The evolution of a gas in a radiation field from a
kinetic point of view.

A. Nouri *

Abstract. An existence theorem is derived for a system of kinetic equa-
tions describing the evolution of a gas in a radiation field from a kinetic
point of view. The geometrical setting is the slab and given indata. The
photons ingoing distribution functions are Dirac measures.
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Introduction. The evolution of a gas interacting with a radiation field is a
subject of interest in astrophysics and the study of laboratory plasmas. The
main models used so far are the radiative transfer equation for the photons
distribution function, coupled with fluid equations describing the evolution
of the gas ([3, 7, 11]). However, many astrophysical and laboratory plasmas
show deviations from local thermodynamic equilibrium, which also requires
a kinetic setting for the gas. Kinetic models have been derived in [10, 12].
In the frame of radiation gas dynamics, Burgers [4] provides a simplified ki-
netic model for the interaction of a gas with a radiation field. Gas molecules
with only one excited energy level are considered, together with photons at
a single frequency. This is certainly a simplifying assumption, but in many
cases ([7], [9]) it is a good approximation. This model is improved in [13] by
using the genuine Boltzmann collision operators instead of the BGK colli-
sion operators from [4] in the equations for the gas molecules. A remarkable
feature of such a model is that Planck’s law of radiation is recovered self-
consistently, under thermodynamical equilibrium conditions. Moreover, a
H-theorem is formally obtained. In this paper, a theorem of existence of a
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solution to this kinetic model is derived in the slab, when only elastic col-
lisions within gas molecules are taken into account, for given indata on the
boundary. Making use of the emission of the photons in beams perpendicu-
lar to the walls, a supplementary simplification is introduced in the model.
On the mathematical side, what is new compared to the DiPerna and Lions
result for the Boltzmann equation is the coupling between gas molecules
and photons. The first ones are fermions, which allows L' renormalized so-
lutions. The second ones are bosons, which only allows a measure setting
for the photons distribution function. Theorem 1.1 states the existence of
photons distribution functions that are measures in the velocity variable.

1 The model and the main result.

Let a gas of material particles of mass m endowed with only two internal
energy levels By and Es, with Ey < Es. Denote by A and Ay particles A at
the fundamental level 1 and the excited level 2 respectively, and by f(t,z,v)
and ¢g(t,z,v) their distribution functions. The time variable ¢ belongs to a
given interval [0, 7], the space variable x to the slab [0,1] and the velocity
variable v to IR3. A radiation field of photons p at a fixed frequency v = %,
with AE = Fy — Fy and h the Planck constant, interacts with the gas. The
gas particles are assumed to interact elastically among themselves. The
interactions between the gas molecules and the photons are, classically, of

three types,

Absorption, A; +p — Ao,
Spontaneous emission, Ay — A1 + p,

Stimulated emission, As +p — Ay + 2p.

Let ¢, where Q € S? and ¢ is the speed of the light, be the photon velocities,
0 their angle with the z-axis and I(t, z, Q) the photons distribution function.
Denote by I(t,z,Q) = chvI(t,z,Q) the specific intensity. Let fi2, a1 and
(21 be the Einstein coefficients. Following [4, 12], the evolutionary equation
for I(t,z,Q) is given by

%It + cosOI, = hv|(aoy + Porl) /gdv - ﬂlgf/fdv]. (1.1)

Since (19 = (321, the subscripts of the Einstein coefficients can be dropped.
Denote by £ the first component of the velocity vector v. The Boltzmann



equations for the two particle species A; and A, can be classically written
as

ft+&fz 29/(a+BI)d9—ﬂf/Id9
S w) (L = f L) dvde
IR3xS?

+/ S(v,vs,w)(f'ge — fgu)dvsdw, (1.2)
IR3x 5?2
where S is a given collision kernel,

f,:f(t’xav/)’ f»i = f(t,CU,’U;), f* = f(t,CC,’U*),

V=0 — (v —v,ww, V. =0+ (v — v, w)w,

and

g+ Egp = —g/(a+ﬁ])d9+ﬁf/[d9
+/5(v,v*,W)(g/gi — 9g+)dv.dw

+/S(v,v*,w)(f,ig' — fxg)dv.dw. (1.3)

The physical conditions considered here are characterized by the following
inequalities,
8mkpgT

kpT < mc?, AE < c , (1.4)
i

where kp is the Boltzmann constant and 7T the temperature of the gas.
The first inequality implies that the relativistic effects can be neglected.
Consequently, the velocities of the gas molecules do not exceed in modulus
5c¢, for some positive number € smaller than 1. Hence, the collision kernels
S and S’ are assumed to vanish for |v| or |v,| or [v/| or |v)| bigger than §c.
Moreover, S and S’ are bounded and measurable positive functions having
the usual symmetries of collision kernels. A further restriction on S is that

Sfé’fg*"‘”), (resp. S‘(g’fzg‘f)) is assumed to be bounded for small | £ —&, |, (resp.
small |¢' — £/]). The second inequality in (1.4) guarantees that the photon
momentum is much smaller than the mean thermal momentum of the gas,
so that any exchange of momentum between photons and molecules can be
neglected. Initial conditions f;, g; and I; are given for every distribution

function,

f0,z,v) = fi(z,v), ¢(0,z,v) = gi(z,v), 1(0,z,0) = I;(z,0). (1.5)




The boundary conditions for the gas particles are given indata, i.e.
f(t707v):f0(t7v)7 §>O7 f(t717v):f1(t7v)7 §<O7
9(t,0,v) = go(t,v), £>0, g(t,1,v) = gi(tv), {<O. (1.6)

The photons are emitted at the boundaries in beams perpendicular to the
walls, i.e.

I(t,0,0) = Ipdp—g, cosd >0 1I(t,1,0) = I10p—r, cost <0, (1.7)

where Iy and I; are nonnegative constants. Because of this strong light
source, directed along the z-axis, there is much higher intensity in this di-
rection. Making use if this, it is assumed that the stimulated emission for
|cosf| < € is negligible compared to the stimulated emission in the other
directions. Only stimulated emission and not also spontaneous emission or
absorption are negligible for | cosf |< e, since a supplementary photon is
emitted from a stimulated emission with the help of a primary photon hit-
ting a molecule of gas. This is not required for spontaneous emission nor
absorption. And so, instead of (1.1-3), the distribution functions (f, g, ) is
assumed to satisfy

%It + cosOl, = hv|(a+ BI) /g(v)dv - ﬂf/f(v)dv], |cosf| > €,(1.8)
%It + cosb1, = hu[a/g(v)dv - Bl/f(v)dv], |cosf| < €,(1.9)
ft+&fe = (/ adb + BIdo

|cosO|>e )g a ﬁf/lde
+Q(f, f) + Q1(f,9),(1.10)

G+ Egn — —(/ adf + stebgmde)g + 6f/[d6

where

Q(f’f) = QJr(f’f)_Qi(f’f)’
Q+(f7 () ::/ Sf frdvidw, Q™ (f, f)(v) := f(?))/ S frdvidw,
IR3% S? R3%xS2

QL) = [ | S(d~ fg)dv.dw,
Q2(fa 9)(1)) = /]RSXSQ S( igl — f*g)d’l)*dw



The formal passage in (1.8-11) when € — 0 results in model (1.1-3), since
then (1.9) disappears and (1.8) becomes (1.1). For the sake of simplicity,
the terms @)1 and ()2 will be skipped in the rest of the paper. Using that Ay
and Ay are mechanically the same, the following existence theorem would
also hold with them, with minor adaptations of the proof. Moreover, the
constants hv, a and 8 do not play any role on the mathematical level. It is
why they are taken as 1 in the rest of the paper.

