A GEOMETRICAL POINT OF VIEW
ON SINGULAR LINK FLOER HOMOLOGY

BENJAMIN AUDOUX

ABsTrRACT. We give a geometrical construction for singular link Floer homology HFV, then we use it to prove
that it vanishes for any singular connected sum of links.

Link Floer homology is an invariant of link in closed 3—-manifolds which categorify the Alexander poly-
nomial in the sense that the latter is recovered from the former as its graded Euler charasteristic. Alexander
polynomial is one of the oldest known knot invariant. It leads to bounds for many geometrical properties
of knot. Several of these bounds are turned into detection by the categorification. For instance, link Floer
homology is known to detect Seifert genus, fiberedness, Thurston norm, efc.

On the other side, Alexander polynomial is known to be closely related to finite type invariant. Up to
ambiant isotopy, a singular link is a smooth immersion of a finite number of circles in a 3—-manifold such that
the only singularities are a finite number of double points where two strands meet rigidly and transversely.
There are three standard ways to desingularize a given double point. They are given in Fig. [I] Any algebraic
invariant A defined for regular links can be extended to singular links by stating recursively that the value of A
on a link with at least one double point p is the difference between its value on the positive desingularization
of p and its value on the negative one. This can be encoded in the following formula:

ey ACK ) = A0 ) = A0CX).

We say that A is of finite type if there is an integer k € IN such that A vanishes on every knot with at
least k double points. Finite type invariant are conjectured to distinguish all knots. However, unlike link
Floer homology, only few is known about how they can detect geometric properties of knots. Alexander
polynomial coefficients are finite type invariants.

Hence, Alexander polynomial points, in one hand, to link Floer homology which have nice geometrical
properties and, in the other hand, to finite type invariants, which are supposed to have such properties. It
is temptlng to use one to shed light on the other. At least, it is with this goal that I gave, in [Aule] an
extension HEV of link Floer homology for singular links in S* which categorify the relatlon . But sadly,
the construction was combinatorial in nature and quite heavy to manipulate.

In this paper, we give a more geometrical construction of this extension which is closer to the original
construction of Ozsvath and Szabo. It is defined for oriented null-homologous singular link with oriented
double points, in any Z-sphere (and presumably in any closed 3—manifold), whereas the combinatorial

X positive smoothing

>< _— > < Seifert smoothing
\ Vo . .
'/\ negative smoothing

Figure 1: Desingularization of a double point: in a small planar neighborhood U of the double point, the three
desingularizations correspond to the smoothing of the double point into, respectively, a positive crossing, no crossing or a negative

crossing. The four diagrams are identical outside U.
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version is only defined for such links in S3. An orientation for a double point p of a link L is an orientation
for the plane spanned by the vectors tangent to L at p. It is equivalent to the data of an order between the
two strands.

Thanks to this geometrical approach, we prove the following proposition

Proposition. Singular link Floer homology vanishes for every singular connected sum of links.

which was only conjectured in [Aud10]].
Finally, we give a conjecture about a finite type property possibly satisfied by link Floer homology.

1. SINGULAR HEEGAARD DIAGRAMS

A singular Heegaard diagram is a quintuple (Z, @, B8, 2z, w) where X is a closed surface of genus g € N,
@ = (@;),B = (B;) are two sets of (s + g + [ — 1) disjoint circles on X, with 5,/ € IN*, and z = (), w = (w;)
sets of 2s + [ distincts points on X such that:
L.wnz=0
ii. circles from @ and S meet transversely;
ii. Vie[2s+ 1,25+, w;,z; ¢ €U B;
iv. Vi € [1, s]l, {wai, Wais1, 20i» 22i+1} C B; and there is an arc in §8; joining wy; to wp;; without meeting
22i NOT 22i+15
v. every connected component of X \ @ is a punctured sphere containing exactly one point from w and
one from z;

s+A
vii. every connected component of X\ U 1 B; is a punctured sphere containing exactly either one point
=5+
w; from w and another point z; from z with 7, j € [2s + 1,2s + [] or a circle §; € B with k € [[1, 5].

The elements of B, := {Bi}icp1,s1 C B 2, := {zitiep1.2s) € 2 and w := {wiliep125) C w are called singular.
Other elements are called regular and we denote, respectively, by 8,, z, and w, the sets B\ B, z \ z, and
wAw,.

Convention 1.1. Throughout this paper, the convention is to represent a—objects with blue pictures, S—
objects with red ones, z—points with black dots and w—points with white ones. I deeply apologize to the
reader who has only a white and black access to this paper.

