (2.3)

R(x,∓π, v) =
M∓(v)

M(v)

∫
wz≶0

|wz|M(w)
(
R(x,∓π,w) +

1

ε
ψ̄ε(x,∓π,w)

)
dw

− 1

ε
ψ̄ε(x,∓π, v), for vz ≷ 0 and x ∈ [−π, π], (2.4)
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where 1
ε ψ̄ε = −

∑5
n=1 ε

nψn,ε, J(h, g) =
2

M
Q(Mh,Mg), and A is a smooth function

computed in terms of the Φ
(j)
s ’s, bounded in ‖ · ‖q,2, q = 2,∞, and

∫
R3 dvM(v)A = 0.

Moreover, the remainder satisfies the impermeability conditions∫
R3

dvvzR = 0

for z = ±π.

The construction of the stationary solution is obtained by an iteration scheme
where, in the equation for the iterate Rn+1, the non linear term is computed in
terms of Rn. Therefore, the main step of the analysis is the study of the equation
(2.3) where A+ J(Rn, Rn) is replaced by a known function.

As in [2], we introduce the operator LJ for fixed x, z as follows: for any f in the
domain of L,

LJf = Lf + εNPf, (2.5)

where, for a given L∞M (Ω× R3) function q, the operator N is defined as

Nf = J(q, f).

In the rest of this section we will use the function

q =

5∑
n=1

εn−1Φ(n)
s .

With this choice of the function q, we have

‖q‖∞ ≤ C(λ+ δ + ε), (2.6)

for some constant C. In next section there will be a different choice of q, and the
above estimate will be consequently modified.

The operator LJ also has a non trivial null space Kern(LJ), which is spanned by
the vectors ψ̄j , j = 0, . . . , 4 as proved in [2]. The vectors ψ̄j ’s differ from the ψj ’s
for terms of order ε:

ψ̄j = ψj − εL−1Nψj . (2.7)

The operator PJ denotes the orthogonal projector on Kern(LJ).
We underline that LJ is not symmetric, so we will also consider the adjoint of

LJ , denoted L∗J . The null space of L∗J coincides with the null space of L, Kern(L).
The difference PJ − P is estimated as follows:

‖ν 1
2 (PJ − P )f‖2,2 ≤ Cε‖q‖∞‖f‖2,2, (2.8)

for some constant C.
The following proposition replaces Proposition 2.1 in [2]:

Proposition 2.2. There is ε0 > 0 such that for ε < ε0 there are positive constants
c1 and c2 such that

−(LJf, f)2,2 ≥ c1(ν(I − PJ)f, (I − PJ)f)2,2 − c2ε2‖q‖2∞‖ν
1
2PJf‖22,2, (2.9)

−(L∗Jf, f)2,2 ≥ c1(ν(I − P )f, (I − P )f)2,2 − c2ε2‖q‖2∞‖ν
1
2PJf‖22,2. (2.10)

Proof. By the decomposition f = (I − PJ)f + PJf , we have

−(f, LJf)2,2 = −((I − PJ)f, LJ(I − PJ)f)2,2 − (PJf, LJ(I − PJ)f)2,2.
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The first part is bounded from below as in Proposition 2.1 of [2] by
c(ν(I − P )f, (I − P )f)2,2. For the second term, since (Pf, LJ(I − PJ)f)2,2 = 0, we
have

|(PJf, LJ(I − PJ)f)2,2| = |((PJ − P )f, LJ(I − PJ)f)2,2|

≤ Cε‖q‖∞‖f‖2,2‖ν
1
2 (I − PJ)f‖2,2.

Then since ‖f‖2,2 = ‖(I − PJ)f‖2,2 + ‖PJf‖2,2, for any positive η,

‖f‖2,2‖ν
1
2 (I − PJ)f‖2,2 ≤ ‖ν

1
2 (I − PJ)f‖22,2(1 +

1

η
) +

η

4
‖PJf‖22,2.

Thus we obtain (2.9) by choosing η = 3C
c ε‖q‖∞. Consequently c1 = c

2 and c2 =
C2

c .
The first consequence of the extra term appearing in Proposition 2.2 is in the

Green inequality (2.15) of [2] which is modified as follows:

Proposition 2.3 (The Green Inequality). Consider the linear problem

v · ∇µf − εGM−1 ∂(Mf)

∂vz
=

1

ε
LJf + g, (2.11)

with the prescribed inhomogeneous term g such that
∫
Mgdv = 0 and prescribed

incoming data

f(x,±π, v) = p(x,±π, v), vz ≶ 0. (2.12)

Then, for any η > 0,

‖ γ−f ‖22,2,∼ +
c

2ε
‖ ν 1

2 (I − PJ)f ‖22,2

≤ C
(
ε ‖ ν− 1

2 (I − PJ)g ‖22,2 +(η + ε2‖q‖2∞) ‖ PJf ‖22,2 (2.13)

+
1

η
‖ PJg ‖22,2 +‖p‖22,2,∼

)
.

A similar inequality holds when LJ is replaced by L∗J .

The proof is the same as in [2], taking into account the modified spectral gap
inequality for LJ .

The Fourier transform with respect to the variable x, Fxf (sometimes just Ff
for brevity) is defined as follows: for any ξ ∈ Z,

Fxf(ξ) =
1

2π

∫
[−π,π]

dxe−iξxf(x).

For (x, z) ∈ [−π, π]2, f̂(ξx, ξz) = (FxFzf)(ξx, ξz). For f function of x, z and v,
< f > is the zero Fourier coefficient of f :

< f >:=
1

(2π)2

∫
[−π,π]2

f(x, z, v)dxdz, a.a. v ∈ R3 (2.14)

and f̃ := f − < f >.
In the rest of this paper, constants which, independently of the parameter ε, can

be made sufficiently small for the purposes of the proofs, will generically be denoted
η.

The statement of Lemma 2.1 in [2] holds provided that ‖q‖∞ is sufficiently small:
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Lemma 2.1. Let ϕ(x, z, v) be solution to

v · ∇µϕ− εGM−1 ∂(Mϕ)

∂vz
=

1

ε
L∗Jϕ+ g, (2.15)

periodic in x of period 2π, and with zero ingoing boundary values at z = −π, π.
Then, if λ+ δ + ε is sufficiently small, it results:

‖ ν 1
2 (I − P )ϕ ‖2,2 ≤ C

(
ε ‖ ν− 1

2 (I − P )g ‖2,2

+ ‖ Pg ‖2,2 +ηε ‖< Pϕ >‖2
)
, (2.16)

‖ P̃ϕ ‖2,2 ≤ C
(
‖ ν− 1

2 (I − P )g ‖2,2 +
1

ε
‖ Pg ‖2,2

+η ‖< Pϕ >‖2
)
. (2.17)

The statement of Lemma 2.1 is still true, if we replace the operator L∗J with the
operator LJ and the operator P with PJ .

