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ABSTRACT
The problems discussed in this work concern asymptotic techniques and detailed
quantitative properties close to global equilibrium in classical kinetic theory. The
discussion is mainly centered on a particular two-rolls model problem for the
Boltzmann equation and hard forces, with the understanding that such a pro-
gram can be applied in many other contexts for single and multi-component gases.

The topics include asymptotic expansions, a priori estimates, existence results,
fuid dynamic limits, bifurcations and stability questions.
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1 Background.

This section contains some background material for the following presentation,
including references to more complete introductions for each separate topic.

The Boltzmann equation can formally and in a few notable cases rigorously,
be derived from particle mechanics via the so called BBGKY hierarchy ([Li, [IP]
and others). With the n-particle Hamiltonian in a container {2,

N .
Hy = Zpﬁ + Z O(qi —g;) + »_u(g), u? =0 inQ, = oo outside (),
1

i<j=1

the Hamiltonian system for the n-particle evolution becomes
0p;,  OHZ(X) 0@ _ OHL(X)

5 00, ' ot ap t>0, X=(QF)
B(U) = Pi, Qz(o) = g, 1= 11 "‘aNa

or in Poisson brackets

d Q
= F(X) = {£00), HR),
where
N N
{£( )HN}—(Z( ' 3@1 Z an - @), W;( )

This is the Liouville equation for the evolution of the phase space density fn.
Integrating away all but s particles gives a hierarchy of equations, the BBGKY
hierarchy, with the equation for the s-particle density

d
Et“fs =—Hsfs + ([H,/d-’l)]f3+1)-

Here [, ] denotes a certain commutator of operators. For finite N the hierarchy
is equivalent to the Liouville equation, but letting N tend to infinity and s run
from one to infinity, it can also be used for a coarse grained description of states



of systems with infinitely many particles. In particular, s = 1 gives the Boltz-
mann equation under the hypothesis of molecular chaos (or factorization of f,
into one-particle products) in the so-called Boltzmann Grad limit with the radius
of the molecules and the size of the vessel appropriately scaled when N — oc.
(For a broad discussion of this topic, see [CGP], [CIP].)

The n-particle evolution is reversible, whereas the limiting coarse-grained Boliz-
mann equation has an inbuilt arrow of time given by its negative entropy dissi-
pation rate.

Velocities in the pair collisions of the Boltzmann equation in R"™ - (v, v,) (before)
— (v',v)) (after) - are connected by

, VYL v—vy

g,
2 2
, V+v, |v—-v,|
x - a,
2 2

where o € §"!, the unit sphere in JR" . The density of a rarefied gas is as usual
modelled by nonnegative functions f(x,v) with z the position and v the velocity.
With respect to the velocities of the two particles before collision (v, v,) and the
ones after collision (v, v]), we shall write

f)=Ff, flu) = f, f(0) = f, flv) = fi.

The x-domain 2 will in our main example be the position space between two
coaxial cylinders with inner normal n(z). On the ingoing boundary 90T =
{(z,v) € 90U x R™;v-n(z) > 0} indata f, may be given, and a reflection operator
R can be defined for diffuse reflection, e.g. the Maxwellian type

flz,v) = CM(’U)/ |v' - m(x)| f(z, v)do'.

¥ n{z)<0

Combining them leads to the mixed boundary conditions,
f=ORf+(1-0)f 0<e <1 (1.1)
The stationary Boltzmann equation in the domain  is

ve Vaf (@,v) = QU filz,v) = @F(z,0) — Q7 (z,v) = Q7 (z,v) — fv(f)(=z,v)
= / / B(v —v,w)[f'f7 - ffdwdv,, z€QveR", (1.2)
R Js?

where QT — @~ is the splitting into gain and loss parts of the collision operator



Q, and v is the collision frequency. In this equation v - ¥, f(z,v)dzdv is the
transport term, i.e. represents the net variation per unit time due to the free
flow in and out of the volume element dzdv centered at (z,v) in phase space;
Q™ (z,v)dzdv represents the decrease per unit time of the number of particles
in the same volume element by collisions with all other particles that are at the
position z at the same time; and Q*(z,v)dzdv represents the increase per unit
time of the number of particles in the volume element as the result of collisions
involving all particles at position z with velocities (v',v.). The kernel B describes
the specific collision process under study. A discussion of how to compute B
in particular cases can be found in [LaLi Section 18]. E. g. for interactions
inversely proportional to some power of the distance, this function B has a non-
integrable singularity in the angular variable at grazing collisions. To remove
such singularities, the Grad cut-off assumption is usually added, replacing the
divergent angular dependence by an integrable one one, thereby guaranteeing
separately convergent gain and loss terms.

Multiplying Q(f, f) with a function (u), integrating with respect to velocity
and changing variables, formally gives

1

QU H@d =] [ B SR+ = v
R? RExR3 x 52

In particular this integral vanishes for W = 1,v,|v[% In the cases of interest
in these lectures, the formal calculations can be rigorously justified. Taking
= In f, we obtain the entropy dissipation rate

—e(f) = fB(ff* - f’fi)ln%dwdvdv*dw.
The entropy dissipation rate is strictly negative except for Maxwell distributions

Myye = - exp(—ﬁi_g—}f—), i.e. the equilibria for which the entropy dissipation
T

vanishes. For additional general introductory material on kinetic theory, you may
consult, [C] or [CIP] and their references. :

Asymptotic studies of the Boltzmann equation like this work, require scalings for
collision terms, for variables, and for boundary values. The variables are first
rescaled to make the equation non-dimensional. Physically motivated additional
scalings in some parameter like the mean free path, may then be introduced for
particular situations to obtain formal comparison between the kinetic models at
leading order and corresponding gas dynamic ones. To go from the kinetic micro-
scopic to the macroscopic fluid dynamic descriptions, the conserved fields bave
to be slowly varying on the kinetic scale and have reasonable space variations

4



over macroscopic distances. To expose these fluid fields, power series expansions
in the scaling variable are inserted into the kinetic equations and coupled with
formal truncations. A rest term is added to the truncated expansion for questions
of rigorous kinetic existence, and likewise for convergence issues when the mean
free path tends to zero. Let us consider some examples.

