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Il n’y a, à l’évidence, aucun ordre pertinent dans les remerciements. A défaut de pertinence, cherchons
donc l’efficience et procédons, autour de l’habilitation, par cercles successifs. Je suis profondément recon-
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le mois thématique, lequel a clairement tout acceléré.
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Avant-propos

Une infusion de menthe poivrée en main2 et les yeux plongés dans l’âtre, les longues soirées d’hiver sont
l’occasion de méditer l’effervescence et l’exaltation des ivresses estivales. Bilan d’une année passée, elles
forment la matrice des ambitions naissantes et bâtissent le socle des triomphes à venir. Si seulement la
recherche fonctionnait ainsi. Mais la recherche est souvent une course passionée où le chercheur, slalo-
mant entre ses enseignements, ses responsabilités et sa famille, poursuit les veines du filon de ses pensées,
bifurquant au gré des rencontres, des envies, des projets. Le tout forme un ensemble cohérent, mais c’est
seulement en prenant le temps d’observer ses réalisations que le chercheur peut en respirer l’harmonie.
L’habilitation à diriger des recherches est le moment d’une telle suspension.

Ainsi, la réalisation de ce mémoire a été l’occasion d’analyser les forces souterraines qui ont animé mes
recherches depuis leurs débuts. La théorie des nœuds reste, sans conteste, un pilier central. Mais au gré de
quelques méandres fondateurs, un schéma plus précis s’est dessiné : l’analyse des modèles combinatoires
issus de la topologie et leur réutilisation hors de leur contexte originel. Les deux parties qui forment ce
mémoire en sont deux illustrations concrètes.

2que l’on pourra avantageusement remplacer par un verre de cognac Grand Breuil XO
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Introductions

Introduction en français

La théorie des nœuds et des entrelacs étudie, à déformation près, les plongements lisses d’un ou de plusieurs
cercles dans S 3. Dès son origine, elle puise ses motivations dans ses applications aux autres domaines. C’est
en effet Lord Kelvin qui, le premier, chercha à classifier les nœuds dans la cadre de sa théorie, physique,
des atomes-vortex. Tait donna alors les premières tables de classification [Tai84], mais pour une analyse
plus intrinsèque, il faut attendre la toute fin du XIXème siècle, où l’émergence d’outils algébriques, aussi
bien homotopiques qu’homologiques, donnèrent à l’étude des nœuds une nouvelle impulsion. La notion
d’extérieur d’un entrelacs, notamment, pris une importance décisive, que ce soit pour l’étude même de
l’entrelacs—via, par exemple, l’étude de son groupe fondamental, de ses surfaces proprement plongées et de
leurs caractéristiques, ou de ses revêtements qui mènent, entre autre, au polynôme d’Alexander [Ale28]—ou
pour ses applications à l’étude des 3–variétés via les techniques de chirurgie. Dès ces débuts, une dimension
combinatoire s’est imposée : en projetant génériquement les entrelacs dans un plan et en munissant les points
doubles d’une information dessus/dessous, K. Reidemeister réduit en effet l’étude des entrelacs à celle de
leurs diagrammes modulo trois mouvements locaux [Rei27].

Cette perspective combinatoire s’est ensuite accentuée, au gré des révolutions successives que la théorie
des nœuds a traversé. La découverte du polynôme de Jones [Jon87] marque, au milieu des années 80,
l’avènement des invariants dits quantiques. En prenant une certaine distance vis-à-vis de la topologie, ces
derniers renforcent la composante combinatoire de l’étude des entrelacs en s’appuyant sur les diagrammes
pour introduire de nouveaux outils, issus des représentations des groupes quantiques. L’idée n’est alors
plus nécessairement de définir globalement un invariant, mais de le caractériser localement par une relation
dite d’écheveau (skein) imposant son comportement vis-à-vis de certains mouvements sur les diagrammes.
Notons alors une nouvelle confluence de la théorie des nœuds avec la physique, la construction des invariants
de N. Reshetikhin et V. Turaev, étendus au cas des graphes rubans dans [RT90], s’inspirant en effet fortement
d’une interprétation du polynôme de Jones, donnée par E. Witten [Wit94], dans le cadre physique de la
théorie quantique des champs.

La théorie des invariants de type fini, également appelés invariants de Vassiliev, a accentué, au début des
années 90, ce virage combinatoire en intégrant les invariants quantiques au sein d’une famille plus vaste.
Cette dernière est définie en considèrant l’espace des nœuds longs immergés et en regardant les cocycles
modulo les différentes strates induites par le nombre de points singuliers ; V. Vassiliev définit ainsi des
invariants de différents degrés [Vas90]. Cette construction a ensuite été réinterprétée par M. Goussarov
[Gou94], et indépendamment par J. Birman et X-S. Lin [BL93], comme l’ensemble des invariants ayant un
comportement polynomiale, dans le sens où une certaine dérivée itérée s’annule, la dérivation correspondant
ici à la différentiation de l’invariant entre deux entrelacs obtenus l’un par rapport à l’autre par un unique
changement de croisement. Les invariants de type fini induisent une filtration sur le module abstraitement
engendré par les entrelacs, et l’étude de ces invariants peut se ramener à l’étude de l’espace graduéG associé,
et plus précisemment à la recherche d’une base combinatoire pour G ; voir [Bar95]. En quelques années, le
nombre d’invariants connus et étudiés a donc explosé, mais la plupart d’entre eux restent topologiquement
mystérieux, les liens avec les invariants classiques demeurant largement incompris.

A l’aube du XXème siècle, une nouvelle direction s’est ouverte pour l’étude des invariants quantiques,
non plus en élargissant leur famille, mais en les raffinant, au contraire, chacun indépendamment. Là encore,
tout commença par le polynôme de Jones et sa catégorification, l’homologie de Khovanov : de manière
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combinatoire, M. Khovanov [Kho00] définit un invariant prenant la forme d’une homologie bigraduée dont
la caractéristique d’Euler graduée redonne le polynôme de Jones. Le polynôme d’Alexander fut ensuite, lui
aussi, rapidement catégorifié par P. Ozsváth, Z. Szabó [OS04] et, indépendamment, J. Rasmussen [Ras03],
sous le nom d’homologie d’Heegaard–Floer. D’autres invariants quantiques suivirent. Outre leur capacité
accrue à distinguer les nœuds entre eux, les différentes catégorifications se distinguent, en général, par leur
comportement fonctoriel vis-à-vis des cobordismes de nœuds, offrant ainsi aux invariants quantiques une
interprétation d’ordre catégorique. Dans ce contexte également, le travail consiste pour beaucoup à identifier
des objets de type algébrique reproduisant combinatoirement la relation d’écheveau de l’invariant catégorifié.
Notons toutefois le caractère singulier de l’homologie d’Heegaard–Floer, de part sa contruction—relevant de
la géométrie symplectique et des A∞–structures—et de part sa surprenante capacité à détecter les propriétés
topologiques d’un nœud.

Mes travaux de thèse, puis de postdoc, se sont inscrits dans ce contexte de catégorification. Un premier
pan visait à décortiquer les mécanismes internes d’invariance de l’homologie de Khovanov ; cela a mené à
un raffinement trigradué de cette dernière pour des notions d’entrelacs contraints [14, 13, 11]. Un second
pan, plus ambitieux, cherchait à identifer certains comportements de type fini au sein de l’homologie de
Heegaard–Floer ; cela a mené, en particulier, à une extension de cette dernière aux entrelacs singuliers3 [12].
Ces années m’ont permis d’assimiler différentes structures combinatoires, toutes issus de la topologie.

Suite à mon recrutement à l’Université d’Aix–Marseille en 2010, le spectre de ma recherche s’est élargi,
et son optique s’est, en un sens, inversé : une large proportion de mes travaux s’attache désormais à réutiliser
des modèles combinatoires ou des outils issus de la théorie des nœuds dans d’autres domaines, connexes ou
plus lointains. Dans ce mémoire, j’ai décidé de développer deux aspects distincts. Le premier concerne
la classification des anneaux proprement plongés dans B4 à homotopie d’enlacement près. Un élément
clef de cette classification provient de l’identification d’une sous-classe—celle des anneaux rubans—dont
le comportement reproduit celui des enlacements d’intervalles classiques. Le second porte sur les codes
correcteurs d’erreurs quantiques dits CSS, leur réinterprétation en terme de complexes de chaı̂nes sur F2, et
comment ce pont permet de définir et d’étudier une notion de produit pour les codes CSS.

Application des enlacements d’intervalles aux anneaux proprement plongés dans B4

Comme rappelé au début de cette introduction, la théorie des nœuds consiste à étudier les différentes façons
qu’un cercle plongé dans S 3 a de se nouer avec lui-même. L’étude des entrelacs procède de même avec
plusieurs cercles. Mais dans ce second cas, plusieurs phénomènes se mêlent, les différentes composantes
pouvant s’enlacer entre elles, mais chaque composante pouvant également se nouer toute seule. En au-
torisant chaque composante connexe à s’auto-croiser, la notion d’homotopie d’enlacement (link-homotopy),
introduite par J. Milnor dans sa thèse, permet de se concentrer uniquement sur l’enlacement des composantes
distinctes entre elles. Dans l’objectif d’une classification complète, J. Milnor a montré [Mil54] le rôle es-
sentiel joué par l’image des longitudes dans le quotient du groupe fondamental par les différents termes de
sa suite centrale descendante. De ces éléments, il extrait une suite de nombres, dits de Milnor, dont certains,
dits sans répétition, sont invariants par homotopie d’enlacement. Ces nombres ne sont toutefois définis que
modulo une certaine quantité, déterminée par les nombres de Milnor d’ordre inférieur.

Quelques trente ans plus tard, N. Habegger et X-S. Lin ont étendu les travaux de J. Milnor au cas
des enlacements d’intervalles (string links). Ces derniers correspondent aux plongements de segments
compacts dans B3 à bords fixés dans ∂B3. En recollant de manière standard les extrémités de chacun de
ses composantes, tout enlacement d’intervalle se referme en un entrelacs ; et inversement, tout entrelacs
peut s’ouvrir en un enlacement d’intervalles. Cette correspondance n’est cependant pas bijective et les
clôtures d’enlacements d’intervalles distincts peuvent donner le même entrelacs. Dans le cas des enlace-
ments d’intervalles, les nombres de Milnor sont cependant parfaitement définis, l’indétermination dans le
cas des entrelacs correspondant à l’indétermination de leur ouverture en enlacement d’intervalles. Dans
[HL90], N. Habegger et X-S. Lin montrent que les enlacement d’intervalles sont, à homotopie d’enlacement
près, équivalents aux tresses et que ces dernières sont classifiées, toujours à homotopie d’enlacement près,
par les nombres de Milnor sans répétition. Bien qu’équivalent, l’invariant classifiant de Habegger–Lin prend

3au sens de Vassiliev
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néanmoins une autre forme, celle d’un automorphisme à base conjugante (basis-conjugating) du groupe
libre réduit RFn, généralisant ainsi les représentations d’Artin pour les groupes de tresses [Art47].

A l’instar des entrelacs, les enlacements d’intervalles peuvent s’étudier via leurs diagrammes mod-
ulo les mouvements de Reidemeister. L’homotopie d’enlacement, elle aussi, peut rentrer dans ce cadre
comme la relation d’équivalence induite par le changement d’auto-croisement (self–crossing change), à
savoir l’opération qui échange l’information dessus/dessous sur un point double dont les deux préimages
sont sur la même composante.

D’un point de vue combinatoire, les diagrammes d’entrelacs peuvent s’interpréter comme des graphes
planaires 4-valents et les différents mouvements comme des opérations locales sur ces graphes. En relâchant
la condition de planarité, on définit les objets virtuels. Bien que de nature purement diagrammatique, de
nombreux invariants d’ordre topologique s’étendent au cas virtuel. La présentation de Wirtinger du groupe
fondamental, construite combinatoirement sur la donnée d’un diagramme, s’étend par exemple sans difficulté
au cas virtuel. Il est notable qu’une majorité de ces invariants topologiques étendus combinatoirement se
révèlent invariants par un certain mouvement local, noté OC (over-commute) dans la suite. La théorie des
nœuds soudés (welded) est définie comme le quotient de la théorie virtuelle par ce mouvement OC. Comme
nous allons le voir, cette définition, a priori arbitraire, se justifie topologiquement au niveau des surfaces
nouées dans B4 comme la combinatoire de singularités 4-valentes en dimension plus grande.

