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A GEOMETRICAL POINT OF VIEW
ON SINGULAR LINK FLOER HOMOLOGY

BENJAMIN AUDOUX

Abstract. We give a geometrical construction for singular link Floer homology ĤFV, then we use it to prove
that it vanishes for any singular connected sum of links.

Link Floer homology is an invariant of link in closed 3–manifolds which categorify the Alexander poly-
nomial in the sense that the latter is recovered from the former as its graded Euler charasteristic. Alexander
polynomial is one of the oldest known knot invariant. It leads to bounds for many geometrical properties
of knot. Several of these bounds are turned into detection by the categorification. For instance, link Floer
homology is known to detect Seifert genus, fiberedness, Thurston norm, etc.

On the other side, Alexander polynomial is known to be closely related to finite type invariant. Up to
ambiant isotopy, a singular link is a smooth immersion of a finite number of circles in a 3–manifold such that
the only singularities are a finite number of double points where two strands meet rigidly and transversely.
There are three standard ways to desingularize a given double point. They are given in Fig. 1. Any algebraic
invariant λ defined for regular links can be extended to singular links by stating recursively that the value of λ
on a link with at least one double point p is the difference between its value on the positive desingularization
of p and its value on the negative one. This can be encoded in the following formula:

(1) λ
( )

= λ
( )

− λ
( )

.

We say that λ is of finite type if there is an integer k ∈ N such that λ vanishes on every knot with at
least k double points. Finite type invariant are conjectured to distinguish all knots. However, unlike link
Floer homology, only few is known about how they can detect geometric properties of knots. Alexander
polynomial coefficients are finite type invariants.

Hence, Alexander polynomial points, in one hand, to link Floer homology which have nice geometrical
properties and, in the other hand, to finite type invariants, which are supposed to have such properties. It
is tempting to use one to shed light on the other. At least, it is with this goal that I gave, in [Aud10], an
extension ĤFV of link Floer homology for singular links in S 3 which categorify the relation (1). But sadly,
the construction was combinatorial in nature and quite heavy to manipulate.

In this paper, we give a more geometrical construction of this extension which is closer to the original
construction of Ozsvàth and Szabò. It is defined for oriented null-homologous singular link with oriented
double points, in any Z–sphere (and presumably in any closed 3–manifold), whereas the combinatorial
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Figure 1: Desingularization of a double point: in a small planar neighborhood U of the double point, the three

desingularizations correspond to the smoothing of the double point into, respectively, a positive crossing, no crossing or a negative

crossing. The four diagrams are identical outside U.
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version is only defined for such links in S 3. An orientation for a double point p of a link L is an orientation
for the plane spanned by the vectors tangent to L at p. It is equivalent to the data of an order between the
two strands.

Thanks to this geometrical approach, we prove the following proposition

Proposition. Singular link Floer homology vanishes for every singular connected sum of links.

which was only conjectured in [Aud10].
Finally, we give a conjecture about a finite type property possibly satisfied by link Floer homology.

1. Singular Heegaard diagrams

A singular Heegaard diagram is a quintuple (Σ,α,β, z,w) where Σ is a closed surface of genus g ∈ N,
α = (αi),β = (βi) are two sets of (s + g + l − 1) disjoint circles on Σ, with s, l ∈ N∗, and z = (zi),w = (wi)
sets of 2s + l distincts points on Σ such that:

i. w ∩ z = ∅;
ii. circles from α and β meet transversely;

iii. ∀i ∈ ~2s + 1, 2s + l�,wi, zi < α ∪ β;
iv. ∀i ∈ ~1, s�, {w2i,w2i+1, z2i, z2i+1} ⊂ βi and there is an arc in βi joining w2i to w2i+1 without meeting

z2i nor z2i+1;
v. every connected component of Σ \ α is a punctured sphere containing exactly one point from w and

one from z;

vii. every connected component of Σ \
s+λ
∪

i=s+1
βi is a punctured sphere containing exactly either one point

wi from w and another point z j from z with i, j ∈ ~2s + 1, 2s + l� or a circle βk ∈ β with k ∈ ~1, s�.

The elements of βs := {βi}i∈~1,s� ⊂ β, zs := {zi}i∈~1,2s� ⊂ z and ws := {wi}i∈~1,2s� ⊂ w are called singular.
Other elements are called regular and we denote, respectively, by βr, zr and wr the sets β \ βs, z \ zs and
w \ ws.

Convention 1.1. Throughout this paper, the convention is to represent α–objects with blue pictures, β–
objects with red ones, z–points with black dots and w–points with white ones. I deeply apologize to the
reader who has only a white and black access to this paper.

To any singular Heegaard diagram, one can associate a singular link in a 3–manifold Y as follows:
Prop. v. (resp. vi.) assures that the elements of α (resp. β) generate a g-dimensional subspace of

H1(Σ;Z). Hence they specify an handlebody Hα (resp. Hβ) bounded by Σ. The manifold Y is obtained
by gluing Hα and Hβ along Σ. Then, on every connected component C of Σ \ α (resp. Σ \ βr such that
C ∩ βs = ∅) we draw an embedded oriented arc joining the element of z (resp. w) to the element of w (resp.
z) that C contains and then, we push this arc inside Hα (resp. Hβ). Up to isotopy in Hα (resp.Hβ), the arcs
are uniquely defined since C is a punctured sphere and every puncture correspond to a disk in Hα (resp.Hβ).
Finally, for every singular circle β, we join the elements of w to the elements of z that β contains by two
once-intersecting oriented arcs in a disk in Hβ which is bounded by β. Up to isotopy, there is a unique way
to do it. The union of all these arcs is an oriented singular link L ⊂ Y .

Remark 1.2. There is an obvious one-to-one correspondence between double points of L and the elements
of βs.

