5 Stability.

We next come to the question of stability for the solutions obtained in the previ-
ous sections. Only Case 1 will be discussed. It turns out that the well known fluid
stability of the leading order term is the prime mover behind the kinetic stability,
which in a certain way is uniform down to the fluid level. More precisely we shall
devote this section to prove the following new result.

Theorem 5.1 The steady Couette problem for the Boltzmann equation in the
two rolls problem is stable. The stability is uniform in the following sense for
smull enough mean free path . When the gap between the cylinders is small
and the angular, azial and energy moments are perturbed of order ¢ or €, then
uniformly in € the perturbation vanishes asymptoticaly in time. Also an initial
perturbation of order €8, with small but otherwise arbitrary fluid dynamic as well
as non fluid dynaemic part, vanishes asymptotically in time.

This type of results is expected to carry over to the cases 2-3, where also the fluid
stability is well understood.

Among the few earlier rigorous non-linear kinetic stability results outside the
situation with global Maxwellian limits, are the studies in [UYY] dealing with
stability of half-space Milne problems, and [UYZ] dealing with the Boltzmann
equation in full space with an external force.

With &, = 1 + &, the rescaled stationary solution, the stability problem con-
sists in proving that the distribution function @ tends to ®; when ¢ — oo, where
® solves the evolutionary problem

& 1 .
%t + =y = 2(L<I>+J(<I),<I>)),

(0,7, v) = By(r,v) + P(r,v), r € (rq,7rg), v E€ R,
&(t,r4,v) = Dylra,v), t>0, v, >0,
O(t,rg,v) = ®(rp,v), t >0, vp <0,

and P is a small perturbation of &,.
Denote by 1y = & — &,. It should then be a solution to

% v = (LD @), G
(O,T‘,'U) - P(T:’U): re (TA:TB): 2SS -IRSa (52)
Dt rav)=0,t>0, v, >0, @t rg,v)=0,1t>0, v, <0, (5.3)
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and tend to zero when ¢t — oo.
Here the following perturbations P are considered,

P(r,v) = €0y (v = 5) + Brve + nv.) + € (02(v® = 5) + Bovg + 120,)
+e3pa(x, v, €),

where a;, G;, v, 1 < i < 2 are L*®-functions of the space variable, and the
function ps(z,v,€) is measurable with || ps ||lec,2< ¢ uniformly in ¢, where

15 looa= ([ supsia,v, M (v)ds).
3 e

As in Section 4, the stationary solution ®, is here determined by an approximate

asymptotic expansion ®; of terms of up to third order in ¢ with boundary values

being those of the same order of e3(¥i—(v=c464)) at {(r, v}, v, > 0} (resp. 0 at

{(rg,v), v, < 0}, plus a rest term €S,

Oi{r,v) =1+ &4(r,v) + eS(r,v),
where || S ||w2< clre — rale, || S ll22< clre — 14l€?, and
b, (r,v) = elp(r,v) + Py + Dy,

r—1 T —7
@, = Bpi(r,v) + @KiA(T,’U) + B i z

,u), 2<i<3.
The Hilbert terms ®5,, 1 < i < 3 satisfy

L&y = LOgo + J(@r1, 1) — v - V2P
= L®pu3 +2J(Qm, @us) — v V2P = 0.
They are given by
_ P (r,v) = bi(r)vg,
1 1 _
Qpa(r,v) = ag + dov® + bavg + oty + Ebffug + (b — ;bl)*v,.vgB,
Gps(r,v) =a3 + dsv® + bavg + c3ur + d’Q'U,uZl + bydaugv? + blbgfug
1 _
+by covrvp + %b?vg — b (V) — ;bl)L_l (J(vg, vrveB))
1 1
+(b1 b} — ;b%)L_l(’Ur(’Ug -1)+ ;CzL_l((Ub? —v7))

1 _ _
—!—l(b’l - ;bl)L"l((fug’ — 3vlup) B) + byveug B.
T

We take ry = 1 (implying 75 > 1). For compatibility reasons

2
= %4 Tm 5.4
bl(r) ?"QB—-I(T‘ T): ( )
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a; + 5d; (resp. ¢;), 2 < % < 3, satisfy first-order differential equations, whereas b;
(resp. d;), 2 < i < 3, satisfy second-order differential equations. Knudsen terms
® g 4; (resp. Prps), 2 <1< 3 are added in order to satisfy the given zero ingoing
boundary conditions up to third order.

The solution % to the evolutionary problem (5.1-3) is determined as the sum of
an asymptotic expansion i and a rest term eR,

W =1 +€R,
where
W(t, 7, v) = ey (t, 7, 0) + 21y + 103,
Wi = Ymi(t 7, v) + Yrialt, ,v) + ¥kip(t, %,U), 2<i£3.