Definition 1.1 (f, g, 1) is called a solution to (1.5-11) in iterated integral
form if

(f.9.1) € C([0,T], L'((0,1) x V)) x C ([0, 7], L1((0,1) x V)

xL'((0,T) x (0,1), M0, 2n]),

I satisfies (1.5), (1.7-9) in weak form with test functions in C'([0,T] x
[0,1] x [0,27]), compactly supported in [0,T[x[0,1]x [0,27], Q*(f, f)(-,z,v)
and Q*(g,9)(-,x,v) belong to L*(0,T) for a.a. (z,v) € (0,1) x V, and for
a.a. t€(0,7),

/(m,v) s(x+t€,v)€(0,1)xV

B /(:v,v);(:ert{,v)G(O,l) xV,£>0

(fﬁgo)(t,x,v)dxdv

<(fﬁ90)(0 \% _%’x7v)

+ / g /OV__ (722 + (g(an + o 1= [ 140+, f))%)(s,m,wds)dm

<) (
(z,v);(z+t€,v)€(0,1)x V,£<0

(ffo)0v

x
)

+/§<0 /oj/sz(f ﬁaa—f +(g2m + [df) / 1d6 +Q(f. f))’ )(s,m)ds) dadv,

|cosO|>e

/(x,v);(x—l—tf,v)e(o,l) xV

- (woov -3

(z,0);(z+t€,0)€(0,1)xV,£>0

|cosO|>e

(6*9)(t, 2, v)dzdv

é_,.%',’l))

oS G+ gt [ a0+ g [ 100+ Qg 0) 00
13

4 1-z
+ (o o)

(2,0); (a-+16,0)€(0,1) X V.E0

* /§<0 /Otv% (9@% + (g2 + 1d6) + f/Ida +Q9,9)"0) (s, , v)ds) dadv,

|cosB|>e



for any test functions ¢ and 1 such that p(-,z,v) € CY([0,T)), (-, z,v) €
C([0,T)) for a.a. (z,v) € (0,1) x V, and (p,v) € (C*([0,T); L>°((0,1) x
V)))2.

Here, a V b (resp. a A b) denotes the maximum (resp. the minimum) of a
and b, V := {v € IR%; |v| < Sc} and M[0,27] is the set of bounded measures
in the @ variable belonging to [0,2n]. Moreover, fi(t,z,v) := f(t,x + t€,v)
denotes the value of f along the characteristics (¢, + t§,v). Denote by
|fle(z,v) := supesss<if*(s,x,v). For any distribution function f, denote by
the corresponding capital letter F' its density function defined by F(t,z) :=
J f(t,z,v)dv.

Remarks. For £ > 0, (ff)(0V —&,,v) is either fi(z,v)p(0,2,v) or
Jo(=%.v)e(=%,2,v), and for § <0, (fﬁcp)(O\/l_Tx,x,v) is either f;(z,v)p(0,z,v)
or fl(%,v)gp(%,x,v), which are known values.

As shown in [2], being a solution to (1.5-11) in iterated integral form is
equivalent to be a solution to (1.5-11) in mild form.

The main result of this paper is the following.

Theorem 1.1 Let T > 0 be given. Assume that f;, g;, 1;, fo, f1, g0 and g1
are non negative functions satisfying

JU1 408 + 6.1 + Ingoldede
+/T/ §(1+Info)fo(s,v)dsdv + /T &(1 4 Ingo)go(s,v)dsdv
0 £>0 0 £>0
T
"‘/0 /£<0 | €| (L+1Inf1)fi1(s,v)dsdv

T
+/ / |5|(1+ln91)91(8,v)d5dv+/I¢dxd0
0 £<0

+ sup Ii(x — tccosh, 0)dO < ¢;(1.12)

(t,z)€(0,T)x(0,1) /cos€|>e,0<mtccos€<1
Then there is a solution (f,g,I) in iterated integral form of (1.5-11).

Here, and in the following, ¢; denotes constants only depending on the initial
data f;, g;, I;, the given indata fy, f1, go and g1, and the given constants I
and I;.

A priori bounds.

Solutions (f, g, ) to (1.5-11) satisfy the following a priori bounds, describing




the conservation of energy and the decrease of entropy with time. Mul-
tiplying (1.10) by v? + Ey, (1.11) by v? 4+ E», integrating the sum on
(0,t) x (0,1) x V', adding it to (1.8) integrated on (0,¢) x (0,1) x {|cosf| > €},
then to (1.9) integrated on (0,t) x (0,1) x {|cosf| < €}, and using that
Ey — Fy = hy, formally leads to the conservation of energy

1
/ (2 + BN f(t,2,0) + (0 + Ea)g(t, z, v)]dzdo + ~ / I(t,2,0)dzd6
c
t
[ [ TENER + Bof + 07 + Ea)gl(s,0,v)dvds
0 Je<o
t
[ [ 0® + BOF+ (0 + Bagl(s,1,v)duds
0 J¢>0
1
_ /W + EDfi(e,0) + (0 + Ea)gi(e, v)|dedy + —/Ii(:c, 0)dxdo
c
t
[ €l + B o+ (0 + Bagol(s,v)dvds
0 Je>0
t
+ /5 €110 + B fi + (0 + Ba)gi)(s, v)dods + (T + 1)t.(1.13)
0 Je<o
For any set Y, denote by xy the characteristic function of Y. Multiplying
(1.10), (1.11), (1.8) and (1.9) by Inf, Ing, X|cose\>sln1i—1 and X|cosg|<eln ]
respectively, integrating the two first resulting equations on (0,¢) x (0,1) xV,

the two last ones on (0,t) x (0,1) x (0,27) and adding them, formally leads
to the entropy inequality

/(flnf + glng)(t,z,v)dzxdv + ! (Ilnl —I)(t,z,0)dzdl
C J|cosb|<e
¢ t
+/ / E(finf + glng)(s,1,v)dsdv +/ / €| (finf + glng)(s,0,v)dsdv
0 J¢>0 0 J¢<0
1 st
+E/ / cosO(Ilnl — (1 + I)in(1 +1))(s,1,6)dzdl
0 JcosO>e
¢
—l—l/ / |cosO|(IlnI — (1 + I)in(1 +I))(s,0,0)dzdd
C JO Jcosh<—e