An alternative but equivalent description is to consider a self-indexed Morse–Smale function f : M −→ R

and a gradient-like vector filed ξ for f such that f −1 (
3/2

)
� Σ and such that α (resp. β) correspond to the

intersections of Σ with the flowlines of ξ starting at some index 1 critical point (resp. finishing at some index
2 critical point). Then the link corresponds to the union of the flowlines, with same orientation, passing
through the points z and the flowlines, with inversed orientation, passing through the points w.

Proposition 1.1. Every oriented singular link L in a 3–manifold Y admits a singular Heegaard diagram pre-
sentation such that regular elements of z (resp. w) are in bijection with regular components of L (components
with no double point).
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−→

Figure 2: Uncrossing a crossing

−→

Figure 3: Localizing L ∩ (α ∪ β) near the double points of L

Proof. First, we consider a self-indexed Morse-Smale function on Y and a gradient-like vector field ξ for f .
We denote by (Σ,α,β) the associated Heegaard diagram.

Then, we consider a representative for L which is in general position with regard to ξ. It means that
i. L avoids the closure of the (finitely many) flowlines of ξ which connect two critical points with

consecutive indices;
ii. every flowline of ξ meets L at most twice, and the intersections are always transverse;

iii. only a finite number of flowlines of ξ meet L exactly twice;
iv. there are a finite number of intersections betwen L and the stable (resp. unstable) manifolds associ-

ated to the critical points of index 1 (resp. 2).
Now, we can push L along ξ to Σ. It leads to a diagram on Σ with a finite number of crossings. Every crossing
can be be “uncrossed” by stabilizing Σ as shown in Fig. 2. At this stage, L is embedded on Σ. It may cross
the α and β–circles in a finite number of non-singular points. Now we choose arbitrarily an origin on every
regular component of L. By performing some finger moves, shown in Fig. 3, on the elements of α ∪ β,
we may assume that every such crossing is in a neigborhood of either a double point of L or the origin of a
regular component. Moreover, we may assume that the intersections with α are just before the double point
or the origin point, with respect to the orientation of L, and the intersections with β just after. We complete
α and β by adding two elements in each for every double point and every regular component, and we set z
and w as shown in Fig. 4. Finally, we remove one of the added α–circles and one of the regular β–ones. �

Remark 1.3. For oriented singular knots K in S 3, a singular Heegaard diagram presentation can be directly
associated to any connected planar diagram D with one distinguished point. To this end, we consider Ds,
obtained from D by making singular all its crossing. The surface Σ is the border of a thickening Hs of Ds

in R3. The family α is partially defined as the border of every bounded regions in R2 \ (Hs ∩ R
2). The

thickening of the distinguished point of D leads to a disk whose border, denoted by β0, belongs to β. For z
and w, we yet choose two points z and w on Σ such that they are on both sides of β0 and such that an arc
from z to w inside Hs meets the disk borded by β0 with the same intersection number than Ds. Finally, we
complete α, β, z and w by adding, for every crossing of D, the elements given in Fig. 5.

Theorem 1.2. Two singular Heegaard diagrams describe the same singular link iff they can be connected
with a finite sequence of:
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−→

−→

Figure 4: Addition of circles and definition of z and w

−→

β

−→

α4

α3

β2

α2

βs

β1

β4

α1

β3

Figure 5: Singular Heegaard diagrams around planar crossing

α–isotopies: isotopy of an element α ∈ α in the complement of z, w and α \ α;
β–isotopies: isotopy of an element β ∈ β in the complement of z, w and β \ β;
α–handleslides: handleslide in the complement of Σ \ α between two elements of α (see Fig. 6);
regular β–handleslides: handleslide in the complement of Σ \ β between two elements of βr (see Fig. 6);
singular β–handleslides: handleslide in the complement of Σ \ β of β ∈ βs over β′ ∈ βr (see Fig. 6);
index zero/three (de)stabilizations: adding (resp. removing) one element in α, βr, z and w as in Fig. 7(a);
index one/two (de)stabilizations: increasing (resp. reducing) the genus of Σ by one and adding (resp.

removing) one element in α and βr as in Fig. 7(b).

Remark 1.4. This statement is very likely to be refined into an admissible version. It would lead, ipso

facto, to a definition of ĤFV for singular links in any closed 3–manifold.

Proof. Let D = (Σ,α,β, z,w) be a singular Heegaard diagram.
First we localize the singularities of D in a finite number of blisters. Actually, every singular circle

β ∈ βs is contained in a punctured sphere whose border is a union of regular circle from βr. Hence, up to
singular β–handleslides, we can assume that any singular circle β bounds a disk in Σ \ β and, up to regular
β–handleslides, that β is parallel in Σ \ β to a circle from βr (see Fig. 8). If Σ \ βr is connected, we perform
first a zero/three–stabilization in order to get a reguler β–circle we can slide over the other β–circles.

Then, since singular circles behave as points through which regular β–circles can be moved thanks to
regular β–handleslides over the surrounding regular circles, it follows from standard Morse theory that any
isotopy which fixes a neighborhood of the double points can be obtained using the elementary regular moves.
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ν

−→

Figure 6: Handleslide: for every arc ν between two cirles c1 and c2, the handleslide of c1 over c2 is the
replacement of c1 by the connected sum of c1, a parallel copy of c2 and the border of a thickening of ν. If c1 is

singular, then the result depend on where ν points on it.

Σ Σ

←
→

←
→

Σ′
α′

β ′

Σ′
α′

β ′

(a) zero/three (de)stabilization (z, z′1, w and w′1 may be singular)

Σ

←
→

α′
β ′

Σ′

(b) one/two (de)stabilization

Figure 7: Stabilizations

−→ −→

Figure 8: Localizing singular circles:Thin circles are regular β–circles whereas the fat one is a singular circle. Dotted

arcs represent the handleslides.

However, to obtain all isotopies, we may need to flip the double points. This can done using singular β–
handleslides (see Fig. 9). �

Now we assume that Σ is oriented by the out orientation of Hβ. Then singular Heegaard diagrams are
convenient for dealing with both positive and negative desingularization of any double point of associated
singular links.

