3 Fluid dynamic and non-fluid-dynamic esti-
mates.

This section discusses a priori estimates for the two-rolls cases introduced in Sec-
tion 2.

We recall that the orthonormal basis ¥y = 1,8 = g, ¥r = ¥, %, = v, s =
Zz(v* = 3) for the kernel of L in L3,(JR®) was introduced in Section 2 to-
gether with an orthogonal splitting of functions f € L%([ra, 78] x R®) into

f=f+fL=FRf+(I—-PF)f, where for the fluid dynamic part
o) = folr) = L
\/_

+fo(r)vg + fr(r)vr + fa(r)v, + Fﬁf,;(r)vz,

/M(U)(l,v,vz)fl(r, z,v)dv =0,

waof(r,v)dv = fo(rj, f]\/f?,b4f(r,v)dv= falr),
wagf(r,v)dv = fo(r), /M?,b,f(r,v)di,':f,(r),
wazf(’rsU)dU = fz(T)

Set Df := v, % (+v,8) + LN f with N defined in (2.1). In Case 1 due to the
symmetries, the position space may be changed from the two-cylinder domain
Q0 C IR® with measure dz, to [ra,75] C IRT with measure rdr. All functions
considered are even in v, giving in particular f, = 0. The relevant ingoing

boundary space becomes

=5 =

v >0

(/MU'””LM(”)U(TB:U) 2 dv)% < +oo}.

1

v, M) | flra,v) 2 d’u)E +

Set

1

B = {fi1le = ([ M) [ 11, o)rdn)ian)” < oo,
W (Ira, 5] x B = Wi~ = {f;vif € L9,v72Df € I9,y*f € L*}.
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Lemma 3.1 Let u_%g e L9, F € L7, 2 € ¢ < oo, be given. There erists a
unigque solution FF € W9~ to

n
DF = %(LF +23 I(F, ) +g), o = Fi, (3.1)

i=1

where the terms ® of the azially homogeneous asymptotic ezpansion were in-

troduced in (2.2), end the boundary data Fy are given on the ingoing boundary
o0t

Notice first that the a priori estimates (3.2), (3.4) below imply uniqueness in LZ.
Then use the solution formula F = WF, + Ug + UK F from the proof of Lemma
3.2 below in the case ¢ of (2.2) equals zero. Here UK is compact in L? {e.g
by first proving the compactness of UE for EF := [ MFdv and then using the
splitting K’ = K'+ K" below), so the L? case follows from Fredholm’s alternative.
The L* case then follows from (3.3), and the intermediate cases hold similarly.
Finally the addition of the small perturbation J{F, ¢) does not change the result.

To obtain uniform control of the final non-linear Boltzmann equation all the
way to the fluid dynamic limit, we shall use this section to secure sufficiently
strong a priori estimates in L¢ for the linear problem (3.1). With regard to
the shortest, the most transparent or the most elegant method of proof, various
approaches are the best suited depending on the situation. We shall varyingly
be using straight forward direct computations, dual estimates, ODE methods or
Fourier techniques.

For the non-fluid-dynamic part F; of the solution and for the comparison of
the solution in different L?-spaces, in the simplest Case 1 we may use quite ex-
plicit computations. Define a specular reflection operator & at r = r4, rp as

Sflr,v) = flr, —v,,ve,v,).

Lemma 3.2 Let g = 2,00, and let F be a solution in W~ to (8.1) for g = g..
The following estimates hold for small enough ¢ > 0;

€2 | SF |+ | vIF h< c(| v ig |y +€5 | Fy |
+el|| B llo+ 1 Fo lla + | Fo llz + || Fy ||2), (3.2)
WAF o< ] v Eg oo e [ VI | 4 [ VER [L). (3.3)

The estimate (3.3) also holds in this form, when g has a non-vanishing fluid
dynamic component g.
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Proof of Lemma 3.2. We first turn to the estimate (3.3). To prove it, we shall
need some estimates which are suitably discussed in the original coordinates of
(1.2). Consider the exponential form of (3.1) with ¢ of {2.2) equal zero;

d v, _€<(KF
E(F(:L‘ + sv,v)e’e) = M(z’ + sv,v),

or integrated

0
Flz,v) = e ¢ Fy(z — sov,v) + / e”%w(x + sv,v)ds

—&0

=WEk+UKF+Ug.

Here sy denotes the time to reach the ingoing boundary along the characteristic.

Split the kernel k of K into k, = signk min(|k|,n) and the remaining part k — k,,
and denote the corresponding operators by K’ and K”. The operator norm of
K — K' = K" tends to zero, and K is compact in L%,. It immediately follows
that F can be written as

F = (UK')?F + (UK"UK + UK'UK"F + (UKU + U)g + (UKW + W)F,
= (UK’)zF + le -+ Zgg + Zng.