Proof. Lemma 2.1 is proved as in [2]. Equation (2.21) in [2] provides a bound for

‖Pϕ‖22,2 in terms of ε−2‖ν 1
2 (I − P )ϕ‖22,2. This, by the Green inequality, gives a

term ‖q‖2∞‖Pϕ‖22,2 in the right hand side, which can be absorbed in the left hand

side provided that ‖q‖2∞ is sufficiently small. This is true, by (2.6), provided that
λ+ δ + ε is sufficiently small.

Put H(R) =
∑5
n=1 ε

n−1J(Φ
(n)
s , R) and decompose H in accordance with the oper-

ator LJ . Set H1( · ) = H( · )− J(q, P · ) = J(q, f)− J(q, Pf). We notice that H1(·)
is of order zero in ε and only depends on the non-hydrodynamic projection (I−P ).

At the stage n+ 1 of the iterative procedure we need to compute the remainder
Rn+1, still for brevity denoted by R. We decompose it into two parts R1 and R2,
solutions of two different equations. The part R1 is periodic in x and solves the
boundary value problem

v · ∇µR1 − εGM−1 ∂(MR1)

∂vz
=

1

ε
LJR1 +H1(R1) + g, (2.18)

R1(x,∓π, v) = −1

ε
ψ̄(x,∓π, v), vz ≷ 0,

where the incoming data are prescribed and the inhomogeneous term g includes A
and the non linear term computed at the previous step. The part R2 is discussed
later. An existence proof for this problem can be obtained by the method of [12] .
The nonhydrodynamic part of R1 is estimated along the same lines of the proof of
Lemma 2.1:

1

ε
‖ γ−R1 ‖22,2,∼ +

c

2ε2
‖ ν 1

2 (I − PJ)R1 ‖22,2

≤ C
(
‖ ν− 1

2 (I − PJ)g ‖22,2 +
η + λ+ δ + ε

2ε
‖ PJR1 ‖22,2

+
1

2ηε
‖ PJg ‖22,2 +

1

ε3
‖ ψ̄ ‖22,2,∼

)
,

for small η > 0, by using the inequality

|(R1, H1(R1))2,2| ≤ C(‖ ν 1
2 (I − PJ)R1 ‖22,2 +ε2‖q‖2∞ ‖ PJR1 ‖22,2).
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The duality technique used in [2] can still be applied to estimate PJR1. The term
H1(R1) is treated as a perturbation, after dealing in next lemma with the system
without it.

Lemma 2.2. Set h := PJR1. Then there are δ0 > 0, λ0 > 0 such that for 0 < δ <
δ0 and 0 < λ < λ0, and for any G ∈ [0, Gc(1 + δ)],

‖ h ‖22,2≤ C(‖ ν− 1
2 (I − PJ)g ‖22,2 +

1

ε2
‖ PJg ‖22,2 +

1

ε3
‖ ψ̄ ‖22,2,∼).

Proof of Lemma 2.2. We do not repeat the proof given in [2]. We only remind
that it is based on the joint analysis of the boundary value problem for R1 and the
“dual” problem for ϕ, solution to

v · ∇µϕ− εGM−1 ∂(Mϕ)

∂vz
=

1

ε
L∗Jϕ+ h,

with zero ingoing boundary values at z = −π, π and ϕ a 2π-periodic function in x.
By using Lemma 2.1, one is then left with a < Pϕ >-term which is the projection

of < ϕ >. Now < ϕ > is the average over the variable x, and thus satisfies a one
dimensional equation similar to eq. (3.5) in [1]. By using the argument of Lemma
3.4 in [1], we obtain

‖< Pϕ >‖2≤ c ‖< Pϕ >x‖2,2≤
c

ε
‖ h ‖2,2 +η ‖ ϕ ‖2,2,

where < · >x denotes the average on x.

Remark. We note that in [2], instead of Lemma 3.4 in [1], we used the arguments
of Lemma 3.5 in the same paper, which require G small but permit any value of λ.
In the present setup the use of Lemma 3.4 in [1] allows us to use G ∈ [0, Gc(1 + δ)]
provided that λ is sufficiently small. This is the only point where the condition G
small was used in [2].

The final estimates for R1 then follow as in [2]:

Lemma 2.3. If R1 is a solution to the system (2.18), then, under the same condi-
tions on the parameters as before,

‖ ν 1
2R1 ‖2,2 ≤ c

(
‖ ν− 1

2 (I − PJ)g ‖2,2 +
1

ε
‖ PJg ‖2,2 +ε−

3
2 ‖ ψ̄ ‖2,2,∼

)
,

‖ ν 1
2R1 ‖∞,2 ≤ c

(1

ε
‖ ν− 1

2 (I − PJ)g ‖2,2 +
1

ε2
‖ PJg ‖2,2 +ε ‖ ν− 1

2 g ‖∞,2

+ε−
5
2 ‖ ψ̄ ‖2,2,∼

)
.

Now we discuss R2. It is solution to the following boundary value problem:

v · ∇µR2 − εGM−1 ∂(MR2)

∂vz
=

1

ε
LJR2 +H1(R2), (2.19)

R2(x,∓π, v) = f−(x,∓π, v) +
M∓(v)

M(v)

∫
wz≶0

R2(x,∓π,w)|wz|Mdw,

vz ≷ 0, (2.20)

where

f−(x,∓π, v) =
M∓(v)

M(v)

∫
wz≶0

(
R1(x,∓π,w) +

1

ε
ψ̄(x,∓π,w)

)
|wz|Mdw, vz ≷ 0.
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In order to estimate R2, one can use the arguments given in [2], Lemmas 2.4,
2.5. Indeed the only modifications arise from the extra term in the Green inequality
and they are managed by using the smallness of q given in (2.6). One thus gets the
final estimates for R2 given in the following

Lemma 2.4. A solution to the R2-problem satisfies

‖ ν 1
2 (I − PJ)R2 ‖22,2≤ c

(
ε ‖ ν− 1

2 (I − PJ)g ‖22,2 +
1

ε
‖ PJg ‖22,2

+
1

ε2
‖ ψ̄ ‖22,2,∼

)
,

‖ PJR2 ‖22,2≤ c
(1

ε
‖ ν− 1

2 (I − PJ)g ‖22,2 +
1

ε3
‖ PJg ‖22,2 +

1

ε4
‖ ψ̄ ‖22,2,∼

)
,

‖ ν 1
2R2 ‖2∞,2≤ c(

1

ε3
‖ ν− 1

2 (I − PJ)g ‖22,2 +
1

ε5
‖ PJg ‖22,2 +ε2 ‖ ν− 1

2 g ‖2∞,2

+
1

ε6
‖ ψ̄ ‖22,∼).