Proposition 1.3. Let L be a singular link and D a singular Heegaard diagram for it. Let p be a double point
of L and βp the singular arc in D corresponding to it. Then, D+ and D−, obtained by slightly deforming βp
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Figure 9: Flipping double points

in D as follows:

D

βp

uu ))

β+ β−

D+ D−

,

are Heegaard diagrams for, respectively, the positive and the negative resolution of p.

Proof. According to point vii. of the definition of singular Heegaard diagrams, the arc βp splits a connected
component of Σ\βr in two parts which are not containing any element of z nor of w. Thus distribuing the two
elements of z and the two elements of w which are on βp to these two connected components of Σ \ (βr ∪ β)
leads to a new Heegaard diagram with one singular arc less.

Then Fig. 10 shows how the two considered deformations of βp act on the associated singular link in a
neighbourhood of a disk borded by βp in Hβ. �

2. Singular link Floer homology

2.1. A quick review of link Floer homology. In this part, we review some definitions and propositions
from usual link Floer homology theory. For complete proofs and thorought treatments, we refer the reader
to [OS04c], [OS04b], [OS06a], [OS04a], [Ras03], [OS08] and [OS05]; for more introductory papers, we
refer to [OS06b],[OS06c]; and for an intermediate discussion, to [Sah10].

Let Σ be a closed oriented surface, l a positive integer, (αi)i∈N a sequence of families of l disjoint circles
on Σ such that, for any distincts indices i and j, αi and α j intersects transversely, and z a multipoint on
Σ \ ( ∪

i∈N
αi) such that, for every i ∈ N, z meets at least once every connected component of Σ \ αi.



DRAFT
COPY

A GEOMETRICAL POINT OF VIEW ON SINGULAR LINK FLOER HOMOLOGY 7

'

+

55

−

))

'

Figure 10: Desingularizations of a singular circle

We define Syml(Σ) as the symetrized product of l copies of Σ, i.e. Σl/
Sl where Sl acts on Σl by permuting

the coordinates. For every i ∈ N, we denote by Tαi the torus
∏
α∈αi

α seen as embedded in Syml(Σ). Because

of the transversality condition, the tori Tαi1 and Tαi2 , for distincts indices i1 and i2, meet in a finite number
of points. We define ĈF(αi1 ,αi2 ) as the module freely generated over F2 := Z

/
2Z by Tαi1 ∩Tαi2 .

Now, let S = (αik )k∈~1,d� be a length d ≥ 2 sequence of distincts elements of (αi)i∈N. We define

f z
S :

d−1
⊗

k=1
ĈF(αik ,αik+1 ) −→ ĈF(αi1 ,αid ) as the linear map defined on every generator x = x1 ⊗ · · · ⊗ xd−1,

where xk ∈ Tαik ∩Tαik+1 for all k ∈ ~1, d − 1�, by

f z
S (x) =

∑
y∈T

αi1 ∩Tαid

( ∑
φ∈π2(x1,··· ,xd−1,y)

µ(φ)=3−d
nz(φ)=0

#M(φ).y
)
,

where
• π2(x1, · · · , xd−1, y) is the set of homotopy classes of Whitney disks, i.e. of maps from the unit disk
D to Syml(Σ) whose restriction to the boundary satisfy the conditions given in Fig. 11;

• an almost complex structure being given on Syml(Σ), M(φ) is, up to reparametrizations of D, the
module space of representatives of φ which are pseudo-holomorphic;

• µ(φ) is the Maslov index ofM(φ);
• sinceM(φ) is, under the required condition, a finite set, #M(φ) denotes its cardinal modulo 2;
• nA(φ) is the sum of geometric intersection numbers between φ and {z} × Syml−1(Σ) ⊂ Syml(Σ) for

every element z of A.
The following property is essentially a consequence of the Gromov’s compactness theorem from the

eponym pseudoholomorphic curves theory:

Theorem 2.1 (Ozsvàth, Szabò). For every positive integer s,∑
0≤k<m≤s

f z
α0,··· ,αk ,αm,··· ,αs ◦ (Id⊗k ⊗ f z

αk ,··· ,αm ⊗ Id⊗(s−m)) = 0.

Remark 2.1. For simplicity and since it is sufficient for our purpose, we deals with only the hat F2–version
in this paper. However, the construction can be lifted to Z–coefficients and a minus version can also be
defined.
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αid

y

xd−2

x1

xd−1

αi1

x2 αi2

αid−1

Figure 11: Model for Whitney disks: up to homotopy, a map φ : D −→ Syml(Σ) is a Whitney disk of

π2(x1, · · · , xd−1, y) iff φ(1) = y, φ
({

e−i 2tπ
d

∣∣∣t ∈ [0, 1]
})
⊂ αid and, for every k ∈ ~1, d − 1�, φ(ei 2kπ

d ) = xk and

φ
(
{ei 2tπ

d |t ∈ [k − 1, k]}
)
⊂ αik .

2.2. A few definitions and notation for flags. In this short part, we set notation for the following sections.
A flag is an increasing finite sequence of finite sets such that two successives differ only by one element.

If the first element is A, we say that it starts at A. If the last element is B, we say it finishes at B. Then, we
also say that it is joining A to B.

A flag will always be denoted by F ∗ := (F∗1  F∗2  · · ·  F∗d∗ ) where ∗ is either an element of N∗ or
void. The number d∗ is called the length of F ∗.

For any two subsets A and B, we denote by F B
A the set of flags which join A to B, by F ⊂B

A the set of those
which join A to a subset of B and by F ⊂B the set of flags whose elements are all contained in B.