To any singular Heegaard diagram, one can associate a singular link in a 3—manifold Y as follows:

Prop. v. (resp. vi.) assures that the elements of @ (resp. B) generate a g-dimensional subspace of
H{(Z;Z). Hence they specify an handlebody H, (resp. Hpg) bounded by X. The manifold Y is obtained
by gluing H, and Hg along X. Then, on every connected component C of X \ @ (resp. X \ B, such that
C N B, = 0) we draw an embedded oriented arc joining the element of z (resp. w) to the element of w (resp.
z) that C contains and then, we push this arc inside H, (resp. Hg). Up to isotopy in H, (resp.Hp), the arcs
are uniquely defined since C is a punctured sphere and every puncture correspond to a disk in H, (resp.Hg).
Finally, for every singular circle 8, we join the elements of w to the elements of z that 5 contains by two
once-intersecting oriented arcs in a disk in Hg which is bounded by S. Up to isotopy, there is a unique way
to do it. The union of all these arcs is an oriented singular link L C Y.

Remark 1.2. There is an obvious one-to-one correspondence between double points of L and the elements

of B..

An alternative but equivalent description is to consider a self-indexed Morse—Smale function f: ¥ — R
and a gradient-like vector filed & for f such that ! (3/) = X and such that @ (resp. B) correspond to the
intersections of X with the flowlines of ¢ starting at some index 1 critical point (resp. finishing at some index
2 critical point). Then the link corresponds to the union of the flowlines, with same orientation, passing
through the points z and the flowlines, with inversed orientation, passing through the points w.

Proposition 1.1. Every oriented singular link L in a 3—manifold Y admits a singular Heegaard diagram pre-
sentation such that regular elements of Z (resp. w) are in bijection with regular components of L (components
with no double point).
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Figure 2: Uncrossing a crossing

4

Figure 3: Localizing L N (@ U B) near the double points of L

Proof. First, we consider a self-indexed Morse-Smale function on Y and a gradient-like vector field & for f.
We denote by (Z, @, B) the associated Heegaard diagram.
Then, we consider a representative for L which is in general position with regard to &. It means that

i. L avoids the closure of the (finitely many) flowlines of & which connect two critical points with
consecutive indices;
ii. every flowline of £ meets L at most twice, and the intersections are always transverse;
iii. only a finite number of flowlines of £ meet L exactly twice;
iv. there are a finite number of intersections betwen L and the stable (resp. unstable) manifolds associ-
ated to the critical points of index 1 (resp. 2).

Now, we can push L along £ to X. It leads to a diagram on X with a finite number of crossings. Every crossing
can be be “uncrossed” by stabilizing X as shown in Fig. [2| At this stage, L is embedded on X. It may cross
the @ and S—circles in a finite number of non-singular points. Now we choose arbitrarily an origin on every
regular component of L. By performing some finger moves, shown in Fig. [3| on the elements of @ U B,
we may assume that every such crossing is in a neigborhood of either a double point of L or the origin of a
regular component. Moreover, we may assume that the intersections with a are just before the double point
or the origin point, with respect to the orientation of L, and the intersections with § just after. We complete
«@ and B by adding two elements in each for every double point and every regular component, and we set g
and w as shown in Fig. [§] Finally, we remove one of the added a—circles and one of the regular S—ones. O

Remark 1.3. For oriented singular knots K in S3, a singular Heegaard diagram presentation can be directly
associated to any connected planar diagram D with one distinguished point. To this end, we consider Dy,
obtained from D by making singular all its crossing. The surface X is the border of a thickening H; of D;
in R3. The family @ is partially defined as the border of every bounded regions in R? \ (H, N R?). The
thickening of the distinguished point of D leads to a disk whose border, denoted by Sy, belongs to . For z
and w, we yet choose two points z and w on X such that they are on both sides of 5y and such that an arc
from z to w inside H; meets the disk borded by S, with the same intersection number than D;. Finally, we
complete @, B, z and w by adding, for every crossing of D, the elements given in Fig. [5]

Theorem 1.2. Two singular Heegaard diagrams describe the same singular link iff they can be connected
with a finite sequence of:



4 BENJAMIN AUDOUX

Figure 5: Singular Heegaard diagrams around planar crossing

a—isotopies: isotopy of an element a € @ in the complement of z, w and @ \ «;

P—isotopies: isotopy of an element B € B in the complement of z, w and B\ 5;

a-handleslides: handleslide in the complement of X \ a between two elements of & (see Fig. @

regular B-handleslides: handleslide in the complement of £ \ B between two elements of B, (see Fig. @)

singular f-handleslides: handleslide in the complement of L\ B of B € B, over ' € B, (see Fig. @)

index zero/three (de)stabilizations: adding (resp. removing) one element in @, B,, z and w as in Fig. '

index one/two (de)stabilizations: increasing (resp. reducing) the genus of T by one and adding (resp.
removing) one element in @ and B, as in Fig. [/(b)}

Remark 1.4. This statement is very likely to be refined into an admissible version. It would lead, ipso

facto, to a definition of HFV for singular links in any closed 3—manifold.

Proof. Let D = (%, a, 8,2z, w) be a singular Heegaard diagram.