The linear estimates of Lemmas 2.2 and 2.4 are sufficient to prove the existence
of the solution to the equation for the remainder. This is Theorem 2.2 in [2], which
we restate here:

Theorem 2.2. There are positive λ0, δ0 and ε0 such that, if λ < λ0, δ < δ0, ε < ε0

and G ∈ [0, Gc(1 + δ)], then there exists a solution R in L2
M ([−π, π]2 × R3) to the

rest term problem

v · ∇µR− εGM−1 ∂(MR)

∂vz
=

1

ε
LR+

1

2
J(R,R) +H(R) + εA, (2.21)

R(x,∓π, v) =

∫
wz≶0

(R(x,∓π,w) +
1

ε
ψ̄(x,∓π,w))|wz|M−dw

−1

ε
ψ̄(x,∓π, v), vz ≷ 0.

3. Initial boundary value problem. We now study the initial boundary value
problem (1.1) for an initial datum F0 suitably close to the stationary solution.
Indeed, we introduce the perturbation Φ = M−1(F − Fs). The equation for the
perturbation Φ is:

∂Φε

∂t
+

1

ε
v · ∇µΦε − G

M

∂(MΦε)

∂vz
=

1

ε2

(
LΦε +

1

2
J(Φε,Φε) + J(Φεs,Φ

ε)
)
, (3.1)

Φε(0, x, z, v) = ζ0(x, z, v), (x, z) ∈ (−π, π)2, v ∈ R3,

Φε(t, x,±π, v) =
M±
M

∫
wz≷0

|wz|MΦε(t, x,±π,w)dw, vz ≶ 0, t > 0, x ∈ [−π, π].

The initial conditions for M−1(F (0, x, z, v)− Fs(x, z, v)) = Φε0(x, z, v) are given
with the initial datum Φ0 specified as follows:

Φε0(x, z, v) =

5∑
n=1

εnΦ(n)(0, x, z, v) + ε5p5 (3.2)

where Φ(n)(0, x, z, v) is the n-th term of the expansion introduced in the next para-
graph, computed at time t = 0, and the ε-dependent contribution p5 is arbitrary
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but for having total mass
∫
dvdxdzM(v)p5(x, z, v) = 0 and

‖ p5 ‖∞,2:= sup
ε>0

∫
R3

dv

∣∣∣∣∣ sup
(x,z)∈[−π,π]2

p5(x, z, v)

∣∣∣∣∣
2

M

 1
2

< c, (3.3)

for some constant c.
We write also the time dependent solution in terms of a truncated expansion in

ε,

Φε(t, x, z, v) =

5∑
n=1

εnΦ(n)(t, x, z, v) + εY (t, x, z, v), (x, z) ∈ Ω, v ∈ R3, t > 0.

(3.4)
The first term of the expansion in ε is

Φ(1) = ρ+ u · v + θ
|v|2 − 3

2
,

where the fields (u(t, x, z), θ(t, x, z)) are solutions of the hydrodynamic equations
for the perturbation, while ρ(t, x, z) is determined by the Boussinesq condition
(1.12). The hydrodynamic initial data are chosen as follows: let (u0, θ0) be an initial
perturbation of the convective solution (us, θs) sufficiently small to ensure that the

solution to (1.4), denoted here (ũ(t, x, z), θ̃(t, x, z)) = (us(x, z)+u(t, x, z), θs(x, z)+
θ(t, x, z)), exists globally in time and converges exponentially to (us, θs) as t→ +∞,
as stated in (1.8).

The construction of the time dependent solution is based, as the stationary solu-
tion, on an expansion which starts with the solution to the hydrodynamic equations.
We need the following proposition on the stability of the hydrodynamic solution,
whose proof is referred to the literature [6, 7, 8, 9, 10, 11, 13]:

Proposition 3.1. For δ < δ1, let (u, θ) be the periodic solution of the following
equation for the perturbation

∂tu+ us · ∇µu+ u · ∇µus + u · ∇µu = η̂∆µu−∇µp− ezGθ,

∂tθ + us · ∇µθ + u · ∇µθs + λuz =
5

2
k̂∆µθ,

∇µ · u = 0,

u(x, z, 0) = u0(x, z), θ(x, z, 0) = θ0(x, z), (x, z) ∈ [−π, π]× [−π, π],

u(x,−π, t) = u(x, π, t) = θ(x,−π, t) = θ(x, π, t) = 0, x ∈ [−π, π], t > 0.

If (u0, θ0) ∈ (Hk)3, for k sufficiently large, and ‖ u0 ‖Hk + ‖ θ0 ‖Hk< n0, for n0

small enough, then there is ζ1 > 0 such that (u, θ)(x, z, t) is in (Hk)3 for any t > 0
and lim

t→∞
(eζ1tu, eζ1tθ) = 0 in (Hk′)

3, for any k′ < k.

The terms of the expansion Φ(n), n = 1, . . . , 5 are constructed by means of
an Hilbert type expansion in the bulk, corrected by a boundary layer expansion
designed to restore the correct boundary conditions. For the construction of the
expansion we refer to [5]. To state next proposition, we need the norms

‖ f ‖2t,2,2=
(∫ t

0

∫
Ω

∫
R3

|f(s, x, z, v)|2M(v)dsdxdzdv
) 1

2

,

‖ f ‖∞,∞,2= sup
t>0

(∫
R3

sup
(x,z)∈Ω

|f(t, x, z, v)|2M(v)dv
) 1

2

.
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Moreover ‖ f ‖2,2,2 is the norm ‖ f ‖2t,2,2 with t = +∞. We also use the boundary
norms

‖ f ‖2t,2,∼ =
(∫ t

0

∫ π

−π

∫
vz>0

vzM(v) | f(s, x,−π, v) |2 dvdxds
) 1

2

+
(∫ t

0

∫ π

−π

∫
vz<0

| vz |M(v) | f(s, x, π, v) |2 dvdxds
) 1

2

,

‖ f ‖∞,2,∼ =
(

sup
t>0

∫ π

−π

∫
vz>0

vzM(v) | f(t, x,−π, v) |2 dxdv
) 1

2

+
(

sup
t>0

∫ π

−π

∫
vz<0

| vz |M(v) | f(t, x, π, v) |2 dxdv
) 1

2

,

and, as before, ‖ · ‖2,2,∼ corresponds to t = +∞.