It will not make sense before the next section, but for any flag F and any pair of integer 1 ≤ i < j ≤ d, we
denote by BFi, j the sequence βFi

,βFi+1
, · · · ,βF j

and by ΘFi, j the element θFi+1
Fi
⊗ θFi+2

Fi+1
⊗ · · · ⊗ θ

F j

F j−1
. Ommiting

the indices i and j means that i = 1 and j = d. If d = 1, i.e. if F is reduced to a single finite set, then BF

and ΘF are just void.

2.3. Singular link Floer homology. Let L be a singular oriented link in a 3–manifold Y . We fix

• a Heegaard diagram D = (Σ,α,β, z,w) for L;
• an orientation o for the k ∈ N double points of L.

2.3.1. Chain complex. Every double point p of L corresponds to a singular circle βp ∈ βs. The orientation
o|p of p is an orientation for the disk bordered by βp. It induces hence an orientation for βp. Now we label
the two elements of βp ∩ z (resp. βp ∩ w) by z and z′ (resp. w and w′) in such a way that an oriented arc
embedded in βp and joining z′ to z (resp. w′ to w) without meeting w (resp. z) has the same orientation as
βp. Now, we call the arc connecting z to w′ without meeting w the special arc of βp (see Fig. 13(b)).

According to Prop. 1.3, βp gives rise to circles β+ and β−, avoiding the elements of (z ∪ w) ∩ βp and
corresponding, respectively, to the positive and the negative desingularization of p. Note that here, we make
a choice to determine in which connected component of Σ \ α the four elements of β+ ∩ β− lie.

For every β ∈ β, we choose a marked point mβ ∈ β\α. If β ∈ βs, we require that mβ belongs to the special
arc of β.

For every A ⊂ βs and to any β ∈ β, we associate βA which is a circle isotopic to βη in Σ \ z ∪ w, where
η = − if β ∈ A, η = + if β ∈ βs \ A and η is void if β < βs. More specifically, we choose these circles as
described in Fig. 12. We denote by βA the set {βA}β∈β and we define ĈF(D) as the direct sum ⊕

A⊂βs

ĈF(α,βA).

Now we consider A ⊂ B ⊂ βs. If A , B, we denote by θB
A the generator of ĈF(βA,βB) described in Fig.

13. Then we can set

f B
A :

ĈF(α,βA) −→ ĈF(α,βB)

x 7−→
∑
F ∈F B

A

f z∪w
α,BF

(x ⊗ΘF ) ,

where the notation is defined in sections 2.1 and 2.2.
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mβ

β

−→
mβ

β2β0

β1

−→

β∅ β{β1,β2}

β{β2}β{β1}

(a) If β ∈ βr , then we first rename β for β0. Then, for k ∈ ~1, |αs |�,
we define successively βk as a parallel copy of β on which we have per-
formed a finger move along a line which is transverse to β in pβ and such
that βk meets exactly twice βl for every l ∈ ~0, k − 1�. Finally, for every
A ⊂ βs, we define βA as a parallel copy of β|A|.

β

mβ

−→
mβ+

β−β+

mβ−

−→

β{β}

β∅ β{β,β2}

β{β2}

(b) If β ∈ βs the construction is similar to the regular case, except that
β is replaced by β− or β+ depending on whether β ∈ A or not. Note
that the marked point mβ splits in two marked points mβ+ ∈ β+ and
mβ− ∈ β−.

Figure 12: Definition of βA: let β ∈ β. For every A ⊂ βs we define βA as above.

β mβ −→

βB

θA,B
ββA

(a) If β < B\A, then βA and βB meet twice. We choose θA,B
β as the point

which minimizes the Maslov grading, defined in section 2.3.2, of θB
A in

ĈF(βA,βB).

mββ −→ θA,B
β

βB βA

(b) If β ∈ B \ A, then βA and βB can be choosen such that they intersect
exactly once in each connected component of β\(z∪w). Then we define
θA,B
β as the intersection which lies in the special arc of β, shown in bold.

Figure 13: Definition of θB
A: let A  B ⊂ βs. For every β ∈ β, we define θA,B

β ∈ βA ∩ βB as above and set θB
A :=

{
θA,B
β

}
β∈β.

By convention and throughout this paper, we represent generator dot elements by black squares and θB
A dot elements by white ones.

Finally, we define ∂D : ĈF(D) −→ ĈF(D) as⊕
A⊂βs

∑
A⊂B⊂βs

f B
A .

2.3.2. Grading. We define two relative grading on ĈF(D), namely the Maslov grading M and the Alexander
grading A, by

M(x) − M(y) = µ(φ) − 2nw(φ) + |B \ A|

A(x) − A(y) = nz(φ) − nw(φ)

where A and B := A ∪ {β1, · · · , β|B\A|} are subsets of βs, x (resp. y) any generator of ĈF(α,βA)
(
resp.

ĈF(α,βB)
)

and φ a Whitney disk in π2(x, θA∪{β1}

A , · · · , θB
B\{β|B\A|}

, y).
Moreover, for every P ⊂ βs, we also define a grading S P which is absolute and defined, for any element

x ∈ ĈF(α,βA) where A ⊂ βs, by S (x) = |A ∩ P|. For P = βs, we simply denote it by S and we call it the
singular grading.

Remark 2.2. For simplicity, we consider in this paper only a single Alexander grading, but it can be straig-
forwardly extended to a multi-grading by coloring the connected component of the link. Note that it means
that two components which share a double point must be colored the same way.
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θA,B
ββA

βB

(a) If β < B\A, then θA,B
β is connected to the second

element of βA∩βB by exactly two disks which cancel
one each other.

βA

θA,B
β

βB

(b) If β ∈ B \ A, then all Whitney disks which
start at θA,B

β meet w ∪ z.

Figure 14: Proof of Lemma 2.3 for d = 2: Let A  B ⊂ βs. Counting the Whitney disks which meet a given β ∈ β

prove that f z̃,w̃
βB ,βA

(θB
A) = 0.