1 st
+—/ / cosO(Ilnl — I)(s,1,0)dOds
C JO Jcosfe(0,¢)

1t
—|——/ / |cosO|(Ilnl — I)(s,0,0)dbds
C JO Jcosfe(—¢,0)

+€(f7f)+€(g7g) +D1(f7g71) +D2(f797[)



1
&

+/(f,lnfl + gilng;)(x, v)dzdv

c
1

+- (Iilnli - Iz)(m',e)dl'd@

C J)cosb|<e

t
+ [ UL EGIngo + golngo) s, vy
+ [ €1 (hinfi + giing)(s.)dv)ds.
£<0
Here, [(flnf+glng)(t, z,v)dzdv and 1 [[(1+1)in(1+1)—IinI|(t, z,0)dzd0

are the entropies at time ¢ of the gas molecules and the light respectively.
Moreover, e(f, f), e(g,9), D1(f,9,I) and Dy(f,g,I) are the nonnegative

entropy production terms defined by

,_ 1 f'fs
e(f, f) = /S(f fo— ffo)ln 1. dsdzrdvdv,dw,
Di(f,g.1) == / ) (1+1)g— If)ln(l ; I)gdsdmdvde,

Do(f,g,1) i= / (g — If)in-Ldsdzdvdd.
|cosB|<e If

Then,

< - / (1 + Din(1 +I) — IInd(t, z, 0)dzdd
|cosf|>e

1
42 / (LinLi — (1+ I)in(1 + I,))(x, 0)dzdd
|cosO|>e

t
L, el vdo+ [ egling|(s. 1 v)do)ds
0 J&>0,/<1 £>0,9<1

t
[ Jelfnfis, 0,000+ [ lgling](s, 0,v)dv)ds
0 J€<0,f<1 £<0,g<1

< ce !

since the volume of integration is bounded. Moreover,

1 gt
—/ / cosO|Ilnl — I|(s,1,0)dsdd
C JO Jcosbe(0,e),I<e

1

t
+—/ / |cosO||IInI — I|(s,0,0)dsdd < c.
C JO Jcosbe(—e,0),I<e

)



Then, for some ¢ > 0 and I. > 0,
I+ Din(l4+1)—Iinl —cl <0, I>I.

Hence,

/ (1 + D)in(1 + I) — IInd)(t, z, 0)dzdo
|cosb|>e

< / I(t, 2,0)dwdf + co[(1 + L)In(1+ L) — LinL] < ¢,
I>1,
by (1.13). Hence

/(flnf + glng)(t, z,v)dzdv + Iinl(t,z,0) < ¢. (1.14)

|cosf|<e

From (1.13-14), it classically holds that
[+ ing 1)+ g1+ | tng D)., v)dzdv

—i—/I(t,x,H)dxd@ + I|inI|(t,x,0) < ¢;. (1.15)
|cosh|<e
Sketch of the proof of Theorem 1.1.
Approximations that are bounded in the time and space variables are first
derived in Section 2. Mass, energy and entropy bounds of the type of the
previous a priori bounds are stated for these approximations. They provide
L' weak compactness for the gas distribution functions, together with com-
pactness in the weak * topology of measures for the photons distribution
function. This is not sufficient neither to pass to the limit in the nonlinear
terms, nor to be in the frame of application of the averaging lemma for the
gas distribution functions. Some supplementary work is also required in
order to take into account the difference of characteristics for the gas i.e.
(t,z + t&,v) from characteristics for photons i.e. (¢,z + ctcosf,8). This is
done in Lemma 2.2 and is crucial for the whole proof. It provides weak
LY((0,T) x (0,1) x {| cos |< €}) compactness of a subsequence of photons
distribution approximations, as well as a frame of application of the aver-
aging lemma for the gas distribution approximations. The passage to the
limit is finally performed in Section 3, in the frame of the iterated integral
formulation of solutions to the problem.
Remark. When explicitly expressing I from (1.7-9), the Dirac measure dg—q
is applied to the function

ft s (G=F)(s,z+(s—t)ccosh)ds
e t= ccos@

)



which is continuous at § = 0. (The term ccosf means the product of the
speed of light ¢ by cosf). Indeed, for |cosf| > € and v € V, |ccost) — £| > §c
and

/tt (G —F)(s,z+ (s —t)ccosh)ds =

ot
e y — x + tccost d dv
L/ R e s
where
Yy — x + tccosl T
Dy, = 1), ———— - — 1)}
0,v {y € (0’ )a ccosd —5 ccos’ )}

This function is continuous at # = 0, by the continuity in time of f# and ¢
proven in Lemma 2.4 and the bounds

/supessKTfﬁ(t,x,v)dxdv < ¢; and /supessKTgﬁ(t,x,v)dxdv < ¢,

proven in Lemma 2.2. Analogously, the Dirac measure dy—, can be applied
to the function

ft 1—z (G—F)(s,xz+(s—t)ccosb)ds

e it Ccos0 ccos@ s

which is continuous at § = .

2 Approximations.

Let n be a fixed integer bigger than 2. In this section, a solution

(f,9,1) € C([0,T], L=((0,1) x V) x C4.([0,T], L=((0,1) x V)
xL>((0,T) x (0,1), M0, 27])

to the following system will be determined,

+efe = L+ Ida——/fde
Jit & 1+ %( |cos€\>5 14+ i
+ [ 5 v, (@)
+ &9, = — 2 + 1do —|——/Id9
989 1+ % ( |cosf|>e ) 1+ %

10



g 9.
—i—/S ; dvydw, (2.2
o Jdv.do, (2:2)

LI

s E
lLg—l—COSHI :(1+I)/ J dv—I/ / dv, |cosf| >e€, (2.3)
c 1+% 1 % ) )

1
ELg—l—COSHI :/1igdv—l

together with the initial conditions

idv, lcosf| <€, (2.4)

f(o,xav):fi Amn, g(o’xav):gi /\’I’L,

1(0,z,0) = I; An,

and the boundary conditions

(2.5)

f(t,0,0) = fo(t,v) An, £€>0, f(t,1,v)
g(t,0,v) = go(t,v) Am, £ >0,
1(t,0,0) = Iydg—p, cost > 0,

= fl(tav) A, § < 07
g(t,1,v) = q1(t,v) An, £€<0, (2.7)
I(t,1,0) = [10p—r, cosf < 0. (2.8)