In the incompressible case, the expansions and the limit-takings may be car-

ried out starting from a (normalized) global Maxwellian M = (271’)_%6"%, and
with the scaling F' = MG, > 0. A useful parameter is the Knudsen number, the
ratio between the microscopic and macroscopic space units, such as the molecular
mean free path (in ordinary air 107° ¢m) to a typical length scale for the flow,
often based on the gradients occuring in the flows. With ¢/ the Knudsen number
or the mean free path, we get a Boltzmann equation in G,

1
€0Ge + v - VG = EJ(GG GE)

Here J is the rescaled quadratic Boltzmann collision operator,
1
J(® V)(v) = & / B(v — va,0) M(0,)(®() U (0) + (/)T (o))
2 R3Ix5?
=& (v, (v) — &(v)¥(v,))dv,dw.

Also its linearization around 1 is an important operator in kinetic theory;

(LB)(v) = fms B(v — v, ) M(0,)(8(2') + B(a) — B(v.)

—®(v))dv.dw = K(D) — v®.

With G, =1+ €"g,, the term of order ¢ denoted by g¢., determines the hy-
drodynamic fields (p,u,f) representing the leading order density, velocity, and
temperature fuctuations. The equation for the g. perturbation becomes

1 )
681596 + - 2 0e + E_JLgE = Em_JJ(gsage)
= (formally when € —0)
L)
Vs -u =0 {incompressibility), . (p~+#)=0 (Boussinesq relation)

ge—r pH+u-v+6(

together with
i>lm=1: Outu Jpu+Tp=0, db+u-v.0=0 EE.
=1,m>1: Qu+Vp=pulgu, O =rA0 (Stokes ekv.)
j=1m=1: Qu-tu Veu+Vp=pAgu, G+u-.0=rA,0 NSE.
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More generally we may start from a local Maxwellian

P (v —u)?
M,, o= ——serp(——— 1),
51,0 (%6)%%1}( 5 )

and are interested in solutions f, to the Boltzmann equation

Orfe+v- Vel = %Q(fe: fe),

where f. is a perturbation of a Maxwellian M, .4, which corresponds to the
solution of some compressible gas dynamic equation. Also f. is an approximate
solution of order p if |

Oufe +v-Tafe= %Q(fﬁa fe)+ O(e).

Write f. as an asymptotic expansion plus a rest term,

ho .

f.=3 et + R,

J=0
This may be inserted into the Boltzmann equation and followed by a formal
identification as equations of one order at a time (the Hilbert expansion), either
just ending at some suitable order j;, or ending by rigorously solving the rest
term problem. The procedure in its simplest form is

order —1: Qfe,fo)=0 = fo= Myo)uw), 8(z) (V)
order 0: 8.fo+v-Vafo=QUfo, i) +Qf1, fo)- (1.3)

The expansion “'“ ', € f; is of course not by itself a density solution of the Boltz-
mann equation, smce it satisfies the Boltzmann equation only up to some order,
and may by its essentially polynomial character become negative, whereas a real
density should be everywhere positive.

As basis for the kernel of L in L?,(JR®) (i.e. L? in velocity with Maxwellian
weight function), we take 1y = 1,7 = vo,¥r = Vp, 9 = Vg s = %(1}2 - 3).
The right hand side in the zero order equation of (1.3) is orthogonal to the fluid
dynamic v_-moments, which span the kernel of L. A corresponding fluid dynamic
projection gives the Euler equations of compressible gas dynamics

Op + Vo (pu) =9,
O (pu) + Vzlpu @ u) + vz (pf) =90,

1,3 Lo, 9o
G (p(5u +29))+vx(pu(2u +50) =0.



Also mathematically interesting, but not implied by the formal asymptotics, is
in what sense the leading order gas dynamics equations are limits of the kinetic
ones. The Euler equations obviously do not depend on any detailed informa-
tion about the Boltzmann equation, not even the cross section of the collisions.
Composite molecules on the other hand, require additional terms for unavoidable
rotational and vibrational modes of interaction. The Euler equations describe
what happens at microscopic times of order e~!.

To reach instead the compressible Navier-Stokes equations, one could perform
the Chapman-Enskog variant of the Hilbert expansion, adding a kind of equation
expansion. Low orders are then of most interest for obtaining/improving/varying
fluid dynamic models. Up to the Navier-Stokes level all is simple. We may start
from

fe= Mpe,ue,ﬂe(l +efre + 52f2£): (1-4)

and assume that p, u,, 8, solve the compressible Navier-Stokes system

Otpe + V2 (PE’U,;) =0,
pe(at + U Vz)ue + Vm(pege) =€V '(MC(DUE))a

3 1
§ps(at + U - Vm)ge + pebe Vg Ue = EaﬂleD(uc) : D(ue) + ez {K‘c Ve 96]

Inserting (1.4) into the Boltzmann equation, gives fi., fa, such that (1.4) be-
comes an approximative solution of the Boltzmann equation of order two (see
[BGL]). The transport coefficients u. (viscosity) and &, (thermal conductivity),
are kinetically described by the collison operator dependent term fi, which con-
tains the main contribution to the momentum and heat flow dissipation. The first
order microscopic term is thus the main responsible for the conversion of mechan-
ical work to heat and the transport of heat to the boundary. Adding a rest term,
a true solution can be obtained for the Boltzmann equation. Conversely a solu-
tion to the Boltzmann equation may sometimes be used to derive rigorously a
Navier-Stokes description from the Boltzmann one, that describes what happens
for microscopic times of order ¢=2. After mild changes in the set-up, extra terms
may appear in the Navier-Stokes system (called ghost terms when their origin is
not, from leading order but comes from higher order terms). For a more extended
introduction to such asymptotics, see Chapter 2 in [BGP| with references.
Proceeding beyond the Navier-Stokes level in the Chapman-Enskog procedure
introduces undesired effects; well-posedness and the monotone entropy property
may e.g. disappear. Among the many efforts to ameliorate this higher order
situation, we mention two recent approaches, by M. Slemrod [S] using certain ra-
tional approximations, and A. Bobylev’s operator calculus with projections [B],
both delivering well-posed alternative equations.



This work will focus on stationary aspects. Stationary solutions are of importance
in their own right, but also as time-asymptotics, and in rarefied gas dynamics.
The latter deals with gas flows, where Navier Stokes type equations are not valid
in some significant region of the flow field. The broad picture is one of normal re-
gions where the gas flow follows the macroscopic fluid equations, plus thin shock
layers, boundary layers, and initial layers, where matching conditions are sought
between different fluid regions or between fluid regions and boundaries.