βA1

θA,B
β

βBβA2βA

βA3

(a) β < B \ A

θA,B
β

βB βA1

βA βA4βA2

βA3

(b) β ∈ B \ A

Figure 15: Proof of Lemmata 2.4 and 2.3 for d ≥ 3: Let A  B ⊂ βs and F ∈F B
A of length d ≥ 3. Then, among

all possibilities, only π2(AF , θB
A) is non empty and it contains a unique element φ which splits into maps φβ : D −→ Σ for every β ∈ β.

They are shown above with shading. The Maslov formula given in [Sar06] shows that µ(φ) = 0. The image f z∪w
BF

(ΘF ) is hence null

unless d = 3. In the latter case, the fact that #M(φ) = 1 follows from the Riemann mapping theorem.

2.3.3. Homology.

Proposition 2.2. The couple
(
ĈF(D), ∂D

)
is a chain complex which is homologicaly graded by M, by A and

filtrated by S .

Proof. We prove that (∂D)2 = 0. To this end, we need the following lemmata whose proofs are given in Fig.
14 and 15.

Lemma 2.3. For every A ⊂ B ⊂ βs and every F ∈ F B
A of length d , 3,

f z∪w
BF

(
ΘF

)
= 0.

Lemma 2.4. For every A ⊂ B ⊂ βs and every F ∈ F B
A of length d = 3,

f z∪w
BF

(
ΘF

)
= θB

A.

Now, we consider a subset A ⊂ βs and an element x ∈ ĈF(α,βA).
Let F be a flag in F

⊂βs
A . By applying Th. 2.1 to (α, BF ) and evaluating it in x ⊗ΘF , we obtain

∑
1≤m≤d

f z∪w
α,BFm,d

(
f z∪w
α,BF1,m

(
x ⊗ΘF1,m

)
⊗ΘFm,d

)

=
∑

1≤k≤d

f z∪w
α,BF1,k ,B

F

m,d

(
x ⊗ΘF1,k ⊗ f z∪w

BFk,m

(
ΘFk,m

)
⊗ΘFm,d

)
.
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Since the lemmata, this is equal to

(2) =
∑

1≤k≤d−2

f z∪w
α,BF1,k ,B

F

k+2,d

(
x ⊗ΘF1,k ⊗ θ

Fk+2
Fk
⊗ΘFk+2,d

)
.

Now, we sum them for every flag in F
⊂βs
A . On the left-hand side, we obtain

∑
F ∈F

⊂βs
A

( ∑
1≤m≤d

f z∪w
α,BFm,d

(
f z∪w
α,BF1,m

(
x ⊗ΘF1,m

)
⊗ΘFm,d

))

=
∑

A⊂B⊂C⊂βs

∑
F 1∈F B

A

∑
F 2∈FC

B

f z∪w

α,BF 2

(
f z∪w

α,BF 1

(
x ⊗ΘF

1)
⊗ΘF

2)
.

This is equal to ∑
A⊂B⊂C⊂βs

∑
F 2∈FC

B

f z∪w

α,BF 2

(( ∑
F 1∈F B

A

f z∪w

α,BF 1

(
x ⊗ΘF

1))
⊗ΘF

2
)

=
∑

A⊂B⊂C⊂βs

f C
B

(
f B
A (x)

)
= (∂D)2(x).

The right-hand side vanishes since all the terms are of the form

f z∪w

α,BF 1
,BF 2

(
x ⊗ΘF

1
⊗ θ

F2
1

F1
d1
⊗ΘF

2)
;

where F 1 ∈ F
⊂βs
A and F 2 ∈ F

⊂βs

F1
d1∪{a,b}

for some distinct a, b ∈ αs \F1
d1 . Indeed, a given such pattern appears

as many times as there are flags in F
F1

d1∪{a,b}

F1
d1

, and there are exactly two such flags.

This is true for every A ⊂ βs and every x ∈ ĈF(α,βA), hence ∂2
D(x) = 0 for every x ∈ ĈF(D).

The affirmation on grading and filtration is clearly satisfied. �

Definition 2.1. A leveled module (H, k) is a module H together with a level k ∈ Z.
A tensor product of graded modules is naturally graded by the sum of the summand grading.
We say that two leveled bigraded modules (H1, k1) and (H2, k2) with k1 ≤ k2 are stable equivalent if H2 �
H1 ⊗ A⊗(k2−k1) where A is a module freely generated by two elements whose bigrading differ by (1, 1).

Theorem 2.5. The stable class of
(
H∗

(
ĈF(D), ∂D

)
, #z − 1

)
, denoted by bĤFV(L,Y)c, depends only on the

underlying singular oriented link L and on the orientations of its double points.

The section 3.3 is devoted to the proof of this theorem.
According to Prop. 1.1, there exists a diagram for L such that #z = `r + 2s where s is the number of

double points in L and `r is the number of regular component (i.e. with no double point). There is hence a
bigraded module leveled by `r + 2s − 1 in bĤFV(L,Y)c. We denote by H̃FV(L,Y) this module.

We will prove latter that there even exists a bigraded module leveled by `− 1, where ` is the total number
of components in L, in bĤFV(L,Y)c. We denote by ĤFV(L,Y) this module.

3. Properties of ĤFV

In this section, we keep the notation from section 2.3.
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3.1. Exact triangle. In this section, we prove that the three link Floer homologies of a singular link and of
the two desingularizations of one of its double points fit an exact triangle.

Proposition 3.1. For any double point p of L, ĈF(D) can be seen as the mapping cone of a morphism
fp : ĈF(D+) −→ ĈF(D−) where D+ and D− correspond, respectively, to the positive and the negative reso-
lutions of the arc βp ∈ βs associated to p.

Proof. By construction, we have

ĈF(D+) = ⊕
A⊂βs
βp<A

ĈF(α,βA), and ĈF(D−) = ⊕
A⊂βs
βp∈A

ĈF(α,βA).