The initial values of ¥ is taken as zero, those of 15, ¢ are the corresponding
orders of P and finally Rg := €®p; is taken as initial value for R. For (5.1) to be
satisfied up to zeroth order in € included, it is required that

0= Lpsr; = Libgs + J(¥r1, i + 2®m1) — v Ve¥m

s,
= Lty + 2T (W1, Yme + Buz) + 2 (ae, @) — —“g% — V- TeW¥m2
o 0
= Lpgoa — Ur“'/l"b"@ = Ijrop ~ ¥y Vrap
on A
= Lipraa + 2J (V1 (T4), Yr2a + Praa) + 27 (Pr2a, Pai(ra))
1 %}
— 2 Ntpgoa — vrw
T on
= Lgsp + 2J (¥ (T8), Yrop + Bxr25) + 2J (Ykaep, @H1(rB))
1 OVkap
—;Nlbmg — vy o

The rest term K should then be a solution to

%_{_1@ VzR = —LR+ J(R R)‘}‘%H(R)"'O"

where
H(R) = 2J(%+ @, ) + J(5, R),

1
a = 25( - % — V- V¥H3 — —( Yraa + NUgag) + J (¥, ¥2)

42 (0, + Bs) + 27 (6, 82) + 2T (s, 1))
o
+e? (QJ(%,% + ®3) + 27 (ths, B2) — —;)Tg)

w68 (T, ) + 20 (. B3)) + 2T, 5).
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The equations involving Lipg;, 1 < i < 3 give the v-dependence of g,

’l,!)Hl (t, T, 'U) = Al + D1U2 -+ Bl'Ug + Cl'U-,n + El’Uz,
Yua(t, 7, v} = Ay + Dyv? + Byvg + Cov, + Eyu, + g9,
Yaalt,r,v) = A3 + Dyv? + Byvg + Cayv, + Esv. + g3.

Here A;, B;, C;, D; and E;, 1 <1 < 3 denote functions in the (¢, r) variables. By
the compatibility conditions

/v e (v ) Mde = 0,
and the initial and boundary conditions at first order, it holds that
A1+5D1 =C] =0

A(|v|) was introduced after Lemma 2.2 from the nenhydrodynamic solution to
L(v,A) = v.{v®* — 5) together with B(|v|) from the corresponding solution to
L(v,vpB) = v,v9. Further,

1 1 1
+(B]_ -+ bl)Dl‘Ug’UZ -+ DlEl’Uz’Uz + (Bl + bl)El’l)g'Uz
8D, 0B, 1

- dE;
+—6'T—’UTA + (W - “Bl)UT’UQB —+ 8

and g3 is a similar expression depending on g1, Y9, <I>Hl and ®g, . By the
compatibility conditions

— v, B,

f(agfl + v V$¢H2)(’U9, UQ - 5,’Uz)Md’U = 0,

the functions By, D, and E; are solutions to the parabolic equations

831 82.81 1331 1

- L T B =
ot +w1(8r2 +7" ar 72 ) =0,
Bl(OaT) = 61(T)1
By (t, TA) = Bl(ta TB) = 01
D1 wy—5w, Dy 10Dy,
6t+ 10 (37”2 +7" 87")——07
Dy(0,7) = ou(r),
D;_(t,TA) = Dl(t, TB) = 0.,
OB,  10E;
a2 Trar ) =0
E(0,7) = mir),
El(t, T'A) = El(t,TB) = ().

%"*‘T)]_(
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Here,
wy = fvagBMdv, wy = f’ufflMdv, ws z/vagﬁMdv.

The convergence to zero when ¢t — oo of 15 is well known from the fluid dynam-
ics context (see e.g. [V]). Here the convergence follows from classical asymptotic
properties of the solutions to the above linear parabolic equations [LSU].

The compatibility conditions

[ (agfl 4o vzwgg)(l,vT)Mdv =0,

write

5 1+ F50) =0
1 1 '
~B2 4 Biby + 553) =

> (5.5)

a _ 35 5
g(AQ + 505 + ?Dl +

Let A(n,v), pas(t,n,v) and ppa(t,n,v) be the solutions of Theorem 2.4 to the
half-space problems

ax
ra_ — L)\:
(¥ an

AQ,v) =0, v >0,
/vr)\(n, v)dv =1,

" dpan
on
pAZ(t, Da U) = _wHZ(ta TA, U): Up = 01

fUrPM(W:U)d’U =0,.

= Lpas,

and

Opay
r e — L
L% alu PB2,

sz(t,O,’U) = —@Zyg(t,TB,U), Up < 0,

/'UrpB2 (g, v)dv = 0.

As 7 (resp. u) tends to +oo (resp. —oo), A and pay (resp. pps) tend to some
Qoo + ‘500\@2 + foots + Vr + Yoolz and oipoa + 500.47)2 t Boc A8 + VooAVz (resp. CooB +
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JooBV? + BooBVs + YeorV: ). Give as boundary conditions to A,, By, Dy and Fo,
Ag(t,m4) = 0aoCalt, T 4) + tooal(t), Az(t,7r) = @euCa(t,r8) + an(t),
Bg(t, TA) = ﬁwCQ(t, T‘A) + ﬁooA(t), Bg(t, T'B) = 60002(75, ?"B) + ,ﬁmg(t),
Dy(t,74) = 80oCa(t,74) + b6s0a(t), Da(t,78) = 6uCa(t,T5) + beop(t),
Ep(t,74) = Y Colt, 74) + Yooa(t),  Eat,7B) = YCa(t,7B) + Yoon(?),
with
Calt, 74) = r5Co(t,78) + ?-”—?(rﬂaaprl (t,75) — %(t, ra))-