La théorie des surfaces nouées en dimension 4 trouve son origine au milieu des années 20, dans les
travaux de E. Artin [Art25]. L’étude systématique de ces objets ne commença néanmoins qu’au début des
années 60, notamment avec les travaux de M. Kervaire, R. Fox et J. Milnor [FM66, KM61, Ker65], mais
aussi de T. Yajima ou T. Yanagawa, au Japon4. Dès ces débuts, on peut identifier deux approches pour l’étude
des surfaces. Un premier courant, issu des dimensions supérieures, s’inscrit dans une perspective fortement
algébrique; un second, issu de la dimension 3, reprend de la théorie des nœuds les aspects diagramma-
tiques. A l’image des entrelacs, les surfaces nouées peuvent en effet s’étudier au travers de leurs projections
génériques, mais le jeu des singularités apparaissant après projection est alors plus complexe : on y retrouve
des lieux de points doubles, mais aussi des points triples et des points de branchement. Néanmoins, en
se limitant aux diagrammes ne possédant que des lieux de points doubles, la combinatoire obtenue se rap-
proche fortement de celle des entrelacs ; cela fut remarqué par T. Yajima [Yaj62] via l’application Tube,
laquelle gonfle combinatoirement tout diagramme d’entrelacs en tores noués ou, de manière équivalente, via
l’application Spun, qui associe à un entrelacs la réunion de ses images par rotation autour d’un axe. Dans
le cas des sphères, T. Yanagawa montra que la sous-classe des surfaces possédant un diagramme sans point
triple ni point de branchement, initialement appelée simple, s’identifie à une autre sous-classe, celle des sur-
faces rubans, définie de manière plus topologique comme les surfaces bordant une 3–boule immergée dont
le lieu singulier se limite à un certain type de singularités dites rubans [Yan69a, Yan69b, Yan70]. Dans le cas
des tores, la classe ruban est plus restrictive que la classe simple, mais c’est précisément dans celle-ci que les
applications Tube et Spun plongent la théorie des entrelacs classiques. En 2000, S. Satoh a montré [Sat00]
que l’application Tube pouvait même s’étendre—au prix de son injectivité—en une application surjective
définie des entrelacs soudés vers les tores rubans.

L’application Tube fait donc le lien entre la théorie soudée—laquelle peut-être vue comme une exten-
sion combinatoire de la théorie des nœuds—et la théorie ruban—laquelle peut-être vue comme une étape
intermédiaire vers la théorie générale des surfaces nouées. C’est en s’appuyant sur ce parallèle que les
travaux présentés dans la première partie généralisent la théorie de Habegger–Lin à la dimension 4. Nous y
introduisons les enlacements d’anneaux (string 2–link), définis comme les anneaux proprement plongés dans
B4 à bords trivialement fixées dans ∂B4 � S 3, et les classifions à homotopie d’enlacement près. La preuve
s’articule en trois étapes. Dans un premier temps, le résultat est montré au sein de la sous-classe ruban, pour
une notion a priori restreinte d’homotopie d’enlacement ruban. Puis dans un second temps, nous montrons
un résultat de généricité pour la sous-classe ruban, dans le sens où tout enlacement d’anneaux est, à homo-
topie d’enlacement près, équivalent à un enlacement d’anneaux ruban. Enfin, nous montrons que l’invariant
classifiant pour la sous-classe ruban est invariant par homotopie d’enlacement générale.

4voir plus bas pour des références, et [Suz76] pour une bilbiographie plus exhaustive
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Pour la première étape, nous commençons par réduire les enlacements d’intervalles classiques à la simple
donnée, pour un diagramme fixé, des interconnexions entre ses points doubles vues comme des singularités
4–valentes. Par un procédé de coloriage de ce substrat combinatoire par des éléments de RFn, nous en
déduisons une construction alternative de l’invariant de Habegger–Lin. Cette construction s’étend dès lors
au cas soudé, et donc au cas ruban. Nous profitons d’ailleurs de ce mémoire pour traiter, plus généralement,
le cas ruban de codimension deux en toute dimension supérieure.

Les deux étapes suivantes s’appuient fortement sur la notion de diagramme pour les surfaces nouées (bro-
ken surface diagram) ; mais cela présente une difficulté nouvelle pour traiter les homotopies d’enlacement.
En effet, dans le cas de la dimension 3, tout enlacement d’intervalle singulier peut être localement désingularisé
par une perturbation infinitésimale, et la notion d’homotopie d’enlacement se réduit à un mouvement supplémentaire
sur les diagrammes réguliers. En dimension 4, une surface singulière générique possède un nombre fini de
points doubles isolés robustes à toute perturbation. Nous commençons donc par développer une théorie de
diagramme pour les surface immergées, et nous donnons trois mouvements singuliers qui, complétés par
les mouvements de Roseman du cas plongé, génèrent l’homotopie d’enlacement. Au passage, nous donnons
également des jeux de mouvements générant, respectivement, l’isotopie ambiante pour les surfaces sin-
gulières, l’homotopie régulière et l’homotopie générale. A l’aide de ces diagrammes de surfaces singulières
et encore par un procédé de coloriage par des éléments de RFn, nous étendons l’invariant de Habegger–Lin à
tous les enlacements d’anneaux immergés, et montrons qu’il est invariant par homotopie d’enlacement. Tou-
jours à l’aide des diagrammes de surfaces immergées nous montrons également que le résultat de généricité
sur les objets rubans évoqué plus haut est équivalent à un théorème de A. Bartels et P. Teichner affirmant que
tout plongement de sphères dans S 4 est trivial à homotopie d’enlacement près [BT99].

Comparé au résultat de Habbeger–Lin et aux travaux de J. Milnor, le théorème de Bartels–Teichner
semble indiquer une rupture de comportement entre la dimension 3 et la dimension 4. Il n’en est rien. La
classification des entrelacs et des enlacements d’intervalles se cristallise en effet sur la notion de longitude
pour ces objets ; or les sphères, étant simplement connexes, n’ont pas de longitude. Il est donc bien plus
naturel de voir la classification des entrelacs s’étendre aux tores noués plutôt qu’aux sphères. C’est tout du
moins la philosophie qui sous-tend la généralisation de la classification de Habbeger–Lin à la dimension 4
développée dans ce mémoire.

Application de la topologie algébrique aux codes quantiques

En informatique, les codes correcteurs d’erreurs ont été développés afin de détecter et de corriger les
éventuelles erreurs pouvant apparaitre lors de la transmission d’un message. La stratégie consiste à plonger
l’ensemble des mots possibles, vu comme un F2–espace vectoriel, dans un espace plus grand afin d’enrober
tout message d’une certaine redondance. Tous les codes correcteurs ne se valent pas, et les paramètres les
plus élémentaires permettant de les comparer sont leurs longueurs, correspondant à la taille des mots après
encodage, leurs dimensions, correspondant à la taille des mots avant encodage, et leurs distances minimales,
qui quantifie le nombre d’erreurs corrigibles. Par ailleurs, le décodage d’un code général étant NP–complet
[BMv78], l’existence d’algorithmes de décodage efficaces5 pour un code donné est également un aspect
essentiel. De ce point de vue, les codes LDPC, introduits par R. Gallager dans sa thèse [Gal62], se sont
particulièrement distingués : certains algorithmes de décodage itératif [RSU01] peuvent alors s’appliquer
avec une complexité très faible, des performances proches de la limite de Shannon, et ce sur des familles
dont les dimensions et distances minimales augmentent linéairement avec la longueur.

En informatique quantique, la correction d’erreur est, d’une part, d’autant plus essentielle que le sim-
ple stockage de donnée est inévitablement soumis à des phénomènes naturels de décohérence mais, d’autre
part, également compromise par le théorème d’impossibilité du clonage quantique. Longtemps considéré
comme insurmontable, A. R. Calderbank, P. Shor [CS96] et, indépendamment, A. Steane [Ste96] ont
néanmoins réussi à contourner le problème en élaborant un système de codage, dit stabilisateur, perme-
ttant une procédure quantique de correction d’erreur. Parmi ces codes stabilisateurs, Calderbank–Shor et
Steane ont plus particulièrement mis en lumière les codes dits CSS. En dépit des différences profondes entre
les théories classiques et quantiques des codes correcteurs, on retrouve, pour les codes CSS, les notions de

5de complexité polynômiale
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longueur, de dimension, de distance minimale, et même le caractère LDPC, qui ne facilite plus seulement
l’émergence d’algorithme performant de décodage [PC08], mais aussi, en minimisant le nombre de qubits
susceptibles d’interagir, l’implémentation concrète du codage. Plus important encore, la donnée d’un code
CSS équivaut à la donnée de deux codes classiques orthogonaux, ce qui fournit un angle d’attaque naturel
pour les théoriciens des codes. De ce point de vue, la longueur et la dimension du code CSS se déduisent
aisément de celles des deux codes classiques, mais la distance minimale, elle, n’est que minorée. Cela a
néanmoins donné lieu à de nombreuses familles LDPC de codes quantiques, on pourra citer par exemple
[Pos01], [MMM04], [COT07], [GFL08], [Hag08], [IM07], [Djo08], [SRK08], [Aly08], [AMT12], [TZ14],
[CDZ13] ou [Del12].

Mais la donnée d’un code CSS, combinatoirement, correspond également à la donnée d’un complexe de
chaı̂nes de longueur trois muni d’une base. Le parallèle va même plus loin : la longueur du code associé
à un complexe de chaı̂ne correspond à la dimension de l’espace central du complexe, la dimension à celle
de l’homologie et la distance minimale au poids minimal d’un représentant d’une classe non triviale en
homologie ou en cohomologie. Cette convergence des codes quantiques et de la topologie (algébrique),
inattendue mais observée très tôt par A. Kitaev, est à l’origine de plusieurs constructions de codes. Là
aussi, on pourra citer [Kit03], [FM01], [FLM02], [BMD07], [Zém09] ou [10] pour autant de familles, toutes
LDPC.

De nombreuses familles LDPC de codes CSS sont donc connues, basées sur des constructions très
différentes les unes des autres. Un fait remarquable les unit : contrairement au cas classique, aucune ne
possède une distance minimale augmentant plus vite que la puissance αième de la longueur, avec α > 1

2 .
De ce point de vue, les deux meilleures familles sont celle de Freedman–Luo–Meyer, dont la dimension
augmente comme

√
n et la distance minimale comme

√
n
√

ln(n) où n est la longueur; et celles de Tillich–
Zémor, dont la dimension est linéaire en la longueur et la distance minimale augmente comme la racine
carrée de la longueur. Le caractère fortuit ou non de cette barrière pour la distance minimale en racine carrée
de la longueur reste à ce jour une question ouverte, et beaucoup d’efforts sont actuellement développés pour
construire des familles LDPC la dépassant. C’est dans cet objectif, et avec l’idée de considérer des familles
de puissances itérées, que les travaux qui suivent ont été initiés.

Les résultats présentés dans la seconde partie de ce mémoire visent à approfondir le parallèle entre codes
CSS et complexes de chaı̂nes en cherchant, plus particulièrement, à exporter la notion de produit tensoriel
⊗, définie pour les seconds, vers les premiers. Implicite dans de nombreuses constructions, nous lui donnons
ici un cadre formel. Il en résulte deux notions de produit pour les codes CSS, une version standard ⊗, et une
version réduite ⊗r pour laquelle la longueur est légèrement améliorée. Notons que, dans [BH14], S. Bravyi
et M. Hastings introduisent également une notion de produit homologique � pour une sous-classe des codes
CSS ; bien que distinctes, les produits ⊗ et � sont fortement liées.

Pour les produits ⊗ et ⊗r, ainsi que leurs puissances itérées, nous étudions les paramètres résultants. Nous
obtenons des formules exactes pour les longueurs et les dimensions, mais les distances minimales restent
difficile à contrôler. Nous fournissons néanmoins, et c’est là le résultat principal de cette seconde partie,
un critère de nature cohomologique permettant d’obtenir une borne inférieure sur la distance minimale d’un
produit de codes, le produit pouvant être ⊗, ⊗r ou �. Il était globalement connu, ou tout du moins attendu,
que pour deux codes C et D, la distance minimale du produit était plus grande que chacune des distances
minimales dC et dD. Mieux que cela, nous obtenons comme corollaire de notre critère que, sauf dans certains
cas triviaux,

dC⊗D, dC⊗rD, dC�D ≥ 2 max(dC, dD).

En particulier, les puissances itérées de n’importe quel code honnête donnent une famille LDPC dont la
distance minimale tend exponentiellement vers l’infini. Et plus surprenamment encore, un phénomène de
dégénérescence quantique—c’est-à-dire, pour un code CSS vu comme deux codes classiques C1 et C2 or-
thogonaux, une distance minimale strictement plus grande que chacune des distances minimales de C1 et
C2—apparait nécessairement pour les puissances assez grande, même s’il est absent du code de départ.

A l’aide de notre critère, nous retrouvons les codes de J-P. Tillich et G. Zémor [TZ14]. Nous retrouvons
également certains codes de Khovanov, construits dans [10] ; nous en profitons d’ailleurs pour redonner
leur définition dans ce mémoire car c’est aussi un exemple de transport d’un certain modèle combinatoire,
celui des complexes de chaı̂nes de Khovanov, vers un autre domaine, celui des codes CSS. Nous discutons
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également les liens forts entre ⊗ et �, montrant comment l’un peut se déduire de l’autre. Et enfin, nous
donnons trois nouvelles séries de familles LDPC de codes CSS basées, respectivement, sur la géométrie
projective finie, les codes cycliques et les codes de Reed–Muller. Ces trois situations ont en commun d’avoir
un large groupe d’automorphismes, ce qui favorise l’utilisation de notre critère. Parmi ces familles, la
meilleure permet d’extraire une sous-famille quasi-LDPC, dans le sens où le poids augmente plus lentement
que n’importe quelle puissance positive de la longueur, dont la dimension augmente plus vite que la puis-
sance αième et la distance minimale plus vite que la puissance βième de la longueur, pour n’importe quels
α < 1 et β < 1

2 ; laissant, de fait, la question de la barrière en racine carrée toujours ouverte.