Then ĈF(D) can be seen as ĈF(D+) ⊕ ĈF(D−). We denote by ∂+ (resp. ∂−) the restriction of ∂D on ĈF(D+)
(resp. ĈF(D−)) composed with the projection on ĈF(D+) (resp. ĈF(D−)). Now, we define fp : ĈF(D+) −→
ĈF(D−) by

fp(x) :=
⊕
A⊂βs
βp<A

∑
A⊂B⊂βs
βp∈B

∑
F ∈F B

A

f z∪w
α,BF

(
x ⊗ΘF

)
for every x ∈ ĈF(D+). It is is a chain morphism since

fp ◦ ∂D+
+ ∂D− ◦ fp = (∂+)2 + fp ◦ ∂+ + ∂− ◦ fp + (∂−)2 = (∂D)2 = 0.

It is immediate to check that Cone( fp) � ĈF(D). �

Corollary 3.2. For any double point p of L and at each level greater than `r + 2s − 1, there is an exact
triangle

bĤFV(L+)c // bĤFV(L−)c

xx
bĤFV(L)c

ff

where L+ and L− are, respectively, the positive and the negative resolutions of p.

Corollary 3.3. For every subset P ∈ βs, the map ∂D respects the filtration associated to the grading S P. The
homology of the associated graded part is, up to some shifting in the grading M and A, the direct sum of
the link Floer homologies of all the link obtained by desingularizing the double points of L associated to the
elements of P.

This corollary is very helpful for reducing isomorphism proofs to the regular case.

3.2. Singular connected sum. Let L1 ⊂ Y1 and L2 ⊂ Y2 be two oriented links, possibly singular, and let
o1, o2 be orientations for their double points. Now let m1 ∈ L1 and m2 ∈ L2 be two distinguished regular
points. By L1 m1 #m2 L2 we denote the connected sum of L1 and L2 near m1 and m2 in Y1#Y2 and by L1 m1 #s

m2
L2

their singular connected sum which is a singularization of L1 m1 #m2 L2 located at their fuzioning points. In
this section, we prove that the link Floer homologies of all these links are related in a simple way.

For i ∈ {1, 2}, let Di = (Σi,αi,βi, zi,wi) be a Heegaard diagram for Li such that z∗ ∈ z1 represents m1 ∈ L1
and w∗ ∈ w2 represents m2 ∈ L2. Then, as shown in Fig. 16,

D# =
(
Σ1#Σ2,α1 ∪ α2,β1 ∪ β2, (z1 ∪ z2) \ {z∗}, (w1 ∪ w2) \ {w∗}

)
is a diagram for L1 m1 #m2 L2.

Definition 3.1. Let (C1, ∂1) and (C2, ∂2) be two chain complexes repectively endowed with Z–grading gr1
and gr2. Then C1 ⊗ C2 is naturally endowed with a differential ∂ defined for every elements x1 ∈ C1 and
x2 ∈ C2 by ∂(x ⊗ y) = ∂1(x) ⊗ y + x ⊗ ∂2(y).

Proposition 3.4. With the notation above, the chain complexes ĈF(D#) and ĈF(D1)⊗ĈF(D2) are isomorphic.

On the basis of remark 3.1, the proof is a straightforward adaptation of the proof of Th. 11.1 in [OS08]
where the chain map defined by counting pseudo-holomorphic triangles is replaced by a chain map which
counts pseudo-holomorphic polygons.
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z∗ w∗Σ1 Σ2 −→

Σ1#Σ2

Figure 16: Heegaard diagrams for connected sums

L2
m2

L1
m1 //

singular
connected sum ##

L2L1

L1 L2

{{
connect

ed

sums

Figure 17: Singular connected sums seen as regular ones

Definition 3.2. A tensor product of leveled modules is naturally leveled by the sum of the two summands
levels.

Proposition 3.5. With the notation above,

bĤFV(L1 m1 #m2 L2,Y1#Y2)c � bĤFV(L1,Y1)c ⊗ bĤFV(L2,Y2)c.

Proof. It follows from standard algebra and the fact that #
(
(z1 ∪ z2) \ {z∗}

)
− 1 = (#z1 − 1) + (#z2 − 1). �

Likewise, by considering a once pointed diagram of the linkfree space, one can prove a similar statement
on the embedding of a link inside a connected sum of spaces.

Proposition 3.6. With the notation above,

bĤFV(L1,Y1#Y2)c � bĤFV(L1,Y1)c ⊗
(
ĤFY2, 0

)
where ĤF(Y2) is endowed with trivial Alexander grading and singular filtration.

Proposition 3.7. With same notation, ĤFV(L1 m1 #s
m2

L2,Y1#Y2) ≡ 0.

Proof. As shown in Fig. 17, any singular connected sum can be replaced by two regular ones on the once-
singularized unknot K∞. According to Prop. 3.5, it is sufficient to prove that ĤF(K∞) ≡ 0.

A singular Heegaard diagram for K∞ is given in Fig. 18. Note that, because of the symmetry (on the
sphere), the choice of orientation for the double point is of no importance. It is easily seen that the associated
chain complex has four generators, denoted in Fig. 18 by 1, 2, 3 and 4 and that the differential involves only
two Whitney triangles. This gives ∂(1) = 4, ∂(3) = 2 and the resulting homology is null.

�

3.3. Invariance. To prove Th. 2.5, we need to check the invariance under the following operations:
i. changing the pseudo-holomorphic structure on Σ;

ii. arc isotopies;
iii. regular and singular handleslides;
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−→

4

3

1

2
α

β0
{β0}

β0
∅

Figure 18: A diagram on S 2 for K∞: the two Whitney triangles are shown on the right with different shading.

βr
0

mβs
0

mβr
0

βs
0

//

(βs
0)

′
{βs

0}

(βs
0)

′
∅

(βr
0)

′
∅

(βr
0)

′
{βs

0}

γ

~~

(β̃s
0)

′
∅

(β̃s
0)

′
{βs

0}

Figure 19: Definition of β′A for a singular handleslide

iv. index zero/three (de)stabilizations;
v. index one/two (de)stabilizations;

vi. moving a point mβ;
vii. moving an element of β+ ∩ β−.