We shall here concentrate on the boundary layer case for a situation where the gas
is contained between two concentric rotating cylinders, and also consider its scal-
ing limit, for vanishing Knudsen number. That two-rolls set-up is a classical prob-
Jem on the fluid dynamics side with a surprisingly varied bifurcation behaviour,
when the rotation rates of the cylinders change, which is well demonstrated in the
experimental work of Andereck, Liu and Swinney [ALS]. An interesting question
is how much of the bifurcations survive on the kinetic side. One may crudely
expect that, as soon as there is a rigorous enough mathematical analysis of the
fluid behavior, then the result should somehow carry over to the kinetic side.
This work demonstrates how the leading order fluid terms dominate the higher
order behaviour, when the solutions are close to equilibrium.

Systematic asymptotic studies close to equilibrium started already in the 1960-ies
with Grad [G], Kogan [K], and Guiraud [Gu] among the pioneers, and with the
main arguments based on fixed points and contraction mapping techniques. Two
main approaches are presently in use, one based on energy methods in Sobolev
spaces (i.e. involving LP-estimates of derivatives). The other employs the setting
of mixed weighted LP-spaces, where precise spectral aspects are readily available.
We shall here use the Iatter approach to study certain fully nonlinear stationary
“kinetic problems between rotating cylinders, including fluid limits when instabil-
ities (bifurcations) arise. Part of the results were first published in [AN2] and
[AN3]. Among the new results are in particular the stability properties discussed
in Section 5.



2 A kinetic gas between two coaxial cylinders.

In this section asymptotic expansions are introduced and discussed for three
archetypical two-rolls situations.

Consider the stationary Boltzmann equation in the space ) between two coaxial
cylinders with radii r4 < rp. Denote by (r, 6, 2) and (v, vg, v,) respectively, the
cylindrical spatial coordinates and the corresponding velocity coordinates. Let
us start with parameter ranges where the system stays axially and rotationally
uniform, the interesting solutions then being positive functions f(r,v,, v, v.). In
these coordinates the Boltzmann equation may be wriiten

of 1., 1
'UT'E + ;Nf = gQ(fa £, (2.1)

T € (ra,7m)y (v, ve,0,) € R

Here

of af

— Vglr——.

Nf =2
f '”"avr Qg

In the collision term @ the kernel B = v — v,/#b(f), where b € L1(8%), and
0 < B8 < 1in the hard force setting of these lectures.

The Knudsen number & = ¢/ will be considered for various j’s. As boundary
conditions, functions f, are given on the ingoing cylinder boundary 907", ie.
{(ra,v); v, > 0} and {(rg,v);v, < 0}. For the axially homogeneous case we may
assume that the solutions are even in the v,-variable. The most general we are
then able to say about the solvability of the problem is

Theorem 2.1 [ANI1] Let 8 be the power of the relative velocity in the Boltzmann
collision kernel. Given m = f:AB Jra(1 + 0]} fdzdv and ingoing boundary values
fo with finite flow of mass, energy and entropy, then there exists o weak L'-
solution to the Boltzmann equation for hard forces in the two-rolls domain with
G-moment m and the indata profile kf, for some k depending on m.

Thus for mere existence it is enough to require that the flows of mass, energy
and entropy are finite for f,. Also the mixed boundary conditions (1.1) can be
handled. Results in this generality are based on weak L' compactness coming
from the entropy dissipation control. It gives on the other hand no information
about uniqueness, isolated solutions, fluid limits with extra terms, or possible
ghost effects. Such results have instead to be based on the asymptotic methods
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inititated by Grad [G], Kogan [K] and Guiraud [Gu] a full generation ago. But
still today many, if not most, important problems are open when it comes to rig-
orous mathematical analysis. The 1993 monograph by Maslova [M] is probably
still the best introduction to the rigorous mathematics in the area. The present
frontiers reached by rigorous mathematics unfortunately lag far behind what has
been obtained in the approach by formal asymptotics and scientific computing.
There two recent monographs by Sone, [S1] and [S2] give a good picture of the
state of the art. In [S1] one also finds a thorough discussion about the asymp-
totic expansions for the two-rolls problems of this lecture series, including many
aspects not covered here.

For the asymptotic problems in the domain between the two rotating cylinders,
our main concern in this work will be with (multiple) isolated solutions, bifurca-
tions and strict positivity, when the boundary indata are given as Maxwellians
M, with known -boundary pressure F,, temperature T,, and rotation rate vg,,
where o = A for the inner and B for the outer cylinder. Split the solution to the -
BE (2.1) as f = M(1+ ¢+ ¢°R) = M(1 + ®) with ¢ an asymptotic expansion,

2

T
=N P®. M= (20 exp (— L .
© zlje , M= (27) % exp ( 2), (2.2)

and with R, the rest term, in turn split into

The projection P, represents the fluid dynamic part. The asymptotic expansion
(2.2) has boundary values equal the corresponding terms up to a suitable order
in the e-expansions of the boundary Maxwellians M,. The remaining part of the
boundary values are taken care of by the rest term.

As orthonormal basis for Py in L3,(IR®) (i.e. L? with weight function M), we
take ¢0 = 15@9 = Uﬂ:'l/)r = U'r':"vbz = UZ1¢4 = %(Ug - 3)
The new unknown ®(r, z, v, vy, v,) should solve

P o® 1 1

Here J is the rescaled quadratic Boltzmann collision operator,

IO =3 [ | Bl .M @000 + S v)

=®(v. )i (v) — (v)t(vi))dv.dw,

1
2
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and L is this operator linearized around 1,

(LD)(v) = fm Bl -2 M) (@) + B(v)) - 8(v.
~&(v))dv.dw = K(P) — v®.

By a change of variables

(o, Lf) ::foLgadv=/MLf<pd’u
=7 [+ e o= Q)7L+ £~ £. — HBMM.dvdv.dw.

In particular we notice that ¢ = f gives (f, Lf) < 0. Taking ¢ as a fluid moment
1;, implies that (¢, Lf) = 0 for all f, hence that the fluid dynamic functions are
in the kernel of L. There are no others since the only solutions to the equation of
Cauchy type f+ f. — f'— f. = 0 are the fluid moments, as first shown already by
Boltzmann. Hence the kernel of L is spanned by the fluid moments. Moreover,

Lemma 2.2 There erists a positive constant ¢ such that

—(f, Lf) = cf(u%(f — P))f)2Mdv.

Proof of Lemma 2.2 We give the proof from [M]. Set

L

K =v; Kl’/—%,
A=sup{MKf=Af with P if= O,/(v"%f)szv =1}.