Let p > n be given. Let (f7,¢7,17);en be defined by f©=¢° =0, I° =0
and

A . j . 1

I et = I (on 4 J'Jde)—-i——7 1do
14+ g_ |cos€\>5 1+ f_

+/5 v f J‘+11 f*f Vdv.duw(2.9)
1+ L + L=
Jj+1 J )

iy egitt = _9 - (27 + ) f./pw

+ g |cosO|>e f—rj

7’ 7' ,
—l—/S(g. 9 g1 x 9*

e 7’ p
+71—|—ﬁ 1+*

= )dv,dw(2.10)
1 . A A J , J
S 4 cosOIIT = (14 P / g—de — [t / f—jdv, |cosf| > €,(2.11)
c 14+ % 1+ bl
n n
1 . , J A J
I 4 cosfII T = / g—de — ! / fijdv, lcosf| < €(2.12)
c 14+ & 1+ bl
n
together with the initial conditions (2.5-6) and the boundary conditions (2.7-

8). The sequence (f7, g7, [ I7df) can be expllcltly defined, is non negative as
well as I7, and bounded by (nge"Q,n?’e" n2en’ ) for n large enough. Hence,

11



(H{Jf_J) and ((at + &0, ) fj) are weakly compact in L'. And so, by the

averaging lemma [6], ([ o ﬁdv), and analogously ([ . qui dv), are strongly

compact in L'. Consequently, the passage to the limit in (2.9-12) is possible,
and (7, ¢", I") = limj_, 1o (f7, g7, I) satisfies the system (2.1-8).

Lemma 2.1 The solution (f",g",I") to (2.1-8) satisfies
JUningm | +1) + g"( tng" | +D)](t. 2, v)dzdo
+/ / E(inf™ + 1)+ g™ (|lng"™| + 1)) (s, 1,v)dsdv
[ g 1) + g+ 1)) (5,0, )
0 Je<o

+/I”(t,x,0)dmd0+ I*inI"|(t, z,0)dxdl

|cosf|<e
+e(f", ") + (9", g") + Di(f", 9" 1) + Do(f", 9" I") < e, te(0,T),(2.13)
where
f’f fi
/ / » 1+ fL
R A R AR e e

f (14—[)1—%

~ g +
Di(f,g,1 ::/ 141 -1 In ™ dsdxdvdb,
1(f,9,1) |cos«9\>e[( )1+% 1+i] I ff
n 1+Z
~ g f s
D ,J::/ I I dsdadvdo.
2(f g ) \c080|<e[1+% 1+£] Il—l—f

Proof of Lemma 2.1 Multiplying (2.1) by Ei, (2.2) by E,, integrating the
sum over (0,t) x (0,1) x V, adding it to (2.3) integrated over (0,¢) x (0,1) x
{|cosf| > €}, then to (2.4) integrated over (0,t) x (0,1) x {|cosf| < €}, and
using that Fy — F7 = hv =1 leads to

/U“w%m&wmm+1/ﬁm%mmw
C

t
fﬂéwﬂf*”)@L”““

t
féémmﬁ“WW@mw@@

12



t t
+// cosGI"(s,l,G)d9d5+// |cosO|I"(s,0,0)d0ds
0 Jcos0>0 0 Jcosf<0
<. (2.14)

Moreover, multiplying (2.1) by In—pr f_, (2.2) by Intm g , (2.3) by ln1+1m
(2.4) by In(I™), integrating the two ﬁrst over (0,t) x ( , ) x V', the third on

(0,t) x (0,1) x {|cosf| > €}, the last on (0,¢) x (0,1) x {|cos#| < €}, adding
them and using (2.18) and (1.13), leads to

/[f"lnf" —n(l+ ﬁ)ln( fn) + g"lng" —n(1+ %)ln(l + %)](t,x,v)dwdv
—i—/t EfMnf" —n(1+ ﬁ)ln(l + ﬁ) + g"lng" —n(1+ ﬁ)ln(l + ﬁ)](s7 1,v)dsdv
0 J¢>0 n n
t M f* f*
+ [0 gt —n( om0
+g"Ing" —n(l+ ﬁ)ln(l + ﬁ)](s, 0,v)dsdv + E I"'inI"(t,x,0)dzdd
n n |cosf|<e
+e(f", f") +é<g" g") +D1(f" g", I") + Da(f", 9", 1")
| (f") )2 w9

Then,

n\2 n
/fn S Sf{) 7 lIn ffn\gci/angcj.

n

Analogously,
n\2 n
/ S g 7 lIn g i | <¢j
9%<1 n(l—l—n)(1+n) 1+ Z
Then,

1—0tlnt —n(l+— )ln(l + ) 0, n>100, t¢€ (100,n%).

Adding (2.1) and (2.2) leads to f™ + g™ € [0,n3], hence f" € [0,n?],
g" € [0,n3], for n large enough. Hence,

1
1 /(f"lnf" + g"lng")(t, z,v)dzdv

13



1t
+— / / E(fMinf™ + g"Ing™) (s, 1,v)dsdv
10 Jo Je>o

1 t
b [ el g + g tng") s, 0, 0)dsde
10 Jo Je<o
1
+- I"inI"(t,x,0)dxzdo

|cosh|<e
+E(f" [+ E(g™,g") + Di(f™, g™ I™) + Da(f", g, I") < ;.

Lemma 2.2
/supessKT(f" + gtz v)dzdy < ¢;. (2.15)

Proof of Lemma 2.2. The proof follows the lines of [1]. By Lemma 2.1, for
6 >0,

sup/ f*(t,x,v)dzdv, sup / g" (t,z,v)dzdv,
|M|<s /M |M|<s /M

/Oa( o &1 (L o) +/§<O 617 (0.0, 0)dv) do

0
and / ( £9" (0, 1,v)dv +/ |£|g"(a,0,v)dv) do,
0 £>0 £<0
are o(1) in d, uniformly with respect to n. Choose dp > 0 such that

2
sup / (f"+4¢")(t,x,v)dedv < ——, and

|M|<do M 25¢0
o 2
(L e+ g oo [ 6" + g7 ,0.0)dv < 2 (2.16)
0 £>0 £<0 25¢q’
where ¢y = 272 SUP (4,0, ) S‘(Efg:r) . Notice that dp only depends on the initial

data and the given indata. Let 7" = min{T, dy, %}. Let us prove that

/supessKT/(f" + g™ (t, z,v)dzdy < ¢ (2.17)

Since T" only depends on T, the initial data and the given indata, it will
then be possible to extend the result to [T7,2T"] ..., [(k—1)T", kT"], [kT", T,
where k = E(Z), i.e. to [0,T]. Adding equations (2.1) and (2.2) leads to

RV P
1+f 1+f* 1+ 4=

14



/

n n' n
+/S( J - I - —g" g*gn Jdv,dw.
14+4-1+ % 1+

Since f™ and g" are bounded on (0,7) x (0,1) x V by n? for n large enough,
let T}, be the largest time smaller than 7" such that

ToAl=Z
sup {sup [T [(£7 4 g (s, 4 (€~ 62, 02) € — eldvduds,

z€(0,1) £>0 —%vo

Tn/\_% n n\ 1
sup [ (74 g s+ (€ — €0, 0.)[€ — Eldvduds) < 5 (2.18)
£<0 Ezvo €o

Then, for £ >0 and t € (_f V0, T, A l;gzv)

(" + g™t 2,0) < (f" +g"><—§ v 0,2,0)

’ ’ ’

T,Alzz n n n n’
—Evo T+ 51+ 5 T+ 5 1+ 50

1— 2 Tonige fn gr
= (f"+ 9" (Tn A LT, V) +/ /S(f” g Vv, dw
§ ~2v0 1+ 1 1+ &

1—=x

§ 7'%'77))+/1;\//\OTI/S[fnﬁ(svxvv)fnﬁ(‘s?x"i_s(f_g*)ﬂ}*)

+g" (s, 2,0) g™ (s, 2 4+ (€ — &), v,)|dvsdw.