The estimates we need on the terms of the expansion Φ(n) are summarized in the
following proposition, whose proof can be readily obtained along the lines of [5, 1]:

Proposition 3.2. Assume that at time zero, for some suitably large k,

‖ u0 ‖Hk + ‖ θ0 ‖Hk< n0. (3.5)

Then for δ < δ1 and for n0 of Proposition 3.1, it is possible to determine the
functions Φ(n), n = 1, . . . , 5 and the boundary functions ψn,ε, n = 2, . . . , 5 in the
asymptotic expansion so that the following boundary conditions are satisfied:

Φ(n)(t, x,∓π, v) =
M∓(v)

M(v)

∫
wz≶0

|wz|M
[
Φ(n)(t, x,∓π,w)− ψn,ε(t, x,∓π,w)

]
dw

+ψn,ε(t, x,∓π, v), t > 0, vz ≷ 0, t > 0.

The Φ(n) satisfy the zero mass condition∫
R3×Ωµ

MΦ(n)dvdzdx = 0, t ∈ R+.

Moreover, there are constants C and C1 such that for n = 1, . . . , 5,

‖ eζtΦ(n) ‖2,2,2< C
(
‖ u0 ‖Hk + ‖ θ0 ‖Hk

)
,

‖ eζtΦ(n) ‖∞,∞,2< C
(
‖ u0 ‖Hk + ‖ θ0 ‖Hk

)
,

and, for n = 2 . . . , 5,

‖ eζtψn,ε ‖2,2,∼< Ce−C1ε
−1

, ‖ eζtψn,ε ‖∞,2,∼< Ce−C1ε
−1

,

for any 0 ≤ ζ < ζ1, with ζ1 the decay rate of the hydrodynamic equation given in
Proposition 3.1.

The remainder Y satisfies the following initial boundary value problem:

∂tY +
1

ε
v · ∇µY −GM−1 ∂(MY )

∂vz
=

1

ε2
LY +

1

2ε
J(Y, Y ) +

1

ε
H(Y ) +A, (3.6)

Y (0, x, z, v) = Y0(x, z, v) = ε4p5(x, z, v),

Y (t, x,∓π, v) =
M∓
M

∫
wz≶0

(Y (t, x,∓π,w) +
ψ

ε
(t, x,∓π,w))|wz|Mdw

−ψ
ε

(t, x,∓π, v), x ∈ [−π, π], t > 0, vz > 0,
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where ψ(t, x,±π, v) =
∑5
n=1 ε

nψn,ε(t, x,±π, v). We have set

H(Y ) = J(ε−1Φεs + Φ̄, Y ), Φ̄ =

5∑
n=1

εn−1Φ(n), (3.7)

where we recall that Φεs is the full stationary solution constructed in Section 2, and
Φ(n) are the terms of the time dependent expansion.

The inhomogeneous term A is such that∫
Ω

dxdz

∫
R3

dvA = 0.

The expression for A is given in [5]. We omit it because we only use the following
estimate for A,

Proposition 3.3. There are C > 0 and C1 > 0 such that for any 0 ≤ ζ < ζ1,

‖eζtA‖2,2,2 + ‖eζtA‖∞,∞,2 < Cε3, (3.8)

and
‖eζtψ‖2,2,∼ + ‖eζtψ‖∞,2,∼ < Ce−C1ε

−1

.

The main result of this section is the stability result:

Theorem 3.1. There are λ0 > 0, δ0 > 0, ε0 > 0 (possibly smaller than those
introduced in Section 2), n0 and ζ > 0 such that, if λ < λ0, δ < δ0,
G ∈ [0, Gc(1 + δ)), 0 < ε < ε0,

‖ u0 ‖Hk + ‖ θ0 ‖Hk< n0, (3.9)

and p5 satisfies (3.3), then the solution to the initial boundary value problem (3.1)
exists and has the following decay property: there is a constant C independent of ε
such that

‖e 1
2 ζtΦε‖2,2,2 < Cε

7
2 . (3.10)

In order to prove Theorem 3.1 the strategy we have discussed before consists in
writing Φε, as Φε = Φ̄ + εY . Since the terms of the expansion are estimated by
means of Proposition 3.2, we only need to estimate the remainder term Y . Again
by Proposition 3.2, Φ̄ decays to zero exponentially in t. Therefore, to prove (3.10),
we need to show that also the remainder Y decays exponentially. For this purpose,
let us fix a positive ζ < ζ1 and put R = eζtY . Then, R is solution of

∂tR− ζR+
1

ε
v · ∇µR−GM−1 ∂(MR)

∂vz
(3.11)

=
1

ε2
LR+

1

2ε
e−ζtJ(R,R) +

1

ε
H(R)) + Ā, (3.12)

R(0, x, z, v) = R0(x, z, v) = ε4p5(x, z, v),

R(t, x,∓π, v) =
M∓
M

∫
wz≶0

(R(t, x,∓π,w) +
ψ̄

ε
(t, x,∓π,w))|wz|Mdw

− ψ̄
ε

(t, x,∓π, v), x ∈ [−π, π], t > 0, vz > 0.

Here Ā = eζtA and ψ̄(t, x,±π, v) = eζtψ(t, x,±π, v). The estimates of Proposition
3.3 imply that for any ζ < ζ1

‖Ā‖2,2,2 + ‖Ā‖∞,∞,2 < Cε3, (3.13)
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and

‖ψ̄‖2,2,∼ + ‖ψ̄‖∞,2,∼ < Ce−C1ε
−1

.

We follow closely the approach in [2]. Therefore we will just recall the main the-
orems proved there, which are valid also in the present situation, and give explicitly
the proofs when modifications are needed.

We decompose the operator H as in Section 2:

H(R) = J(q, PR) +H1(R), q = ε−1Φε + Φ̄.

Then we define LJ = L+ εJ(q, PY ). Note that Proposition 2.2 holds for the newly
defined LJ and that, under the assumptions of Theorem 3.1, inequality (2.6) is
replaced by

‖q‖2,2,2 ≤ C(λ+ δ + ε+ n0), ‖q‖∞,∞,2 ≤ C(λ+ δ + ε+ n0). (3.14)

We notice that H1(R) is of order zero in ε, and only depends on the nonhy-
drodynamic part (I − P )R. To solve the equation for R we shall use an iteration
procedure based on the decomposition of R in the sum R1 + R2, where R1 and
R2 are solutions of two different problems. R1 solves a problem with prescribed
incoming data and prescribed inhomogeneous term, while R2 solves a problem with
diffusive boundary conditions plus prescribed incoming data (depending on R1),
zero initial condition and no inhomogeneous term. We recall that R satisfies the
vanishing mass condition∫

dxdzdvMR(x, z, v, t) = 0, t ∈ R+,

so that we have also
∫
dxdzdvMR1(x, z, v, t) = −

∫
dxdzdvMR2(x, z, v, t). The

equations for R1 and R2 are

ε
∂R1

∂t
+ v · ∇µR1 − ε

G

M

∂(MR1)

∂vz
= εζR1 +

1

ε
LJR1 +H1(R1) + g, (3.15)

R1(0, x, z, v) = R0(x, z, v),

R1(t, x,∓π, v) = −1

ε
ψ(t, x,∓π, v), t > 0, vz ≷ 0.