Then there is a solution A + 5D, to (5.5) if and only if

(A2 + 5D2)(t, TB) - (Az + 5D2)(t, TA) = /TB B, (Bl + 2b1)(t,7")dT—T,

TA
which fixes Cy(t,rg). Finally, the linear parabolic problems for B;, D,, and for
E, provided by the compatibility conditions

f (aqgfz + - vzv,byg) (v, v? — 5, v, ) Mdy = 0,

have unique solutions;

0B, 8B, 10B, 1
T TG T T pB =
Bo(0,7) = a(r),
By(t,r4) = BocCalt,Ta) + Booal(t),

Bo(t,78) = cCa(t: 74) + Boon(?),

8D2 Wy — 5?1)2 82D2 1 8D2 =
ot * 10 ( 5r2 'r ar )=h
(077‘) - 042(7")1

Dz(t, ?‘A) = d,5Ca (t, TA) + 500A(t),
Dg(t, ’J"B) = 5‘0002(t ’.'"A) -+ 5005('5),
2
Ferulgr t 5 =h
Eq1(0,7) = 7(r),
By(t,ma) = YooCo(t, 74) + Yoo (t),
E3(t,m8) = Yo Ca(t, 74) + Voo (t).
Here, f;, fi and f| are given functions depending on g1, b and c;.
Let wgo4 and Ygop be defined by
Wican = Colt, 7a) (X — Coo — Ooc® = Bools — Ur — Yoolz)
+p24 — Cooa(t) = Sooa(E)0” — Booa(t)0h — Yoou(t)v2,
Yrar(t, 1,v) = Calt,7p)(A(—p =0} — Goo = 0oot® + Bools + Vr + Yoo¥z)
+pa5(t, =i, =) — Ooop(t) — BB (8)0” + BooB ()20 + Yoor (E) V2.
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They satisfy

0, Q0K _
on

1/)H2(ta TA:U) + ¢R2A (t1 O,T)) = 05 t> 03 Ur > 07

lim tgoealt,n, v} =0,
n—+oo

and

Ur&bﬁ = Lypkas,
Ou

Yt TE, V) + WKaa(t,0,v) =0, t>0, v, <0,
lim wI(ZB(t1 Hy U) =0.
f—r—c0
The convergence to zero of Vs + Ykxea + Yxrep when t — oo, follows from the
convergence of g1, and from the properties of the parabolic problems and of the
Knudsen terms.
The Knudsen terms 1x34 and 1 3p are defined analogously, so that the boundary
conditions at third order be satisfied by 2. The third order terms are constructed
similarly to the second order ones, and analogously converge to zero when ¢ — co.

For the a priori estimates of the rest term the following norms will be used,
t 7
| B |l2t,2.2= ([ [ R2(8,$,U)M(v)d.sdmdv) ,
0 JOxR3
1
| R |joc,22= sup (f R3(t,z, U)M(v)d:cdv) :
>0 QxR?
: 1
|| R {loo,002= SUD ( / sup R*(¢,z, 'U)M(v)dfu) ’
i>0 R €2

t !
| f ot o= ([ f v M(W) | f(s,74,0) | dm!s)'2 +
J 0 vy >0
: 1
(f / on | M(u) | £(5,75,0) [ duds)” < +ov.
0 Ju- <0

The rest term R can be split into R = Ry + R», where
1
v - va1 = ELRl + QH(Rl), (56)
1
Ri(t,ra,v) = -—€—1j)(t,m,v), t>0, v >0,

1
Ri(t,rg,v) = —?'lf)(t,TB,?)), t>0, v, <0, {(5.7)
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1 1 2

— 4+ v VR = 6—2LR2 + EJ(Rl + Ry, Ry + Ry) + ;-H(Rg) + @,
Ry(0,7,v) = Ro(r,v),

Ry(t,ra,v) =0, t>0, v >0,

Ry(t,rg,v) =0, t>0, v, <0,

where & = o — %l. Notice that « can be taken non-hydrodynamic modulo higher
order terms in ¢, which converge uniformly to zero when time tends to infinity.
Hence only %L contributes to the hydro-dynamics in @ A priori bounds on £,

are first derived, and also hold for %L. The ingoing boundary values as given by

(5.7) are subexponentially decreasing in ¢, and tend to zero when time tends to
infinity.

Lemma 5.1 With Ri* (Rt) the ingoing (outgoing) boundary values of Ry, any
solution to (5.6-7) satisfies

VeIl B llagzr + 1l v3 (I = Po) Ry llas22< Ve || B [lagzns
|| PoR1 ||2r,,2,2§ c| 82" ”2t,2,~a

1 ¢ '
| v2R; {loot,c0.2< - | Ry [loot2,m -

Proof of Lemma 5.1. Denote by

i
2

| By = Mmmm%wmw)

OxIR3

with { acting as a parameter.
By (3.2-4)

Ve R |+ | vE(I — Po)Ry |b< C(\/E | B | +e | vTEH(R) 2 )7
| PoRs <o Ly H(R) b+ LRI L),

1 1 1 1 .
ViR S e [V (R) oo += | VEH(R) 2+ | R L. ).