English introduction

Knot and link theory studies, up to deformation, smooth embeddings of one or several copies of S 1 in S 3.
From its early days, it was motivated by its applications to other fields. Lord Kelvin initiated indeed the first
attempt to classify knots whithin the framing of its vortex theory of atoms. Tait provided then the first knots
table [Tai84], but it’s only at the very end of the XIXth century that a more intrinsic study has begun, with new
homotopical and homological tools, emerging from algebra. In particular, knot complements became a key
notion not only for the direct study of links—through, for instance, the study of their fundamental groups,
of their properly embedded surfaces and their characteristics, or of their coverings which led, among other,
to the Alexander polynomial [Ale28]—but also for the study of 3–manifolds through surgery technics. At
this stage, combinatorial considerations were already on the table: with generic planar projections, enhanced
with an over/under data for each double point, K. Reidemeister reduced indeed the link theory to the study
of link diagrams up to three local moves [Rei27].

Then, most of the main breakthroughs of the last decades brought to light new combinatorial aspects of
knot theory. Jones polynomial [Jon87], in the mid 80ies, initiated the development of the, so-called, quantum
invariants. Walking somehow away from topology, these invariants rely on understanding how the structure
of quantum groups can be incarnated by diagram combinatorics. Invariants are then not necessarily defined
at once, but characterized by some local skein relations which prescribe the invariant behavior with regard
to some moves on diagrams. It should be noted, here, a second convergence of knot and physical theories,
the construction of N. Reshetikhin and V. Turaev’s invariants, extended to ribbon graphs in [RT90], being
indeed largely motivated by E. Witten’s interpretation of the Jones polynomial within the quantum field
theory framework.

In the early 90ies, the theory of finite type invariants, also called Vassiliev invariants, widened the scope
of combinatorics within knot theory by including quantum invariants inside a larger class of invariants. First
introduced by V. Vassiliev [Vas90] as cocyles in the space of immersed long knots, modulo the strata induced
by the number of singular points, finite type invariants were then reinterpreted by M. Goussarov [Gou94],
and independently by J. Birman and X-S. Lin [BL93], as the set of invariants having a polynomial behavior,
in the sense that they vanishe after a certain number of iterated derivation; the derivation, here, corresponds
to the differentitation of the invariant evaluated on two links which differ one from the other by exactly one
crossing change. Finite type invariants induce a filtration on the module abstractly spanned by links, and the
study of these invariants boils down to the study of the associated graded space G, and more precisely to the
search of a combinatorial basis for G ; see [Bar95]. In a few decades, the number of studied invariants has
hence substantially increased, but most of them remain topologically mysterious, the connections between
them and classical invariants being still misunderstood.

At the turn of the XXth century, a new dawn appeared for quantum invariants, not anymore by enlarging
their family, but on the contrary, by refining them independently. Again, the story began with the Jones
polynomial and its categorification, Khovanov homology: in a combinatorial way, M. Khovanov [Kho00]
defined a new invariant, shaped as bigraded homology groups, whose graded Euler characteristic recovers
the Jones polynomial. Soon after, Alexander polynomial was categorified by P. Ozsváth, Z. Szabó [OS04]
and, independently, J. Rasmussen [Ras03], under the name of Heegaard–Floer homology. More invariants
followed. Besides their increased ability to detect links, categorifications distinguish themselves by their
functorial behavior with regard to knot cobordisms, and this provides a categorical interpretation to quantum
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invariants. In this categorification setting, a large part of the work is to identify some algebraic objects which
combinatorially reproduce the diagrams skein relations. At this point, the singular case of Heegaard–Floer
homology should be emphasized, singular because of its construction—based on symplectic geometry and
A∞–structures—but also singular for its remarkable capacity to detect topological properties of knots.

My research, during my PhD and, then, during my postdoc years, fitted within this categorification
framework. It began with a carefull analysis of internal mechanisms of invariance in Khovanov homology;
this led to a triply graded refinement for some restricted notion of knots [14, 13, 11]. A second, more
challenging, stage aimed at determining, within Heegaard–Floer homology, some finite type behaviors; it
led to an extension of Heegaard–Floer homology to singular links6 [12]. During these years, I assimilated
several combinatorial structures, all emerging from topology.

Since my position as Maı̂tre de conférence at Aix–Marseille University, in 2010, the scope of my re-
search widened and its perspective has somehow reversed: a large part of my work focus now on recycling
combinatorial models or tools coming from knot theory to handle questions in other fields, that may be
topological or not. In this dissertation, I have decided to develop two distinct aspects. The first one concerns
the classification of knotted annuli in B4 up to link-homotopy; a key point of this classification is the identi-
fication of a subclass—the ribbon subclass—whose behavior reproduces classical string links behavior. The
second deals with, so-called, CSS quantum error-correcting codes, their interpretation as chain complexes
over F2, and how this bridge can be used to define and study a product notion for CSS codes.

6in Vassiliev sense



Contents 17

Overview of the personal works

Along the present dissertation, the author’s papers are referenced by numbers whereas other papers are
referenced by names in lexicographical order.

During his PhD and the subsequent postdocs, the author’s work was essentially focussed on categorification
of link invariants. Among his papers:
• [14, 13, 11] concern refinments of Khovanov homology to several restricted notions of links;
• [12] concerns a generalization of Heegaard–Floer homology to singular links, seen from the Vassiliev

point of view, motivated by the foundation of a first bridge between categorification and finite type
invariants.

After being hired in Aix–Marseille University, the scope of the author’s research has been broadened to
include other topological topics—such as knotted surfaces or 3–manifolds finite type theories—but also
applications of topology in other fields of mathematics—such as quantum correcting codes or eigenvalues
of p–Laplacian. Among his papers:
• [8, 9, 7, 5, 6] concern essentially welded knot theory, its relations to classical and virtual knot theories

and its applications to knotted surfaces;
• [10, 2] concern CSS quantum codes seen from a topological point of view;
• [3] is an enumeration of hyperbolic knots obtained by surgery on the twisted 5–chain link which

realize maximal distances between exceptional slopes;
• [4] uses topological methods to study multiplicity and symmetry of higher eigenvalues and eigenfunc-

tions of the p–Laplacian;
• [1] investigates the injectivity status of some maps between beaded Jacobi diagrams with the aim

of establishing the universality of both the Kricker lift of the Kontsevich integral and the Lescop
equivariant invariants among finite type invariants, with respect to null-moves, of QSK–pairs, which
are null-homologous knots in rational homology 3–sphere.

Regarding the present dissertation:
• [8] is covered in Sections 2 and 3 of the first part;
• [9] is essentially covered in Section 3 of the first part;
• [6] is covered in Sections 3 and 4 of the first part;
• [2] is covered in the second part;
• [10] is covered in Section 3.2 of the second part;
• even though closely related to the first part, [7, 5] are not developped;
• [14, 13, 11], [12], [3], [4] and [1] are not discussed, even if they are all either developping com-

binatorics emerging from topology, or applying topology to handle questions in an other field of
mathematics.
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Chapter I

From topology to topology
via combinatorics

Introduction

Knot theory studies how an embedded circle in S 3 can knot itself. Link theory does the same with several
circles. But in the latter case, one can distinguish two distinct phenomena: linkedness which is how distinct
components are linked, and knottedness which is how each component additionally knots itself. In order to
focus on linkedness only, J. Milnor introduced the notion of link-homotopy which allows every component to
cross itself. In rough words, links up to link-homotopy corresponds to the link theory quotiented by the knot
theory. With the aim of giving a complete classification, J. Milnor highlighted in [Mil54] the key role played
by the image of longitudes in the fundamental group quotiented by the various terms of its central series.
From these elements, he deduced a sequence of numbers—the Milnor numbers—among which, some—the
non repeating ones—are invariant under link-homotopy. These numbers are however defined only up to
some undeterminacy, which depends on Milnor numbers of lower degree.

Some thirty years later, N. Habegger et X-S. Lin extended J. Milnor’s work to the case of string links,
which are knotted strings in B3 with fixed extremities on ∂B3. By gluing together the extremities of each
string in a prescribed trivial way, one can close any string link into a link; and reciprocally, any link can
be cut open into a string link. But the correspondence between links and string links is not one-to-one, and
the closure of distinct string links can be isotopic. Nevertheless, Milnor numbers are perfectly well defined
for string links and, actually, their undeterminacy for links corresponds exactly to the undeterminacy which
arises when cutting open links into string links. In [HL90], N. Habegger and X-S. Lin showed that every
string link is link-homotopic to a pure braid, and that the latter are classified, still up to link-homotopy,
by non repeating Milnor numbers. But, though equivalent to the knowledge of all non repeating Milnor
numbers, Habbeger–Li’s invariant take the form of a basis-conjugating automorphisms of the reduced free
group RFn, generalizing hence the Artin representation point of view on the braid group [Art47].

As for links, string links can be studied through their diagrams up to Reidemeister moves. The link-
homotopy can also be interpreted in this framework as the equivalence relation induced by the self-crossing
change, the local move on diagrams which swaps the over/under information on a double point whose
preimages are both on the same connected component.

From a combinatorial point of view, link and string link diagrams can be interpreted as planar 4-valent
graphs and the local moves on diagrams as local moves on such decorated graphs. By relaxing the pla-
narity constraint, one define virtual objects. Despite their purely diagrammatical nature, most topological
invariants can be extended to the virtual setting. For instance, the Wirtinger presentation provides a dia-
grammatical way to compute the fundamental group which straightforwardly extends to virtual objects. It is
remarkable that most of these combinatorial extensions of topological invariants occur to be invariant under
a certain local move, called over-commute and denoted by OC. The welded knot theory is defined as the
quotient of the virtual knot theory under OC. Even if this definition may look rather arbitrary, it can be
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topologically legitimized within the frame of knotted surfaces as the combinatorics of higher dimensional
4–valent singularities.

The theory of knotted surfaces in dimension 4 takes its origins in the mid 20ies, from the work of E.
Artin [Art25]. However, the systematic study of these objects only really began in the early 60ies, notably
through the work of M. Kervaire, R. Fox and J. Milnor [FM66, KM61, Ker65], but also of T. Yajima or T.
Yanagawa, in Japan1. From this early stage, one can distinguish two approaches to study surfaces. One,
emerging from the higher dimensions, fits into a strongly algebraical perspective; the second, emerging
from dimension 3, recycles the diagrammatical aspects of knot theory. Just as links, surfaces can indeed
be generically projected on a hyperplane and studied through the decorated immersions that it generates,
called broken surface diagrams. But the set of possible singularities is then broader: there are still double
points loci, but also some triple and branch points. One can however decide to restrict his analysis to
diagrams with only double points, and the corresponding combinatorics is then very close to link diagrams.
In [Yaj62], T. Yajima defined indeed a procedure, so-called Tube, which inflates link diagrams into knotted
tori. Another procedure, so-called Spun, gives the diagram a spin around an axis. Both yields the same well
defined and injective map from links to knotted tori. Soon, the subclass of sphere diagrams with only double
points, called simple in the literature, has been given a topological flavor when identified by T. Yanagawa
[Yan69a, Yan69b, Yan70] as the ribbon subclass, which is the class of surfaces which bound immersed
3-dimensional spaces whose singular sets contain only a certain type of ribbon singularities. For tori, the
ribbon class is strictly smaller than the simple one, but the images of the Tube map are actually ribbon. Of
course, the classical link theory corresponds only to some ribbon tori, but in 2000, S. Satoh [Sat00] showed
that—at the cost of injectivity—the Tube map can be extended into a surjective map from welded links to
ribbon tori.

The Tube map is hence a bridge between the welded theory—which can be seen as an extension of
the classical link theory—and the ribbon theory—which can be seen as a midstep toward general knotted
surfaces theory. The work presented here builds on this bridge to generalize Habbeger–Lin classification
to dimension 4. We introduce string 2–links, which are annuli properly embedded in B4 with unlinked and
unknotted boundaries fixed in ∂B4 � S 3, and classify them up to link-homotopy. There are three steps in
the proof. First, we prove the statement for the ribbon subclass up to an a priori restricted notion of ribbon
link-homotopy. Second, we prove that the ribbon subclass is generic up to link-homotopy, in the sense that
every string 2–link is link-homotopic to a ribbon one. Finally, we prove that the classifying invariant in the
ribbon case is actually invariant under general link-homotopy.

For the first step, we start by reducing classical string links to the data, for a given diagram, of the
interconnections between its double points seen as 4-valent singularities. Using a coloring by RFn elements
process on this combinatorial substratum, we provide an alternative definition of Habbeger–Lin’s invariant,
and this definition straightforwardly extends to the welded case, and hence to the ribbon one. Actually, we
take the opportunity of this dissertation to handle, in all generality, the ribbon codimension two case in any
higher dimension.