ε
∂R2

∂t
+ v · ∇µR2 − ε

G

M

∂(MR2)

∂vz
= εζR2 +

1

ε
LJR2 +H1(R2), (3.16)

R2(0, x, z, v) = 0,

R2(t, x,∓π, v) =
M∓(v)

M(v)

∫
wz≶0

(
R1(t, x,∓π,w) +R2(t, x,∓π,w)

+
1

ε
ψ̄(t, x,∓π,w)

)
|wz|Mdw, t > 0, vz ≷ 0.

Note that we have multiplied by ε the equations for R1 and R2 because, in some
arguments we will use the “microscopic time” τ̄ = ε−1t and such a rescaling
corresponds just to replace ε∂t with ∂τ̄ in above equations. In the problems
(3.15) and (3.16) the unknowns R1 and R2 are sought for as periodic functions
in x ∈ [−π, π), and g is some given function, periodic on the same interval, such
that

∫
Mg(·, x, z, v)dxdzdv ≡ 0. The existence of the solution, is obtained as in [1].

We start by giving a priori estimates obtained by Green’s formula, for the non-
hydrodynamic part of R1 and the outgoing flux γ−R1; multiply (3.15) by 2R1Mκ,
(where as in [2], κ = eεG(z+π)) integrate with respect to the variables (τ̄ , x, z, v)
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over [0, T ]× [0, 2π]2 ×R3, integrate by parts and use the spectral inequality for LJ
and the bounds 1 ≤ κ(z) ≤ e2εGπ and (3.14), to obtain, for every η1 > 0,

‖ γ−R1 ‖22T ,2,∼ + ‖ R1(T ) ‖22,2 +
1

ε
‖ ν 1

2 (I − PJ)R1 ‖22T ,2,2

≤ c
(
‖ R0 ‖22,2 +ε ‖ ν− 1

2 (I − PJ)g ‖2
2T ,2,2

(3.17)

+η̄ ‖ PJR1 ‖22T ,2,2 +
1

2η1
‖ PJg ‖22T ,2,2 +

1

ε2
‖ ψ̄ ‖2

2T ,2,∼

)
,

where η̄ = η1
2 + ε(ζ + λ+ δ + ε+ n0).

We consider now the so called dual problem, namely we seek for the space-periodic
solutions to a linear problem in the rescaled time variable τ̄ = ε−1t. This problem is
discussed in the following lemma, where we use the notation introduced in Section
2, but with the function q also time dependent. Next lemma follows as in [2],
Lemma 4.1, by taking into account the modified spectral inequality (2.9) and the
consequent Green inequality.

We write the analog of (3.17) for the dual problem:

‖ γ−ϕ ‖2
2T ,2,∼ + ‖ ϕ(T ) ‖22,2 +

1

ε
‖ ν 1

2 (I − P )ϕ ‖2
2T ,2,2

≤ c
(
ε ‖ ν− 1

2 (I − P )h ‖2
2T ,2,2

+η̄ ‖ Pϕ ‖2
2T ,2,2

+
1

2η1
‖ Ph ‖2

2T ,2,2

)
,

for any solution ϕ to (3.18) below, with vanishing initial and incoming data. In-
equality (3.22) below follows as in [2], page 47.

Lemma 3.1. Given a x-periodic function h of period 2π, let ϕ(τ̄ , x, z, v) be the
x-periodic function solution to

∂τ̄ϕ+ v · ∇µϕ− εGM−1 ∂(Mϕ)

∂vz
=

1

ε
L∗Jϕ+ h, (3.18)

with vanishing initial and incoming data. Set ϕ̃ = ϕ− < ϕ >= ϕ− (2π)−2
∫
ϕdxdz.

If the parameters λ, ε, δ and n0 satisfy the assumptions of Theorem 3.1, then
there exists η small such that,

‖ ϕ ‖∞,2,2 +‖ γ−ϕ ‖2,2,∼ ≤ c
(
ε

1
2 ‖ ν− 1

2 (I − P )h ‖2,2,2 (3.19)

+ε−
1
2 ‖ Ph ‖2,2,2 +ηε

1
2 ‖< Pϕ >‖2,2

)
,

‖ ν 1
2 (I − P )ϕ ‖2,2,2≤ c

(
ε ‖ ν− 1

2 (I − P )h ‖2,2,2 + ‖ Ph ‖2,2,2 (3.20)

+ηε ‖< Pϕ >‖2,2
)
,

‖ P̃ϕ ‖2,2,2≤ c
(
‖ ν− 1

2 (I − P )h) ‖2,2,2 +ε−1 ‖ Ph ‖2,2,2 (3.21)

+η ‖< Pϕ >‖2,2
)
,

‖< Pϕ >‖2,2≤
c

ε
‖ h ‖2,2,2 +η ‖ ν 1

2ϕ ‖2,2,2 . (3.22)

An a priori bound for PJR1 is obtained in the following lemma based on dual
techniques involving the simultaneous considerations of the problems (3.18) and
(3.15). Consider first the problem (3.15) without the term H1(R1).
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Lemma 3.2. Set h := PJR1. Then

‖ h ‖22,2,2≤ c(‖ R0 ‖22,2 + ‖ ν− 1
2 (I − PJ)g ‖22,2,2 +

1

ε2
‖ PJg ‖22,2,2 +

1

ε3
‖ ψ̄ ‖22,2,∼).

Proof of Lemma 3.2. In the variables (τ̄ , x, z, v), the function R1 is 2π-periodic
in x and solution to (3.17) with the term H1(R) missing. Let ϕ be a 2π-periodic
function in x, solution to (3.18) with zero initial values and ingoing boundary values
at z = −π, π. We multiply the equation for ϕ by κMR1 and the one for R1 by κMϕ,
then sum them and integrate on the variables τ̄ ∈ [0, T ], x ∈ [−π, π), z ∈ (−π, π)
and v ∈ R3. Then we use the periodicity in x to cancel the terms ∂x and take an
integration by parts on the variable z. Using the equilibrium condition

v · ∇µ(κM) + εG∂vz (κM) = 0,

we obtain:∫
dτ̄dxdzdv

(
M∂z(vzκR1ϕ)− εGκ∂vz (MR1ϕ)

)
+

∫
dτ̄dxdzκ(z)dvM∂τ̄ (R1ϕ)

=
1

ε

∫
dτ̄dxdzdvMκ

[
(LJ((I − PJ)R1)(I − P )ϕ) + ((I − PJ)R1L

∗
J(I − P )ϕ)

]
+

∫
dτ̄dxdzdvMκ

[
gϕ+ hPJR1

]
+ εζ

∫
dτ̄dxdzdvMκϕR1.