First we localize the singularities of D in a finite number of blisters. Actually, every singular circle
B € B, is contained in a punctured sphere whose border is a union of regular circle from 8,. Hence, up to
singular S-handleslides, we can assume that any singular circle 8 bounds a disk in X \ 8 and, up to regular
P-handleslides, that § is parallel in 2 \ B to a circle from 8, (see Fig. . If ¥\ B, is connected, we perform
first a zero/three—stabilization in order to get a reguler S—circle we can slide over the other S—circles.

Then, since singular circles behave as points through which regular S—circles can be moved thanks to
regular S—handleslides over the surrounding regular circles, it follows from standard Morse theory that any
isotopy which fixes a neighborhood of the double points can be obtained using the elementary regular moves.
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Figure 6: Handleslide: for every arc v between two cirles ¢; and ¢, the handleslide of ¢; over ¢ is the
replacement of ¢ by the connected sum of ¢y, a parallel copy of ¢, and the border of a thickening of v. If ¢ is

singular, then the result depend on where v points on it.

[ [ R

! ! !

(a) zerofthree (de)stabilization (z, z}, w and w| may be singular) (b) one/two (de)stabilization

Figure 7: Stabilizations

(@)
— —

Figure 8: LOC&liZil‘lg singular circles:Thin circles are regular S—circles whereas the fat one is a singular circle. Dotted

arcs represent the handleslides.

However, to obtain all isotopies, we may need to flip the double points. This can done using singular S—
handleslides (see Fig. [9). i

Now we assume that X is oriented by the out orientation of Hg. Then singular Heegaard diagrams are
convenient for dealing with both positive and negative desingularization of any double point of associated
singular links.

Proposition 1.3. Let L be a singular link and D a singular Heegaard diagram for it. Let p be a double point
of L and ), the singular arc in D corresponding to it. Then, D, and D_, obtained by slightly deforming (3,
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Figure 9: Flipping double points

in D as follows:

are Heegaard diagrams for, respectively, the positive and the negative resolution of p.

Proof. According to point vii. of the definition of singular Heegaard diagrams, the arc 8, splits a connected
component of X\ 8, in two parts which are not containing any element of z nor of w. Thus distribuing the two
elements of z and the two elements of w which are on 3, to these two connected components of X\ (8, U 3)
leads to a new Heegaard diagram with one singular arc less.

Then Fig. @] shows how the two considered deformations of 3, act on the associated singular link in a
neighbourhood of a disk borded by 3, in Hg. O

2. SINGULAR LINK FLOER HOMOLOGY

2.1. A quick review of link Floer homology. In this part, we review some definitions and propositions
from usual link Floer homology theory. For complete proofs and thorought treatments, we refer the reader
to [OS04c], [OS04b], [OS06a], [OSO04a], [Ras03], [OS08] and [OS05]; for more introductory papers, we
refer to [[OS06b],[OS06¢]; and for an intermediate discussion, to [Sah10].

Let X be a closed oriented surface, [ a positive integer, (@);civ a sequence of families of / disjoint circles
on X such that, for any distincts indices i and j, @’ and @/ intersects transversely, and z a multipoint on
N\ (l_EL]JN a') such that, for every i € IN, z meets at least once every connected component of X \ a'.
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Figure 10: Desingularizations of a singular circle

We define Sym’(Z) as the symetrized product of  copies of X, i.e. Zl/@ , Where &; acts on >/ by permuting
the coordinates. For every i € IN, we denote by Ty the torus [] « seen as embedded in Sym/(%). Because

acd
of the transversality condition, the tori qu and Tgiz, for distincts indices i; and i,, meet in a finite number
of points. We define az(g"‘ ,@?) as the module freely generated over IF, := Zh 7y by Toin N Ty

Now, let § = (gik)k€[|1,d|] be a length d > 2 sequence of distincts elements of (@');cy. We define
-1 — . —
fsg: k® CF(a*, a*') — CF(a", @) as the linear map defined on every generator x = x, ® --- ® x,_|,
=1
where x, € Tgik N ’Jfgim forall k € [1,d — 1], by

74
fimw= >, ( > #M(qﬁ)-z),
YET iy OT iy N Pema(x, X, .y)
T w(@)=3—d
”;(¢):0

where

o my(x,, -+ ,X, ;,¥) is the set of homotopy classes of Whitney disks, i.e. of maps from the unit disk
D to Sym’(X) whose restriction to the boundary satisfy the conditions given in Fig.

e an almost complex structure being given on Sym'(X), M(¢) is, up to reparametrizations of ID, the
module space of representatives of ¢ which are pseudo-holomorphic;

o u(¢) is the Maslov index of M(¢);

e since M(¢) is, under the required condition, a finite set, #M(¢) denotes its cardinal modulo 2;

e n4(¢) is the sum of geometric intersection numbers between ¢ and {z} x Sym'!(2) c Sym/(Z) for
every element z of A.