The next two steps strongly rely on broken surface diagrams, but link-homotopy raises then a new prob-
lem. Indeed, in dimension 3, singular string links can be generically desingularized by infinitesimal pertur-
bation, so that link-homotopy reduces to a local move on diagrams. But in dimension 4, a singular surface
has generically a finite number of singular points which cannot be locally removed. Consequently, we first
develop a broken surface diagram theory for immersed surfaces, and we give three singular moves which,
together with Roseman moves from the embedded case, generates link-homotopy. At the same time, we
provide sets of moves generating respectively, ambient isotopy for singular surfaces, regular homotopy and
general homotopy. Using these singular broken surface diagrams, and again with a coloring by RFn ele-
ments process, we extend Habbeger–Lin’s invariant to any string 2–link, and prove that it is invariant under
link-homotopy. Finally, we show that the above-mentioned genericity result for the ribbon subclass up link-
homotopy, is equivalent to a theorem by A. Bartels et P. Teichner stating that embedded spheres in S 4 are
always link-homotopically trivial [BT99].

Compared with Habbeger–Lin and J. Milnor’s works, Bartels–Teichner’s theorem sems to suggest a real

1see below for references or [Suz76] for a complete bibliography
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break between dimensions 3 and 4. It does not. The links and string links classifications crystallize indeed
on the notion of longitudes; but as spheres are simply connected, there is no such longitude for them. It is
hence more natural that the classification extends to knotted tori better than to spheres. This is, at least, the
philosophy underlying the first part of the present dissertation.

Notation and setting

Once for all, we set a non negative integer n, and we let I be the closed interval [0, 1].

We begin with some topological notation and setting. We fix n distinct points { p̃i}i∈{1,...,n} in B̊1 = (−1, 1),
say e.g. p̃i = 2i−n−1

n+1 . Then we choose disjoint discs D1, . . . ,Dn in the interior of the 3–ball B3 � B2×B1 such
that pi := (0, p̃i) ∈ D̊i for every i ∈ {1, . . . , n}, say e.g. Di =

{
(0, y, z) ∈ B2 × I | y2 + (z − p̃i)2 ≤ 1

2(n+1)2

}
. We

denote by Ci := ∂Di the oriented boundary of Di. More generally, for every positive integer d ≥ 2, we shall
choose disjoint d–dimensional balls Dd

1, . . . ,D
d
n in the interior of Bd+1 � Bd ×B1 such that pd

i := (0, p̃i) ∈ D̊d
i

for every i ∈ {1, . . . , n}. We denote by Cd−1
i := ∂Dd

i the oriented boundary of Dd
i .

We will also consider the d–ball seen as Bd � Bd−1 × I, we shall then set ∂0Bd := Bd−1 × {0}, ∂1Bd :=
Bd−1 × {1} and

∗

Bd := B̊d ∪ ˚(∂0Bd) ∪ ˚(∂1Bd). By an embedded (resp. immersed) submanifold X ⊂ Bd, we
shall mean the image of a smooth embedding (resp. immersion) fX : X̃ → Bd of a manifold X̃, called the
underlying abstract manifold, into Bd such that

• X ⊂
∗

Bd;
• X ∩

(
Bd−1 × [0, ε)

)
=
(
X ∩ ∂0Bd

)
× [0, ε) and X ∩

(
Bd−1 × (1 − ε, 1]

)
=
(
X ∩ ∂1Bd

)
× (1 − ε, 1] for

some ε > 0.
For a proper embedded (resp. immersed) submanifold, we shall moreover assume that ∂X := f (∂X̃) =

X ∩ (∂0Bd ∪ ∂1Bd). An immersion shall be called a self-immersion if, for every x ∈ X, f −1(x) is contained in
a connected component of X̃. In all cases, we set:
• ∂0X = X ∩ ∂0Bd, the lower boundary of X;
• ∂1X = X ∩ ∂1Bd, the upper boundary of X;
• ∂∗X = ∂X \ ( ˚∂0X t ˚∂1X), the lateral boundary of X;
• ∂∗X̃ the preimage of ∂∗X in X̃;

•
∗

X = X \ ∂∗X.
By a tubular neighborhood of X in Bd, we shall mean an open set N such that N ∩ B̊d is a tubular neighbor-
hood of X̊ in B̊d and ∂εN is a tubular neighborhood of ∂εX in ∂εBd for ε ∈ {0, 1}. All the isotopies considered
in this dissertation shall be assumed to be smooth and to fix the lower and upper boundaries.

If X1, X2 ⊂ Bd are two embedded or immersed submanifolds2 such that ∂1X1 = ∂0X2, then we define
X1 • X2, the stacking product of X1 and X2, as the image of fX1•X2 : X̃1 ∪ X̃2

/
∼ −→ Bd where x1 ∼ x2 iff

• x1 ∈ X̃1 and x2 ∈ X̃2;
• fX1 (x1) ∈ ∂1X1 and fX2 (x2) ∈ ∂0X2;
• (π ◦ fX1 )(x1) = (π ◦ fX2 )(x2) where π : Bd−1 × I −→ Bd−1 is the first projection;

and

fX1•X2 (x) =

{
(y, t

2 ) if x ∈ X̃1 and fX1 (x) = (y, t) ∈ Bd−1 × I

(y, 1+t
2 ) if x ∈ X̃2 and fX2 (x) = (y, t) ∈ Bd−1 × I

.

Throughout this paper, and for various types of objects, diagrammatical or topological, we will consider
local moves. A local move is a transformation that changes the object only inside a ball of the appropriate
dimension. By convention, it will be represented by the full content of the ball where the move occurs, and
the reader should keep in mind that there is a non represented part, which is identical for each side of the
move.

2possibly endowed with further local datas such as arrows or over/under information at double points
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We also define some algebraic notation. For any group G, we denote by
• ab := b−1ab the conjugate of a by b for every a, b ∈ G;
• [a; b] := a−1b−1ab the commutator of a and b for every a, b ∈ G;
• ΓkG, for k ∈ N∗, the kth term of the lower central series of G inductively defined by Γ1G = G and

Γk+1G :=
[
G; ΓkG

]
;

and, if G is normally generated by elements g1, . . . , gp, we further denote by
• RG := G

/{
[gi; gg

i ]
∣∣ i ∈ {1, . . . , p}, g ∈ G

} the reduced quotient of G, which is the smallest quotient
where each generator commutes with all its conjugates;

• EndC(G) :=
{

f ∈ End(G)
∣∣ ∀i ∈ {1, . . . , p},∃g ∈ G, f (gi) = gg

i

}
, the monoid of basis-conjugating

endomorphisms of G, and AutC(G) ⊂ EndC(G) the subgroup of its inversible elements.
We shall denote by Fn the free group on n generators; unless otherwise specified, generators of Fn will be
denoted by x1, . . . , xn. By abuse of notation, and since it shall not introduce any ambiguity, the same notation
shall be used to denote an element and its image under a given quotient. Similarly, names of map may be
kept when considering their induced counterpart under a given quotient.

Finally, we recall that a poset is a set E given with a partial order ≤E characterized by some subset
Ω≤E ⊂ E × E. Two elements x, y ∈ E are said comparable if either x ≤E y or y ≤E x. The poset E has a total
order if any two elements of E are comparable. Whenever they exist, for instance when E is a finite totally
ordered poset, we define
• max(E) and min(E) the unique elements which are, respectively, greater and smaller to any other

element of E;
• the closest predecessor of x ∈ E, which is max

({
y ∈ E | y <E x

})
;

• the closest successor of x ∈ E, which is min
({

y ∈ E | x <E y
})

.
We say that a poset E′ extends E iff E′ = E as sets and Ω≤E ⊂ Ω≤E′ , that is iff x ≤E′ y whenever x ≤E y.

1 Classification of classical string links up to link-homotopy

As a warm up, we begin by reviewing Habegger and Lin’s classification of string links up to link-homotopy,
as given in [HL90].

1.1 String links

Definition 1.1. A string link is a proper embedding t
i∈{1,...,n}

Ii of n disjoint and oriented copies of I in B3 �

B2 × I such that, for every i ∈ {1, . . . , n} and ε ∈ {0, 1}, ∂εIi =
(
(0, p̃i), ε

)
, and Ii is oriented from ∂0Ii to ∂1Ii.

We denote by SLn the set of string links up to isotopy. It is naturally endowed with a monoidal structure by
the stacking product.

Example 1.2. Pure braids can be seen as the special case of string links which stay transverse to the foliation
tt∈I B2 × {t}. They actually corresponds to inversible elements in SLn, see [HM12, Kre14].

For every string link L, we shall define its fundamental group π1(L) as the fundamental group of the
complement of a tubular neighborhood of L in B3. For every i ∈ {1, . . . , n}, the ith bottom and top meridians
of L are defined as the loops m0,m1 ∈ π1(L), which enlace positively pi in, respectively, ∂0XL and ∂1XL. A
ith longitude for L is any path on the boundary of the tubular neigborhood of the ith interval component of L
which runs from ∂1XL to ∂0XL, closed by a standard path on ∂B3. It can be noted that any two ith longitudes
differ from a post-composition with a power of the ith bottom meridian.

Definition 1.3. A self-singular string link is a self-immersion t
i∈{1,...,n}

Ii of n disjoint copies of the oriented

interval I in B3 satisfying the same boundary conditions than regular string links.
Two string links are said link-homotopic if there is a smooth path of self-singular string links3 connecting

them. We denote by SLlh
n the quotient of SLn under link-homotopy.

3note that, by definition, a string link is a self-singular string link
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Proposition 1.4 ([HL90]). Any string link is link-homotopic to a pure braid.

Corollary 1.5. The monoid SLlh
n is a group.

1.2 Reduced peripheral systems

It is well known that classical links are classified by their peripheral systems, that is by their fundamental
group given with meridians and longitudes; see e.g. [Hem76] for a detailled proof. Non repeating Milnor’s
invariants, in one hand, and Habegger and Lin’s Artin–like invariant can be seen as two perspectives on
some kind of reduced peripheral system notion. In the case of string links, and later in the case of string d–
links, we shall see that the reduced fundamental group is always RFn, where generators can conventionally
be choosen as, say, the bottom meridians. It follows that, for a reduced peripheral system, only longitudes
do matter and, though, only up to a power of the corresponding meridians. This motivates the following
definitions.

Definition 1.6. A reduced peripheral system is an n–uple (λ1, . . . , λn) ∈
∏n

i=1 RF(i)
n−1, where RF(i)

n−1 ⊂ RFn is
the subgroup generated by all the generators x1, . . . , xn but xi.

To a reduced peripheral system Λ := (λ1, . . . , λn), one can associate a basis-conjugating endomorphism
ϕΛ ∈ EndC(RFn) defined, for every i ∈ {1, . . . , n}, by ϕΛ(xi) = xλi

i . Reciprocally, we proved the following:

Lemma 1.7 ([8, Lem. 4.25]). For every ϕ ∈ EndC(RFn), there a unique reduced peripheral system Λ such
that ϕΛ = ϕ.

To a reduced peripheral system Λ := (λ1, . . . , λn), one can also associate Milnor numbers defined as
follows. For each i ∈ {1, · · · , n}, we denote by S(i)

n−1 := Z〈〈X1, · · · , X̂i, · · · , Xn〉〉 the ring of formal power
series in (n − 1) non-commutative variables denoted by X1, . . . , Xn with Xi removed. By Ei : Fi

n−1 → S
(i)
n−1

we denote the Magnus expansion, which is the group homomorphism sending the jth generator to 1 + X j;
it descends to a well defined homomorphism Er

i from RF(i)
n−1 to S(i)

n−1
/
Ir, where Ir is the ideal generated by

monomials with repetitions. It is known since Magnus, see [MKS04], that Ei is injective, and this remains
true for its reduced counterpart:

Lemma 1.8 (e.g. [Yur08]). The maps Er
i are injective.

For every sequence I = i1 · · · iki of pairwise distinct integers in {1, . . . , n}, we define µI(Λ), the Milnor
invariant of index I for Λ, as the coefficient of the monomial Xi1 · · · Xik in Er

i (λi). These Milnor invariants
are said non repeating since we only consider here sequences of distinct integers. It follows from Lemma
1.8 that Λ can be recovered from the set of all its non repeating Milnor invariants.

Corollary 1.9. The data of a reduced peripheral system, of its associated basis-conjugating endomorphism,
or of its associated non repeating Milnor invariants are all equivalent.

This statement being set, we shall now focus on the basis-conjugating endomorphism point of view.

1.3 Habegger and Lin’s Artin–like invariant

Let L be a string link and denote by XL the complement of a tubular neighborhood of L in B3. Both ∂0XL

and ∂1XL are n–punctured discs and the inclusion maps ιε : ∂εXL −→ XL, for ε ∈ {0, 1}, induce maps at the
π1–level. It is easily seen that they also induce isomorphisms at the H1 and H2–level. All the conditions are
hence met to apply the following theorem of J. Stallings:

Theorem 1.10 ([Sta65]). If a map ι : X −→ Y induces an isomorphism at the H1–level and an epimor-
phism at the H2–level then, for every k ∈ N∗, it induces an isomorphism between π1(X)

/
Γkπ1(X) and

π1(Y)
/
Γkπ1(Y).
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But the fundamental group of a punctured disc is easily computed to be the free group generated by
the meridians around each puncture; it follows that π1(∂0XL) and π1(∂1XL) can be seen as Fn generated
by, respectively, the bottom and the top meridians of L. On the other hand, π1(XL) can be given a Wirtinger
presentation showing that it is normally generated by either the bottom or by the top meridians of L. Building
on Stallings’ theorem, Habegger and Lin obtain the following:

Lemma 1.11 ([HL90]). The maps ι0, ι1 : RFn −→ Rπ1(XL) are both group isomorphisms.