< (f"+ g (T A

Hence, for £ > 0,

1-2z
supesste(7%v07Tn/\12x)(fn + gt 2, 0) < (f" + g)HT, A & z,v)

Fsupessic_gyo r, g (" + ") (12, 0)

ToAiZE
/ /S(f"+g")ﬁ(s,x+s(§—5*),1)*)dv*dwds.

—2v0
By the definition of T},, it holds that, for £ > 0,

1—=x

supesste(7%v07Tn/\1_x)(fn + g (t, 2, 0) < 2(f" + gV (T A

- ,x,v).(2.19)

Analogously, for £ < 0,

T
supesste(%vojn/\_%)(fn + gt 2, 0) < 20" + g (T A —E,m,v).(Q.QO)

15



Consider (x,v) such that £ > 0. By the change of variables s — y =
T+ S(§ - 5*)7

Tn/\l;

‘ /(f" + g™ (5,2 + 5(€ — &), 0.)|€ — Exldv,dwds

VO

ms

< supess z o (f 4 g™ (0, y, vi ) dydus,
s 7S gz U+ )

where A is a subset of (0,1) x V of measure smaller than ”T"TM < do.

Splitting A into

{(y,vs) € A;6.>0,T,, < 1£_y}U{(y,v*) eN& >0,T), > 1£_y}
U{(y,’[)*) € A?&* < OaTn S _g} U{(y,v*) < Aag* < O,Tn > _g}a

and using (2.19-20) implies that
. . n n\f§ dud »
L a0 vtz (7 + 0"y
< 2/A(f" + g™ (T, y, ve)dydo,

1_
42 gy v dydo,
AE>0,Tp> 1t &
+2 (f"+ g =Ly, v, dydv,
A§§*<07Tn>*§% 5*
1_
(" + ") (—2 1, v, ) dydv,
£:>0,T,>12Y &x

Ex
_Y
A6 <0, T >— 2L

)
Ex 3

Ty
:2/A(fn+gn)ﬁ(Tn,y,v*)dydv*—|—2/0 / Of*(fn—l-g")(T,l,v*)dv*dT
*>

= Q/A(fn + gn)ﬁ(TmyW*)dyd'U* +2

+2 (f"+g")( 0, vy )dydv,

n 12
+2 / / &N (™ + g7) (7,0, 0, )dvedr < ,
0 <0 2560

by (2.16). And so, the right-hand side in (2.18) can be improved by replacing
% by % This implies that T,, = T". Consequently, the inequalities (2.19-20)
hold for T;, = T". This ends the proof of Lemma 2.2.

16



Lemma 2.3 The sequence (I™) is weakly compact in L*((0,T) x (0,1)) x
{lcosf| < e}. The sequences (F), (G"), and ([|qosp)~c1"d0) are strongly
compact in L*((0,T) x (0,1)). Moreover, (Jicosoy>e I" (¢, 2,0)d0) is bounded
in L>((0,T) x (0,1)).

By Lemma 2.1, (f"), (¢") and (I™) are weakly compact in L' ((0,7) x (0, 1) x
V), LY((0,T) x (0,1) x V), and L((0,T) x (0,1) x {|cosf| < €}) respectively.

Moreover,

nof
g
I"(t,z,0 dé?:c/ ——= (s,x — tccost + s(ccos — &), v
/|cos€>e ( ) (YXV)X{|COS‘9‘>€} 1+ % ( ( 5) )

ff

Ln)’j (o,x—tccos+o(ccosd—Ex),vs )dvsdo
i

co J

I;(z — tecosb, 0)e 1+g

R (e

+IpH(ct — x) 1+ 1+fn

fac+t 1f(

1+=—

dsdfdv
/ J%)(U,er(oft)ccosG,v)dadv
1+

|cosl|>e,x—tccosfe(0,1)

)(o,x+(0—t)c,v)dodv

H_g W)(U,x—(a—t)c,v)dadv

+LH(x+ct—1)e By ,(2.21

where

Y :={(s,0); (0<s<t,x—tccosh € (0,1))

1—
u(t — < s <t,x—tccosh <0)U (t+ T os< t,x — tccosh > 1)},
ccost)

and H is the Heavyside function. Performing the change of variables s —
y = x —tecosh+ s(ccosh — &) and 0 — z := x —tccosd + o(ccosh — &) in the
first term of the right-hand side, and noticing that, on (Y x V)N {|cosf| > €},
|ccost) — &| > c5, leads to

ccost

/ g”ﬁ(s, x — tecosh + s(ccost — &), v)
(Y xV)N{|cosh|>€}
o€ f; f(g"—f”)ﬁ(o,:vftccosGJro(ccostﬁ*),v*)dv*dadsdedv
2 2 "
< — 19" |7 (y,v)e< Jomysvlo ‘T(Z’v*)dv*dzdydv < ¢,
€C J(0,1)xV

by Lemma 2.2. The other exponential terms in ﬁcose‘x
treated analogously. Hence,

/ I"(t,2,0)d0 < ¢; + ¢;
|cosO|>e

I"(t,z,0)df can be

/ Ii(x — tecosh, 0)do.
|cos|>e,x—tccosfe(0,1)

17



It follows from the last assumption on I; made in (1.12) that (ﬁcose‘x I"(t,z,0)do)

is bounded from above, hence weakly compact in L!((0,T) x (0,1)). More-
over, for § > 0,

(00 +€0,)5n(1 + ")
B g" no J" n
(a1 + L (2 + \cose|>el ) L+ 1+ L /I a0

1 n’ n’ n n
Ltofr) g o 4 12 L+ofn) "14 &

dvdw.