The compactness of K (cf proof of Lemma 3.2 below) together with (f, Lf }<0
imply that with A < 1

(1= Pf KU = P)S) <3 [ (0= P wata,
and so
(f, L) <(A-1) /((1 ~ P)f)vMdv. O
Lengthy elementary compﬁtations show that L(vgv.B) = vyv,, L{v, A) = v, (v? —

5) for some functions B(|v|) and A(|v]), with vev, B(|v|) and v, A(jv|) bounded in
the L%,-norm (cf [BGP] Lemma 2.2.3).
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Qur basic Case 1 will be this two-rolls set-up with 7 = 1 in (2.1) and j, =
1, 71 = 2in (2.2} with given Maxwellian ingoing, axially uniform boundary data,
modelling for instance when the cylinder surfaces are of ice in the form of the
solid phase of the gas between them. We assume that (no essential restriction)
the inner cylinder is rotating with velocity €ug4, the outer cylinder is not rotating
and the temperature and saturated pressure are the same at the two cylinders.
Then

Y f(ra,z,v) = —(217T)e“'lf(”z*’(“"“f“‘“)z*”?), v, > 0,
(2.3)
1 1
'y+f('r3,z,'0) = (_2'71__)6_5'“2: v < O

We shall keep the same boundary values in the following Case 2-3. To simplify
the exposition in these lectures, we shall take ugs = Upa(rp —r4) with U, fixed.
This will allow for additional conditions on the size of rg — r4 when needed in
the convergence studies. An alternative would be to have rg — r, fixed (even
large) and introduce more extended asymptotic expansions.

An axially homogeneous solution M (1 + @) will be determined for (2.1), (2.3),
with in Case 1 an approximate asymptotic expansion ¢ of order 2 with boundary
values of first and second orders being ®4;, ®5;(=0), 1 <i < 2,

D41 = eupavy
2

€
by = EU‘SA(_]- +vp),

plus a rest term eF,
®(r,v) = p(r,v) + eR(r,v),

and

r—1ra r—7Tg

p(r,v}) = a1 (r,v) + & (Raa(r, v) + Pr2a( yv) + Pras( ,v))- (2.4)

Here the Hilbert expansion term ® g cannot by itself satisfy all boundary con-
ditions. To remedy that, second order additional Knudsen boundary layer terms

® o are inserted.

In the asymptotic expansion the Hilbert terms ®5y and @y, satisfy

Ly = LOgs + J(®mn, ‘?Hl) —v-V:®Pm =0.
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L

Here L&y, = 0 implies that @z = a1(r) + di(r)v? + by (r)vg + c1(r)v,. The
v,-term is zero due to the symmetry imposed. For compatibility reasons the
hydrodynamic moments of the second equation are zero (cf. also (2.21), (2.41)
below). In particular the 1-moment gives for &, that

€1
& +—==0,
T

hence ¢,(r) = £, where due to the boundary conditions ¢ = 0.

Set w) = [vivgBMdv, wo = [v?AMdu,ws = [v202?AMdv. It is also consistent
(and implied by the fluid dynamic projection equations) to take a; = d; = 0,
giving

D g1 (r, v} = by (r)vp. (2.5)
Then similarly
1 1 _
(I’Hg(’f', ’U) = a9 + ngg + bQ'UB -+ Cotr + Eb??)g + (b;_ - ;bl_)vrvgB, (26)
where by fluid dynamic projections and after some computations,
2
Uga T3
b = = -
1(T) T% _ T?q( N T)a
/ ! 1 2 _ M
(0,2 + 5d2) —+ blb] — ;bl = 0, CQ(T) = ?,
1 1 1 1
1t } —_— ! .
bz -+ ;52 — T_2b2 = _’w_l(bl -+ ;51)62,

(ws — Bws)(dy + —?l:dg) = (b (b — ;l-bl))' / Mu, (v = 5) (L1 (2J (vg, vove B)

—up (vF ~ 1))dv + (byb, — %bf) f M (v? = 5)N(L™Y(2J (vg, vrve B)
~(ur(vg ~ 1))dv,

for some constant ;. With the term (b — 16; )v.vg B, the function @y, of (2.6)
cannot satisfy the boundary conditions &5 (resp. ®p2) at ra (resp. rp ). That
is instead handled by adding Knudsen boundary layers as will be discussed in
next lemma. Inserting 14 @ into the rescaled Boltzmann equation gives the pure

p-part

1
= [ = ;(Lgo + J(©, @) — ev - V20), | (.2.10)
which is of e-order two, provided the Knudsen terms satisfy
P od
L®poq = U'ra K28 Lyoyp = v, B
or or

Denote by 7 = =4 and = =&,

£

13
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Lemma 2.3 There exist a second-order Hilbert term ®po defined by (2.6} with
aq, da, ba, co satisfying (2.7-9), and Knudsen terms Bgaa(n, v}, Prom(p,v) such
that

&
9 amA = L® ko4,
7

Broa(0,0) = Pas(v) — Pi2(ra,v), vr >0, (2.11)

HETOO ®K2A(n¢ U) =0,

Vp

and
T@{g‘—m- = L®x25,
&4
B yop(0,v) = ®pe(v) — ®palre,v), v <0, (2.12)
lim @KQB(}L,’U) = 0.
p——00

To prove this lemma, we need some properties of the Milne half-space problem:

0%
vr% - L%L’, n> 0:7

¥(0,v) =g, v >0, ' (2.13)
./M'u.r@’)(n,v)dv =m, n>0

Set |R? = IR® N {v, > 0} and take by = (a(r), b(r), c(r),d(r)) as the coefficients
of the fluid dynamic moments of ¢ (the v,-moment in our present, setting is

identically zero by symmetry). The following results about the Milne problem
were proved in [BCN] and [GP).

Theorem 2.4 Let m € R and g € L2 ,,(IRY). There emists a unique solution
% to (2.18), which belongs to L®(r > 0; L2, 14 N 12,0 L2 (r > 0) ond has

by € L2(R.). If Mig = O(lvl™) for alln > 0, then boo = liMr—ooby caists,
and by — boo| = O(r™") for anyn > 0.

Proof of Lemma 2.3 It follows from Theorem 2.4, that there are unique solutions
Y, Y and g 1O

o
’Urg,;}— = I,

P(0,0) =0, v >0
fﬂli)rw(n,QJ)dv =1,

14



OPaa
on

1 _
oa(0,v) = —(b] — ;bl)(TA)’UrUgB, v > 0,

Uy = Lipoa,

/MUT¢2A(na ’U)d'” =0,

5, 2028
an

1 _
op(0,v) = —(b] ~- ;bl)(TB)UTU(;B, v > 0,

/Mvr'gbgg(n, v)dv = 0.