Then,
|V HH(R) L= e /3 + e + o) |oo
+ | yé(‘ﬁl + €@y + €2D3) |oo + | vis “"’) | vhE: I
<en|viR g,
and

| v H(R) Joo< on | V2R |oos
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where n =rp —74.
Including the estimates in ¢, this ends the proof of the lemma. O

The a priori bounds on R, are obtained by an approach adapted from [M}, and
involve dual, space-periodic solutions discussed in the following two lemmas.

Lemma 5.2 Let ma > 7. Let g be such that
/ g(7,x,v)dz =0, a.a. T€0,00),vEe IR3. (5.8)
[0,2ma]

Let o(7,z,v) be periodic of period (27ra)? in the space variable, solution to
d 1
%2 v ap = Loty (5.9)
or €
¢(0,z,v) = 0.

Then,
I lleaa< (Ve | 7730 = Ri)g las + | P lzz )
| AU = Po)p oz e 720 = Polg llaa + 1| Pog a2 ).
I P o o o 170 = Po)g laza +7 1 Pg s )

Proof of Lemma 5.2. First, multiplying (5.9) by ¢ and integrating the resulting
equation on [0, 7] x [0, 2wa]? x IR? leads to

||£P|| T22+ HW(I PO)GDH2T22

<cle|lv 2(I Py)g ||2T22 +n1 || Poe I|2T22 + ” Pyg ||2T22) (5-10)

By (5.8) it holds that

i Pop(7,z,v)de =0, 7>0,ve R,
2 [0,27al? _
so that
/ Pop(Tyzyv)de =0, T=20,ve& IR (5.11)
10,27 al
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Denote by @(7,€,v), £ € Z? the Fourier series of ¢ with respect to space, and
define g analogously. Then for £ # (0, 0),

97 _

af_eng-u)@ﬁug.

Let 3 be a truncation function belonging to C'(IR) with support [0, oc], and such
that (7} = 1 for 7 > ¢ for some § > 0. Let ¢ = @5. Then

S N - 2
5= = CLH- )+ 0p- g8, (€27

Let F be the Fourier transform in 7 with Fourier variable ¢. Denote by
O=Fp Z=F( Lo+ 3L +38), Z=F( ' Lg+38), U= (ic +i6-v)™".

Let x be the indicatrix function of the set
{v; fo+&-v|<al,
for some positive o to be chosen later. Let ¢,(v) = (14 | v |)*. First,
I Pyl o | [ x2(or € 0)Maw 1 Ll + | [ x0len oM [

+1 [ x@(o.g oMo o, lla+ | [ x0(o,60)eoa | ve s )

<l lla (1 xbe o + 1l xtus s )

<c |—§~|n¢_5@ng.

Now & = —U'Z, and so
DR =)@ %< e (80— 00 I3 + | $osa(1 = 00 1 ) I1w-o2 Iy

=3 [ w0 - 00 Mo [ 6,1~ 0(F(8) — T 2) M)
0

=TE |CL o7 19=e2 1l - ; [ wi(1 - X)Uf(@g—ﬁ)Mdv(fwj(l — X)(F(@B) - U Z)Mdv)*.
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Choosing o =|| ¥_,® ||5'|| ¥-+Z || & leads to
P 1< ) %@ [l o2 |1
- 1€ i [ w1 = xwm%)m( / (1= X)(F(#B) — UZ) Mdv)"
Hence,
€ P2 &< e( | B2 Nl + 1 =slT = P)® |1t ) [ -7 |1
- €| Z [ 13- 00F @2 M [ 4,1 = x)(F(8) ~ 02) M
Consequently,
€1 Ro® I< e 1€ 17602 Iy + 1 slT = Po)@ Ll ¥-iZ |1 )
- €] Z [ 0= x00FEo Ma [ 450~ 0)(F(28) - TZ) M)

And so,
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RS ) . .
"1+|£|;f¢ju—X)UF(%}‘)M@(/%H X)(F(pB) — UZ)Mdv)*.

@ %< e I 62 I + Il 6= = PO I3 )

Therefore, for s > §,

62
1+ | €|

Sc(e_z/ | _s (W) L((I = Po)®)(0,&,) ||% do+/ | s (0)(I — P)®(0,&,) |I% do

+ [ Ng8(7.6.) s o)

_ ke > [ [wa-x0egnma [ v - 0(F(@8) - 07)Md)
<

(Py®)*(0, &, v} Mdudo

(= / |31 = P)®(o,€, ) Iy do + / 387, €. ) Iy d7)

3 [ar [ut-xa0FRgan [ it =00 - 0
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Making § tend to zero implies that

f f (Po)* (7, €, v) MdudT
0
1 oo
= C(?/ fy((f — Po)@)*(7, €, v) Mduvd7
° o0

+f 'd)—sgz('f_',f, U)Md'vd?).

0

Summing the former inequalities over all £ € Z*® with £ # (0,0) and taking (5.11)
into account, implies by Parseval that

/ /(Poﬂp)g(f,m,v)Mdvdmdf
0
1 o0
= C(Eé"/o _/V((I* Py))(7, z, v) MdvdzdF
+ / /V_ng(’F,w,v)Mdvdmd’F).
Jo

Together with (5.10) this ends the proof of the lemma. O

Lemma 5.3 Let wa > rg. Let g be such that

/ g(F.z,v)dz =0, a.a 7€[0,00), vE R (5.12)
[0,2nal?