The following property is essentially a consequence of the Gromov’s compactness theorem from the
eponym pseudoholomorphic curves theory:

Theorem 2.1 (Ozsvath, Szabo). For every positive integer s,
D e oML @14 =0,
O<k<m<s -

Remark 2.1. For simplicity and since it is sufficient for our purpose, we deals with only the hat IF,—version
in this paper. However, the construction can be lifted to Z—coefficients and a minus version can also be
defined.
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Tg_g gl Ld-1

Figure 11: Model for Whitney disks: up to homotopy, a map ¢: D — Sym'(Z) is a Whitney disk of
(X, X, Y iff (1) =y, ¢({e”‘2%t € [0,1]}) C @' and, for every k € [1,d — 1], ¢(e"2#) = x, and
ot " Fir e k= 1,k1) € av.

2.2. A few definitions and notation for flags. In this short part, we set notation for the following sections.
A flag is an increasing finite sequence of finite sets such that two successives differ only by one element.
If the first element is A, we say that it starts at A. If the last element is B, we say it finishes at B. Then, we
A flag will always be denoted by F* := (F} ¢ F; & -+ & F7.) where = is either an element of IN* or
void. The number d* is called the length of ¥ *.
For any two subsets A and B, we denote by .%# /f the set of flags which join A to B, by ﬂACB the set of those
which join A to a subset of B and by .% <5 the set of flags whose elements are all contained in B.
It will not make sense before the next section, but for any flag ¥ and any pair of integer 1 <i < j < d, we

denote by BITJ the sequence B, By .-+, QFj and by @73 the element Q?i” ® QI;: ® ® QZI. Ommiting

i+l

the indices i and j means thati = 1 and j = d. If d = 1, i.e. if ¥ is reduced to a single finite set, then B”
and ©@” are just void.

2.3. Singular link Floer homology. Let L be a singular oriented link in a 3-manifold Y. We fix

e a Heegaard diagram D = (X, @, B, 2, w) for L;
e an orientation o for the k € IN double points of L.

2.3.1. Chain complex. Every double point p of L corresponds to a singular circle 8, € B,. The orientation
ojp of p is an orientation for the disk bordered by ,,. It induces hence an orientation for 8,. Now we label
the two elements of 8, N z (resp. B, N w) by z and z’ (resp. w and w’) in such a way that an oriented arc
embedded in S, and joining z’ to z (resp. w’ to w) without meeting w (resp. z) has the same orientation as
Bp,. Now, we call the arc connecting z to w’” without meeting w the special arc of 8, (see Fig. .

According to Prop. E], B, gives rise to circles B, and §_, avoiding the elements of (z U w) N B, and
corresponding, respectively, to the positive and the negative desingularization of p. Note that here, we make
a choice to determine in which connected component of X \ @ the four elements of 8, N S_ lie.

For every 8 € B, we choose a marked point mg € B\ @. If § € B, we require that mg belongs to the special
arc of .

For every A C B, and to any 8 € B, we associate 84 which is a circle isotopic to 8, in X \ z U w, where
n=-ifgeA n=+if g€ B, \Aandnisvoidif 8 ¢ B.. More specifically, we choose these circles as

described in Fig. We denote by B, the set {84)sep and we define Ef:(D) as the direct sum A®g CT:@, B).
< s

Now we consider A C B C .. If A # B, we denote by Qf the generator of €F(§ ,»Bp) described in Fig.
[13] Then we can set

CFa.B,) — CF(a,8,)
B .
i x — > fFrEee”)
FeF?P -

where the notation is defined in sections 2.1]and 2.21
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(a) If B € B,, then we first rename g for 8°. Then, for k € [1,la,],

we define successively g as a parallel copy of 8 on which we have per-
formed a finger move along a line which is transverse to 8 in pg and such
that 8% meets exactly twice 8 for every [ € [0, k — 1]. Finally, for every

Bs Bys
{\ } ) 2}
—> —
mg mp, |Ma_
5] By B / AN

Bo Bs,8:}
(b) If B € B, the construction is similar to the regular case, except that
B is replaced by S_ or B, depending on whether 8 € A or not. Note
that the marked point my splits in two marked points mg, € S, and
mp_ € B-.

A C B, we define B4 as a parallel copy of g4I,

Figure 12: Definition of ,BAZ let B € B. For every A C B we define 84 as above.

(a) If B ¢ B\A, then 84 and B3 meet twice. We choose 02’3 as the point (b) If B € B\ A, then B4 and S can be choosen such that they intersect
which minimizes the Maslov grading, defined in section of 6% in exactly once in each connected component of 8\ (zUw). Then we define
EF(EA’ By). 6’2‘8 as the intersection which lies in the special arc of 8, shown in bold.

Figure 13: Definition of Qf :letA ¢ B c . Forevery § € B, we define 6, € B4 N 5 as above and set 85 := {¢}").5.

By convention and throughout this paper, we represent generator dot elements by black squares and Qf dot elements by white ones.