The K"-factor makes the operator norm of Z; in L™ tend to zero (uniformly in
¢) when the cut-off n — co. Also by straight forward computations

1 _1 1 1
(02750 1< e | VTG |0 | V2230 |o< ¢ | VEF, |.. .

It remains the term UK'UK’. The first U is (uniformly in €) bounded in L%,
s0 it is enough to consider K'UK'. Setting EF(z) = [ F(z,v)M(v)dv, we can
estimate K'UK' by a cut-off dependent multiple of EUFE in the operator norm.
For fixed € the operator EUE is bounded from L* into L7 for p > d, ¢ =
0, d>1,aswellasforl <p<d, gq<dp(d—p)~*, d>1. Heredisthe
dimension of the z-space. For the proof of this estimate of FUE we follow [M
Chapter 6]. Let us first consider the case ¢ =1, d = 2, our main concern being
the domain ) equal an open annulus between the radii r4 and rp.

Let v' = (vy,vy) for v = (vg, vy, ;) and let g be a function from LP(£2) where we
let g(z — sv',v) for x € Q take the value zero after # — sv has for the first time
left €2. This gives

o)
Ug(z,v) :f glz — sv', v)el 78l dg,
0
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Set G{z) = Eg(z,v). Then

EUG(z) = / e G (2 — sv') M (v)dvds

IR3 % {0,00}

< f e G (x — sv' )M (v)duds,
B3 %(0,00)

where vy, = infuv(v) > 0. It follows that the v,-integral can be added after
concluding the estimate of the dv'ds-integral. We continue the discussion for
v € IR? using the notation o' = v. A change of variables (s,v) — (r,y) with
r=|v|, y=2z—svgives EUG £ G % with

o(y) = cily|~" / K y)dr, o >0,
0
k(r,y) = M(r)e™" oo,

Since M(v) < coe™®M we get

_ear _sar_ vivl
2

kir,y) Secee”2e” 2 7

—car
< C4T—1€_2L6_65M%.

It follows that v € LP if p < 2. If 1 < p < 2 the result now follows from Young’s
inequality (i.e. from xg : L? — LS for ¢! = p~' — p'™"). By Hélder's inequality
EUG € L* if p > 2. The proof for 2 € IR? is analogous whereas the case d =1
requires a slightly different estimate of k.

For the desired estimate of the solution in L* by L?-terms for d = 2 we have to
apply the estimate of UK'UK' twice (also the solution formula}. Including the

e-dependence in the above estimate of EUE gives the factor 5.

With this estimate of EUE and choosing the cut-off n large enough, (3.3) follows
when ¢ = 0. Recalling that o is of order ¢, and taking ¢ small enough, it follows
that the addition of J(F, ) to g does not change the result in this part of the
proof, neither does the addition of a fluid component to g.

Consider next the mapping from »~3L% x Lt into W9~ given by (g, Fy) — F,
with F a solution to (3.1) for ¢ = 0. Green’s formula and the spectral inequality
of Lemma 2.2 for the linearized collision operator L, i.e.

—/Mfodvzc[Mufidu,
give
1 SF R+ Vi < = v hou B8 |viFL f+e | B L.
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This completes the estimate (3.2) when ¢ = 0. The inclusion of J(F; ) to g,
adds ce | v2 F, |2, which is incorporated in the left hand side, and a term

ce(l| £ ll + 1| Fo tlz + || Fo llz + | i il2)- 0

The control of the fluid part Fj of the solution, i.e. the kernel of L, is less efficient.
In particular Case 2 requires a careful analysis. For this we have chosen a direct
computation of each moment in order to obtain sharp estimates. The method is
here illustrated in some detail in the following lemmas for the simpler Case 1.

Lemma 3.3 Let g = g +g. (i.e. with a possible fluid dynamic part g in g, and
let F be a solution in W*™ to (3.1). For ¢ > 0 and small enough,

| Frllz+ |l Fo ll2+ || Follz + || Fa |l2< e(] FL l2
1 1 1
+; | v"2g, |2 +;§ gy l2 + | Fs |~)- (3.4)

Proof of Lemma 3.3. Define

foiri (T /M’ugv filr,v)d, i+ 35 > 2,

and fpi,s2(r) correspondingly, when there is an extra factor | v |? in the integrand.
A multiplication of (3.1) with vpM (resp. v?M) and integration over IR leads to

Fgr(?") _ F&'r( ) + _1_f Sz%d.ﬁ,
1

r? re €

Fio(r) = CT2+—f (V694 — 2g0)ds.