Let o(7,z,v) be periodic of period (2ma)? in the space varioble T and solution to

2] 1 '
et Vep = -Lp+g, (5.13)
o7 €

©0(0,z,v) = 0.

Then,

/ / / vr? (7, 3, v) M dvdo () d7 +/ / / | v | 92 (7, 2, v) Mdvdo (z)d7
40 lzl=rg Ju,>0 0 |zfe=ra Jor<0 '
< %f /92(7‘,$,U)Mdvd:nd‘f").
£ Jo

(Here do(z) i3 the surface measure of the circles.)

Proof of Lemma 5.3. Let Cpg1y be the set in the (x,y)-plane consisting of the
half with y > 0 of the circle with radius 75 and center at the origin together with
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the rectangle given by |z| € 75, —1 < y < 0, where n > 0 taken small enough
that any rotation of the set Cpq) around the origin stays within the square
{lz], ly| < ma}. Let Ciy,.,) be the set Cpo,1y rotated from the (0, 1)-direction
to the (v, vy)-direction. Let X(o,1) be defined and continuous in Co,1), monotone
and continuously differentiable in the y-direction, equal zero at y = —I and equal
one at y > 0. Define x(y, +,)(%, y) correspondingly by rotation. Then

o
or
E 2 I 92 9 2
X(vo) PLO + Doy )09 + (¥ + VX (vz0)) X0y ) -

(X%Uz,ﬂy)th) tv- VI(X%uz,ﬂ,,}(pg) =

Hence,

. |
[ ot Mo(a)dr < A+ Bt
z|=rg

where by Lemma 5.2

9 T
/ Aydv = —f fx%va)(,oLtpMdvdwd’F
w>0 € Jo
2 (T r, 3
== X{vaw P L — Fyo)o) Mdvdzd?
o _

C 1
< ) | v"2g ||§,2,25
T C 1 2
[ Bydv =2 / / Mooy 09 Mdvdnd? < = || g |13

T
-/Ovdv = Qf /('U . VzX(vz,fuy))X{'um,u,,)Sﬂsz'Udmd’f_'
0
1 c _1
<cllvig ||%’f‘,’2,2S 2 | v~ 2g “%,2,2 -
Here the C,-estimate was carried out for hard spheres, but holds also for hard

forces for the particular g appearing in the applications below. The r4-part is
treated similarly. O

For the iteration procedure to obtain Ry we shall be using systems of the type

IR 1 1 1
e Ly v Ry = = - 5.14
5 + ~v Va2 €2LRQ+ 6G', (5.14)
R(0,r,v) = Rylr,v), (5.15)
Ry(t,ra,v) =0, t>0, v >0,
Ry(t,rp,v) =0, t>0, v <0 (5.16)
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Multiply (5.14) with RoM, integrate over [0,t] x @ x IR® and use the spectral
inequality, so that

| Ra(2) ||§2 —” Ry ||2s22+ HW(I Po)Ry ||2t22

< Il Ro [z + v 3(I - %KWmm+mHHﬁﬂum+ — 1 BG [z ).

for every m > 0.

The a priori bounds on PR, are discussed in the following two lemmas. They
are based on dual techniques using the space periodic solutions introduced above.
Denote by

hit, z,0) 1= PoRp— < ByRy >, < flt,0) >i= / F(t 2, v)dz
. (4]

Lemma 5.4 For any 0 < n < 1 there is €, such that, for 0 < e < ¢,

| A ”3,2,2... ( | Ro ”22 + [ v 2(I R)G ”222 + 2 || PoG ||222 ) +7 ||< PRz >||g,2,2 -

Proof of Lemma 5.4. In the variables (7,z,v) := (£,

lution to

r,v), the function Ry is so-

ORs

57 +v-Vi Ry = —LRg—!—G, Ry(0,r,v) = Ry(r,v),

Ry(Tirav)=0, 7>0, v >0,
Ry(7,rp,v) =0, 7>0, v <0

Let ¢ be the (2ma)2-periodic ¢ function solution to

1
X bvoveo=Loth 9(0,5,9)=0,

where h is taken as zero outside the gap between the cylinders and periodically

continued. Denote by
(o) = [ F)g0)M(0)de

P | 2
o (Ray o)+ [ div, (v Ro) Mdv = 2 (LBs, (T~ Po)o)
+(Ga @)H + (h7 PORZ)H-

Then,
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Integrating with respect to 7 and z gives

1 _
|| h ”21’22— ” Rg( ) ”%2 +_ ” @(T,',') ”5,2

1
Il i |Im~ +oe 1™ e
2K,

+_ ||V2(*ir Py) Ry ||2722+ ”W(I P0)<P||2722

2K
+‘2— | v~ (I R)G ”27‘22 + || vi(l — Ry ||2722

K
+‘2“ | PG ||gq=,2,2 +§(_5 | Pow ||§f,2,za .

for any positive constants K;, 7 =1,...,5.
It then follows from the preceeding estimates that

1
I 7 1B2a< o5 I Ro B +5 1730 = PG oz +5 1| oG [Ran )
+7 ||< PyRy >||2,2,2 -
This ends the proof of Lemma 5.4 when coming back to the t-variable. OJ