They can hence define the map ϕL := ι−1
0 ◦ ι1 ∈ Aut(RFn) which actually conjugates the ith generator of

RFn, seen as Rπ1(XL) generated by the bottom meridians, by the reduced image of any ith longitude. This
can also be interpreted as expresing the top meridians in terms of the bottom ones. In particular, ϕL sends
every generator of RFn to a conjugate of itself, and it is easily seen that it sends the loop that enlaces all
the punctures in ∂1XL to itself; ϕL is hence an element of Aut0C(RFn) :=

{
ϕ ∈ AutC(RFn) | ϕ(x1x2 · · · xn) =

x1x2 · · · xn
}

.

Proposition 1.12 ([HL90]). The map ϕL ∈ Aut0C(RFn) is invariant under link-homotopy.

Theorem 1.13 ([HL90]). The map Art :

{
SLlh

n −→ Aut0C
L 7−→ ϕL

is a group isomorphism.

2 Classification of welded string links up to self-virtualization

In this section, we shall focus on the welded knot theory. It is a quotient of the virtual knot theory, which
is itself a combinatorial extension of the classical knot theory seen from the diagram point of view. Knot
diagrams can indeed been interpreted as planar quadrivalent oriented graphs whose vertices are decorated
with some over/under information. For virtual diagrams, the planarity condition is released, and this provide
a tool to describe links in thickened surfaces up to handle stabilizations, see [Kup03]. Welded diagrams
are, in turn, a quotient of virtual diagrams, particularly adapted to the study of ribbon surfaces in B4, and
more generally to ribbon codimension two subspaces in higher dimensions. In all these situations, welded
diagrams can be thought of as a combinatorial description of the connexions between some four-ended
singularities. Hereinafter, we shall accordingly adopt an approach in compliance with this idea.

2.1 Welded knot theory

As an attempt to extract the very combinatorial essence of welded knot theory, we shall start by a purely
combinatorial definition, that we will develop then into its two, more standard, realizations: Gauss and
welded diagrams. Section 2.1.2 is hence likely to enlighten the definitions of Section 2.1.1, and the reader
is invited to travel back and forth between these two sections. In this welded setting, we will finally define a
self-virtualization theory that shall combinatorially mimic link-homotopy.

2.1.1 Welded systems

Definition 2.1. A welded system is a finite poset W =: W t {1, . . . , n} given with a map

W −→ W × {±1}
a 7−→

(
tW (a), σW (a)

)
such that
• for every a ∈ W, there is a unique i ∈ {1, . . . , n} such that i ≤ a;
• for every i ∈ {1, . . . , n}, Wi :=

{
a ∈ W | i ≤ a

}
is totally ordered.

In other words, W is a disjoint union of n totally ordered finite sets (Wi)i∈{1,...,n}, indexed by their minimal
elements which are chosen to be the elements of {1, . . . , n}.

Two welded systems W1 and W2 are equivalent if there is a poset bijection ξ : W2 −→ W1 which satisfies,
when extended by the identity on {1, . . . , n}, tW2 = ξ ◦ tW1 ◦ ξ

−1 and σW2 = σW1 ◦ ξ.
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Elements of W are called arrows, and we morever say that a ∈ W is a self-arrow if a and tW (a) are
comparable, that is if they belong to the same Wi. We say that a welded system W is

• horizontal if it has no self-arrow and if there is a second order ≤g on W which is global and extends
≤W in such a way that, for every a ∈ W, tW (a) = max

({
b ∈ Wia | b ≤g a

})
where ia ∈ {1, . . . , n} is the

index such that tW (a) ∈ Wia ;

• ascendant if Im(tW ) ⊂ {1, . . . , n}.

For every welded system W, we set pre : W −→ W, the map which sends any element of W to its closest
predecessor. We shall now define three local moves on welded systems:

R1: let W be a welded system which contains an element a ∈ W such that tW (a) is either a or pre(a), then
applying R1 to W with regard to a leads to the welded system Wa which is equal to W \ {a} as a poset,
with σWa := (σW )|Wa and tWa := (πa ◦ tW )|Wa , where πa : W −→ Wa is the identidy map except on a
which is sent to pre(a);

R2: let W be a welded system which contains two elements a1, a2 ∈ W such that pre(a1) = a2, tW (a1) =

tW (a2), σW (a1) = −σW (a2) and t−1
W (a2) = ∅, then applying R2 to W with regard to a1 and a2 leads

to the welded system Wa1,a2 which is equal to W \ {a1, a2} as a poset, with σWa1 ,a2
:= (σW )|Wa1 ,a2

and
tWa1 ,a2

:= (πa1,a2 ◦ tW )|Wa1 ,a2
, where πa1,a2 : W −→ Wa1,a2 is the identidy map except on a1 and a2 which

are both sent to pre(a2);

R3: let W be a welded system which contains three elements a1, a2, a3 ∈ W such that pre(a2) = a3, tW (a2) =

tW (a3), σW (a2) = −σW (a3) and t−1
W (a3) = {a1}, then applying R3 to W with regard to a1, a2 and a3 leads

to the welded system Wa1,a2,a3 which is equal to W as a set, whose partial order is such that it coincides
with that of W on W \ {a2, a3} but satisfies pre(a3) = a1 and pre(a1) = a2, and with σWa1 ,a2 ,a3

:= σW

and tWa1 ,a2 ,a3
:= πa1,a2,a3 ◦ tW , where πa1,a2,a3 : W −→ Wa1,a2,a3 is the identidy map except on a1 which is

sent to a3, and on a2 and a3 which are both sent to pre(a3).

For two welded systems W1 and W2, we finally define the product W1 •W2 as the welded system defined
by W1 <

{1,...,n}
W2, that is by W1 tW2 where two elements x1 and x2 satisfy x ≤W1•W2 y iff either x1, x2 ∈ Wi

and x1 ≤Wi x2 for some i ∈ {1, 2}, or x1 ∈ W1, x2 ∈ W2 and there is some i ∈ {1, . . . , n} such that i ≤W1 x1 and
i ≤W2 x2. The map σW1•W2 is then σWi on W i, for both i ∈ {0, 1}, and tW1•W2 is tW1 on W1 and πW1 ◦ tW2 on W2,
where πW1 : W2 −→ W1 tW2 is the identity map on W2 and sends i ∈ {1, . . . , n} to max

{
x ∈ W1 | i ≤ x

}
.

Definition 2.2. We define wSLn, the set of welded string links, as the quotient of welded systems under
equivalence and moves R1, R2 and R3. It is endowed with a monoidal structure by the • product, with unit
1 := {1, . . . , n} t ∅.

It can already be noticed that horizontal welded systems are invertible in wSLn. Indeed, let W be such a
welded system given with a global order ≤g; then one can define W−1 as the set W with

• reversed partial order, defined by a1 ≤W−1 a2 iff a2 ≤W a1;

• σW−1 (a) = −σW (a);

• tW−1 (a) =

{
i if tW (a) = max(Wi)
the closest successor of tW (a) otherwise. .

Using R2 on W •W−1, one can inductively remove by pair the maximal element, according to ≤g, of W with
its counterpart in W−1, until ending eventually with 1.

2.1.2 Two diagrammatic realizations of welded systems

We present now two standard ways to picture welded systems. As a matter of fact, every reference that
we shall provide for proofs on welded systems will actually deal with either Gauss or welded diagrams;
nonetheless, they will always adapt to the welded systems case, sometime in an even smoother way.
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Figure I.1: From welded systems to Gauss diagrams
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Figure I.2: From Gauss diagrams to welded diagrams

Gauss diagrams

A welded system W can be represented by a Gauss diagram—introduced in [PV94], see also [GPV00,
Fie01]—as follows. First draw n vertical strands, one for each i ∈ {1, . . . , n}. For every i ∈ {1, . . . , n},
represent each element of Wi by a point of the ith strand such that i is the bottom end of the strand, and the
other points are ordered on the strand as prescribed by the order on Wi. For every a ∈ W \ {1, . . . , n}, draw
an arrow which points to a and starts from the portion of strand which is just above tW (a) and label it by
σW (a). See Figure I.1 for examples. To get an actual Gauss diagram, one should be watchful that none of the
arrow tails do coincide. One make then some arbitrary but meaningless choices; as a matter of fact, Gauss
diagrams should be considered up to the local OC move, shown in the lower left corner of Figure I.3.

It can be noted that the welded systems terminology is largely inspired by Gauss diagram representation.
For instance:
• arrows in welded systems corresponds to actual arrows in Gauss diagrams, or more precisely to their

heads; and self-arrows to arrows with both ends on the same strand;
• horizontal welded systems correspond to welded systems which can be represented by a Gauss dia-

gram with only horizontal arrows;
• ascendant ones correspond to welded systems which can be represented by a Gauss diagrams whose

arrows are all going from the lower halves to the upper halves of the strands.

Welded string links can be thought of as Gauss diagrams up to OC, R1, R2 and R3 moves shown in
Figure I.3. Up to OC moves, there is actually a one-to-one correspondence between eponymous moves for
welded systems and Gauss diagrams. Note however that, in the literature, R3 for Gauss diagram is more
standardly defined as:

R3′ :
ε1

ε2

ε3

↔

ε1

ε3
ε2 ,

with some sign restrictions on ε1, ε2 and ε3. But for Gauss diagrams up to OC and R2 moves, R3 and R3′ are
equivalent and, as highlighted by the work of J-B. Meilhan and A. Yasuhara in [MY17], the former appears
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R1 : ε
↔ ↔

ε R2 :
ε

−ε

↔ R3 :
−ε2

ε1

ε2

↔

ε2

ε1

−ε2

Reidemeister moves

OC : ε2

ε1
↔

ε2
ε1

welded move

SV : ε
↔ ↔

ε

self-virtualization move

Figure I.3: Local moves on Gauss diagrams:
here, ε, ε1, ε2 ∈ {±1}, vertical lines are portions of strand that may or may not be otherwise connected, dotted lines

mean that the portions are indeed connected

to be more natural from a combinatorial perspective. We should nonetheless mention that this equivalence
is not anymore true for virtual objects. From the Gauss diagram point of view, the • product is nothing but
the stacking product, and the unit element the Gauss diagram with no arrow.

Welded diagrams

A Gauss diagram G can, in turn, be represented by a welded diagram as follows. In the interior of B2 � B1×I,
draw one positive crossing for each (+1)–labeled arrow of G, and one negative crossing for each (−1)–labeled
arrow. Each crossing is hence oriented, corresponds to an arrow a and has four ends:

• the pointing out (resp. in) end of the overstrand, that shall correspond to the portion of strand just
above (resp. below) the head of a;

• the pointing out (resp. in) end of the understrand, that shall correspond to the portion of strand just
above (resp. below) the tail of a.

Now, for each i ∈ {1, . . . , n}, draw a line—that we shall call strand—which starts at (p̃i, 0), passes through
the crossings as prescribed by how arrow ends are met when running the ith strand of G from bottom to top,
and ends at ( p̃i, 1). Doing so, one may have to add some additional crossing; these crossings shall be called
virtual and represented by circled crossings. See Figure I.2 for examples. When drawing these strands, some
arbitrary but meaningless choices are made; as a matter of fact, welded diagrams should be considered up
to the virtual moves shown in the central part of Figure I.4. Moreover, since Gauss diagrams are considered
up to OC moves, welded diagrams should also be considered up to the welded move, shown in the lower left
corner of Figure I.4.

Horizontal welded systems correspond to welded systems which can be represented by a monotonic
welded diagram, in the sense that the strands are all transverse to the foliation tt∈I I × {t}. It actually corre-
sponds to what is commonly called welded pure braids.

Welded string links can be thought of as welded diagrams up to R1, R2, R3, OC and virtual moves,
shown in Figure I.4. Again, up to OC and virtual moves, there is a one-to-one correspondence between
eponymous R1 and R2 moves for welded systems/Gauss diagrams and welded diagrams. To extend the
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R1 : ↔ ↔ R2 : ↔

R3 : ↔ ↔

Reidemeister moves

↔ ↔ ↔

↔ ↔

virtual moves

OC : ↔

welded move

SV : ↔ ↔

self-virtualization move

Figure I.4: Local moves on welded diagrams:
dotted lines mean that the portions of strand are belonging to the same strand
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correspondence, we should have replaced R3 by the moves

↔ ↔ .

But to maintain the filiation with the classical knot theory more visible, we kept the standard (and equivalent
up to OC and R2 moves) R3 move. From the welded diagram point of view, the • product is also nothing
but the stacking product, and the unit element the welded diagram with n parallel strands and no crossing.

Diagrams of classical string links can be seen as welded diagrams with no virtual crossing. And since
Reidmeister moves are part of the local moves considered to define welded string links, there is a well
defined map from classical to welded string links. Using the classification of classical string links by their
peripheral system, one can show that this map is actually an embedding, so that the welded knot theory
can be seen as an extension of the classical knot theory. It is however a very difficult question to determine
whether a given welded diagram corresponds to a classical string link or not.