Finally, we define dp : a:(D) — CF (D) as

D ) A

AcB, ACBCB,
2.3.2. Grading. We define two relative grading on a:(D), namely the Maslov grading M and the Alexander
grading A, by
M(x) - M(y)
Ax) - AQY)

H(P) — 2ny(¢) + B\ Al
”5(@ - nm(¢)

where A and B := AU {1, --,Bpa} are subsets of B, x (resp. y) any generator of a:(g,ﬁA) (resp.
CF(a, B,)) and ¢ a Whitney disk in mo(x, 8,7, 05 ).
Moreover, for every P C B, we also define a grading S p which is absolute and defined, for any element

X € @(Q,QA) where A C B, by S(x) = |AN P|. For P = B, we simply denote it by S and we call it the
singular grading.

Remark 2.2. For simplicity, we consider in this paper only a single Alexander grading, but it can be straig-
forwardly extended to a multi-grading by coloring the connected component of the link. Note that it means
that two components which share a double point must be colored the same way.
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(a) If8 ¢ B\A, then 92‘3 is connected to the second (b) If 8 € B\ A, then all Whitney disks which

element of 84 NG5 by exactly two disks which cancel start at gng meet w U z.
one each other.

Figure 14: Proof of Lemma for d = 2: LetA ¢ B c 8,. Counting the Whitney disks which meet a given 8 € 8
prove that féBéA 65 =0.

Ba  Ba, Bp Bas Br Ba,
gAB
&)
gAB
B
1‘311‘ ‘3,\1 3\ 2 ‘dA !8/\4
(@) B¢B\A (b) Be B\ A

Figure 15: Proof of Lemmata andfor d > 3: LetAg Bc B, and F € F5 of length d > 3. Then, among
all possibilities, only (A7, 03) is non empty and it contains a unique element ¢ which splits into maps ¢g: ID — X for every 8 € B.
They are shown above with shading. The Maslov formula given in [Sar06] shows that u(¢) = 0. The image f ZUW(OT) is hence null

unless d = 3. In the latter case, the fact that #M(¢) = 1 follows from the Riemann mapping theorem.

2.3.3. Homology.

Proposition 2.2. The couple (a:(D), dp) is a chain complex which is homologicaly graded by M, by A and
filtrated by S .

Proof. We prove that (dp)*> = 0. To this end, we need the following lemmata whose proofs are given in Fig.

[[4] and [13
Lemma 2.3. For every A C B C B, and every F € F2 of length d + 3,

zUw (@T) —
Lemma 2.4. For every A C B C B, and every ¥ € F 2 of lengthd = 3,
zUw(®7-') — 03

Now, we consider a subset A C #_ and an element x € a:(g, By
Let ¥ be a flag in ﬁACéS. By applying Th. to (@, B”) and evaluating it in x ® ®” , we obtain

U U
Z zw zw(x® Tm)®®Zd)

= D Ly (x20] 0 0] )0 0],)
d
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Since the lemmata, this is equal to

_ 2w 5 Fri2 Val
©) = ; 2 fis. Bﬁw(x ®07, 6/ 00],,).
<k<d-
Now, we sum them for every flag in .% 8: On the left-hand side, we obtain

Z ( Z s (pze (x® Y ))

7‘“6?/7;@’ 1<m<d
U U 2
DDA AR !
ACBCCCB, FleFP FeF§ =

This is equal to

3 il 8 s aeem)eo]

ACBCCCB, F2e S~ FleFl —

D, Kfw)

ACBcCcp;

(p)*(x).

The right-hand side vanishes since all the terms are of the form

gt (x®®¢ ®0 ®(~)’t)

1 2
g,BT ,BT d

where F! €7, B, and F?2 e F B

Fl,Ula) for some distincta,b € @ \ F [ll,. Indeed, a given such pattern appears

F Ufa,b}
as many times as there are flags in .# 5 ! , and there are exactly two such flags.
1

This is true for every A C B and every x € CF(af B,), hence o> 1,(x) = 0 for every x € @(D).
The affirmation on grading and filtration is clearly satisfied. O

Definition 2.1. A leveled module (H, k) is a module H together with a level k € Z.

A tensor product of graded modules is naturally graded by the sum of the summand grading.

We say that two leveled bigraded modules (Hy, k) and (H», kp) with k; < k, are stable equivalent if H,
H; ® A%~k where A is a module freely generated by two elements whose bigrading differ by (1, 1).

IR

Theorem 2.5. The stable class of (H*(@(D), Op),#z — 1), denoted by HFV(L, Y)], depends only on the
underlying singular oriented link L and on the orientations of its double points.

The section [3.3]is devoted to the proof of this theorem.

According to Prop. there exists a diagram for L such that #z = £, + 2s where s is the number of
double points in L and ¢, is the number of regular component (i.e. with no double point). There is hence a
bigraded module leveled by £, + 25 — 1 in I_HIF\V(L, Y)]. We denote by ﬁﬁ/(L, Y) this module.

We will prove latter that there even exists a bigraded module leveled by £ — 1, where ¢ is the total number
of components in L, in LH/F\V(L, Y)]. We denote by H/F\V(L, Y) this module.