Lemma 5.5
1 1 _1 1
I< PRy >[352% ol | Ro 3o+~ | v7HI = R)G [B22) + 5 | RG I320)-

Proof of Lemma 5.5. For ¢ > 0 let ¢(¢, z,v) be the solution to-the (stationary)
problem

1 |
U'Vm‘PZELW—E<P0R2 >,

olt,ra,v)=0, t>0, v, >0,
olt,rg,v) =0, t>0, v, <O

By (3.2-4),
| v2{I = Py} |22< € |< ByRy >|l22,
| Pow llz2<Il< PoRy >|l2,2, (5.17)
| ®* || < Ve || < PyRa >||a2 .
Then '

d d .
Eﬁ__t(Rz’(’O) — ¢( Ry, -(%) + /dwm(ngap)Mdv

9 _
= ~(LBs, (I = P)o)u + (G, 9)n — e(< Pofty >, Ry)p.
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Hence for m of order ¢

I< Fuo >[Byazs e 1 Ro g + 1| v™HI = PG Bz +— Il PG o

+2 | PoRy H%m +[ /Rg“g‘(S,ﬁC,T})Mdvd:Eds).
€ o +

And so, by Lemma 5.4, and for 7y of order € and small enough

< Pofe >z S( 1l Bo I35 + v~ H(I = BG o +35 | oG 25 )

—i—f /Rgu(s,m,v)Mdvd:cds.
0 ot

It remains to bound the term fot Rg%‘f(s, x,v)Mdvdzds from above. Differentiate

the equation satisfied by ¢ with respect to ¢. Similarly to (5.17),
a

@ O0R,
por << Pp=2t > .
| Po 5 llat 22<||< Fo 5 ll2¢,2,2

Taking the hydrodynamic part of the equation (5.14) leads to
OR, 1 1

P(JE“ ~+ EPO( szQ) = EP(]G

Moreover, _
< Po(’U . vag >= C(TBPD('UTRQ(t, B, ’U)) "‘TAP[)(UTRg(t, T A, 'U)))
Hence,

O ORs 1 1
Er ”‘2t22— ¢|l< Po—m— Y >”2L22— (6_2 | R ||§t,2 +€_2 | oG ”gt,2,2 )

And so, Lemma 5.5 follows. O

Lemma 5.6 Any solution Ry to the system

OR 1 1 2 1
_2+5U VaxRe :G—QLRz'i'EH(Rz)‘*‘EGa

ot
RQ(O'?T: U) = RO(T-:'U),
RZ(tu TA:“) = Oa t> 07 Uy > 0;
RQ(t1TB:U)=O: t>01 v < 0,

| Fogr

satisfies
| Rz Ylzpa ¢ (\f | Ro lize +\/ | v = PG oo +5 1| G laaz ),
I B o Il B o+ 115740 = PG llaze 4z | RG laaz ).
| Bz [loo,002< C(; | Ro lizz + || Ra lleoy2 +E | V™5 (T = Po)G 2,2
1
+62—\/E | BaG 222 +€ || G lloo,o02 )
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Proof of Lemma 5.6. Consider first for H = 0 the solution R, to

R 1 1 1
-2 + - - VERQ = "E‘LRQ -+ —G,
€ € €

ot
Ry(0,7,v) = Ry(r,v),
Rﬂ(t,T‘A,’U):O, t>0, v, >O‘J
R?(tarBafu) :Oa t>01 'Ur<0-

It satisfies
1 _1
sup | Ba(t) llz2 +< [l v = P)Rs llaa< o 1| Ao oz

1
+ | (I = P)G |l22,2 +% | PoRz [|2,2,2 +m | PoG |l2:2,2 ),

for any n > 0. Moreover, it follows from Lemmas 5.4-5 that
I PoRz Nl e = I Bo lla +—= [l (T = PO)G oz +75 | PoG llzz )-
Ve Ve 2

Choosing n = /¢ leads to the first inequality of Lemma 5.6, and choosing 1 = ¢
leads to the second one. Then, by some additional computations similar to what
we have done in previous sections,

1
I R w02 o= 1| Bz lloozz + 1| o llsoz ¢ | G loogoz ),

which leads to the last inequality of Lemma 5.6. Adding the small perturbation
LH(R,) does not change the results. I

Proof of Theorem 5.1. The convergence to zero when ¢ — oo of the asymptotic
expansion 1 for the difference ® — ®, was discussed at the beginning of this sec-
tion. The corresponding rest term eR was split into eR; + eRp, where by Lemma,
5.1 and by the boundary conditions being satisfied by % up to third order in «,

l .
13 Ry llzp €| RY oy || V5 Rs [loopops IR"*IOON,

i.e. subexponential decrease in ¢ and convergence to zero when time tends to
infinity.