2.1.3 Self-virtualization

We define now a fourth local move on welded systems:
SV: let W be a welded system which contains a self-arrow a ∈ W, then applying SV to W with regard

to a leads to the welded system Wa which is equal to W \ {a} as a poset, with σWa := (σW )|Wa and
tWa := (πh ◦ tW )|Wa , where πa : W −→ Wa is the identidy map except on a which is sent to pre(a).

Definition 2.3. Two welded systems are said SV–equivalent if they are connected by a finite sequence of
moves R1, R2, R3 and SV moves. We denote by wSLsv

n the monoid of welded string links up to SV–
equivalency.

When thought of as Gauss or welded diagrams, SV–equivalent classes of welded string links can be
understood as the quotient under the eponymous SV move, shown in the lower right corners of Figures I.3
and I.4

Proposition 2.4 ([8, Th. 4.12]). Every welded system is SV–equivalent to an horizontal welded system.

Corollary 2.5. The monoid wSLsv
n is a group.

These two propositions, which are proven in a combinatorial way, should be compared with Proposition
1.4 and Corollary 1.5. We end this section with the following “Proposition 2.4”–like lemma which has no
counterpart in Habegger and Lin’s approach but will have a key role in the coming classification.

Lemma 2.6 ([8, Lem. 4.16]). Every welded system is SV–equivalent to an ascendant welded system.

2.2 Classification up to self-virtualization

We give now a complete classification of welded string links up to self-virtualization which actually extends
Habegger and Lin’s classification.

2.2.1 Welded Artin–like invariant

Definition 2.7. Let y1, . . . , yn ∈ RFn. A (y1, . . . , yn)–coloring for a welded system W is a map ν : W −→ RFn

such that:
• ν(i) = yi for every i ∈ {1, . . . , n};

• ν(a) = ν
(
pre(a)

)ν(tW (a))σW (a)

for every a ∈ W.

For every (y1, . . . , yn)–coloring ν and each i ∈ {1, . . . , n}, we also define νi := ν
(

max(Wi)
)
.
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Remark 2.8. From the welded diagram point of view, a (y1, . . . , yn)–coloring ν is nothing but a map from the
set of overstrands to RFn which has fixed images for the bottom ends and satisfies Wirtinger relation at each
crossing; in other words ν can be understood as a well defined group homomorphism from the Wirtinger
group of the welded diagram to RFn, which sends the ith bottom meridian to yi. Elements ν1, . . . , νn are then
the images of the top meridians.

Lemma 2.9 ([8, Lem. 4.20]). Let y1, . . . , yn ∈ RFn. If W1 and W2 are two welded systems which differ from
a R1, R2, R3 or SV move, then there is a one-to-one correspondence

ϑ :
{

(y1, . . . , yn)–coloring of W1
}
−→

{
(y1, . . . , yn)–coloring of W2

}
such that

(
ϑ(ν)i

)
i∈{1,...,n} =

(
νi
)

i∈{1,...,n} for every (y1, . . . , yn)–coloring ν of W1.

It is rather obvious that an ascendant welded system admits a unique (y1, . . . , yn)–coloring. Similarly,
one can observe that an horizontal welded system admits also a unique (y1, . . . , yn)–coloring. Using either
Proposition 2.4 or Lemma 2.6, we obtain hence:

Proposition 2.10. Let y1, . . . , yn ∈ RFn. For every welded system W, there is a unique (y1, . . . , yn)–coloring
ν(y1,...,yn). In particular, there is a unique (x1, . . . , xn)–coloring νW of W and the elements

(
νi

W

)
i∈{1,...,n} define

invariants of welded string links up to self-virtualization.

For every welded string link L, one can hence consider

ϕL :

{
RFn −→ RFn

xi 7−→ νi
W

,

where W is any representative for L. By construction, ϕL is a basis-conjugating endomorphism of RFn and it
depends only on the SV–equivalency class of L. Moreover, by uniqueness in Proposition 2.10, we have that
ρ ◦ ν(x1,...,xn) = ν(ρ(x1),...,ρ(xn)) for any ρ ∈ End(RFn). It follows in particular that, ϕL1•L2 = ϕL1 ◦ϕL2 for any two
welded string links L1 and L2; and since ϕ1 = IdRFn , this implies that ϕL is invertible.

Definition 2.11. We define the welded Artin–like invariant as the group homomorphism

Artw :

{
wSLsv

n −→ AutC(RFn)
L 7−→ ϕL

.

2.2.2 An inverse for Artw

Recall that, for every i ∈ {1, . . . , n}, RF(i)
n is the subgroup of RFn generated by all x1, . . . , xn but xi. We

first consider the map η̃ :
∏n

i=1

{
word in {x±1

1 , . . . , x±1
n } \ {x

±1
i }
}
−→

{
ascendant welded system

}
which send(

xε
1
1

r1
1
· · · x

ε1
k1

r1
k1

, . . . , xε
n
1

r1
1
· · · x

εn
kn

rn
kn

)
to W :=

⊔n
i=1

{
i ≤ ai

1 ≤ · · · ≤ ai
ki

}
with tW (ai

j) = ri
j and σW (ai

j) = εi
j.

Lemma 2.12 ([8, Lem. 4.26]). The map η̃ descends into a well defined map

η :
n∏

i=1

RF(i)
n −→ wSLsv

n .

For every ϕ ∈ AutC(RFn), we can now use Lemma 1.7 to extract the unique reduced peripheral system
(λ1, . . . , λn) ∈

∏n
i=1 RF(i)

n such that ϕ(xi) = xλi
i for every i ∈ {1, . . . , n}, and set Lϕ := η(λ1, . . . , λn) ∈ wSLsv

n .
By construction Artw(Lϕ) = ϕ; and for a welded string link L represented by an ascendant welded system, it
is clear, as soon as all self-arrows has been removed using SV, that LArtw(L) = L. It follows then from Lemma
2.6 that:

Theorem 2.13 ([8, Th. 3.11]). The map Artw : wSLsv
n −→ AutC(RFn) is a group isomorphism.
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Again, this theorem should be compared with Theorem 1.13. In particular, it shows that the embed-
ding of classical string links into welded ones induces also an embedding up to link-homotopy and self-
virtualization. But more than that, it provides a very simple characterization of the classical subclass of
wSLsv

n , as the automorphisms which preserve the product of all generators.

Remark 2.14. There is no reason, in general, for a basis-conjugating endomorphism to be invertible. For
instance, the morphism ϕ : F2 −→ F2 which sends x1 to xx2

1 and x2 to xx1
2 is in EndC(F2) \ AutC(F2). An un-

expected by-product of Theorem 2.13, and more precisely of the map η, is that EndC(RFn) = AutC(RFn). As
a matter of fact, it is sufficient to show that ϕ ∈ End(RFn) is basis-conjugating to know that ϕ ∈ AutC(RFn).

3 Classification of ribbon higher dimensional string links up to
ribbon link-homotopy

In this section, we define higher dimensional kind of string links, but we will right away restrict to their
ribbon subclasses. Up to a certain restricted notion of link-homotopy, it will happen that their classification
reduces to the classification of welded string links up to self-virtualization, whatever the dimension is. From
now on, we fix hence an integer d ≥ 2 and import all the definitions given in the Notation and setting section.

3.1 Ribbon string d–links

3.1.1 General string d–links

We start by defining the general notion of string d–links that, however, we shall study in more details only
in Section 4, for the d = 2 case.

Definition 3.1. A string d–link is a proper embedding t
i∈{1,...,n}

(S d−1 × I)i of n disjoint copies of the thickened

(d−1)–dimensional sphere in Bd+2 � Bd+1× I such that, for every i ∈ {1, . . . , n} and ε ∈ {0, 1}, ∂ε(S d−1× I)i =

Cd−1
i × {ε}. We denote by d–SLn the set of string d–links up to isotopy. It is naturally endowed with a

monoidal structure by the stacking product.

Remark 3.2. In [6], string 2–links are called 2–string links. Since this terminology can already be found
in the literature to denote classical string links with 2 connected components, we opted in the present dis-
sertation for a denomination which has not been assigned yet. Not however that “string 2–links” is still
contestable since, in actual fact, they are neither 2–links nor links of strings. Actually, the word “string” is
irrelevant here: string 2–links should be called annulus links. But this terminology would have been tricky to
generalize in higher dimensions. So at the end of the day, string 2–links, and more generally string d–links,
occured to be the best compromise between aesthetics and convenience.

Remark 3.3. Contrary to what one might expect at first, d–SLn does not occur to be a generalization in
higher dimensions of SLn, but of SL2n. This is partly due to the fact that we will be interested in the ribbon
subclass, which is well defined only for string links with an even number of strands.

We also define their singular counterparts, even if, again, we shall use them only in Section 4, for d = 2.

Definition 3.4. A self-singular string d–link is a proper self-immersion T = t
i∈{1,...,n}

(S d−1 × I)i of n disjoint

copies of the thickened (d − 1)–dimensional sphere S d−1 in Bd+2 � Bd+1 × I satisfying the same boundary
conditions than regular string d–links.

Two string d–links are said link-homotopic if there is a smooth path of self-singular string d–links con-
necting them. We denote by d–SLlh

n the quotient of d–SLn under link-homotopy.

Since an embedding is a special case of immersion, regular string d–links are self-singular. However, for
the sake of clarity, we shall often consider that self-singular objects are not embedded, and deal with regular
objects separately.
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3.1.2 (d + 1)–ribbon

We shall now define the ribbon subclass of string d–links, which is characterized by the immersed balls that
they can bound. Prior to its definition, we need hence to describe the singularities we shall allow for these
immersed balls. We say that a connected singularity δ := Y1 ∩ Y2 ⊂

∗

Bd+2 is ribbon if it is a transverse d–ball
with two preimages:

• δc ⊂
˚̃Y1, that we shall call the contractible preimage;

• δess ⊂ Ỹ2, that we shall call the essential preimage, and for which it is required that δ̊ess ⊂
˚̃Y2 and that

∂δess ⊂ ∂∗Ỹ2 represents a non trivial homology class in ∂∗Ỹ2.
In other words, a singularity is ribbon if it has two preimages, one which is lying in the interior of the
immersed manifold—the contractible one, and the other which is properly embedded with boundary being
homologically non trivial in the boundary of the immersed manifold—the essential one; see the right hand
side of Figure I.5 for an illustration. This generalizes the notion of 3–dimensional ribbon singularities created
by a ribbon passing through another one.

Definition 3.5. We define a (d + 1)–ribbon as an immersion ∪
i∈{1,...,n}

(Bd × I)i of n copies of the (d + 1)–

dimensional ball in Bd+2 � Bd+1 × I such that, for every i ∈ {1, . . . , n} and ε ∈ {0, 1}, ∂ε(Bd × I)i = Dd
i × {ε},

and the singular set is a finite number of ribbon singularities.

To provide an orientation for a (d + 1)–ribbon, it is sufficient to specify an orientation on its boundary
and, by convention, we shall choose the one induced by Dd

i on ∂0(Bd × I)i. Besides this (d + 1)–dimensional
orientation, a (d +1)–ribbon can be given a co-orientation, which is a 1–dimensional orientation for its cores
∪

i∈{1,...,n}

(
{0}× I

)
i ⊂ ∪

i∈{1,...,n}
(Bd × I)i. Again by convention, we choose to orient the cores as going from ∂0Bd+2

to ∂1Bd+2.

3.1.3 Ribbon string d–links

Definition 3.6. A string d–link L is ribbon if L = ∂∗R for some (d + 1)–ribbon R. We say then that R is a
ribbon filling for L. We denote by d–rSLn the submonoid of ribbon string d–links.

We want to stress here the fact that ribbon string d–links are required to be fillable by a (d + 1)–ribbon,
but that the filling is not given. This will actually be the main issue to deal combinatorially with them. As
a matter of fact, ribbon string d–links can be alternatively defined as the quotient of (d + 1)–ribbons under
isotopy and the equivalence relation generated by R1

∂
∼ R2 ⇔ ∂∗R1 = ∂∗R2. Accordingly, we shall say that

two (d + 1)–ribbons differ by a ribbon filling change if their boundaries coincide.

3.2 Tube map

First defined for classical knots by T. Yajima in [Yaj62], and then extended to the welded case by S. Satoh in
[Sat00], the Tube map is generally presented as an inflating process for welded diagrams. In this dissertation,
we shall adopt an alternative, and somehow reversed, point of view, more intrinsically based on welded
systems. It is an higher dimensions generalization of the approach given in [9].

3.2.1 For (d + 1)–ribbons

We first define a map

Conn:
{

(d + 1)–ribbon
}/

isotopy −→
{

welded system
}/

equivalence

which encodes the connexions between the ribbon singularities of a (d + 1)–ribbon R as follows. Consider
∆ :=

{
δ1, . . . , δk

}
the set of all its ribbon singularities or, equivalently, the set of their essential preimages.