Moreover,

lim ?P(T?; U) = Ooo + doovg + bV + Ur,

N—=+oc

. 2
lim 494 (7?, ’U) = U24,00 + d:zA,oo’U + b2A,oo'U6‘a
n—+oo

. _ 2
lim %028(77, U) = (2B, + d2B,oo'U + b2B,ooU9>
n—rtoc

for some constants Geo, ooy boos U240, G24,000 D240, @B 00r B2B00 aNA bop oo
Choose

1 2

a2(ra) = Y2800 + G2a00 — 5 (U04)%, (2.14)
a(rg) = —Eam + @28,00, (2.15)
TR
d2(r4) = Vadoo + doa oo, (2.16)
dao(rm) = _Edoo + 2B o0, (2.17)
[z
ba(ra) = Yoboo + b2a co, (2.18)
bo(T) = boe — bopoc, (2.19)
;]
Then
@K!ZA = n/Q(T/) = oo — dm’u2 — boog — U'r)
b4 — Q24,00 — d2a,000” — boa ooV,
and

CI)KQB(M} 'U) = _TQ(T/D(_#‘: '"’U) = oo — dco'uz + boo'UB + 'Ur)
B

+og(—it, =) — 028,00 — G2B.00V° + b25 0oUs,
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satisfy (2.11-12). The first equation in (2.7) defines as + 5ds if and only if

1 'B ]
(02 + 502)(rs) — (a2 + 5eb)(ra) = 5uka + / “Hi(s)ds,
TA
i.e.
Tp
_ _ 2
72 (?"B + 1)(@00 + 5doo) (0‘23,00 a2A,OO (2 O)
) sl

-H)dQB,OQ - 5d2A,00 — f ;bl (s)ds) .

TA

This fixes -y, hence ¢; and ay + 5dp. Finally the second-order differential equa-
tions (2.8-9) together with the boundary conditions (2.16-19) define b, and dy. O

Case 2. If the Knudsen number is decreased by choosing j = 4 in (2.1), but still
keeping the rotation velocity of the inner cylinder of order ¢, then the boundary
layer depth (of order ¢) is no longer of the same order as the Knudsen number
(i.e. ¢*). That gives rise to additional technical difficulties. In particular we now
have to introduce an additional so-called suction boundary layer from first order
in €, and then from third order on also retain the previous Knudsen terms. For
convenience we take 74 = 1 below in Case 2-3.

An asymptotic expansion ¢ of order 4 will thus be determined,

r—7rgp

e(r,v) = e(@m {(r,v) + Op(

r—7rg

,v)) + € (@Hg(r,v) -+ ‘Dwg(r _ETB,U))

- r—1 r—7rge
,?J)+¢'1(3A(6—4,’f1)+¢’r{33( A :’U))
r—r r—1 r—r -
B,U) + ®peaal = ,0) + @rapl( = B :’U))-

+63 ((I)Hg(T, 'U) -4~ @VVB(

+E4 (@H‘; (T', ’U) + (bﬂfé(
(2.21)

The successive asymptotic computations order by order, allow us to require by
(hydrodynamic) orthogonality that

/@Hl(.,v)(l,vr,v2)M(v)dv =/@url_(.,U)(l,‘l)r,vg)M(v)d‘U
_ / B2l v o M(v)dv = 0, (2.22)
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lim By W) =0, 1<i<4, (2.23)
LS TR
-1 —
lim  Bgia(p ) =0, lim  Bup(——pt,v) =0, 3<i<d
1ok ST :

(2.24)

Here (e® g1+ @ o+ D g3+ €*® gy ) (7, v) denotes the Hilbert terms up to fourth
order. The sum (€@ +€*®wy) ("2, v) consists of correction terms allowing the
boundary conditions to be satisfied to first and second order. They correspond to
suction boundary layer terms at rp. At third and fourth orders, supplementary
boundary layers of Knudsen type described by

r—1 T—7Tg r— 1 r—rTg

€ (Pl ) + Prap(——,v)) + €' (Braal ;) + @rap(

are also required in order to get all the boundary COIldltIOIlS satlsﬁed.
Let (n,v) be the solution to the half-space problem

v));

v,a—?’b:Lw, n>0, velR
3?7
=0, v >0,
fd” na ’UT‘ ) - 17 7? > O (225)

From Theorem 2.4 about the Milne problem, it follows that there are constants
A, D, and E, such that

lim ¥(n,v) = A+ Dv* + Evg + v,. (2.26}

1—++00

Let the nondimensional den51ty, perturbed temperature and saturated pressure
at rg be

(_.2

1+TB

We may here in Case 2 couple the a.ngular velocity to the Knudsen number
through

9 _ 9
wp = (Pspa — Tp2), Tp=¢7Tp2, Psp=¢"Psp.

2
P TBQ -1 2 — A
§B2 — T 5 Uy = AL
Ly

The boundary condition at rg in (2.3) is replaced by

1 W
7+f(TB: Za’”) = (277)“ LB‘QE 2(1+TB), v < 0.
(1+7g)2

For the third order asymptotic term that will lead to a bifurcation of the radial
velocity - see (2.40) below- if A+ 5D < 0.

e
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Lemma 2.5
Assume that

(A+5D)<0

and set

LRy 5D)(3u9Al)) .

TB

Abif = - (2’U.)1

For A > Ayy, there is no solution @ to the family defined in (2.21-24).
For A = Ay, there is o unigque solution ¢ to the family defined in (2.21-24).
For A < Ay, there are two solutions ¢ to the family defined in (2.21-24).

Proof of Lemma 2.5. Define ¥ := "='2, and let the expansions

> s e*® gy (r,v) and PR (D pi(rp + €Y, v) + Oy (¥, v))
formally satisfy the Boltzmann equation order by order. Then,

L&y = LOgy + J(®g1, ®m) = LOgs + 2J (P51, @)

= L®y, + ZJ(‘I)Hh@Hg) -+ J((I)Hg, (I)Hg) =0, (2.27)
8% i
O0Ppk—y
U5 + N(I)Hk s = L@+ ; 1 J(Ppj, ®pr—;), k=5,

(2.28)

and

L‘le = chwz —+ J((I)W]_, Z@H]_(T‘B, ) + ‘I’u/]_)

= L(bw'g + 2J(¢’H1(TB, ) -+ q)wl, (I)V[/Q) -+ 2J(¢)W13 (I’HQ('T'B, ) + Y(I)}II (?‘B, ))

= Ly, + QJ(CI)Ws, @Hl(’f'g, ) + (I)W’l) + J(@W% Do + 2@;{2(7’3, )
+2Y &y, (r, ) + 20 (@w1, rs(rs, ) + Y ®p(rs, )