3. PROPERTIES OF HFV

In this section, we keep the notation from section@
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3.1. Exact triangle. In this section, we prove that the three link Floer homologies of a singular link and of
the two desingularizations of one of its double points fit an exact triangle.

Proposition 3.1. For any double point p of L, a:(D) can be seen as the mapping cone of a morphism
fp: CE(D,) — CF(D_) where D, and D_ correspond, respectively, to the positive and the negative reso-
lutions of the arc 8, € B, associated to p.

Proof. By construction, we have
CF(D.) = & CR(@.By). and TR0 = @ CF@p,).
Bp¢A BpeA

Then 61\3(D) can be seen as EI\J(DJ,) ® aj(D_). W/e\denote by 0, (resp. d_) the restriction of dp on 61\3(D+)
(resp. CF(D_-)) composed with the projection on CF(D,.) (resp. CF(D_)). Now, we define f,: CF(D,) —

CF(D_) by
o= 3, D frxee”)

AcB, ACBCB, 7—‘532/1\?
Bp¢A  BpEB

for every x € C/JT:(DJr). It is is a chain morphism since
fr00p, +0p_0 f, = (04)* + f, 00, +_0 f, +(0-)* = (9p)* = 0.
It is immediate to check that Cone(f),) = (’Z—IE(D). |

Corollary 3.2. For any double point p of L and at each level greater than €, + 2s — 1, there is an exact
triangle

LHEV(L,)] LHFV(L.)]

~_

|[HEV(L)]
where L, and L_ are, respectively, the positive and the negative resolutions of p.

Corollary 3.3. For every subset P € B, the map dp respects the filtration associated to the grading S p. The
homology of the associated graded part is, up to some shifting in the grading M and A, the direct sum of
the link Floer homologies of all the link obtained by desingularizing the double points of L associated to the
elements of P.

This corollary is very helpful for reducing isomorphism proofs to the regular case.

3.2. Singular connected sum. Let L; C Y| and L, C Y, be two oriented links, possibly singular, and let
01,0, be orientations for their double points. Now let m; € L; and m, € L, be two distinguished regular
points. By Ly ,,, #,,, L, we denote the connected sum of L; and L, near m; and m, in Y #Y, and by L ,, #;, L
their singular connected sum which is a singularization of L, ,,,#,, L, located at their fuzioning points._ In
this section, we prove that the link Floer homologies of all these links are related in a simple way.

Fori € {1,2}, let D; = (Z;, @;, B;, z;» w,) be a Heegaard diagram for L; such that z* € z, represents m; € L;
and w* € w, represents m; € L,. Then, as shown in Fig.

D# = (21#22521 U QZ’EI ng, (51 U 52) \ {Z*}, (El ) Ez) \ {W*}>
is a diagram for L; ,, #, Lo.

Definition 3.1. Let (Cy,d,) and (C,, d,) be two chain complexes repectively endowed with Z—grading gr,
and gr,. Then C; ® C; is naturally endowed with a differential d defined for every elements x; € C; and
X €Crbyd(x®y) =01(x) @y + x® 02(y).

Proposition 3.4. With the notation above, the chain complexes CF (Dy) and CF (D )®(’:l\3 (Dy) are isomorphic.

On the basis of remark [3.1] the proof is a straightforward adaptation of the proof of Th. 11.1 in [OS08]
where the chain map defined by counting pseudo-holomorphic triangles is replaced by a chain map which
counts pseudo-holomorphic polygons.
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Figure 16: Heegaard diagrams for connected sums
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Figure 17: Singular connected sums seen as regular ones

Definition 3.2. A tensor product of leveled modules is naturally leveled by the sum of the two summands
levels.

Proposition 3.5. With the notation above,
LHEV(L{ i, #, Lo, Yi#Y2)] = [HFV(Ly, ¥1)] ® [HFV(Ly, Y2) .
Proof. It follows from standard algebra and the fact that #((z, Uz,) \ {z"}) - 1 = (#z, - D+ (#z, - 1). DO

Likewise, by considering a once pointed diagram of the linkfree space, one can prove a similar statement
on the embedding of a link inside a connected sum of spaces.

Proposition 3.6. With the notation above,

LHFV(Ly, Yi#Y5)] = [HFV(Ly, Y))] @ (HFY>, 0)
where I’{T:(Yz) is endowed with trivial Alexander grading and singular filtration.
Proposition 3.7. With same notation, PTF\V(Ll m ¥y, Lo, Y1#Y2) = 0.

Proof. As shown in Fig. any singular connected sum can be replaced by two regular ones on the once-
singularized unknot K. According to Prop. it is sufficient to prove that P/II\:(KOO) =0.

A singular Heegaard diagram for K., is given in Fig. [I8] Note that, because of the symmetry (on the
sphere), the choice of orientation for the double point is of no importance. It is easily seen that the associated
chain complex has four generators, denoted in Fig. [I8|by 1, 2, 3 and 4 and that the differential involves only
two Whitney triangles. This gives d(1) = 4, d(3) = 2 and the resulting homology is null.