Multiply equation (3.1) with A(|v|)v,M and integrate over IR,

( f ZAMFdv) = (kFs+ Fs A) - %(F,_,,.,, 5= Fez) (3.5)
+1 (6—;2 + ;12 ' s(vBgs — 2g0)ds + /.vrﬁ.J(F_L,e(I)‘)Mdv)

+Zf” 1 / o AT(F, &) Mdy + - / gu. AMdv.



Using the spectral inequality of Lemma 2.2, we notice that -

_ 1 _
ky = /vf%AMdv = T/UTvzv,.AMdv =

v (0?2 = 5, AMdv = / v, A)v, AMdv < —c f v AP Mdy < 0.
7/ e 7 for 4]

Set £y = kyFy + F.az and regroup the terms in (3.5) as

~ Cr2 1
Fi=—+ {;(Fau— ‘rm)

101 7 -
+—(—f 3(\/694"290)(18‘*" [UrAJ(FL,E‘El)MdU)

esrcs1

+Zef’ 1/'1),,-.4:] F, &)\ Mdv + - ! fgvrﬁMdv}.
Denoting the expression within {} by-G,; gives

(R =22 1@,
TE

which integrates to give

Fy(rg) = Fy(ra) = E?(lan —In7rya) +/ G4(s)ds,
TA
Ey(r) = Fy(rg) + C—Z%(lnr —Inrg) + / G4(s)ds.

T

Eliminating c.p, it follows that

Futr) = Bilrs) + e (Fira) = Bara) + [ Gulois)

Inrg —inry,

T8 .
—/ G4(8)ds. (3.6)
,
With w; = (v2v$B,1), an analogous solution formula for }—:ﬂ = mfh Eﬂrﬁi

-
can be obtained in the same way. Namely, multiply the equation (3.1) with
Muv,vgB(iv|) and integrate over JR?. 1t follows that
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Fy.,  Fpp—3Fp
( r ) - TQ‘ +

1 1 T —
_(%+— 529—0+2/UTUGBJ(%FT+FJ—’€‘I)1)MCEU)
rexr? 12 [, e

h
+22£j_1fUrUgBJ(F,@j)MdU
j=2

1 _
+-fvrvgBMgd'u = Eg’; + G-
€ r3e

And so
F, F 2e9r 1 1 ”
o(re) _ Folra) _ 2co (= — =) +/ Go(s)ds,
"B TA € T4 Tg T4
Fo(r)  Falrs) _ 2ce 1 1 fr
r rg € (r% = ra Goleds

Eliminating cy, gives

Fy(r) _ Fy(ra) | (?“z —TB)rA (159(?‘3) Fy(ra)

T TR (ry —r2)r?\ rp Ta
TE T
- / Go(s)ds) + f Gio(s)ds.
rA B

(3.7)

Multiplying the equation (3.1) with M and integrating over IR?, leads to (rF;) =

7% ie.

) 1/
F(r) = £+—/ s04s.
1

T T €

By definition of F,.(1),
R =] [0 FP(,0)Mav]
< c( / Lo | Fg(l,v)Mdv)% <cel| SE |+ | B i)
And so by (3.8)

1
| B llo ez L gy b+ 1 SF o+ | Fy L),
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Multiply the equation (3.1) with v.A and integrate with respect to v». It fol-
lows that

([ V2F(r,v)Mdv)' = (Fo + \/gF,; + Frz)f

=F02*Fr2+gr

r €

Multiply this with Z(Fg + ﬁF‘; + Frz) and integrate with respect to r on
(r,75), then on (r4,rp), to obtain

2 1
| Fo + \/;F,; fla< C( | F g +e i gr |2 + | /UEF(TB,U)MdU | )

But

] /ufF(rB,v)Mdv |< c(/M | v, | F2(rp,v)dv)?
<S¢ SF |+ | B |+)-

Hence

2 1
| o+ \/;Ff; |2 < C( | FL e +E lorllza+|SF |+ | Fy ) (3.10)

It follows from (3.6) and (3.7) that

1 1
| Fello+ 1l By llo< e | Bl +55 gyl < [0z I
+|SF|N+|F5|N+E|F”|2).

This together with (3.9-10) gives (3.4). O

Analogous estimates hold in the axially homogeneous Case 2. Care is here needed
to remove terms of low e-order in the proof of the fluid dynamic estimates. This
complication has its origin in the fact that the boundary scalings (of order €} here
are larger than the Knudsen number (¢*). For upcoming negative order terms
in F) the example o = [ MdvJ(F.,ve)v-A will suffice to clarify the technique.
That moment can obviously be written as [ MdvF' x for some non-fluid-dynamic
function x. Projecting the whole equation along L™ty increases the epsilon order
of the term « by one. This can be repeated until all appearing moments of £,
are of non-negative order. A corresponding raising of order for the fluid dynamic
estimates is more involved (see [AN2]). The resulting a priori estimates are
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Lemma 3.4 If0 < § is small enough and g = g1, then for small enough e > 0
the following estimates hold for a solution of (3.1) in W2,

PR o< c(e_3 5igL e+ | Fy | ) (3.11)
| Follat I Folla+ 1 B e+ 0 Fo o< (e 1 720 o+ | Bl ). (322

If F is a solution of (3.1) in W*~, then the following estimate holds for small
enough € > 0;

DAF o< o] 7hg o €4 [BEF |+ | DER L), g<o0.  (313)

A fluid dynamic component in g does not change the results in (3.14-15).