First,

/ — /I"d9—|— / /S s —dvydw
(1+6fm)1+ L) 1+afn) "1y I

< %( / mdo + / S f7du, dw)

is weakly compact in L'. It follows from the weak L' compactness of (")

and (g") and the boundedness of [, 1"df that
—2 _(or 4 1mds))
1+ 5fn |cosO|>e

is weakly compact in L'. Then, it classically follows from the weak com-
pactness of (f™) and the boundedness of é(f™, f™), that

1 n n’
( /S ! - I - dv,dw)
1+6fm 1+fi1+f”

Lx
n

/

is weakly compact in L!. Hence the sequence (F™) is strongly compact
in L1((0,T) x (0,1)). The same argument holds for proving that (G") is
strongly compact in L*((0,7) x (0,1)). Then (Jicosoj>e L™ (&, 2, 0)df), as writ-

ten in (2.21), is strongly compact in L*, since ([ - iz_n dv) is strongly compact

in L' and (¢,0) — fg(F" + G")(s,z + (s — t)ccosh)ds is uniformly bounded
with respect to n, t,  and 6 such that |cosf| > e.

Lemma 2.4 The sequences (f™) and (g") belong to C([0, T, L*((0,1)xV)).

18



Proof of Lemma 2.4. The temporal regularity of (f™) and (¢") is proven as
in [8], by using the weak L' compactness of ("), (¢g"),

! n n n n n fn
(1+5fn((/d9+ \cos€|>eI de)g -/ /I d9+Q(f 2 ))),
and
L n n n n n n
(1_|_5gn (_(/d9+/|0039>el da)g +f /I d9+Q(g 9 )))

3 The passage to the limit.

Lemma 3.1 Let f, g and I be the weak limits in L' of subsequences of (f™),
(¢™) and (I™) respectively. Then I satisfies the equations (1.5), (1.7-9) in
weak form.

Proof of Lemma 3.1. Let a test function u be given. It is straightforward
that I satisfies (1.5), (1.7-8) in weak form, since up to a subsequence,
(Jicoso)e 1™ (@, 0)d0) converges to [qpspsc 1L (t, 2, 0)df in L> weak *, and

(f lj:—nﬁdv) and ([ lf;n dv) converge strongly in L' to F and G. Let us

prove that I satisfies ({.5), (1.7) and (1.9) in weak form. Let o > 0 and a
test function p be given. From

g9
fnt"gK St (e - I ffn)znll*;fz,f(zz
1+ e R i

n

the weak L' compactness of (¢") and the bound on Dy(f™, g", I") derived in
Lemma 2.1, it follows that (ijr;_n I™) is weakly compact in L', so that there

is 41 > 0 such that for any subset Z of (0,7) x (0,1) such that|Z| < g,

n
/ ! "< —
ZxVx{|cosf|<e} 1 + o ’M’oo

By the averaging lemma and Egoroff’s theorem, for any v > 0 there is a set
Y, € (0,T) x (0,1) such that |Y,| <+, F is bounded on Y and ([ I—Jr%dv)

converges to F' when n — +o00, uniformly with respect to (¢,z) € Yo H%nce,
Jyex{icossj<ey 1 < ¢. Using a decreasing sequence (Y5, ) with limy .40 7 =
e
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0, implies that [ FI < ¢. And so, there is 2 € (0,01), such that for any
subset Z of (0,7) x (0,1) with |Z| < (2,

/ Fr<
Z x{|cosO|<e} |M|oo
Then,

y/" fn — f)udtdzdvdd)

</ |/ ﬁ_ﬁmwwmmwe
Yc xV x{|cosb|<e} 1+

+/ Fu(I" — I)dtdzdd
Y, x{|cosf|<e}

" I" pdtdzxdvdd + Fludtdzdo.

+ f”
Y, XV x{|cosf|<e} 1+ Y, x{|cost|<e}

The first term in the right-hand side tends to 0 when n — +o00, by the
uniform convergence with respect to (t,z) € Y, of [ (—_ — f)dv to 0

when n — +00. The second term tends to 0 when n — —|—oo since F' is
bounded on Y§, and [(I" — I)udf tends to 0 weakly in L. The third and
fourth terms are smaller than «, uniformly with respect to n. And so, the
passage to the limit when n — 400 in (2.4) can be performed. This ends
the proof of Lemma 3.1.

Lemma 3.2 Let p > 0 be given. There are a constant c, > 0 and a subset
A, C(0,1) x V' such that |Af| < p and

(f—|—g)ﬁ(t,x,v) <c¢, a.a te(0,7), (x,v)€A,.

Moreover, for any 6 > 0, there is a sequence (Y, s) of subsets of (0,1) x V
such that

meas{(t, z + 1€,0),1 € (0,T), (z,v) € Y5} < 6,
and

(f"+ 9"t z0) < 5, aa t€(0,T), (z,0) € Y5

SO
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Proof of Lemma 3.2. Adding (2.1) and (2.2) implies that

(P4 6"+ €7+ 6+ (4 07) [ S+ o

> (" 9" )+ +9")a

—i—f"/S I ndv*dw—i—g"/S 9+ —dv.dw > 0.
1+ & 1+ %

Hence, for (t,x,v) such that (z,x +t&, x + T¢) € (0,1)3,
(f™+ g™t z,v) < (" + g™ (T, z, v)efoT J S (s, +s€ v dvwdunds.

By the averaging lemma,

(z,v) — /OT/S(f" +g")(s,x + &, vy )dv.dwds

is strongly compact in L'((0,1) x V). Hence, it is bounded in L°°, uniformly
with respect to n, on the complementary A; of some subset of (0,1) x V
with measure smaller than §. Consequently,

T
/ /S(f" +9")(s,x + s&, vy )dvedwds < ¢1, a.a. (z,v) € All), (3.1)
0
and
(f" 4+ gM)it, x,0) < ("4 g, z,v), aa. te(0,T), (x0)e€ A;. (3.2)
And so,
(f+ g)ﬁ(t,x,v) <el(f —i—g)ﬁ(T,x,v), aa. t€(0,T7), (x,v)€ A;.
For some A% C (0,1) x V with complementary of measure smaller than £,
(f—i-g)ﬁ(T,l',U) < ¢, (1’,1)) € Ai
Hence, for A, = A, N A2, such that [A5] < p,
(f+ 9t z,v) <ec, aa te(0,T), (z,v)€A,.

The cases where x < 0, (z+t&,2+T¢) € (0,1)2 and 2 > 1, (z+t&,z+TE) €
(0,1)? can be treated analogously. The cases where z+t£ € (0,1), z+T¢ > 1
(resp. x +t€ € (0,1), z +T€& < 0) can be treated with a comparison with
the outgoing values of f* at the boundary point 1 (resp. 0). The existence
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of the sequence of sets (Y, 5) stated in Lemma 3.2 follows from (3.3) and
the inequality

/(f" + g, z,v)dzd < ¢, a.a.(z,v) st. x+t& € (0,1).

This ends the proof of Lemma 3.2. Denote by x,, 5 the characteristic function
of the set of characteristics

{(t,z+t&v);t € (0,T),(x,v) € Y5}

Let p > 0 and 6 > 0 be fixed. The equations (2.1-2) satisfied by (f™, ¢") are
first written in weak form for test functions x, s, i.e.