We use the above equation to get an estimate for the term before the last in the
r.h.s: hPJR1 = h2. All the terms are estimated as in [2] but we give the explicit
computation here for sake of completeness. We need to track the ζ-term and take
care of the terms due to the modified spectral inequality. The last term is bounded
as

εζ|
∫
dτ̄dxdzdvMκϕR1| ≤ ζC

(
‖ R1 ‖22T ,2,2 +ε2 ‖ ϕ ‖2

2T ,2,2

)
.

Therefore, for any arbitrary choice of Ki, i = 0, 1, . . . , 4 we get, for ζ small,

‖ h ‖2
2T ,2,2

≤ K1

2
‖ R1(T , ·, ·) ‖22,2 +

1

2K1
‖ ϕ(T , ·, ·) ‖22,2

+
K0

2
‖ γ−R1 ‖22T ,2,∼ +

1

2K0
‖ γ−ϕ ‖2

2T ,2,∼

+
(K3

2ε
+ ζC

)
‖ ν 1

2 (I − PJ)R1 ‖22T ,2,2 +
( 1

2K3ε

)
‖ ν 1

2 (I − P )ϕ ‖2
2T ,2,2

+
K4

2
‖ ν− 1

2 (I − PJ)g ‖2
2T ,2,2

+
( 1

2K4
+ ε2ζC

)
‖ ν 1

2 (I − P )ϕ ‖2
2T ,2,2

+
K2

2
‖ PJg ‖22T ,2,2 +

( 1

2K2
+ ε2ζC

)
‖ Pϕ ‖2

2T ,2,2
.

All the ϕ-terms computed at time T on the l.h.s can be estimated using (3.19)–
(3.22) in Lemma 3.1. Using the Green inequality (3.17) to bound the R1-terms, we
obtain, for T̄ →∞,
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‖ h ‖22,2,2

≤c

[
(K0 +K1 +K3 + εζ) ‖ R0 ‖22,2 +

(K1 +K0 +K3

ε2
+ ζε−1

)
‖ ψ̄ ‖22,2,∼

+
(
εK1 + εK0 + εK3 +K4 + ζ

)
‖ ν− 1

2 (I − PJ)g ‖22,2,2

+
( 1

εK0
+

1

εK1
+

1

ε2K2
+

1

εK3
+

1

K4
+ ε2ζ

)
‖ h ‖22,2,2

+
(K1 +K0

η1
+
K3

η1
+K2 + εζ

)
‖ PJg ‖22,2,2

+
(
η̄K0 + η̄K1 + η̄K3 + ζεη̄

)
‖ PJR1 ‖22,2,2

+ η(
ε

K1
+

ε

K3
+

ε2

K4
+

1

K2
+ ε2ζ) ‖< Pϕ >‖22,2

]
.

The term < Pϕ > is bounded by using (3.22) in Lemma 3.1 as

‖< Pϕ >‖22,2≤ c
1

ε2
‖ h ‖22,2,2 .

We recall that η̄ = η1 + ε(ζ + λ+ δ + ε+ n0). So choosing ε small, then K1,K0

and K3 (resp. K2) of order ε−1 (resp. ε−2 ) times a big constant, K4 big and η1, η2

of order ε times a small constant and ζ + λ+ δ + ε+ n0 sufficiently small, leads to

‖ h ‖22,2,2 ≤ c
(1

ε
‖ R0 ‖22,2 + ‖ ν− 1

2 (I − PJ)g ‖22,2,2 +
1

ε2
‖ PJg ‖22,2,2

+
1

ε3
‖ ψ̄ ‖22,2,∼ +η ‖< PJR1 >‖22,2,2

)
.

The final estimates for R1 are summarized in

Lemma 3.3. The solution R1 to (3.15) satisfies

‖ ν 1
2R1 ‖2,2,2 ≤ c

(
‖ R0 ‖2,2 + ‖ ν− 1

2 (I − PJ)g ‖2,2,2

+
1

ε
‖ PJg ‖2,2,2 +ε−

3
2 ‖ ψ̄ ‖2,2,∼

)
,

‖ R1 ‖∞,2,2 ≤ c
(
‖ R0 ‖2,2 + ‖ ν− 1

2 (I − PJ)g ‖2,2,2 +
1

ε
‖ PJg ‖2,2,2

+ε−
3
2 ‖ ψ̄ ‖2,2,∼

)
,

‖ ν 1
2R1 ‖∞,∞,2 ≤ c

(
ε−1 ‖ R0 ‖2,2 + ‖ R0 ‖∞,2 +

1

ε
‖ ν− 1

2 (I − PJ)g ‖2,2,2

+
1

ε2
‖ PJg ‖2,2,2 +ε ‖ ν− 1

2 g ‖∞,∞,2 +ε−
5
2 ‖ ψ̄ ‖2,2,∼

+
1

ε
‖ ψ̄ ‖∞,2,∼

)
.
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Proof of Lemma 3.3. The solution R1 of (3.15) without H1-term satisfies

1√
ε
‖ γ−R1 ‖2,2∼ + sup

t≥0
‖ R1(t) ‖2,2 +

1

ε
‖ ν 1

2 (I − PJ)R1 ‖2,2,2

≤ c
(
‖ R0 ‖2,2 +ε−

3
2 ‖ ψ̄ ‖2,2,∼ + ‖ ν− 1

2 (I − PJ)g ‖2,2,2

+
η̄√
ε
‖ PJR1 ‖2,2,2 +

1

η
√
ε
‖ PJg ‖2,2,2

)
,

with η̄ = η+ ε(ζ + λ+ δ+ ε+n0), for any η > 0. Moreover, it follows from Lemma
3.2 that

‖ PJR1 ‖2,2,2 ≤ c
(
‖ R0 ‖2,2 + ‖ ν− 1

2 (I − PJ)g ‖2,2,2 +
1

ε
‖ PJg ‖2,2,2

+
1

ε
√
ε
‖ ψ̄ ‖2,2,∼

)
.

Choosing η =
√
ε leads to the first two inequalities of Lemma 3.3. The last in-

equality of Lemma 3.3 is obtained as in [1], by studying the solution along the
characteristics. Adding the term ε−1H1(R1) does not change these results. �

The remaining part R2 of R satisfies the problem (3.16). Its analysis is more
involved and will use a careful study of the Fourier transform of R2. The existence
for the problem (3.16) can be adapted from the corresponding study in [12], if one
includes into that approach the spectral estimate for LJ , and the characteristics
due to the force term.

In (3.16) the given indata part is

f−(t, x,∓π, v) =
M∓
M

∫
wz≶0

(
R1(t, x,∓π,w) +

1

ε
ψ̄(t, x,∓π,w)

)
|wz|Mdw,

vz ≷ 0.