An arc isotopie can be seen as a special case of the first operation. The proof of invariance under the
operations i., iii., vi. and vii. are similar, so we only treat in details the case of singular handleslides.

3.3.1. Singular handleslides. Let D′ = (Σ,α,β′, z,w) be a Heegaard diagram obtained from D by perform-
ing a singular β–handleslide of βs

0 ∈ βs over βr
0 ∈ βr.

Let β ∈ β. For every A ⊂ βs ' β
′
s, we define β′A using the algorithm of Fig. 12 but performed on

ββs
instead of β. Equivalently, we define together {βA}A⊂βs

∪ {β′A}A⊂β′s as in Fig. 12 but with |A| replaced
by

(
|A| + |βs| + 1

)
for every A ⊂ β′s. Then we consider γ, a parallel copy of βr

0 which does not meet
(βr

0)A for any A ⊂ βs, but which meet the handleslide arc from βs
0 to βr

0. Now, we define successively the
(̃βs

0)
′

A for all A ⊂ βs as handleslides of the (βs
0)′A over γ (see Fig. 19). Finally, for every A ⊂ βs, we set

β′A :=
({
β′A

}
β∈β \

{
(βs

0)′A
})
∪

{
(β̃s

0)
′

A

}
.

One can check that the set {β′A|A ⊂ βs} is admissible for the construction given in section 2.3.
Now, we denote by θA the intersection point in TβA

∩ Tβ′A which maximizes the Maslov grading in
ĈF(βA,β

′
A). Then, using the notation from section 2.3 but adding a subscript to indicate the diagram we are
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�� ��

;

Figure 20: Obstruction for invariance under non authorized singular handleslide

dealing with, we set for every A ⊂ C ⊂ βs the map f sh
A,C : ĈF(α,βA) −→ ĈF(α,β′C) by

f sh
A,C(x) :=

∑
A⊂B⊂C

∑
F 1∈F B

A
F 2∈FC

B

f z∪w

α,BF 1
D ,BF 2

D′

(
x ⊗ΘF

1

D ⊗ θB ⊗ΘF
2

D′
)

for every x ∈ CF−(α,βA). Finally, we define f sh : ĈF(D) −→ ĈF(D′) as⊕
A⊂βs

∑
A⊂C⊂βs

f sh
A,C .

By an argument similar to the proof of Prop. 2.2, one can prove that f sh ◦ ∂D + ∂D′ ◦ f sh = 0. It is hence
a chain map which clearly respects the singular filtration. Moreover, the associated graded part is the direct
sum, for every A ⊂ βs, of the maps

f sh
A :

ĈF(α,βA) −→ ĈF(α,β′A)

x 7−→ f z∪w
α,βA,β

′
A
(x ⊗ θA)

,

which are the invariance maps for β–handleslide in the regular case. For instance in [Sah10], they are proven
to be quasi–isomorphisms. The whole map f sh is hence an quasi–isomorphism.

Remark 3.1. The same outlines — i.e. using the technics developped in section 2.3 to define a chain map
f : ĈF(D) −→ ĈF(D′) which respects the singular filtration and then proving that the graded part is an
isomorphism since it corresponds to an invariance map from the regular world — can be adapted to the other
cases. However, it is not working for an handleslide of a regular circle βr

0 over a singular one βs
0, since the

set β′A defined above for any given A ⊂ βs does not correspond to an handleslide of (βr
0)A over (βs

0)A (see
Fig. 20).

3.3.2. Index zero/three and regular one/two (de)stabilizations. Index one/two stabilizations can be seen as
a connected sums with an empty copy of S 3. But since ĤF(S 3) � F2, Prop. 3.6 achieve the proof. The
argument is valid only when attaching the new handle to a pointed domain. However, it can be then moved
among domains via handleslides.

Regular index zero/three stabilizations can also be seen as a connected sum with the trivial link in S 3.
Since bĤFV(Unknot, S 3)c � b(F2, 0)c, Prop. 3.5 concludes the proof.

3.3.3. Singular one/two (de)stabilizations. Let D′ := (Σ,α′,β′, z′,w′) be a Heegaard diagram obtained from
D by performing an index one/two stabilization on a element z∗ ∈ z ∩ β∗ for a given β∗ ∈ βs. We denote by
α′, β′, z′ and w′ the new elements. We also denote by p∗ the singular point of L corresponding to β∗ and by
bbeta∗s the set bbetas \ {β

∗}.
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D0 : D1 :

D :

77gg

''ww

D0 : D1 :

Figure 21: Perturbations of D: in a neighborhood of z∗, the four diagrams are depicted above. Outside they are all small

perturbations of D such that, on every connected component, any two perturbations meet exactly twice and transversaly.

Now, let D0, D1, D0 and D1 be the four diagrams depicted in Fig. 21. In particular, D0 and D0 are
diagrams for the positive desingularization of p∗ whereas D1 and D1 are diagrams for the negative one.
Moreover, under the terms of Prop. 3.1, we have ĈF(D′) � Cone

(
fp∗ : ĈF(D0) −→ ĈF(D1)

)
. Exactly in the

same way as fp∗ , we can define a map fp∗ : ĈF(D0) −→ ĈF(D1).
Now, we want to prove, as a first step, that Cone( fp∗ ) and Cone( fp∗ ) are quasi-isomorphic. Since the

diagrams differ by isotopies and handleslides, we already have quasi-isomorphisms f0 : ĈF(D0) −→ ĈF(D0)
and f1 : ĈF(D1) −→ ĈF(D1). For every A ⊂ β∗s and for f : ĈF(α,β0) −→ ĈF(α,β1) ∈ { fp∗ , fp∗ , f0, f1}, let’s
θ

f
A be the top-dimensional element of ĈF(β0,β1) used to define f . We define two maps g0, g1 : ĈF(D0) −→