Y? I®w
+5 T (rs,)) = v

a@ ~ 1 k-5 Y _
Wk=3 | _Z(_l)f(E)IN(@Hk_z;_i(rB,.) + Owi—a-i)

Ur

oY "B S
k-1 _
= L(I’Wk + Z J Q‘I)HJ(TB, ) + ‘ij: (1)'Wk 3) k 2 5. (230)
i=1

=0, (2.29)

Similarly ta (2.5), by (2.27) @1 (r, v) = b1 (r)vg for some function b;, and ®gy,1 2>
2 split into a fluid dynamical part a;(r) + d;(r)v? + b;{r)vs + ¢;(r)v. and a non-
finid-dvnamic part involving Hilbert terms of lower order than ¢. In particular

18



for 1 < 5 €4 we get

®g1(r,v) = b1(r)ve,

1
By = ag + dov® + bovy + 5!}?’03,

1
CI)Hg = ag + d3’02 + bg'vg + c3vp + bldg’llg’v2 + b1bg'l)g + gbf’vg,

2

1
—bfag)vg

1
Opy = ay + d4’U2 + byvg + cavy + (b1d3 + bgdg)v302 -+ (blbg + 'é'b% — 5
1 1 1 1
‘f’bl_Cg’Ur’Ug + 'é'b?bg’l)g + 5(1%?)4 + ﬂb%’b‘; + 56%(12?]3’02.
Equations (2.28) have solutions if and only if the following compatibility condi-

tions hold,

0Py 1 2 . _ :
/(vr A —i—;N@m)(l,U ~5,v9, 0 ) M(v)dv =0, ¢>1

They provide first-order differential equations for the functions a;(r), b;(r), ¢(r)
and d;(r), i > 1. In particular,

(rby) =0, (10dy + b2) =0, (2.31)
, 1 1
(r2csby) = wyr? (b — ;bl)’ + (2w, — wo)r(b) — ;r-bl),
1 1
(a2 + 5da + 56?)' = ;bf, (2.32)
2
(0.3 + 5ds + blbg)! = ;blbg, (233)
(res) =0, (2.34)
1 1 35 7
(G,4 + 5dy + by + 563 - '2-3)%0;2 + ?dg -+ Eb%dg)'
2 1 1 L 7
=~ (bibs + 553 - §b$a2) + -2~;b$ + ;bfdg, (2.35)
(T‘C4), = (),

Together with the boundary condition at r,4 of first and second orders, this fixes

P 2 2
Ugg | Uga 1.5 Uga o

—2A 4 A o 4 Py
272 10 ( r2) 9

g 4
Oplr,n) = —u Dy =
Hl( 3 ) r s H2 27,2

and c3(r) = 22, for some constant us # 0. Moreover, (2.22) and (2.29-30) give
that @u1(Y,v) = 2,(Y)uvy, for some function z;, and that $py, 4 > 2 split into a
fluid dynamical part z;(Y) +4; (Y )v® 4 2;(Y)vg +;(¥ v, and a non-fluid-dynamic

part involving Hilbert terms of lower order than ¢. Notice that ®y-4 is the sum
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of z{vgv,B and a polynomial in the v-variable with bounded coefficients in the
r-variable. More precisely,

1
Pys =29 + yw"’ -+ 2oV + (bl(TB)Z1 + -2-3%)’03,

By = 3 + y3v? + 230y + tav, + (b(re)ys + 2100 + 21dy (rB) Jvgv?

+(bi(rg)2e + 2122 + 21bo(r) + Y| (r5)2: v

1 1 1
+(§bf(?"3)21 -+ §b1(1‘3)zf -+ '6'213)’!)3,
By = Ty + 1v” + 2409 + L0 + 20 B(v) +

Equations (2.29) have solutions if and only if the following compatibility (orthog-
onality) conditions hold,

V/&(’l‘).,.(‘)é‘/‘”c 3 Z @Hk: 4——2(7"35 )

+Bwi—ai) (v = 5,u)M(o)dv =0, k> 5, (2.36)

and

a@w;c 3 1 = i Y i ,
/(v,. v oo - ,;:o(_l) (TB) N(®wk-4-i(rp,.) +

(I)Wk—ﬁi—i) (1, U,-)M(’U)d'l) = 0, k > 5, (237)

Equations (2.36) (resp. (2.37)) provide second-order (resp. first-order) differential
equations for y; and z; (resp. z; + 5y; and ¢;). In particular,

Us
un 2y - By = (),
1T T

1
52%)! — Oa

10
wayy + Eﬂ’g + A1 =0, wz— "";zg + Ay =0,

(23 + dy2 + bi(re)z +

ty =0,
(313 -+ 5y3 + bl (’."'B)Zg + z129 + 2’152(7"3) -+ Yb’l(?‘B)Zl)f =
1
e (2b1(rE) 21 + 21), {2.38)
Tr
10 ,
ways + —s + Ay =0,
e
I Ug , !
WiZy — — 23 + ((bl(’rﬂ) + ZI)(C5(TB) =+ tﬁ)) + Az = 0,
e
1
t:; + T—(ta - 03(7”3)) + Cé(’f‘}g) ={,
B
(324 + 5y4)’ + Ag ={. . (239)
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Here A;, 1 <1 <3, denote terms involving Hilbert and suction coefficients up to
order ¢. Together with the boundary conditions at first and second orders, and
the conditions (2.23), this fixes

UgAl _ugt
Sy (Yv) = — . ewiTE - Yy,
B

as well as &5 in terms of us, and implies that ¢3 = £, = 0. Then, giving the
value ( to any coefficient of order bigger than 5 in the second-order differential
equations satisfied by y; and 2;, 3 < ¢ < 4 and taking into account (2.21-24) fixes
the functions y; and z;, 3 < i < 4 in terms of u;. A Knudsen analysis at third
and fourth orders makes the first-order differential equations satisfied by z3 +5ys
and x4 + 5y4 compatible with (2.23) at third and fourth orders. Finally us must
solve the equation

i

1
- -—A’u.3+

u%(A +5D) = 52
B

(—3ugyy) = 0.
(2.40)

A study of the positive roots ug to (2.40) leads to the three cases described in
the theorem for A with respect to Ay . That proof requires a non-degeneracy
in the Milne asymptotics (2.26),

A+5D < 0. (2.41)

The condition is expected to hold on physical grounds and has been verified nu-
merically for hard spheres and Maxwellian molecules. A mathematical proof of

(2.41) related to the numerical approach seems feasible, but has not been under-
taken . O