O

3.3. Invariance. To prove Th. we need to check the invariance under the following operations:
i. changing the pseudo-holomorphic structure on X;
ii. arc isotopies;
iii. regular and singular handleslides;
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~ !

) \,
OA

B8)isgy

Figure 19: Definition of 8, for a singular handleslide

iv. index zero/three (de)stabilizations;
v. index one/two (de)stabilizations;
vi. moving a point mg;
vii. moving an element of 5, N B_.

An arc isotopie can be seen as a special case of the first operation. The proof of invariance under the
operations i., iii., vi. and vii. are similar, so we only treat in details the case of singular handleslides.

3.3.1. Singular handleslides. Let D" = (X, a, ', z,w) be a Heegaard diagram obtained from D by perform-
ing a singular B-handleslide of 5 € B, over B € B,.

Let B € B. Forevery A C B ~ B, we define 8/, using the algorithm of Fig. but performed on
Bg, instead of 8. Equivalently, we define together {,BA}Ach U {ﬁ;\}ACE; as in Fig. but with |A| replaced
by (|A] + B, + 1) for every A C B/. Then we consider y, a parallel copy of 8 which does not meet
By, for any A c B, but which meet the handleslide arc from Sj to 5. Now, we define successively the

(E(s)); for all A C B, as handleslides of the (,88); over vy (see Fig. . Finally, for every A C B, we set
B, = (B1ses \1BY) U {GBD), )

One can check that the set {8}|A C B} is admissible for the construction given in section

Now, we denote by 6, the intersection point in Ty, N Tg, which maximizes the Maslov grading in

(’:F(g - B,). Then, using the notation from section but adding a subscript to indicate the diagram we are
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Figure 20: Obstruction for invariance under non authorized singular handleslide

dealing with, we set for every A ¢ C C B the map f;f‘cz ai(g, By — @(g, Be) by

sh — U 7! 7
fle@:= Y > [ .(x80] ©6,9067)
ACBCC Flezb =D D
FleF§

for every x € CF (a, 8,). Finally, we define o a:(D) — @(D') as

P > nh

AcB, AcCcB,

By an argument similar to the proof of Prop. one can prove that f*" o dp + dp o f" = 0. It is hence
a chain map which clearly respects the singular filtration. Moreover, the associated graded part is the direct
sum, for every A C B, of the maps

CF@.B,) —  CF@B))
A ¢ x — ég:ﬁ;;(£®QA) s
which are the invariance maps for f—handleslide in the regular case. For instance in [[Sah10], they are proven

to be quasi—isomorphisms. The whole map f*" is hence an quasi—isomorphism.

Remark 3.1. The same outlines — i.e. using the technics developped in section 2.3]to define a chain map
f: CF(D) — CR(D’) which respects the singular filtration and then proving that the graded part is an
isomorphism since it corresponds to an invariance map from the regular world — can be adapted to the other
cases. However, it is not working for an handleslide of a regular circle 8 over a singular one §;, since the
set B, defined above for any given A C B does not correspond to an handleslide of (8;), over (5;), (see

Fig. 20).

3.3.2. Index zerofthree and regular oneftwo (de)stabilizations. Index one/two stabilizations can be seen as
a connected sums with an empty copy of S3. But since ITIT:(S3) = I, Prop. achieve the proof. The
argument is valid only when attaching the new handle to a pointed domain. However, it can be then moved
among domains via handleslides.

Regular index zero/three stabilizations can also be seen as a connected sum with the trivial link in S°3.
Since LH’F\V(Unknot, S| = |(IF,,0)], Prop. concludes the proof.

3.3.3. Singular oneftwo (de)stabilizations. Let D’ := (£,a’,',z',w’) be a Heegaard diagram obtained from
D by performing an index one/two stabilization on a element z* € z N * for a given §* € B.. We denote by
o', B, 7 and w’ the new elements. We also denote by p* the singular point of L corresponding to §* and by
bbeta;, the set bbeta; \ {5*}.
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Figure 21: Perturbations of D: ina neighborhood of z*, the four diagrams are depicted above. Outside they are all small

perturbations of D such that, on every connected component, any two perturbations meet exactly twice and transversaly.

Now, let Do, Dy, Dy and D; be the four diagrams depicted in Fig. In particular, Dy and Dy are
diagrams for the positive desingularization of p* whereas D; and D; are diagrams for the negative one.
Moreover, under the terms of Prop. we have CF (D) = Cone(f,: EI\I(DO) — él\s(Dl)). Exactly in the
same way as f,+, we can define a map ]_Cp* : @(50) — 6?(51).