Each element of ∆ is met by the core of the connected component of R̃ it belongs to, and this provides a,
so-called, co-orientation partial order on ∆ specified by δi1 ≤ δi2 iff δi1 and δi2 belong to the same component
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⊂ Sd+2

xc

xess

δess
δc

x

δ

abstract manifold R̃ near a ribbon singularity

Figure I.5: Ribbon singularity and preimages

(Bd × I)i of R̃, and the first intersection of the core of (Bd × I)i with δi1 occurs before its first intersection with
δi2 , according to the co-orientation of R. This partial order can be extended to ∆ t {1, . . . , n} by identifying
i ∈ {1, . . . , n} with the preimage of Dd

i × {0} ⊂ ∂0R.
Besides, the elements of ∆ cut R̃ into a union of (d + 1)–balls which can be seen as chambers glued

along δ1, . . . , δk; for each of these chambers, the boundary contains two d–balls either from ∆ or from{
Dd

i × {ε} | i ∈ {1, . . . , n}, ε ∈ {0, 1}
}

. Ignoring the Dd
i × {1}’s, this provides a one-to-one correspondence

between the chambers and ∆ t {1, . . . , n} which associates a chamber to the least element of ∆ t {1, . . . , n}
on its boundary according to the co-orientation partial order.

For each ribbon singularity δ, we moreover define a sign as follows. We first choose a point x ∈ δ̊ and
consider its preimages xc ∈ δc and xess ∈ δess. Then we consider (u1, . . . , ud+1), the pushforward in TxBd+2

of a positive basis of Txc R̃, and v, the pushforward of a normal vector for Txessδess ⊂ Txess R̃ which points to
the chamber associated to δess. We say that δ is positive if (u1, . . . , ud+1, v) is a positive basis for TxBd+2, and
negative otherwise. See Figure I.5 for an illustration.

Finally, we note that the contractible preimages of the ribbon singularities are all disjoint from the es-
sential ones; each of them is hence contained in one of the chambers.

Now, we can define Conn(R) as the poset ∆ t {1, . . . , n}, given with tConn(R) : ∆ −→ ∆ t {1, . . . , n} and
σConn(R) : ∆ −→ {±1} where, for every i ∈ {1, . . . , k}
• tConn(R)(δi) corresponds to the chamber to which the contractible preimage associated to δi belongs;

• σConn(R)(δi) = 1 iff δi is positive.

Proposition 3.7. The Conn map is a monoid isomorphism.

Proof. Injectivity is by far the most intricate point. We shall sketch here the outlines of its proof.
Consider two (d+1)–ribbons R1 and R2 such that Conn(R1) = Conn(R2). We first perform reparametriza-

tions for R1 and R2 such that
1. each contractible preimage of a ribbon singularity δ belongs to the interior of a slice

(
Bd × {tδ}

)
iδ

of
R̃1 or R̃2 for some iδ ∈ {1, . . . , n} and tδ ∈ I;

2. for every ribbon singularity δ of R1,
(
iξ(δ), tξ(δ)

)
=
(
iδ, tδ

)
where ξ is the one-to-one correspondence,

induced by the equality Conn(R1) = Conn(R2), between the ribbon singularities of R1 and those of R2.
The first point can be achieved by local deformation since preimages are contractible d–balls, and the second
because the relative positions between preimages are the same in R1 and R2 since Conn(R1) = Conn(R2).

Then, for every
(
Bd × {tδ}

)
iδ

with δ a ribbon singularity of R1, we fix a small tubular neigborhood
Uδ ⊂ B̊d+2 of its image; these are (d + 2)–balls whose boundaries are met in, exactly, four d–balls by R1—
see the right hand side of Figure I.5. At that time, we perform an isotopy on R2 such that, for every ribbon
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singularity δ of R1, R1∩Uδ = R2∩Uδ as oriented and co-oriented spaces, the ribbon singularity of R2 which
superimpose with δ being ξ(δ). Again, this can be done since R1 and R2 are locally contractible.

Outside the Uδ’s, R1 and R2 can now be seen as regular (d + 1)–balls connecting the ends that come by
four on each ∂Uδ together with the Dd+1

i × {0}’s and the Dd+1
i × {1}’s. Due to Conn(R1) = Conn(R2) and

condition 2, these connexions are combinatorially the same for R1 and R2; to conclude, it is hence sufficient
to show that, up to isotopy, there is a unique way to embed (d + 1)–balls in Y , where Y is Bd+2 with a
neighborhood of a finite number of points removed, such that they connect by pairs some given d–balls on
∂Y in a prescribed way. Note that, as a by-product, this would also show that Conn is surjective.

To prove this uniqueness property, one can notice that, up to isotopy, the (d + 1)–balls are given by
some 1–dimensional framed cores. Indeed, let B be such a (d + 1)–ball that connect two boundary d–balls
B0, B1 ⊂ ∂Y . Since B is regularly embedded, it can retract to a path which connect B0 to B1; and for each
point x on this path, the positive normal vector to TxB ⊂ TxBd+2 provides a normal framing. Reciprocally,
any normally framed path γ from B0 to B1 can be inflated into a (d + 1)–ball connecting B0 to B1 by
considering, for every x on the path, a d–dimensional neigborhood of x which is orthogonal to both the
derivative and the framing of γ. Now, since it has to stay orthogonal to the derivative of the path, the framing
can be seen as a path on S d, and it can actually be any path; but d ≥ 2, so π1(S d) = 1 and all the framing are
hence equivalent up to isotopy. The (d + 1)–balls are thus given by just their 1–dimensional cores in Y , but
since Y is a punctured (d + 2)–ball with d + 2 ≥ 4, π1(Y) = 1 and all cores are equivalent up to isotopy. �

Definition 3.8. We set

Tũbe :
{

welded system
}/

equivalence −→
{

(d + 1)–ribbon
}/

isotopy

as the inverse function of Conn.

3.2.2 For ribbon string d–links

Welded string links are the quotient of welded systems under R1, R2 and R3 moves. Ribbon string d–links
can be seen as the quotient of (d + 1)–ribbons under ribbon filling changes. But in [9], Figures 14–17 give
explicitly some local ribbon filling changes which realize moves R1, R2 and R3 for welded systems. The
pictures are given for d = 2, but they can be straightforwardly generalized to higher dimensions, using a map
that inflates, in the (d − 2) missing dimensions, any point to a (d − 2)–ball whose radius is a smooth function
on the abstract manifold which is 1 on the contractible preimages of ribbon singularities and strictly greater
than 1 anywhere else. Consequently, we obtain:

Proposition 3.9. The Tũbe map decends into a well defined surjective map Tube : wSLn −→ d–rSLn.

The question whether the Tube map is injective or not remains open. We will return to this issue in the
Perspectives section, but looking at our present task, we won’t need to know its injectivity status to provide
a classification up to link-homotopy.

3.3 Fundamental group

As usual, the fundamental group π1(L) of a, possibly self-singular, string d–link L is defined as π1(XL),
where XL is the complement in Bd+2 of a tubular neighborhood for L. This definition is general, but we shall
now focus on the ribbon case. Except in the last paragraph, we shall hence assume now, within this section,
that L is non singular and given with a ribbon filling R. Then we also denote by XR the complement of R.

It is easily computed that π1(XR) is trivial, and consequently, for every regular x ∈ R̊, we can unambigu-
ously defined the meridian µx as the image in π1(L) of a loop in XL which meets R exactly once, positively, in
x. These meridians actually generates π1(L) since, generically, a loop in XL meet R a finite number of times,
and each of these intersections can be realized by some meridian or its inverse. As noticed in the previous
section, R is cut into chambers by its ribbon singularities and, obviously, µx = µy whenever x and y belongs
to the same chamber. It is hence sufficient to consider one meridian for each chamber. In particular, for
every i ∈ {1, . . . , n}, we define the ith bottom and top meridians as the meridians associated to the chambers
which contain, respectively, Dd

i × {0} and Dd
i × {1} in their boundary.
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These meridians satisfy some relations. Indeed, given a parametrized neighborhood of a ribbon singu-
larity, a direct computation shows the following:

Lemma 3.10. For every ribbon singularity δ of R, µc+
= µ

µεc0
c− , where

• c+ and c− are the two chambers which contains δ in their boundary, c+ being the direct successor of
c− according to the co-orientation partial order;

• c0 is the chamber to which the contractible preimage of δ belongs;
• ε is the sign associated to δ.

Actually, Lemma 3.10 provides a complete presentation for π1(L), but we won’t need to know it. We
shall rather focus on the fact that, as a consequence, every two meridians that belong to the same component
of R are conjugate. It follows in particular that π1(L) is normally generated by either the bottom or by the
top meridians and we can hence consider Rπ1(L), the reduced quotient of π1(L) with regard to any of these
two sets of generators.

Finally—and for any string 2–link, not only ribbon ones—we define, for every i ∈ {1, . . . , n}, a ith

longitude for L as any push out in XL of a path on the ith component of L, closed by a standard path on
∂Bd+2. The choice of path on the ith component is actually irrelevant since, up to isotopy, any two choices
differ by a loop in Cd−1

i × {0}, but this loop can then be pushed out in Dd
i × {0} which is simply connected.

On the contrary, the way the path is pushed out does matter and different choices may lead to longitudes
which differ by a power of the ith bottom meridian. Although it won’t be crucial for our purpose, we should
note that, as soon as a ribbon filling is given, say R, there is, for every i ∈ {1, . . . , n}, a preferred ith longitude
obtained by pushing out the path inside R or, equivalently, pushing it out such that it never meets R.

3.4 Ribbon link-homotopy

3.4.1 Seen from topology

We define now a seemingly restricted notion of link-homotopy for ribbon object. The point will be to allow
link-homotopy but only in a way that preserve, in some sense, ribbonness. To this end, we introduce a notion
of critical ribbon singularity, which is a transverse connected singularity δ := Y1∩Y2 ⊂

∗

Bd+2, homeomorphic
to a d–ball and admitting two preimages:
• δc ⊂ ∂Ỹ1, that we shall call the contractible preimage;

• δess ⊂ Ỹ2, that we shall call the essential preimage, and for which it is required that δ̊ess ⊂
˚̃Y2 and that

∂δess ⊂ ∂∗Ỹ2 represents a non trivial homology class in ∂∗Ỹ2.
The only difference between a ribbon and critical ribbon singularity is that, for the former, the contractible
preimage is entirely in the interior of the immersed manifold, whereas for the latter, it is stuck on the
boundary. This is precisely the critical situation one faces when pushing at once a ribbon singularity out.

We can now define singular (d + 1)–ribbons just as regular ones, but with the extra freedom that ribbon
singularities may be critical and the extra requirement that exactly one is. We moreover say that a singular
(d+1)–ribbon is self-singular if the two preimages of the critical ribbon singularity are on the same connected
component of the abstract manifold. Accordingly, self-singular ribbon string d–links are then defined as the
lateral boundary of self-singular (d + 1)–ribbon. Note that singular ribbon string d–links are not anymore
embedded, but immersed, since the boundary of the critical ribbon singularity is a singular double points
locus.

Definition 3.11. Two ribbon string d–links L1 and L2 are said elementary ribbon link-homotopic if there is a
smooth path γ : I −→

{
(d + 1)–ribbon

}
t
{

self-singular (d + 1)–ribbon
}

such that ∂∗γ(0) = L1, ∂∗γ(1) = L2

and γ(t) is singular only for t = 1
2 . They are said ribbon link-homotopic if there is a finite sequence of ribbon

string d–links L′1, . . . , L
′
s such that L′1 = L1, L′s = L2 and L′i is elementary ribbon link-homotopic to L′i+1

for every i ∈ {1, . . . , s − 1}. We denote by d–rSLlh
n the monoid of ribbon string d–links up to ribbon link-

homotopy.
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In rough words, a ribbon link-homotopy is a link-homotopy where the connected components are allowed
to cross themselves only in a rigid way which can be locally filled by some ribbon (d+1)–balls. In particular,
near each critical time of a ribbon link-homotopy, there is a given ribbon filling, and hence a set of ribbon
singularity. When running through the critical time, the number of ribbon singularities may increase or
decrease by one, but it may also be constant or be increased only at the critical time. However, these last
two situations are non generic and can be avoided. Indeed, if considering the manifold ∪t∈Iγ(t) ⊂ Bd+2 × I,
they corresponds to situations where the critical ribbon singularity is a tangential locus for the two involved
components, and this can be perturbated so that they are not tangential anymore. As a matter of fact, one
may assume that a ribbon link-homotopy contains only critical times for which the number of singularity
changes by one.

3.4.2 Seen from the Tube map

Given a filled ribbon string d–link, one can make, up to ribbon link-homotopy, appear or disappear any
ribbon singularity which has both its preimages in the same connected component by pushing it through the
lateral boundary. When composed with the Conn map, this realizes a SV move on the associated welded
systems. Reciprocally, any SV move on a welded system can be realized through the Tube map as a ribbon
link-homotopy. It follows that:

Lemma 3.12. The Tube map descends into a well defined surjective map Tube: wSLsv
n −→ d–rSLlh

n .

Actually, ribbon link-homotopy could have been defined as the smallest quotient of d–rSLn such that
the Tube map descends to a well defined map on wSLsv

n . Stated like this, ribbon link-homotopy may look
rather artificial; but the above topological definition provides a more natural motivation and, as we shall see
in Section 4, it actually coincides, at least in the d = 2 case, with the usual notion of link-homotopy.