Case 3. The techniques developed for the previous particular two-rolls situa-
tions, also hold the key to resolving other and sometimes more famous problems.
This third example is such a generalization. The density f will now be allowed to
depend on the axial variable 2, assuming periodicity in the axial direction. The
previous transport term in (2.1) is then extended to include also a z-derivative
term vz%f. We consider the Knudsen number ¢ for j = 1 in (2.1), and keep
the earlier ingoing Maxwellian data. For small enough parameters, there is an
axially uniform solution as in the Case 1. This axially homogeneous cylindrical
Couette flow of Case 1 will bifurcate into axially periodic ones - Taylor rolls -
when the rotation of the inner cylinder is started from rest and then is being
sufficiently increased. The equations for the successive terms in the asymptotic
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expansions are now no longer ordinary but partial differential equations, which
here may be solved by elementary and explicit Fourier methods. We shall only
allow bifurcations to a fixed axial period, for convenience taken as c(rp — r.a),
and carry out the computations when ¢ = 1. Denote the first (lowest) bifur-
cation velocity value by ugap, and require that all functions have the symmetry
f(r, z,v.,v9,v,) = flr,—2z,v,,v9,—v,). The first order asymptotic expansion
term ® gy, should satisfy L® g, = 0, i.e. belong to the kernel of L, hence

Oui(r,v) = ay(r, z) + dy (r, 2)v° + bi(r, 2)vg + (T, 2)ve + €1 (7, 2hv,. (2.42)

The fluid dynamic orthogonality arguments leading to (2.5) in Case 1, here imply
that in a one-sided neighbourhood of ug4s, the first order coeflicients may satisfy
a steady (secondary) Taylor Couette fluid flow problem ((4.9) below) with cor-
responding boundary values. This fluid bifurcation problem was first rigorously
studied in {V] using topological Leray Schauder degree, to be followed over the
years by a number of alternative treatments and expansions - see [CI] for proper-
ties, references and an overview. It follows from that theory that the coefficients
in (2.42) are smooth functions with uniform bounds in a neighbourhood of ug4s.

Denote by the index & when an axially homogeneous term ®y; is evaluated at
the first bifurcation velocity ugs = Ugas, and let 82 denote the deviation from this
bifurcation value. With ®g; = ®aj + 6}, and @] given by the smooth pertur-
bation to the fluid Taylor Couette problem, we can successively construct higher
order terms in the asymptotic expansion. E.g. for j = 2,3, the perturbations
Pl(z,v,6) and ®3(z,v, d) should satisfy

a3l  9®!

fj@é-l-gu_—’urﬁ —'Uzg — Nh.l 0 | (243)
~ aP P
1 2
22 g 90 g, o, 2,
Lo+ gos = v 52 = vig 2~ Nhy =0 (2.44)
with
" - 1
g = 2J(®pp, @) +6J(D7,03), M= ;(I)%a

_, ~ 1
21 :2.](@;;1,@%)%-2.](@325,@%), ha = ;‘i’;

The locally uniform smoothness of @, (for small §), implies by (2.43) spacewise
smoothness for <1>2 | uniformly for small . We may also prove by Fourier tech-
niques, that the Auid dynamic moments of ®} and its derivatives are uniformly
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bounded in L% in a §?-neighbourhood of the bifurcation point wug4, for small
enough e. The procedure may be repeated for the ®i-term.

To provide the correct boundary values for the problem, we add boundary layer
corrections to ®} and @} of Knudsen type. Our previous boundary layer analysis
based on [GP] applies, when the equations are taken in Fourier space for the
periodic z-variable. This is so since at the crucial steps in the decay study for
the Milne problem in [GP}, the relevant squared L?-integrals in velocity space of
the Fourier coefficients can be added to give (by Parseval’s identity) analogous
estimates for the corresponding squared LZ-norms with respect to z of ®} and
@3. This also holds for their z-derivatives, which in turn via Sobolev embedding
leads to uniform bounds with respect to z for the Knudsen layer terms.

For the interested reader we end this section with a proof of the appearance
of this Taylor bifurcation in the present context. Extend the asymptotic expan-
sion of Case 1 by third and fourth order terms ®*(r,v) and-®*(r, v), and denote
it by
eb1vg + € (au + Pr2a(n, v) + Pran(p, v))
+6*(03u + Braa(n, v) + Prap(ps v)) + € (pa + Praa(n, v) + Bran(p, v)),

where o, = ®po of Case 1. This expansion is uniform with respect to the

variable z, and n = %, p = 2. Consider the following z-periodic perturbation

@(r, z,v) of the z-homogeneous expansion,

w(r,z,v) = €(b1U3 + dcosaz(Uvg + Vo) + 8(sinaz)Wo, + 52U20’09)

+¢ (QOQu + Ppon+ Prop + 6(cosaz)(gof1 + xo14(n, v) + Prorp(p, v))
)

+8(sinaz) (1}, + Yraa + Yron) + 82 (05 + Praoa + Picaon
+82%(cos202) (2y + ®raon + Prosp)
(

+6%(8in20:2) (13, + Y224 + 151{225))
+é? (Wau +@raa + Prap + 5(005@2)(@?1 + @ a4 + Prarp)

+d8(sinaz) (Y3, + Praia + wK3lB))
e (g + Brean + Cran).

Here all coefficient functions are taken with respect to space as functions of r
only. Look for boundary conditions where the rotational velocity of first order in
€, by + 6{cosaz)U + 82Uy, at 74 = 1 deviates from b; by a §%-order term Awgy.
All the unknowns U/, V, W, ... should then vanish at r, and rpg, except Uy, for
which

Usofra) = Auga, Usgl(rg) = 0.
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Lemma 2.6 Let
1
L= Ly +J(p,9) — ev- Vap).