ĈF(D1) as, respectively,⊕
A⊂β∗s

∑
A⊂B⊂C⊂D⊂β∗s

∑
F 1∈F B

A
F 2∈FC

B
F 3∈F D

C

f z∪w

α,BF 1
D0
,BF 2

D0
,BF 3

D1

(
. ⊗ΘF

1

D0
⊗ θ f0

B ⊗ΘF
2

D0
⊗ θ

f 0
C ⊗ΘF

3

D1

)

and ⊕
A⊂β∗s

∑
A⊂B⊂C⊂D⊂β∗s

∑
F 1∈F B

A
F 2∈FC

B
F 3∈F D

C

f z∪w

α,BF 1
D0
,BF 2

D1
,BF 3

D1

(
. ⊗ΘF

1

D0
⊗ θ

fp∗

B ⊗ΘF
2

D1
⊗ θ f1

C ⊗ΘF
3

D1

)

where the subscript on B and Θ symbols indicate the diagram we are dealing with. We obtain the following
diagram:

ĈF(D0)∂D0 ;;
fp∗ //

f0
��

g1

$$g0

$$

ĈF(D1)

f1
��

∂D1cc

ĈF(D0)∂D0 ;;
fp∗

// ĈF(D1) ∂D1cc

.

As in the proof of Prop. 2.2, it follows from Th. 2.1 that g0 ◦ ∂D0 + fp∗ ◦ f0 + ∂D1
◦ g0 = 0 and g1 ◦ ∂D0 + f1 ◦

fp∗ + ∂D1
◦ g1 = 0. These formulae prove that the linear map f st : ĈF(D0) ⊕ ĈF(D1) −→ ĈF(D0) ⊕ ĈF(D1)

defined as (
f0 0

g0 + g1 f1

)
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−→ −→

Figure 22: Substituing (sufficiently long) neck for dot

is a chain map between Cone( fp∗ ) and Cone( fp∗ ) and since its graded part associated to the filtration S {β∗} is
a sum of quasi-isomorphism, the whole map f st is a quasi-isomorphism.

Now, the standard “long neck” argument can be applied to Cone( fp∗ ). Indeed, α′ and β′ in D0 and D1
can be seen as the result of a connected sum with a 2–sphere along a neck. If it is sufficiently long, the neck
cannot be involved in any Whitney disk counted by ∂D0

, fp∗ nor ∂D1
otherwise Gromov compacity would

produce a positive periodic domain which does not intersect z nor w. This has two consequences:
• Cone( fp∗ ) splits in two summands C1 and C2, one for each element in α′ ∪ β′;
• the neck and the 2–sphere acts just like a dot that Whitney disks cannot intersect. Doing such a

substitution is equivalent to coming back to D (see Fig. 22 ).

The complexes C1 and C2 are then both isomorphic to ĈF(D) and since corresponding generators in C1 and
C2 are connected by a bigon φ with #(φ∩w) = 1 and #(φ∩ z) = 0, it follows that ĈF(D′) is quasi-isomorphic
to ĈF(D) ⊗ A.

4. Conjectures

Singular link Floer homology was first motivated by the hope of finite type properties, whatever this may
mean, of knot Floer homology.

Thanks to the combinatorial description, many computations have been made and they led to some con-
jectures.

Conjecture 1. For every singular link L ⊂ Y with k double points, there exists an orientation o for the
double points such that ĤFV(L, o,Y) factorizes by V⊗k.

Besides being a direct categorification of the finite type properties of the Alexander polynomial, this
conjecture have the following consequences:

Corollary 4.1. If P(t, q) is the Poincaré polynomial of the regular knot Floer homology, then, for every
n ∈ N∗, the image of P(1, q) in Z[q]/(2, (1 + q)n) is an invariant of finite type.

Corollary 4.2. Invariants of finite type with Z
/
2Z coefficients detect the Seifert genus of fibered knots.

Proof. The width in Alexander grading of the Poincaré polynomial of knot Floer homology is known to be
equal to 2g where g is the Seifert genus. Moreover, since the extremal coefficient for fibered knots are equal
to 1, it remains true for the reduction modulo 2. �

Corollary 4.3. Among fibered knots, invariants of finite type with Z
/
2Z coefficients detect the unknot.

For knots in S 3, we have a more precise conjecture:

Conjecture 2. Let K ⊂ S 3 be a knot which admits a presentation as a composition of a regular tangles Tr,
i.e. a tangle with no double point and a purely singular one Ts, i.e. a tangle with only singular crossing and
such that among the four strands leaving a given double point, at least two are not attached to the border of
Ts (see e.g. Fig. 23). Then, the orientation of the double points of K induced by the orientation of the plane
on which Ts is drawn is a suitable choice for applying conjecture 1.
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{

Ts Tr

Figure 23: An example of composition between a regular tangle and a purely singular one

Corollary 4.4. If K ⊂ S 3 is a purely singular knot, i.e. a knot which admits a planar diagram whose crossing
are all singular, and if its double points are given the orientation o which corresponds to the orientation of
the plane where such a diagram is drawn on, then its link Floer homology vanishes.

Proof. Let D be a planar diagram for K with k ∈ N∗ singular crossing and no regular one. Then, Seifert
algorithm give a Seifert surface for any desingularization of K with Euler charateristic d − k where d ∈ N∗

is the number of connected component of the Seifert smoothing of D. It corresponds to a genus of 1+k−d
2 and

the width in Alexander grading of the link Floer homology of any desingularization of K is hence bounded
above by 1+k−d ≤ k. But according to Conjecture 2, ĤFV(L, o, S 3) has aH⊗k factor which is of Alexander
width k + 1. The homology ĤFV(L, o, S 3) is hence null. �
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