/(m,v);(ertﬁ,v)E(O,l)XV

t

(fnﬁ iégp)(OV—g,x,v)dxdv—i—/ /
>0 OV—£

xvdxdv—l—/ /
<0 ov1 z

/(J:,v);(a:—f—tf,v)e(o,l)xV,§>O
. (Fx 420V
(z,v);(z+t€,0)€(0, 1)><V£<0

+/ / (2m +
>0 0\/7— g_ |cosO|>e

n

(fnﬁXti 5P)(t, z,v)dzdv

néas

n(f™ FM)) Xn(sSD

f" /
/<0 /0\/1 z 1+ g |cosf|>e ) 1_|_ - Q (f f )) Xnégp

and an analogous equation for ¢g”. Here, (J,, denotes the approximation of

the Boltzmann collision operator used in Section 2. Since lims_.o w lim,,— o " Xn,s =

f, the limit of the first three lines when n — +o0, then § — 0 is

/ (£5) b, v)dado,
(z,v); (a:-‘,—tf v)eV

/ ffo(0v ==, z,v +/ / ﬁa(ﬁ,
(z,0);(z+t€,0)€(0,1)x V,£>0 &>0 0\/7

1 _
and o0V m,x,v) —|—/ / It 0_<p
(2,0);(z+t£,0)€(0,1) X V,E<O 3 ¢<0Jovizz " Os

The passage to the limit in

n
/ (—2 n(27r—|—/["d6)—
{§>0,0v—§<s<t}u{§<0,0\/1%<s<t} 1+ %
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and in

/ i Qu(f™, 1) 50
{€>0,0V—£ <s<t}U{£<0,0v 152 <5<t} ’

are performed in Lemma 3.3, and in Lemmas 3.4-6 respectively.

Lemma 3.3 For any bounded function ¢, the sequence

(f\c089|<e J—r;_nﬁxi,gsﬁ(t, €L, U)In (t’ T+ t&a 9)d9dtdmdv), (T@Sp.

(Jicoso<e pﬁ'—;nﬁxiﬁcp(t, x,v)I"(t,x + t&, 0)dOdtdzdv),

Jjcostise 757 X 50t 2, 0) I (t, 2+6, 0)d0dtdwdv), (Jjuospyse 77 X 50t 2, o)™ (1, 2+

&, 0)dodtdzdv)) tends to f‘wSGKG fro(t,z,v)I(t,x + t€,0)dodtdzdv, (resp.
Jicost|<e 0t 2, 0)I (1, 2 + 1€, 0)dfdtdadv,
f|0039‘>5 fﬁ@(t7 Z, U)I(t’ 1’+t§, G)dadtd.%'d’u, f‘COs@|>e gﬁﬁp(u T, ’U)I(t, 1’+t§7 e)dadtd.%'dv)

when n tends to infinity.

Proof of Lemma 3.3. The proof of the first statement of the lemma, is similar
to the last part of the proof of Lemma 3.1, after noticing that for § > 0 fixed,
the averaging lemma applies to I—Jr%_nxn,g. Indeed, (ﬁ)’ and

n

f _
(O + 5@)@)@,5 =

n

Xn,é ( g

— — (27 + 1"df
(1 + %)2 1+ %( |cosf|>e )
n

S [ 140+ Qu(r 1)

n

are weakly compact in L'. The proof of

n

. . f 4
lim lim ————Yn t,z,v)I"(t,z + t&, 0)dtdzdvdd
6—0n—o0 |6059\>5(1 + %X 76) SD( ) ( 5 )

= Fro(t,x,v)I(t,x + t€, 0)dtdrdvdd
|cosO|>e

then follows from the weak * convergence in L*° of f‘ms@be I"(t,x + t&)do
t0 ficosp>e L (t, @ +1£)d when n — +oo.

The passage to the limit when n — 400, then § — 0 will now be performed
in the Boltzmann collision operators. Let p > 0 be given. Test functions
with support outside of (0,7") x A, will first be considered, following the
lines of the proof of the passage to the limit in [2]. Then this restriction on
the support of the test function will be removed.
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Lemma 3.4 Let p > 0 be given. For any test function ¢ defined in Defini-
tion 1.1 and such that ¢ vanishes on (0,T) X A7,

n

lim lim /S fr Xn6 o(t, x, v)l / Fr (t,x + t&, vy)dvdwdtdzdv
+ n

d—0n——+oo

= /S(f%)(t,x,v)f(t,m + t&, vy )dvidwdtdxdv.

Proof of Lemma 3.4. Denote by gs = wlim,, . f"Xpns in L'. For § >0
fixed, let us first prove that

lim /S(f"xn,(;)ﬁgp(t,x,v)l / f" (t,x + t&, vy )dtdzdvdv,
+

n—-+oo
_ / Sgbo(t, ) f(t, @ + t€, v, )dtdwdvdv, .
Then
%i_}n% S(ggcp)(t, x,0) f(t, x + t&, vy )dtdrdvdo,
= /S(fﬁgo)(t, z,0) f(t, x + t&, v )dtdrdvdv,,
since the family (gs) increasingly converges to f in L', and
(gh0)(t 2, 0)f (1w + 16, 0.) < (F@)(t 2 0) [t + 6, 02),
which is integrable, since ff¢ is bounded.
\/S(p L f f (t,x +t& vi) — ggf(t,x—i—tf,v*))dv*dwdtda:dv\
<A, + B, +Cy,

where

n

A, = \/gp(t,x,v)(f"xmg — g(;)ﬁ(t,x,v)Slfifn(t,x + t&, vy ) dvdwdtdzdo|,
_l’_

n

]/g(;(pS Ntz + t€, ve)dvedwdtdzdo|,
Cn = /gg@SL)fn(t x + t€, vy )dvdwdtdzdv.
(1+5)
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Then, A, tends to zero when n tends to infinity, since ¢(f"xns — g5)"

converges to zero in L> weak * and ([ S—L(t x+1t€, vy )dv.dw) converges
strongly in L' on the support of ¢. Moreover, limy, 400 By, = 0, since gggo
is bounded and ([ S(f™ — f)(t,z +t&, vs)dv.dw) tends to zero in L((0,T) x

(0,1) x V) by the averaging lemma. Finally,
Cp < C/S ") )(t x + t&, vy)dvdwdtdxdv

= C/ &
frtattevg)<L  n(l+ f%)

n\2
+c/ Si(f ) —
frtattend)>L n(l+ f?)

(t,z + t&, vy)dvdwdtdzdv
(t, x + t&, vy)dvdwdtdzdo

L
<c—+ec

/ [ (t, @+ t€, v, dvedtdrdo,
n fr(ta+tev)>L

which tends to zero when n — +o00, by first choosing L large enough so that
ffn(t THE,0.)> L f(t, x4 t€, vi)dvidtdedv be small uniformly with respect to
n, then n large enough.