Now, we want to prove, as a first step, that Cone(f,-) and Cone(]_”,,*) are quasi-isomorphic. Since the
diagrams differ by isotopies and handleslides, we already have quasi-isomorphisms f: a:(Do) — 6?(50)
and fi: @(Dl) — 615(1_)1). For every A C B} and for f: @(g,@o) — ﬁ:@,gl) € {fp*,]_”p*,fo,fl}, let’s
9’/’;\ be the top-dimensional element of @@O, B,) used to define f. We define two maps go, g1: a:(DO) —
CF(D,) as, respectively,

ZUw F1 o 72 70 73
> Fr (- ®0] 80007 80 @67 )
AcB; ACBCCCDCB; Flegt — P07 D" Dy
FreFS
FieFzb

and |
D S S (66 e a6) o6l a6l

o.B”' B%’ B’
AcB; ACBcCcDCB; 7le F5 =Dy D17 Dy
FleFS
FieFp
where the subscript on B and @ symbols indicate the diagram we are dealing with. We obtain the following
diagram:

(900 C @(Do) L (/:T:(Dl) Q aD]

TN

95, (_ CE(Dy) —— CE(D) ) %,
fp*

As in the proof of Prop. it follows from Th. that go©o0p, + ]_”p* ofo+ (95[ ogo=0and g odp, + fio
S + %1 o g1 = 0. These formulae prove that the linear map f*': EI\Z(DO) @ EI\J(D]) — 61\3(50) @ 61\3(5])

defined as
80 T 81 J1
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Figure 22: Substituing (sufficiently long) neck for dot

is a chain map between Cone(f),-) and Cone(?px) and since its graded part associated to the filtration S g is
a sum of quasi-isomorphism, the whole map f* is a quasi-isomorphism.

Now, the standard “long neck” argument can be applied to Cone(f,-). Indeed, o’ and ' in Dy and D,
can be seen as the result of a connected sum with a 2—sphere along a neck. If it is sufficiently long, the neck
cannot be involved in any Whitney disk counted by d5, . fp* nor 5 otherwise Gromov compacity would
produce a positive periodic domain which does not intersect z nor w. This has two consequences:

o Cone(f)+) splits in two summands C; and C,, one for each element in o’ U §';
o the neck and the 2—sphere acts just like a dot that Whitney disks cannot intersect. Doing such a
substitution is equivalent to coming back to D (see Fig. 22)).

The complexes C; and C, are then both isomorphic to a:(D) and since corresponding generators in C and
C, are connected by a bigon ¢ with #(¢Nw) = 1 and #(¢ N z) = 0, it follows that CF(D’) is quasi-isomorphic
to CF(D) ® A.

4. CONJECTURES

Singular link Floer homology was first motivated by the hope of finite type properties, whatever this may
mean, of knot Floer homology.

Thanks to the combinatorial description, many computations have been made and they led to some con-
jectures.

Conjecture 1. For every singular link L C Y with k double points, there exists an orientation o for the
double points such that HFV(L, 0, Y) factorizes by V.

Besides being a direct categorification of the finite type properties of the Alexander polynomial, this
conjecture have the following consequences:

Corollary 4.1. If P(t,q) is the Poincaré polynomial of the regular knot Floer homology, then, for every
n € IN*, the image of P(1,q) in Z[q]/(z’ (1 + g)*) is an invariant of finite type.

Corollary 4.2. Invariants of finite type with Zjry, coefficients detect the Seifert genus of fibered knots.

Proof. The width in Alexander grading of the Poincaré polynomial of knot Floer homology is known to be
equal to 2g where g is the Seifert genus. Moreover, since the extremal coefficient for fibered knots are equal
to 1, it remains true for the reduction modulo 2. O

Corollary 4.3. Among fibered knots, invariants of finite type with Zhy, coefficients detect the unknot.
For knots in S3, we have a more precise conjecture:

Conjecture 2. Let K C S3 be a knot which admits a presentation as a composition of a regular tangles T,
i.e. a tangle with no double point and a purely singular one T, i.e. a tangle with only singular crossing and
such that among the four strands leaving a given double point, at least two are not attached to the border of
T (see e.g. Fig.[23)). Then, the orientation of the double points of K induced by the orientation of the plane
on which Ty is drawn is a suitable choice for applying conjecture|l
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Sy )

T, —/

T,

Figure 23: An example of composition between a regular tangle and a purely singular one

Corollary 4.4. IfK c S3 is a purely singular knot, i.e. a knot which admits a planar diagram whose crossing
are all singular, and if its double points are given the orientation o which corresponds to the orientation of
the plane where such a diagram is drawn on, then its link Floer homology vanishes.

Proof. Let D be a planar diagram for K with k € IN* singular crossing and no regular one. Then, Seifert
algorithm give a Seifert surface for any desingularization of K with Euler charateristic d — k where d € IN*
is the number of connected component of the Seifert smoothing of D. It corresponds to a genus of # and
the width in Alexander grading of the link Floer homology of any desingularization of K is hence bounded
above by 1 +k—d < k. But according to Conjecture H/ﬁ/(L, 0,S?) has a H® factor which is of Alexander
width k£ + 1. The homology Hﬁ’(L, 0, 53) is hence null. m]
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