If§ <€ and if (U, V) are solutions to

Ly(U)— gV =0, L,(V)+qU=0,
U('r) :V(T)=V’(T)=0atr=m,r=r}3, (2‘45)
where
L (U) s UH -+ -];U-' _ (_1_ + Ciz)U L (V) — V(4) + gv(3) — (i + QQQ)V"
8 r T2 - r r ’r2
3 2042 , 3 Q[‘E 4
(;E"T)V (-2 + 7 +o W
2uga 20,’2'U,gA 'r‘zB
= —— —_——_-— = — 1
as wn (T2B _ 1)1 Gr wx(ﬂ"% _ 1) ( r2 )-;

then the function ¢ can be taken z-dependent, and so that | =1 is of order €* in
L=,

The function ¢ is the asymptotic expansion for an axijally periodic solution bi-
furcating from the axially homogeneous one at ugs = Ugas-

Proof of Lemma 2.6 Replacing in {, ¢ by its expansion implies that

1
| = efcosaz (L’(gofl — b Uvz — b V) = (U = ;U)’UT’UQ

1
— (V2 + ;V’ug + aWo?) + LOxara — v + L®go1g — vr

on O

0Prma 0P o158

)

+e§sinaz(L(¢?1 — biWugr,) + alvgy, + (aV — Wnw,

k214
- L —
+Ltpraia — v o + LYknp — v o

5 1

1

a’lj)K2IB

)

' 1 1
+eb? (L(cpgo - —U2fu9 — —Vzvf - EUV’UT'UQ - ZT/Vzuz — blUgofug)

4 4
1
~(Usy — ;UZO)'UT'UB + L®ropa — vy

L — 9,
Bn + L®@xo08 — ¥

8@1(2044 8@ K20B
Op

)

1 1 1 1
+e(52co'52az(L(g0§2 - ZU%S - ZVQ’UE - EUVU,.'UQ + ZW%E)

0P 94 0P go08

+ L — Uy
57? K228 v (5‘,&

+L®gosa — tr

+er52sin2az(L(1b§2 — UWugv, — VW) + Libgosa — vr
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OVxop
+Librens — U
K228 0 )
2 3 2 _ atp%l }_ 2 ]
+e“dcosaz( Ly, + 2J (bivg, 1)) + 2J (02w, Uvg + V) — (vr o + TN‘Pn + by, v, )
o

+L®rara + 2 (bivg, Brara) + 27 (Uvg + Vo, ®xoa) — NPgora — v, 61;?31/1

1 0PgsiB
+L® 315 + 2J(bivg, ®xz1p) + 2J (Uve + Vur, Prap) — T—N@sz — vy 50 )

B

+525sinaz(L¢?i + 2J (byvg, %)) + 2J (0au, Wu,) — (v, 320;21 + %N’/’% — ap?v,)
+Lbgeaia + 20 (bivg, Yo a) + 2J (W, ®xas) — Npgoia — vy ng;;_A
+LYkmp +2J (ivg, Yxms) + 2J(Wr,, ®xop) — iN@mea — Up 3135{:13)
+0(e*).
The compatiblity conditions in the edcosaz term write
oW = V'~ V. (2.46)

-
And so %, can be taken as
(p%l = afl + dfl'vz -+ br“{l'vg + cflvr + eflvz + blUvg + b Vg
+(U' - %U)*ur’uaB + %V(v‘g —v2)B + aW (v ~ v2)B,
for some functions af,, di;, b%,, &, and &3,. Moreover,
W = ofy + 64w’ + Bhvg + ’)’121'Ur + W%lvz + b Wogn, — allvgu, B
—aVvv,B + W, B,

for some functions o?,, 6%, 52, ¥, and n?,. Then, the compatibility conditions
of the e2dcosaz-term of [ are
1
() + ;(‘3?1) +amy = 0, (2.47)
2

i 2 2 b 1 2_0’ el 744 E AN V4 i
wl(a“ + 5d + 5 U) = aW' + - W+ TV +(T2 + o)V + w],rb’U’ (2.48)

2 ] 2 1
(b:V) + 0V +wy (U - ZU) + M- ~U) +ab W - a?unU = 0, (249)

-
o, + 562 = 0. (2.50)
Taking (2.46) into account in (2.49) implies that

LeU + gV =0
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The compatibility conditions of the e2dsinaz-term of [ are

1
(i) + ;(7?1) — e, =0, (2.51)
(02, +562) =0, (2.52)
1 1 1
'&)""(G?l + 50{%1 + blU) = W" + ;W’ — 20‘.2W — CM(V, -+ ;V) (253)
1

Differentiating (2.53) with respect to the variable r and taking (2.48) and (2.46)
into account, implies that

L.V +¢U =0.

It follows that the coefficients ¢, ¢2,, ¥Z,, ¢}, ¥}, as well as the Knudsen
terms can be defined so that { be of order 4 provided (2.45) holds. O

Lemma 2.7 Let o > 0 be giben. There are nonnegative functions uy and vy,
and uga = upap > 0, such that for rg — r4 small enough, the problem (2.45) has
the solutions {{U,V} = z(uy,v1); 2 € R}

Proof of Lemma 2.7 The equation LyU/ = 0 is disconjugate on [1,7p] for any
rp > 1 since

Ta 1
f (ry” + (= + o)y )dr
1

is nonneggative ([Col). Hence there is a continuous Green function G such that
for any continuous founction f, the problem

LU =f U1)=Ulrg)=0,

has the unique solution

TEB

Ulr) = f G(r,s)f(s)ds.

1

Moreover,
G(r,s)(r —D(r—rg) =0, (rs)€l,rs]%
so that G is non positive. It also satisfies
rG(r,s) = sG(s,r), (r,s) € (L8]

since

f T‘Le(U)XdT:[ rLo(X)Udr.
1 W1
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By [Co] the equation
L(V}=0, VI)=V{rg)=V'(1)=V'(rg) =0,

is disconjugate on [1,7g] for r5 — 1 small enough. Hence there is a C? Green
function H such that for any continuous function f, the problem

LV=f VQ0)=V(rg)=V'(1)=V'(rg) =0,

has the unique solution

-]
Vir) = / H{r, s)f(s)ds.
1
Moreover,
H(T,.S‘)(T— 1)2(7‘_7‘3)2 201 (Tu 5) S [137‘5’]2,
so that H is nonnegative. It also satisfies
rH(r,s)=sH(s,r}, (rs)€][l, gl

since
rop B
/ ?"L,.(V)Yd’r=/ rL, (Y )Vdr.
1 1

And so, solving (2.45) comes back to finding ugap := Upap(rg ~ 1) and V > 0
such that

wy(rg — 1)\2
KV={—2"" YV 2.54
v ( 4(1{’ZLQAI) ) ’ ( g )

where K is the operator defined by

KV() =~ [1 " /1 “He, s)(";—% 1G5, 8)V (t)dtds.

K is compact in L?(1,7p). It maps the cone of the nonneggative functions of
L? into its interior, since G is nonpositive, H is nonnegative, and neither & nor

H are identically zero. And so the Krein-Rutman theorem applies. There is an
wl(rg—l))g —

eigenvector v; > 0 corresponding to a positive eigenvalue of K, ( T

2
(ﬂ”—“)) with algebraic and geometric multiplicity equal to one. Denote by

u (r) = —qy /ITB G(r,s)wn(s)ds, rell,rg|

Then any (wuy,zwn), = € B, is solution to (2.45). O
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