In Case 3 the partial differential nature of the problem requires more work
than the ordinary differential equations appearing in Cases 1 and 2. But the
two-roll domain is bounded and has a simple geometry that allows the use of a
direct approach involving orthogonal (Fourier) expansions. For more complicated
geometries in other bounded domains one may first by similar Fourier based
methods study the dual problem in say a box containing the domain in question,
and then via dual estimates and trace theorems obtain corresponding results for
more arbitrary bounded domains (cf [M]).

With the change of variablels from (r,z) € (1,rg) x (2271, B=2) to (s, Z) €

(—m,m)? and with 7 = ™=, we will be interested in the case when the new

unknown F(s, Z,v) := F(ns + &t nZ, v) solves

oF oF

= _ N
— v, NF =XLF 14
Urg + Vs + 1u(s) C(LE+3), (3.14)
where p(s) = m The control of the fluid dynamic moments will be ob-

tained by Fourier series expansions. Write (in the new variables) the Fourier
expanded density function F as

F(s,Z,v) = Z o (v) i),
{n.jye2?

The fluid dynamic moments Fy, Fy, F,, Fy, and F, become

FN‘O(S, Z Z Tl7 Zﬂ5+]z) F4 S, Z Zmn‘je1(ng+jz
(n.)

ﬁ‘r( Zunjez(ns-l-jz) F9(9 Z) Zunj‘ i(ns+jZ) ﬁ‘ g Z) Zum z{ns—%—yZ)
() () (n.d)

f—\
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where

mgj = (a™,1), ij = (0™, ),

’LL:-U. = (anj‘) ¢r): ugj = (anj, wt?)a u::j = (anj,wz)‘

Recall that (o, 8) denotes the scalar product [ e{v)3(v) M (v)dv, and notice that
4™ = 0 due to the symmetry F(s, Z, v,, v, v,) = F( —Z,v,,vp,—v,). Notice
that the Fourier coefficients of the first r-derivative contain a multiple of the
boundary value difference,

i OF . (~1)

9N e i ‘ 2
(81") ina™ (F) + 5 (n,j) € Z°,

" whereas for the first z-derivative no such term is present. Set d = (F(x — 0) —
F{-m+ 0)) 5 with & its j’th Fourier coefficient in the Z-direction.

Denote by A := (v2A,4,), w; = (v2v2B,1), and by Q = I — Py, and write
| 1 . o
= — — = O
e(Z,v) : 271F((,u,F)( —0,Z,v) — (uFY{—7 + 0, Z,'u)) ;e (v)e7”.
Set
A = ( ,’U.,-) — 35(g™, v,0,B) + n(g™, (202 — v3 — v?)B)
—me( 1Y*d ﬂ (202 —v3—u)B + 3i(— )”d‘" — 3ije(— )”dfﬂv &

—ien® (Que (202 — 02 — v2) B, Qa™) — ieng (Qu,(2vf — vi — v2) B, Qa™)
~3ieng(Quiv. B, Qa™) — iej*(Qu,v? B, Q™)
._gnn(,ul’?’)”'j(%2 To3—02)B Benj(uF)?jE_ﬂg)E + 3@'77(MF):§_U§,

A% = —%(g”j v,) +5(g", (202 — v — v2)B) + 3n(¢™, v,v. B)
—3ine(— )"d‘" .5 — tie(— )”d” 202 —2—02) B + 3i(=1)"d
—3ien?(Quiv, B, ch”‘*") — 3ieng (QUTU2B Qo)

—ieng(Qu, (202 — v? — v3) B, Qa™) — ies?(Qu, (20? — v? — v2) B, Qa™)
=3 (WP )(h_ya 5 — N E)) o sneyp + (UE)T, -

Lemma 3.5 Let F be o solution to (3.14). Denote by e = . For (n, ) # (0,0),

wi A 4
moj = ——gwl (g J, 1) =+ gwl( )ndJ

2 1 1 y 1 . - (] nj
—_—— —5 + = ”IJ, ZA — = i
+\/;)\(n2 + 52) ( (g%, v" )+ ? o A € (9", 0. 4) €1 (ug)"“‘
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CUr ]
€ dir(ui*—s)_z(—l) ndig;; ( )jduu,q'i"’?( 1) 3:2,4