By Green’s formula for (3.16), and noting that H1(R2) only depends on (I −P )R2,
we get

ε‖R2(t)‖22,2+ ‖ γ−R2 ‖22t,2,∼ +
c

ε
‖ ν 1

2 (I − PJ)R2 ‖22t,2,2
≤ ‖ γ+R2 ‖22t,2,∼ +εδ̄‖PJR2‖22t,2,2 , (3.23)

with δ̄ = ζ + λ+ δ + ε+ n0. By arguing along the same lines of [2], pag. 142-143,
we can estimate the outgoing flux part of R2 appearing in the r.h.s. of (3.23) and
thus obtain

ε‖R2‖22,2(t) +
c

ε
‖ ν 1

2 (I − PJ)R2 ‖22t,2,2≤
1

εη
‖ f− ‖22t,2,∼ +Cε(δ̄+ η) ‖ PJR2 ‖22t,2,2,

‖ γ−R2 ‖22t,2,∼≤
1

ε2
‖ f− ‖22t,2,∼ +C ‖ PJR2 ‖22t,2,2 . (3.24)

The hydrodynamic estimates for R2 are obtained in two steps: first we consider
a 1-d (x-independent) case, with an inhomogeneous term g1 which will take into
account the x-dependence in later proofs,

ε
∂R2

∂t
+ vz

∂R2

∂z
− εGM−1 ∂(MR2)

∂vz
=

1

ε
LJR2 +H1(R2) + g̃1, (3.25)

where g̃1 = g1 + εζR2.
The 1 -dimensional Lemma 4.4 in [2] holds without changes and we just quote it

without proof:
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Lemma 3.4.

‖ PJR2 ‖22,2,2≤
c1
ε2
‖ f− ‖22,2∼ +c2(‖ PJR1 ‖22,2,2 + ‖ ν− 1

2 g̃1 ‖22,2,2).

By the relation between g̃1 and g1 and the Green inequality, we also have

‖ PJR2 ‖22,2,2≤ c
( 1

ε2
‖ f− ‖22,2∼ + ‖ PJR1 ‖22,2,2 + ‖ ν− 1

2 g1 ‖22,2,2
)
.

Now we have to examine the 2-dimensional case. This is treated in [2] in Lemma
4.5. The inclusion of the term εζR2 can be handled as before. We sketch the
approach and give the details for the R20-moment.

Lemma 3.5. Let R2 be solution to (3.16). Then there is c > 0 such that

‖ PJR2 ‖22,2,2≤ c(
1

ε2
‖ f− ‖22,2∼ + ‖ PJR1 ‖22,2,2).

Proof. The equation for R̂2 = FxFzR2, the Fourier transform in x, z of R2, is

ε
∂

∂t
R̂2 + iµvxξxR̂2 + ivzξzR̂2 − εGM−1 ∂

∂vz
(MR̂2)

= ε−1L̂JR2 + Ĥ1(R2)− vzr(−1)ξz + εζR̂2, (3.26)

r denoting the difference between the ingoing and outgoing boundary values,

r(t, x, v) = R2(t, x, π, v)−R2(t, x,−π, v). (3.27)

For any function φ(v) we denote R2φ =
∫
dvMR2φ(v). In particular, we denote

R20 =
∫
dvMR2 and R24 =

∫
dvMR2v

2. All the functions below depend on t but
we omit such a dependence.

First, we consider the case ξx = 0. We apply Lemma 3.4 to R̂2(0, ξz, v) =∫
dxR2(x, z, v). By integrating (3.16) over x and taking into account the periodic

conditions in the direction x, we get the 1-dimensional equation (3.25), where the
term g1 comes from the x-dependent terms in the expansion appearing in LJ . Since
the limiting solution is close to the laminar 1-dimensional solution up to order δ,
g1 is of order δ and is linear in R2. Thus, by Lemma 3.4 we get a bound for the
Fourier components PJ R̂2(0, ξz), for δ small.

Then we need to estimate PJ R̂2(ξx, ξz) for ξx 6= 0. Arguments similar to those
used in the proof of Lemma 4.1 in [2] (Lemma 3.1 here) imply that large values of
ξ can be dealt with by taking advantage of the factor |ξ|−2 and the estimates for
r due to the inequality (3.24). Therefore we need only to consider finitely many
(ξx, ξz) with ξx 6= 0.

The strategy used in [2] and repeated here is to get estimates of all the hydrody-
namic moments R2vx , R2vy , R2vz , R2v2 in terms of R20 which is estimated at the
end.

The first moment considered is the vx-moment for ξz = 0. Multiplying (3.26) by

M and integrating over the velocity we get an equation for R̂20. Multiplying the
conjugate of (3.26) by vxM and integrating over the velocity we get an equation

for R̂∗2vx(ξx, 0). Then, we multiply the first by R̂∗2vx(ξx, 0) and the second by R̂20.
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Summing the two it results,

ε
∂

∂t

(
R̂20(ξx, 0)R̂∗2vx(ξx, 0)

)
= iµξxR̂2vx(ξx, 0)R̂∗2vx(ξx, 0)

−iµξxR̂∗2v2x(ξx, 0)R̂20(ξx, 0) + R̂∗2vx(ξx, 0)

∫
dvMvzr

+R̂20(ξx, 0)

∫
dvMvxvzr

∗ + 2εζR̂20(ξx, 0)R̂∗2vx(ξx, 0).

We want to get an estimate of the time integral of the first term on the r.h.s.
and hence of ‖ R̂2vx(ξx, 0) ‖22,2,2. To this end, we integrate over the time variable
on the interval [0, t]. The integration of the time derivative produces a term at time
t = 0 which vanishes because R2 has 0 initial conditions and a term computed at
time t. Such a term is estimated by using the Green inequality. The first boundary
term is estimated by noticing that

∫
dvMvzr depends only on f− and the second

boundary term is estimated by using (3.24). The result is∫
|R̂2vx |2(ξx, 0)dt ≤ C

∫
dt
(
|R̂20|2(ξx, 0) + η ‖ PR2 ‖22,2

+ ‖ ν 1
2 (I − P )R2 ‖22,2 +

1

ε2
‖ ν 1

2 (I − PJ)R2 ‖22,2 +
1

ε2
‖ f− ‖22∼

)
, (3.28)

where η is some constant that can be made small by assuming the parameters λ, ζ,
δ, ε and n0 sufficiently small.