Denote by

Q+(fn fn) t x, 1) /S t €,V )Liinﬁ(t,x,vi)d’l)*dW-

n

Lemma 3.5 Let p > 0 be given. For any test function ¢ defined in Defini-
tion 1.1 and such that ¢ vanishes on (0,T) x Ag,

HﬂéﬂOMﬂnﬁ—i-oo / Qr—t(fn’ fn)ﬁX?%(;QD(t, x, v)dtdwdv
> /Q+(f, f)ﬁgo(t,x,v)dv*dwdtdmdv.

Proof of Lemma 3.5.

fn

n n

= [ Sxns(t, X, v )o(t, X —t€, " t, X,
| S0t X0l X 10 (K)o

—(t, X, v, )dtd X dvdv,dw

n

> [ St X/ olt, X — 160 (e, 7%, ). X:0)
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_ _ YA I
= [ S0 = xuslt. X ))plt. X — 1€ 0) g, ) Xo0)
fn
(1+%Xn 6_)(15 X, vy)dtdX dvdv, dw
/S(p t, X —t&',v')( X, s )(t, X, v)( 7 X )(t, X, vy )dtd X dvdv,dw

/ fr
/S(l - Xn,5(taX’v ))@(t,X - t£ » U )(mxn 5%)(t,X,U)
( I X 1)t X, v)dtdX dvdv,dw
1+ L2 n,63 U *

/(1 — Xn.s(t, X,0"))dtdX dvdv,dw < 53

Moreover, analogously to the proof of Lemma 3.4
I" fm
)6 X, 0 (g, 3) (6 X, v )dtdX dvdv,d
n

nEmOO/Sgth—tf v')( +n s
= /Sap t, X —t& v)gs(t, X, v)gs(t, X, vy )dtd X dvdv,dw

Then,

<

(e9)
w|w| o

which tends to
/S(p t, X —t& V) f(t, X, v) f(t, X, vy )dtd X dvdv,dw

- / Q*(f, P)io(t o, v)dtdud,

when ¢ tends to 0.

Lemma 3.6
T ol oo [ QF(I", 1V sididado < [ QF (1, fpitdadv.

Let n > 0 be given. It follows from the averaging
(0,1) x V, with | X[| < 7, such

Proof of Lemma 3.6.
lemma that there is a subset X, of (0,7)

t&',v")dvydw — 0 when n — +o00, (3.3)

that
/s £t X, vt X —
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uniformly with respect to (t, X,v) € X,;, and
/Sf(t,X, v )(t, X — t€,v")dv,dw is bounded in X,,. (3.4)

Then,
[ @it i spdtdado

< /Sf”(t,X7 V) 7 X0 Xns (8, X, 0)p(t, X — t€, v)dtd X dvdv, dw

< SE(E, X, 0 ) Mt X, vl ot X — t€,v)dtd X dvdv, dw

/(t,X,v,v* w); (X0 eXy,
—|—/ S, X, o) 7 X, 0l) X, (t, X, v)e(t, X — t€,v)dtd X dvdv,dw
(X, v,04,w); (8, X 0 ) EX S
= SE(t, X, v) (¢, X, ve)p(t, X —t& 0" )dtd X dvdv.dw
(t,X,v,04,w);(t,X,0)EXy,
+ SEr, X, 0) (8 X, 0 ) Xns (8, X, v)e(t, X — t€,v)dtdX dvdv,dw.
(¢, X 0,04 ,w);(t,X,v/)eXTC]

By (3.3-4), analogously to the proof of Lemma 3.4,

lim SE(t, X, 0) ' (t, X, va)p(t, X — t&, 0" )dtd X dvdv, dw
n—+00 (t,X,v,04,w);(t,X,0)EXy,

= / S, X,v)f(t, X,v)o(t, X —t& v )dtdX dvdv,dw.
X’?

Moreover, for j > 2,

S, X, 0" Mt X vl xns(t, X, v)o(t, X — t€,v)dtd X dvdv, dw

/(t,X,v,v* W) (X v )eXs
< S(F " ns) (& X, 0) 71, X, 0)0(t, X — t€,v)dtd X dvdv, dw + li
nj

/(t,X,v,v* w); (6, X v )eXs

<9 / SFME, X, v, )dtdX dvdv,dw + ——
0 J(t,X, 0,00 )i (1,X 0 )EX Inj
% o) + -5

< ol e

And so, Lemma 3.6 holds since, given € > 0, one can choose j big enough,

then o(n) < %, finally § small enough, so that %jo(n) + 77 < € holds.

End of the passage to the limit.
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It remains to pass to the limit when p tends to zero. Let ¢ be a test function
as defined in Definition 1.1. Let t € (0,T") be given and

-z

C QUL (s, v)ds > 0}
s

Q(f, f) (s, z,v)ds > 0}.
3

tA
E,={(z,v) € Ay;{ >0 and /
ov

U{(z,v) € A,;€ <0 and /0

vl—x

Then the iterated form enounced in Definition 1.1 holds for fox . r)xE,, SO
that
¢

T,V Rt s, x,v)ds ) drdv
/($7U)§(ll?+t£,v)€(0,1)><V,5>0 XE”( )</ov§ ( ) )

t
+/ T,V / R s,x,v)ds |dxdv
(z,0);(z+t&,0)€(0,1)x V,£<0 XEP( )( O/\l% ( ) )

(fexs,)H OV —%, 2, v)dzdv

a /(m,v);(m+t§,v)€(0,1)><V,£>O

1—
(fexe,) OV =% 2, v)dedy

a /(m,v);(m+t§,v)€(0,1)><V,£<O

3
t 0
- / / (fXEp—(P + 27TgXEp<p)ﬁ(s, x,v)dsdzdv
(@,0);(@+1£,0)€(0,1)x V,€>0 Jov—2 ds
t 0
- / / (fXEp—SD + QWQXEP@)ﬁ(s, x,v)dsdzdv(3.5)
(z,0);(z4t€,0)€(0,1) x V,£<0 OAI*TI 0s

The left-hand side of (3.6) is non negative by definition of E,, increasing
when p decreases to zero, and equal to the right-hand side that has a limit
when p tends to zero. And so, the iterated form holds for ¢y g, where

t/\17—1
E = {(z,v);€ >0 and ) R¥(s,x,v)ds > 0}
ov-2
€
tA—%
U{(z,v); ¢ <0 and ) h¥(s,x,v)ds > 0}.
ov—=2
g

The same argument can be used for pxge. And so, the iterated form holds
for fo(xe + xEe) = fe. Analogously, the iterated form holds for g, where
1 is a test function for g as defined in Definition 1.1. This ends the proof of
Theorem 1.1.
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