+n*(Qu24, Qo) + 2 (QuiA, Qa™) + 2nj (v, A, Qo)
—inn(pF)5g . — inj (uF)Y,, +inj(uF)> .
~P (WP F)]_ g + inn(uF) ] ~ (' F)] ) (3.15)

: 1 | R NI P I N ‘
nj n 2 ny_ _ A) +
mi = :\_(_,2___3_2)(_ —(g",v" = 5) —i 9, A (g™, v, A) e (#9)3;7&

€1 €1 €]
1"
L=
€1

di,(u'-’--s) + z’(-—l)”ndf;g;l +ij{— )"’d“;’} i n(—l)"eiﬁ
2(Qv%ﬁ_l Qo) — 2(QuiA, Qa™) - 2nj (v, 4, Q™)
+inn(uF) 52 TN (WEYE,, — ing(uF) 5+ 0 (uF )vz_vz

(P + (P ) (316

nj __ P ¥ o reom _Mym N n}
Ug™ = wy (n? +3.-2)( E% (g™, ve) € (9™, vrvpB) € (g™, vgv,B) 261 (,ug)MGB
LU n
. d,+ in(— 1)"di% 5t ij(= )ndfl’} wov B T 20(—1)"e f:%aé
n?(Qu? ’l)gB Qa’”) -7 (Q’t]g’l)zé ch’”) — an('u,vgsz Qa”')
9 Fymg
o F)t,g,,w. + 21" (u F),,:,,gg), (3.17)
) ; ) A2 Ang ‘Anj ) o _
e U SAT AN —yrd + Fm) 3.18
r n2 + ;2 € (g ’ 3E1w1(n2—§—j2) n( ) T ﬂn(# )v, ; ( . )
' i - H _ 2 nj

vl G TR ALY S FYg). (319
-4 ,n +] flg H +361w1(n2+j2) +J( ) r""’?.?(.u )'Ur - ( - )

Proof of Lemma 3.5. This is proved by moment projections and direct compu-
tations from the Fourier expanded (3.14), see [AN3]. O

Lemma 3.6 Let F be a solution to (3.14). Then for n small enough,

Imo°\+|m4°|+|v |+l |+ ] ul |

lgile , [v75g1 Lo = | B I~ -
< Fl.o+—— F .
L e i EN ey~ T Ry
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Proof of Lemma 3.6 For (n, ) = (0,0), it holds that

% = L dZ[ (F(m—0)+ F(—7 +0)) Zanoem”]

2T o
=A-) a™em (3.20)
nzd
where A = L [T dZ(F(n — 0) + F(—7 +0)). First,
UQA / QAMdv—i—alM

A multiplication of (3.20) with Mv?A and v-integration gives

,UEA-—A.ZA_E OJ

n#0

To proceed, take the scalar product of (3.14) with v, A and identify the Fourier
coefficients,

(=1)"d?, ; + in(vP A, 0™) + 5 (vev. A, ™) + n(uFip_p) =
1 ; L
(e = 5),0%) + (97,0, 4) ).

€1

(3.21)

Also take the scalar product of (3.16) with »° — 5, and identify the Fourier coef-
ficients,

—i( )ndj (12 —5) + 'n('Ur('U "' 5) nj) +.7('Uz(v2 - 5)}0;13')

2

- _6_1((9"3 v — 5) + €1n(ﬂF)u (2= 5))

(3.22)

Moreover, (3.14) writes

ma—(,uﬁ) — v, P+ NF = l(L(,uﬁ‘) + 1g),

(,uF)—I-’uzaZ ,

'Ura—s
s0 that
iy + jus) (WEYY + (1) vee? (v) — v, (W F)

~ .1 . .
+n(NFYY = —(LRF)™ + (ug)™),
1
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where

1

e(Z,v) = o

((4F)(m = 0,2,0) = (uF)(=m +0,Z,0)) = 3 & (v)e2.
j€Z
Taking the scalar product with v, A leads to
(=1)"¢l, ;5 + in(u? A, (WFYY) + ij (0,0, 4, (WF)™ — (v} 4, (/' F)™)
7 nj 1 ALY A g
102 Fg)? = (007 - 9, ) + (A (). (329)

By (3.21-23) for n # 0,

+z(_;)ndggg - 61%(#1:—’)3 (v2-5) T 1%(“F)3§*v2
- -—E%%g;‘g_g, - ;%g;‘,f’;l + %(#g)ﬂi
H(uF)R_ — i (uF) s
+ L W)z - 24;(#2 Voo
From here, using
- 1

dﬁr('vg—5) + W(”F)gg(vz—@ - ag?f?—s)a

it follows that

2 +

1

+ + vk -

lmoohgclgo\z [gsle  mlgrla ‘V29l|2+|F¢|2
4 €] €1

S+ | Byl 4n | B L),

Since
00 _ 00 \/é 00 00 00 _ 1 00 00
My = Q2 — 3 my — Q2 U = a;;(avgvgé - a_L'U'f'vﬁ'B)’
1
00 _ _Z_nnﬂ o _ Yoo o0
U, = A”" ( ]‘) uo, U, = w (O{'uEv:B aJ.UE”U:B)’
n#l !