So it only remains to show the existence of Ry and its convergence to zero when

t — +oc. We shall prove that R» can be obtained as the limit of an approximating
sequence and that

+oc
/ / (Ry)?(t, z,v) M (v)dtdzdy < ce®. (5.18)
o Jms
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This in turn implies the L?-convergence to zero of R; when time tends to infinity,
ie. limg o [ Raft, z,v)2Mdzdu = 0.
Let the approximating sequence (R%)} be defined by RS = 0, and

aR‘B1+1 1 n+1 1 n+1 2 n+1
5 TV Vel = S LT+ —HET)
1 ,
+EJ(R1 + R}, Ry + B3 + @,
R0, 7, v) = Ry(r,v),
Byt tra,v)=0, t>0,uv >0,
R Yt re,w) =0, t>0,v <0,

where Ry is of e-order two and

@—a-%
T gt

The function R; is solution to

R 1 1 2 1

ot
R (0,7,v) = Ry(r,v),
Ry(t,r4,v) =0, t>0,0,>0,
Ry(t,rp,v) =0, t>0,v <0,

so that by Lemma 5.6 and the subexponential decrease of R™ together with the
orders 2 of Ry and 1 of o) and 2 of ¢,

1
| B looo02< €167, |} R [|222< cre,

for some constant ¢;. A closer inspection shows that ¢; = O{rg — r4) when the
coefficients in the perturbation P are O(rg — r4).
By induction, for rg — 4 small enough

1
3

H R% ||oo,oc,2$ 262'TB - TA|E 3 jg ,
| B5™ — RS Jlopo< csvrp —ra || By — B |lage, n 21,
for some constants ¢3, c3. Namely, if this holds up to n'® order, then
d 1
E(Rg-ﬂ _ R;ﬁl) + ;‘U . V.T(R;H-z _ Rg-ﬂ)
1. 2 ' 1
= E‘gL(R3+2 — Ry™H + EH(R’;““Q — R3Y) + EGHH’
(Rg+2 - R;’H—l)(o’ T U) = O:
(RGQ-H-? - R?21+1)(t97”z4:v) =0, t>0,v >0
(R™2 — RV (t,r5,0) =0, ¢t>0, v <0,
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with
G™ = (I - B)G™" = 2J(Ry, R3™ — R3) + J(R3™ + Rg, B3 — RY),
and where by Lemma 5.6 |
R A L
< (1 Ba fooon + 1l BE™ llaoiso + 11 RS ooz ) | BE*! = RS [z
Seovre—rall B3 — R lla2e -

This ends the first induction step, and also implies that

=~k

€

| R3*? flooo<|| R3Y2 — R |logg +ot || B — B oz + || Ry |l2225 2¢1e,

for rg — 74 small enough. Similarly || RF1? ||soc02< 2¢2|r5 — TA|5%. In particular
(R}) is a Cauchy sequence in L2(J0, +oo[x 2 X IR3,). The existence of R, follows,
and the estimate (5.18) holds. This completes the study of the R,-term and
Theorem 5.1 follows. O

The dependence on a small enough rg — r4 was introduced to be able to use a
short e-expansion. With an e-expansion of higher order the same proof shows that
the existence of R; and the stability result of Theorem 5.1 hold for an arbitrary
fixed rg — 74, when € is small enough.
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6 Positivity.

We shall in this final section discuss the positivity of the earlier solutions.

In the time-dependent small data case, positivity of all sufficiently nice solu-
tions can be proved by Gronwall based ideas, see [LZ]. But in the stationary
small data case the question whether all nice solutions are positive remains an
interesting open problem. For general time-dependent problems, positivity is usu-
ally introduced at the beginning of the approximation procedure and then kept
throughout, so the solutions constructed are positive, but not necessarily other
solutions. When there is uniqueness around, time-dependent positivity may al-
ternatively be obtained by comparison with some other equation already known
to have only positive solutions (see {A[). That turns out to be a possible approach
also here for our stationary solutions using a new type of comparison equation.

The proof starts by considering a variant of the stationary Boltzmann equation
with a particular extra term depending only on the negative part of the solu-
tion. This new equation is then proved only to have positive solutions, the extra
term disappears and the solutions solve the BE. The proof goes on to construct.
a solution to the new equation of the type we already discussed for the original
problem, and to show that this new solution coincides with the original solution.
There is the following technical problem. In one step of the proof, growth esti-
mates are needed for terms like v,15B = L~ 'v,.vy. For Maxwellian molecules such
estimates are proved in [C], and that can be used to complete our positivity proof
in the Maxwellian case. But for strictly hard forces, suitable growth estimates

still seem to be an open problem - also of interest in other contexts.

Write f = ft — f~ with f© = max(f,0) and f~ = max(—f,0) . Suppose f
satisfies the related problem (6.1-2) below. Then f~ = 0 by Theorem 6.1 below,
and f = f* is a non-negative solution also to (2.1), (2.3). If the contraction
mapping approach used above can be extended to the construction of suitable
solutions for the problem (6.1-2), then as a consequence, any solution from the
previous sections would coincide with such a non-negative solution.

Theorem 6.1 Let Q2 be a bounded set in R™ with smooth boundary, and f, a
nonnegative function defined on 0. If M='f € L*®(Q2 x IR®) and f solves the
boundary value problem

v-Uaf = QU FY) — MLIMT 7)), (zv) € Ox R, (6.1)
f=1 89,

67



then f~ =0, and f = [ solves the corresponding boundary value problem for
the Boltzmann equation,

Uv:l:sz(f':f)s QXRaa
f:fb: 8Q+

Proof of Theorem 6.1 The function F = M~ f satisfies

v o F = J(F*, F¥) — L(F™), F=M"f, a0t
Define J* and J~ by J(@,¢) = J* (g, ¢) — J (¢, ©), where

T (o) o) = [ v oo P 60) M. oo
J (g, p)(v) = (p(v)f | v — v, P b(8) M, 0,dv,dw.