This is the simplest case, but the other moments R2vx , for ξz 6= 0, and R2vy ,
R24 are obtained by a similar approach, see [2], and the contribution from εζR2

produces a term of the form εζ ‖ PJR2 ‖22,2,2 which is absorbed under the smallness
assumption for the parameters. We conclude:∫ ∞

0

dt
(
|R̂2vz |2 + |R̂2vx |2 + |R̂2vy |2 + |R24|2

)
(3.29)

≤ C
∫
dt
(
‖ R20 ‖22,2 +η ‖ PR2 ‖22,2

+ ‖ ν 1
2 (I − P )R2 ‖22,2 +

1

ε2
‖ ν 1

2 (I − PJ)R2 ‖22,2 +
1

ε2
‖ f− ‖22∼

)
.

The moment R̂20(ξx, ξz) for ξx 6= 0 requires a different analysis. Below, for any
function h(t, x, z, v) we denote

ĥ(σ, ξx, ξz, v) = FtFxFzh(σ, ξx, ξz, v), and ĥz(σ, ξx, z, v) = FtFxh(σ, ξx, z, v).

Let us start with ξz = 0. We introduce the cutoff function β(τ̄) supported in
(0,+∞) with value 1 for τ̄ > τ0 for some positive τ0 and consider the partial

Fourier transform of βR2, ̂(βR2)z and the full Fourier transform β̂R2. They satisfy
the equations

(iεσ + iµξxvx) ̂(βR2)z + vz∂z ̂(βR2)z =

εGM−1∂vz (M
̂(βR2)z) +

1

ε
̂LJ(βR2)z + ̂H1(βR2)z + εζ ̂(βR2)z + iε ̂(β′R2)z.

(εiσ + µvxiξx + ivzξz)β̂R2 + vzβ̂r(−1)ξz = (3.30)

εM−1G∂vz β̂R2 + ε−1L̂JβR2 + ̂βH1(R2) + εζβ̂R2 + εβ̂′R2.

When τ0 → 0, β tends to the Heaviside function and its derivative to the δ-
function in τ̄ = 0. Thus the last term in the first of (3.30) vanishes because R2 is
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initially 0. Therefore, we get

(iεσ + iµξxvx)R̂z2 + vz∂zR̂
z
2 = εGM−1∂vz (MR̂z2) +

1

ε
LJ R̂

z
2 +H1R̂

z
2 + εζR̂z2.

Now we multiply by M and integrate on z and v. Thus we obtain:

(iεσ − εζ)R̂z20 + iµξxR̂
z
2vx + Fτ̄Fxf

−
vz = 0. (3.31)

Recall that, by the argument in the beginning of the proof, we only need to consider
bounded |ξx| and let ξ̄x be the maximum value for |ξx| that we have to deal with.
Now we consider σ’s such that |σ| > σ1 where σ1 is chosen so that∣∣∣∣µξ̄xεσ1

∣∣∣∣2 < 1

4C
,

C being the constant appearing in inequality (3.29). Therefore, denoting by χσ1(σ)
the characteristic function of [−σ1, σ1], we have∫

dσ(1− χσ1)|R̂z20(σ, ξx, 0)|2 ≤ 1

2

∫
|R̂z20(σ, ξx, 0)|2 + C

(
η ‖ PR2 ‖22,2,2

+ ‖ ν 1
2 (I − P )R2 ‖22,2 +

1

ε2
‖ ν 1

2 (I − PJ)R2 ‖22,2 +
1

ε2
‖ f− ‖22∼

)
. (3.32)

Hence

1

2

∫
dσ(1− χσ1

)|R̂z20(σ, ξx, 0)|2 ≤ 1

2

∫
χσ1
|FxR20(σ, ξx, 0)|2 + C

(
η ‖ PR2 ‖22,2,2

+ ‖ ν 1
2 (I − P )R2 ‖22,2 +

1

ε2
‖ ν 1

2 (I − PJ)R2 ‖22,2 +
1

ε2
‖ f− ‖22∼

)
. (3.33)

Finally, we have to deal with the |σ| < σ1. The right-hand sides of (3.30)
contain only terms that can be estimated by contributions either involving the
non hydrodynamic part or the hydrodynamic one multiplied by a small factor.
Therefore, we can use the arguments of [2] to conclude that, for εσ ≤ σ1,

‖ χσ1R̂20(·, ξx, 0) ‖22

≤c
( 1

ε2
‖ (I − PJ)R2 ‖22,2,2 + ‖ (I − P )R2 ‖22,2,2 +η ‖ R2 ‖22,2,2

)
. (3.34)

By summing the last two bounds, we get the estimate of R̂20 for ξz = 0. Then
one can repeat the same argument for ξz 6= 0. The boundary term can be removed
by subtracting the equation for ξz = 0 from the second of (3.30). Using the estimate
of R20 in (3.29) the proof of the lemma is concluded. �

We summarize the results on R2 in the following

Lemma 3.6. If the parameters satisfy the conditions of Theorem 3.1, any solution
R2 to the problem (3.16) satisfies the a priori estimates

‖ ν 1
2 (I − PJ)R2 ‖22,2,2 ≤ c

(
ε ‖ R0 ‖22,2 +ε ‖ ν− 1

2 (I − PJ)g ‖22,2,2

+
1

ε
‖ PJg ‖22,2,2 +

1

ε2
‖ ψ̄ ‖22,2,∼

)
,

‖ PJR2 ‖22,2,2 ≤ c
(1

ε
(‖ R0 ‖22,2 + ‖ ν− 1

2 (I − PJ)g ‖22,2,2)

+
1

ε3
‖ PJg ‖22,2,2 +

1

ε4
‖ ψ̄ ‖22,2,∼

)
,
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‖ ν 1
2R2 ‖2∞,∞,2 ≤ c( 1

ε2
‖ R2 ‖2∞,2,2 + ‖ γ−R1 ‖2∞,2,∼ +

1

ε2
‖ ψ̄ ‖2∞,2,∼)

≤ c
( 1

ε3
‖ R0 ‖22,2 +

1

ε3
‖ ν− 1

2 (I − PJ)g ‖22,2,2

+
1

ε5
‖ PJg ‖22,2,2 +

1

ε6
‖ ψ̄ ‖22,2,∼ + ‖ R0 ‖2∞,2

+ε2 ‖ ν− 1
2 g ‖2∞,∞,2 +

1

ε2
‖ ψ̄ ‖2∞,2,∼

)
.

Using the previous lemmas it is standard to prove the following

Theorem 3.2. There exists a solution Y to the rest term problem (3.6) such that∫ +∞

0

∫
[−π,π]

∫
[−π,π]

∫
R3

|e 1
2 ζtY (t, x, z, v)|2M(v)dtdxdzdv < cε7. (3.35)

Thus the proof of Theorem 3.1 is complete.
The positivity of the solution to the problem (1.1) is obtained by a suitable

modification of the argument in [3] to which we refer for details.

Acknowledgments. We wish to warmly thank Yan Guo who pointed out to us
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