similar inequalities can be obtained for m2°, u3’, u2°, and vY° and the lemma
follows. O ‘
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Lemma 3.7 Let u%ﬁ € L* be gtven. Then there is ng > 0 such that for n <,
a solution F in W*™ to

OF OF . _
furg+vzaz +nuNE = (LF+EJ(15’,§)+9), (3.24)
Fraar = F,
satisfies
| AR < (—\gH|2+—|y sz12+\/v|Fb|N . (3.25)

Proof of Lemma 3.7 Consider first the case where 3 = 0. As in the axially
homogeneous situation, Green's formula and Lemma 2.2 imply that

o |SFR+ R B e vto B+ [, F)va [RR). (3.2

Then Parseval's identity, Lemma 3.6 for (n,j) = (0,0), and an estimate of the
Fourier coefficients (n,j) # (0,0) as given in Lemma 3.5, imply that

Apgo(tl el 5]

ff € \/H

And so (3.25) holds in the 8 = 0 case, since | Fj| |o=¢| z/zF” |2, The case 3 # 0
can be handled as the case § = 0 with g in the right hand side, by taking instead
g+ €J(F, ) in the right hand side. This gives

+ | viFL |, +n | B 52)-

) .
. : v 2(gL +eJ(F, 1

By o< C(| q|‘1a l2 N | v~z (g0 (F,8)) ||2 ; |~)
S €1 v

| 9 |2 | v 7g. |2 IR
< z 2 .
—C( €} € \/_|Fb|’“+my Hym“’)

Thus the lemnma holds for n small enough. O

Remark. If we had access to the estimates in this section of the non-hydrodynamic
part with respect to L7 for (large) ¢ > 2, then the actual asymptotic expansions
required in the existence proofs of the following Section 4 would be considerably
shortened in the Cases 2 and 3.
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4 Existence theorems and fluid dynamic limits.

Based on the discussions about asymptotic expansions and a priori estimates in
Sections 2-3, this section studies existence results and fluid dynamic limits for
our three choices of archetypical two-rolls behaviour.

Given the asymptotic expansion ¢ of (2.4), the aim for Case 1 is to prove the
existence of a rest term R, so that

f=M(1+¢+eR) (4.1)

is a solution to (2.1), (2.3) in Case 1 with M~'f € L. This corresponds to the
function R being a solution to

DR = %(LR +2J(R,p) + eJ(R, R) + 1),

where [ was defined in (2.10). Recall that the asymptotic expansion ¢ is of order
two in € with correct boundary values up to order two and that [ of (2.10) - the
pure - part of the equation - is of ¢-order two and 7n-order one in L9, where
n =rg — r4. Notice that 7, j = 1,2, may be constructed so that 'practically’
D&/ = (I — Py))D®’, hence | = [,. This holds modulo a possible higher order
fluid dynamic component, neglected in this section, that does not change the line
of reasoning or its results.

Let the sequences (R™),cmv be defined by R? =0, and

2
DR = 2 (LR™! +2 3 dJ(R™,8) +¢"), (42)
=1

R"(1,v) = Ra(v), vp >0, R**'(rp,v) = Rp(v), v, <0.  (4.3)
In (4.2-3)

g =cJ(R",R") +1,
2
2 o
eR4(v) = UoAVe= T U4 ] — ZE@J (ra,v), wp >0,
F=1
2
eRp(v) := —ZejCI)?(TB,fu), v < 0,

i=1

with R4, Rp of e-order two.
For the rest term iteration scheme (4.2-3) the following holds.

Lemma 4.1 For 0 < ¢, 0 < rp —r4 small enougﬁz, there is a unique sequence
(R™) of solutions to (4.2-8) in the set X := {R;| D3R |;< C} for some constant
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C. The sequence converges in LI for 2 < q < oo, to an isolated solution of
1 .
DR = E(LR + (R, R) +2J(R, ¢) + 1), (4.4)
R(1,v) = Ra(v), v» >0, R(rp,v)= Rp(v), v, <0. (4.5)

Proof of Lemma 4.1 Denote by = rg — r4. The existence result of Lemma 3.1
holds for the boundary value problem