Also, F'~ satisfies

=0 VoF ™ = Xp-po(JT(FF, FT) — L(F7)), (6.3)
F~=0, Q%

Multiplying (6.3) with —M F~, integrating on (! x IR*® and using that
—fMF"XF-¢OL(F“)dv = ——/MF‘L(F‘)dv
> chu | (I - P)F~ |? d,

implies that

lf lv.n | M(F)2+ec My | (I = P)F~ 2
2 an- QxR

E —fMF_Xp—¢0J+(F+,F+) S 0.
It follows that 7
F-=00n0Q", L(F7)=0.
And so, F~ satisfies
F~=0,00 udNt, v - F <0

This implies that F~ is identically zero. U
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Corollary 6.2 If there is a solution f to (6.1-2) in a ball of contraction from
the proofs of Theorem 4.2-4, then f~ =0 and f = f7 is the unigue and strictly
positive solution in that ball of the corresponding boundary value problem (2.1),

(2.8).

Theorem 6.3 The solutions obtained in Theorem 4.2-4 are strictly posttive in
the case of Mazwellian molecules.

Proof of Theorem 6.3. For the case of Maxwellian molecules there is indeed in all
three cases a solution to (6.1-2), i.e. the hypothesis of the corollary holds. We
start with the axially homogeneous situation of Case 1. Set ¥ = Xy and

denote again by ¢ the previous asymptotic expansion of order two,

2

o(r,v) = Z €.

=1

If the terms in @, 1 < ¢ < 2 are polynomially bounded in the v-variable, with
bounded coefficients in the r-variable, then for € and % small enough and positive,
it would hold that

1+>‘<<p=1+;‘<(ie*cb*’) > 0. (6.4)

1=1

The required bounds follow from the previous discussion of the terms in ¢ except
the B-term in ®? (and also some A-terms in Case 2-3). But it is well known that
also such A and B terms are polynomially bounded in the Maxwellian case (cf
[C]). Notice that the L9-norm of (1 — ¥)® for any g is of arbitrarily high order in
¢ because of the factor M in the v-integrand.

Using the approach of Section 4, the positivity under the cut-off ¥ in (6.4), and

the corresponding splitting
f=M(1+Xp+e€R),

lead to a nonnegative solution of (6.1-2) with M~!f € L™ as follows. Namely,
the rest term R should be a solution to

DR = %(LR +2J(R,%¢) + ] (R, R) +1), (6.5)
where
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and

2
R(r,v) = R(r,v) when ¢R(r,v) > —(1 + )_(Zt’i@i(’r, 'v)),

_ 1 2.
R(r,v) = —= (1 + )‘(ZE‘CIJ‘(T, v)) otherwise.

i=1

Here | can be decomposed as [, as in Section 4, and I which in_iq is of arbitrarily
high order in ¢. The approximating sequences (R™)penv and (R")nemv are defined
by R® = R® =0, and

2
(LB 423 (B 399) + 67, (6.6)
i=1

R (1,v) = Ra(v), v, > 0, R**rg,v) = Rp(v), v, <0, (6.7)

DR = !
€

with
g" = eJ(R™, R™) +1,
E2
eRA(v) == eueatte—TWa% — 1 — ¥®(ra,v), v, >0,

eRp(v) := —x®(rz,v), v <0,

and

2
R*(r,v) = R*(r,v) when eR"(r,v) 2 —(1 + )EZeiéi(r,v)), :

i=l

2
R”'V(Ta v) = —% (1 + X Z €t (r, v)) otherwise.

i=1

From here the only difference with respect to the contraction mapping analysis
of Section 4, is related to the appearance of factors R™ instead of the previous R"
in J. The existence result in Lemma 3.1 is not changed by the replacements R.
Arguing similarly to the previous cases, the contribution to the a priori non fluid
dynamic estimate (3.2) due to gy gives rise to an extra term | g |2 €', hence

¢r | SF | + | DEF, o< ¢ 57hgy g 47 f’_%gll lo +€ | F |2 +e | Fy |~)-
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The proof of the fluid dynamic Lemma 3.3 is essentially unchanged in the present
sitnation (with the R-terms included in g, ), and its estimate {3.4) follows.

We turn to the existence proof for (6.5), (6.7). In the new situation the con-
traction mapping arguments from the proof of Theorem 4.2 still hold. That
leads to an isolated solution for (6.5), (6.7) which defines the positive solution of
Corollary 6.2. The solution lies in the same ball of contraction as the solution
constructed in Section 4, so they coincide and the solution of Section 4 is positive.
That completes the proof of Theorem 6.3 in the axially homogeneous case.

The other cases for Maxwellian molecules are similarly proved. ]

Remark. The only obstacle for extending the above approach to hard forces, is
a lack of growth estimates at zero and infinity for certain terms in the asymptotic

expansion ¢, like the terms v, A and vev, B.
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