DF — %(LF+2J(F,¢) +9),

F(1,v) = R4(v), v, >0, F(rg,v) = Rp(v), v, <0.
Here g = ¢, and by Lemma 3.2-3
1, 1
AP a(Z v i b+ Rl ),
1
[P g o1 |77 oo 2 | V3P Lo | VR | ). (4.6)
We note the obvious L*-norm equivalence | F)| |2~ ulEFH |2, and the Grad type
inequality
| v"1J(g,h) o< C | v3g |ual ¥7h g (47)

which follows by an easy, direct computation. This will next be used to show by
induction that

| pH(R™ — R h< on | v3(R* = R* ) |, | VIR < cnn€ N,n > 0. (4.8)

For n =10, R! is the solution to

DR = %(LRl +2J(0, B + 1),
R(1,v) = Rs(v), v, >0, R'(rg,v)=Rgp(v), v <0,

so that by (4.6-7) | V2R |2< ene, | 3R [o< cn, where n = rg — r4. Also,
R*2 — R™*1 {5 a solution to

D(R™? = 1) = < (L(R™ = R™) 4 2J(p, R™? = B™™)

+EJ(Rn+1 + anRn+1 - Rn))’
R - Rprtl =0, 00",

which by (4.6-7) and the induction hypothesis (4.8} leads to
| U%(R‘m}-Q _ Rn+1) < ¢ I V—%J(Rn-i-l +Rn,Rn+1 ~ R |5
< o| IR |0 + | VER™ o) | w3 (R™ = R7) |y
< 2¢% | vI(B"™ - RY |5 .
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Moreover,
| VB R™? | <[ w3 (R — R™) | +
+ | V%(Rg - Rl) |oo + | V%Rl leo < en,

for sufficiently small > 0. And so (R") converges to some R, solution to (4.4-5)
in L9 for ¢ < oco. The contraction mapping construction guarantees that the
solution is isolated. [

The existence of isolated solutions to (2.1), (2.3) is an immediate consequence of
Lemma 4.1. It also follows that, when ¢ tends to zero the fluid dynamic moments
converge to the (Hilbert type) corresponding leading (first) order limiting fluid
solution given by (2.5). This is obvious in L? from the estimate of R' in Lemma
4.1, and holds in L* for the following reason. If the asymptotic expansion were
carried out to third order, then R! would be of order € also in L™. Grouping it
together with the new third order term from the asymptotic expansion, shows
that the R! of our present Lemma 4.1 also is of order e. We have thus proved

Theorem 4.2 For 0 < ¢, 0 < rg — rq small enough and j = 1, there is an
isolated azially homogeneous solution of (2.1).(2.3). When e tends to zero, the
corresponding fluid dynamic moments of ¢ converge to solutions of the limiting
fluid equations at the leading order e.

In Case 1 the (incompressible) ﬂuid dynamics behaviour is given by the limiting

rd _p2
first order (angular) velocity —EA;E’_—TT "ﬁAFﬁ'-&_r;

Using similar arguments but more extended asymptotic expansions, the same
type of results can be proved in the other cases. In Case 2 our present estimates
give (see [AN2])

Theorem 4.3 Assume that vy — r4 18 small enough and that (A + 5D) < 0.
There 1s ¢ negative value Ay of the parameter A, such that for the quantity
Apip — A positive and small enough, there are for ¢ positive and small enough,

two isolated, non-negative L'-solutions f1, §=1,2 of (2.1), (2.8) coexisting with
M—].féj‘ c Loo;

/M‘isupessre(%ra) | f(r,v) 12 dv < +oc.

The two solutions have different outward radial bulk velocities of order €. For
fized €, they converge to the same solution, when A increases to Ayy. Their
fluid dynamic moments converge to solutions of the corresponding limiting fluid
equations at leading order, when ¢ — 0.

Here the leading order (in ¢ ) fluid dynamics behaviour is given by the first order

angular velocity “£41 — —ﬂﬂlemf’_s and the two possible third order radial velocities
%, where u3 solves (2. 40
Finally in Case 3 one obtains
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Theorem 4.4 For j =1, 0 < ¢, 0 < rg — ra small enough, there is a small-
est bifurcation value ugay > 0, such that the azially homogeneous solution to the
problem (2.1), (2.8) bifurcates at ugap with a steady secondary solution appearing
locally for ugap < uga, which is azially symmetric and azially (rg —r4)—periodic.
When € tends to zero, the corresponding fluid dynemic moments converge to so-
lutions of the limiting flutd equations at the leading order € (bifurcated solution
of Taylor-Couette type).

In this case the limiting fluid Taylor-Couette equations of incompressible Navier-
Stokes type are

O Ou, wuj  10PR Uy
wigr Fug s == =g (A =), (49)
Uy O(rug) Oug Ug
r Oug +uza-—u(Aua—— )’
O, ou, 10P

L= 2 e = oo A 2]
”ar+”az 26‘z+‘uu

where u depends on the molecular model, and P is the next order term in € of
the perturbed relative pressure. ’

Proof of Theorem 4.4 Given the asymptotic expansion (4.1) in Case 3 and its
bifurcation point, the aim is to prove the existence of a rest term R, so that for
the parameters near the bifurcation point, there is an axially periodic solution

f=M(1+¢+eR)

to (2.1) with an added Z-term and boundary values (2.3) with M~'f € L.
This corresponds to the rest term R being a solution of the same type to

DR = %(LR +2J(R, @)+ eJ(R,R) + z).
In Section 2 a third order asymptotic expansion in € was constructed in a §%-
neighbourhood of the bifurcation velocity ugap with correct boundary values up
to e-order three, and so that { - the p-part of the equation - is smooth in 7, z and
of order €® in L9. Notice that ® can be constructed so that D& = (I — Pp)D®4
hence that [ =1, .

Let the sequences (R"),ev be defined as in the earlier Couette case by R® =0,
and '

3

1 , .

DRTH—I — E(LRn-i-l o+ 2 § EJ J(Rn‘_"], (I)j) + gﬂ), (4.10)
i=1

R™1,0) = Ra(w), vp > 0, R"(rp,v) = Rg(v), v, < 0. (4.11)
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In (4.10-11)

g" = EJ(R" R") +1,
3
2 2o
eRA(v) == eUAe = T a1 — | — Z €0 (ra,v), v >0,
i=1

eRp(v) =0, v <0,

with R = (R, Rp) of e-order three.
For the rest term iteration scheme (4.10-11) the following proposition holds and
with it the proof of Theorem 4.4 is complete.

Proposition 4.5 For ¢ > 0 and small enough together with n = rp — T4, there
is o unique sequence (R™) of solutions to (4.10-11) in the set X = {R;| ViR |,<
K¢} for some constant K. The sequence converges in L7 for 2 < g < oo, to an
isolated solution of

DR = %(LR + eJ(R,R) + 2J(R.0) + 1), (412)
R(1,v) = Ra(v), vr >0, R(rp,v) = Rg{v), v, <0. (4.13) .

Proof of Proposition 4.5. The existence result of Lemma 3.1 holds for the bound-
ary value problem

3
pf = (L +23 I, ¥) +4),

j=1
f(1,v) = Ra(v), v > 0, f(rg,v) = Rg(v), v. <0.

Rescale in space to (—,7)? and consider the approximation (4.10-11) in the case
n = 0 with ¢g° = . As discussed before (4.10), this ¢ = g% is of order € in L%,
and

L H o + | Ry 1< c16%,
for some constant ¢i. By (3.25) and (3.3) it holds that for some constant ¢
| VIR o< crcame”, | VIR |0 < 2e1come, ' (4.14)
for n and ¢ small enough. Let us prove by induction that
| vIR™ | < 4eycoe,

VB — R o< 26y c0€ | VE(RT = R¥) b, n 2 L (4.15)
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For n =1, R? — R® satisfies

D(R*— RY) = —g(L(R2 - R + QiEjJ(RQ — Rl., ®7) + eJ (R, Rl)),
=1
(R — RY)(ra,z,v) =0, v, >:’0, (R* — RN (rg,z,v) =0, v, < 0,

so that, by (3.25),

| v3(R2 — RY) o< con | w2 I (R BY) |2 -
Recall that for any g € L™ (resp. h € L9,

[T, 1) 1o ca | v3g o] V2R, (416)

Hence

| V3 (R’ = R') < ep’e | v3(R' = R) s,
for n small enough. If (4.15) holds until n, then

| VERM o< w3 (R = BY) Joo ot | V3 (R = BY) |

< (AR = BY) ook | V3R ~ BY) o)

< derege,
for n small enough. Then R™"*? — R™t! satisfies
~ 3
1 . .
D(Rn+2 . RTH-I) = E (L(Rn+2 _ Rn+l) + QZ GJJ(Rn+2 _ Rn+1’ ‘I"?)

=1

+eJ(R™ + B R — RY))

(Rn+2 - Rn+1)(TA= z,’U) = 07 Ur > 01 (Rn+2 - Rn+1)(7‘33 Z,’U) = 0! U < U’
so that by (3.25) and the bound on | ¥2R" |, and | viR™1 |,

| VE(R™? = R™) < can(| v R™ |oo + | VER” |oo) | 3 (R™ = R7) |2
< 2c100¢ | 2 (R™ ~ R™) |y,
for ¢ and n small enough.
And so (R™) converges for sufficiently small > 0 to some R, solution to (4.12-

13) in L9 for ¢ < oo0. The contraction mapping construction guarantees that this
solution is isolated.
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