3.5 Higher dimensional Artin–like invariant

To define a classifying invariant for string d–links up to ribbon link-homotopy, we shall adopt the very
same strategy than Habbeger and Lin, recalled in Section 1.3. Let L be a string d–link and define XL as the
complement of a tubular neighborhood of L in Bd+2. It has been shown, in Section 3.3, that π1(L) is normally
generated by either the bottom or by the top meridians of L. Moreover, it is straightforwardly computed that
π1(∂0XL) � π1(∂1XL) � Fn and that the inclusion maps ιε : ∂εXL −→ XL, for ε ∈ {0, 1} induces isomorphisms
at the H1 and H2–levels. Then by Stallings theorem, refined by Habegger–Lin arguments, we obtain:

Lemma 3.13. The maps ι0, ι1 : RFn −→ Rπ1(L) are both group isomorphisms.

In particular, Rπ1(XL) is homeomorphic to RFn, and one can define the map ϕL := ι−1
0 ◦ ι1, which

expresses the top meridians of L in terms of the bottom ones. Said differently, it sends the ith generator to its
conjugate by any ith longitude.

Proposition 3.14 ([8, Prop. 2.33]). If L1 and L2 are two ribbon string d–links which are ribbon link-
homotopic, then ϕL1 = ϕL2 .

In [8], the proof is given only for the d = 2 case, but once a ribbon filling is choosen, as a reverse process
of the inflating map mentioned in Section 3.2.2, the general picture retracts to this case.

Definition 3.15. We define the d–dimensional Artin–like invariant as the group homomorphism

Artd :

{
d–rSLlh

n −→ AutC(RFn)
L 7−→ ϕL

.

This topology-grounded Artd map is actually closely related to the combinatorial Artw map. Indeed, let
W be a welded system and let R be the ribbon filling for Tube(W) given by Tũbe. Recall that, as a set,
W = Conn(R) = ∆R t {1, . . . , n}, where ∆R is the set of ribbon singularities of R. In what follows, we shall
furthermore identify each i ∈ {1, . . . , n} with Dd

i × {0} and count them among the ribbon singularities. Then
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Figure I.6: Singularities in broken surface diagrams

we can define the map νR : W −→ RFn which send a ∈ W = Conn(R) to ι−1
0 (µa), where µa is the reduced

meridian associated to the chamber of R which contains a as the lowest ribbon singularity in its boundary,
with respect to the co-orientation partial order. By Lemma 3.10, νR is actually a (x1, . . . , xn)–coloring for W;
and by Proposition 2.10, it is the unique (x1, . . . , xn)–coloring of W. In particular, Artw(W) is the map which
sends xi to the preimage by ι0 of the ith top meridian of Tube(W) or, in other words, to (ι−1

0 ◦ ι1)(xi). In other
words:

Proposition 3.16. Artw = Artd ◦ Tube.

But, by Theorem 2.13, we know that Artw is an isomorphism; up to ribbon link-homotopy, Tube is hence
injective. But since it was already known to be surjective, it follows:

Proposition 3.17. The map Tube: wSLsv
n −→ d–rSLlh

n is a group isomorphism.

And as a corollary, we obtain, whatever d ≥ 2 is:

Theorem 3.18 ([6, Th. 5.1]). The map Artd : d–rSLlh
n −→ AutC(RFn) is a group isomorphism.

4 Classification of string 2–links up to link-homotopy

In this last section, we prove that, for d = 2, ribbon string 2–links and ribbon link-homotopy are both
generic enough to provide a classification for general string 2–links up to usual link-homotopy. We shall
start by developping a broken surface diagrams theory for immersed surfaces. In one hand, it will be used
to prove that, as a corollary of Bartels–Teichner’s theorem, every string 2–link is link-homotopic to a ribbon
string 2–link; and on the other hand, that the Art2 map is invariant under usual link-homotopy. The general
classification will follow then from these two statements.

4.1 Broken surface diagrams

4.1.1 For embedded surfaces

Broken surface diagrams are the natural analogue of knot diagrams for embedded surfaces in dimension
four, see e.g. [CS98, CKS04] for general overviews. They correspond to generic projections of the surfaces
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onto B3; this produces three kinds of singularities pictured in the upper row of Figure I.6: 1–dimensional
loci of doubles points, and isolated triple and branch points. As illustrated in the lower row of Figure I.6,
double points in broken surface diagrams are enhanced with an extra over/under information represented by
erasing a small neighborhood in the sheet which is located below with regard to the projection direction. As
for classical knots, a broken surface diagram with this over/under information is sufficient to recover, up to
isotopy, the whole surface in B4.

In [Ros98a], D. Roseman defined a finite set of local moves, now called Roseman moves; they are
pictured up to reflections and mirror images4 in Figure I.7. By mirror image, we mean the global swap of
the over/under informations; it actually corresponds to a reflection in the projection direction. It can be noted
that move (g) differs from the one given in [Ros98a], and that move (e) differs from the one given e.g. in
[CKS04]; it is however easily seen that the three sets are equivalent and our choice has been determined by
graphical and aesthetic consideration. D. Roseman proved the following:

Theorem 4.1 ([Ros98a]). Two broken surface diagrams represent the same knotted surface iff they are
connected by a finite sequence of Roseman moves.

Broken surface diagrams provide hence a combinatorial way to see and study knotted surfaces.

4.1.2 For immersed surfaces

We want now to extend broken surface diagrams and Roseman moves to the singular setting. Unlike the
3–dimensional knot case, immersed surfaces in B4 may have some isolated singular double points which
cannot be removed by any small deformation. Generically, these singular points project on isolated points
inside a 1–dimensional locus of double points, where the over/under information swaps. We denote these
singular double points by a dot; see Figure I.8 for an illustration. We moreover say that a singular point is
self-singular if both its preimages are on the same connected component.

Definition 4.2. A (self-)singular broken surface diagram is a generic projection into B3 of an (self-)immersed
surface in B4, together with an over/under information for each line or circle of regular double points, that
is double points which are not singular points. The singular locus of the broken surface diagram can refer
either to the set of its double, triple, branch and singular points or to their preimages.

Of course, some additional moves on diagrams are required to generate isotopy and homotopy of im-
mersed surfaces. These are the three singular Roseman moves given, up to reflections and mirror images, in
Figure I.9. A singular Roseman move shall be said to be a self-move if it involves only self-singular points.

Following the same lines as in [Ros98a], we proved:

Proposition 4.3 ([6, Prop. 2.4]). Two singular broken surface diagrams represent the same immersed sur-
face in 4–space up to (link-)homotopy if and only if they are connected by a finite sequence of Roseman
moves (a)–(g) and singular Roseman (self-)moves (h)–(j).

As mentioned, the proof of Proposition 4.3 is essentially contained in Roseman’s arguments for the
embedded case and, actually, even the result is not surprising. It is indeed well-known, see e.g. [FQ90,
Hir59], that regular (link-)homotopies are generated by ambient isotopies and finger/Whitney (self-)moves,
and that general (link-)homotopies are furthermore generated by the additional cusp move. In our setting
and up to the (a)–(g) Roseman moves, move (h) corresponds to isotopies, move (i) to finger/Whitney moves,
and move (j) to cusp moves. As a matter of facts, Proposition 4.3 can be refined into

Proposition 4.4. Two singular broken surface diagrams are connected by a finite sequence of Roseman
moves (a)–(g) and
• singular Roseman moves (h) iff they represent the same immersed surface up to ambient isotopy;
• singular Roseman (self-)moves (h)–(i) iff they represent the same immersed surface up to regular

(link-)homotopy;
4this is actually not true: depending on the relative heights of the different sheets, move (e) has indeed a second version which is

not equivalent to the pictured one, even up to reflections, and similarly, move (g) has five other versions; it is however easy to deduce
them from the given pictures
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(a) : ←→

(b) : ←→

(c) : ←→

(d) : ←→

(e) : ←→

(f) : ←→

(g) : ←→

Figure I.7: Roseman moves:
for the move (c), a dotted path on the surface has been drawn to help visualizing the picture
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Figure I.8: Singular point in a broken surface diagram

(h) : ←→

(i) : ←→

(j) : ←→

Figure I.9: Singular Roseman moves

• singular Roseman (self-)moves (h)–(j) iff they represent the same immersed surface up to (link-)homotopy.

Note however that Proposition 4.4 concerns the smooth category whereas [FQ90] deals with the topo-
logical one. Note also that in [Kam99], S. Kamada proved, in term of charts, a similar statement for singular
2–braids up to isotopy.

4.2 Ribbonness and link-homotopy

Regular and singular string 2–links have been defined as immersions of annuli S 1 × [0, 1] in the 4–ball. The
images of the circles S 1 ×

{
1
3

}
and S 1 ×

{
2
3

}
split each annulus into an inner annulus, namely S 1 ×

[
1
3 ,

2
3

]
,

and two outer annuli.

Definition 4.5. A pseudo-ribbon diagram for a, possibly singular, string 2–link is a broken surface diagram
D such that the circles S 1 ×

{
1
3

}
and S 1 ×

{
2
3

}
are regular and their images bound embedded 2–discs, called

attaching discs, satisfying:
• the interior of the attaching discs are disjoint from D;
• outer annuli are disjoint;
• each (connected component of the) intersection between an outer annulus Aout and an inner annulus

Ain is a circle of regular double points whose preimages, in Aout is essential, and in Ain bounds a disk
in Ain whose interior is disjoint from the singular locus of D.

Two pseudo-ribbon diagrams are called equivalent if they represent isotopic, possibly singular, string 2–links
and link-equivalent if they represent link-homotopic, possibly self-singular, string 2–links.
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Pseudo-ribbon diagram should be thought of as diagrams of knotted spheres—the inner annuli closed
by the attaching discs, that we shall call the inner spheres—attached to the bottom and top boundaries by
thin tubes—the outer annuli, that we shall also call attaching tubes—which are the lateral boundary of some
3–dimensional thickening of 1–dimensional strings, possibly linked with the spheres. It can be noted that
the second condition implies that the attaching tubes without the inner spheres are embedded.

Pseudo-ribbon diagrams are rather flexible. First, every broken surface diagram for a string 2–link can
be seen as pseudo-ribbon since, up to reparametrization, inner annuli can always be reduced to some collar
neighborhoods of the bottom and top boundaries. Second, by pushing the attaching tubes out of the area first,
every Roseman and singular Roseman moves can be performed on inner spheres; the following statement
holds indeed true:

Lemma 4.6 ([6, Lem. 3.3 and proof of Th. 3.5]). Let D be a pseudo-ribbon diagram and denote its inner
spheres by S . If S ′ is a broken surface diagram for immersed spheres which is connected to S by a sequence
of Roseman moves and singular Roseman (self-)moves, then there is a pseudo-ribbon diagram D′, which is
(link-)equivalent to D and whose inner spheres are S ′.

Yet, the “pseudo-ribbon” terminology is justified by the following:

Lemma 4.7 ([6, Lem. 3.4]). A string 2–link admitting a pseudo-ribbon diagram with embedded5 inner
spheres is ribbon.

Now, recall Bartels–Teichner theorem:

Theorem 4.8 ([BT99]). Every smooth embedded spheres in B4 are link-homotopically trivial.

Then, for any string 2–link, we can choose a pseudo-ribbon diagram and perform on the inner spheres
the link-homotopy prescribed by Bartels–Teichner theorem using Lemma 4.6. Applying then Lemma 4.7,
we obtain that:

Theorem 4.9 ([6, Th. 3.5]). Any string 2–link is link-homotopic to a ribbon one.

Remark 4.10. Actually, Theorems 4.8 and 4.9 can be deduced each from the other. Indeed, reciprocally,
every smooth embedded spheres can be cut open into a string 2–link L by removing small discs and stretching
the result so that it is properly embedded. Then Theorem 4.9 asserts that L is link-homotopic to a ribbon
string 2–links. Combining Proposition 3.17 and 2.4, we obtain that it is even link-homotopic to a monotonic
ribbon string 2–link. But with the removed discs added back, such a monotonic ribbon string 2–link retracts
to unknotted spheres.

4.3 Classification up to link-homotopy

The construction of the Art2 map, defined in Section 3.5 for ribbon string 2–links, works actually for any
string 2–links. The only point which need a further word is that the fundamental group is normally generated
by either the bottom or by the top meridians, and this will be a consequence of the Wirtinger presentation
given below. However, the construction fails for singular string 2–links since the embeddings of the bottom
and top boundaries do not induce anymore epimorphisms at the H2–level, and this prevents Stallings’ theo-
rem from being applied. But having Art2 defined for self-singular string 2–link is nonetheless crucial if one
wants to track it along a link-homotopy in order to prove its invariance. Indeed, contrary to the string link
case, string 2–links along a link-homotopy are not singular only for a finite number of exceptional times.
We shall hence provide an alternative definition for Art2, more combinatorial and built on broken surfaces
diagrams, which does extend to the self-singular setting.

4.3.1 Wirtinger presentation

A, possibly singular, broken surface diagram D for a, possibly singular, string 2–link L is an immersed
oriented surface in B3, with small bands removed to indicate the different projection heights of the sheets.

5in 3–space
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Figure I.10: Regions near a regular double point and RFn–coloring

We define the regions of D as the connected components of D considered with these small bands and the
singular points removed. Locally, there are hence three regions near a regular double point, seven near a
triple point, two near a singular point and only one near a branch point; several of these local regions can
however be the same if they are otherwise connected. Now, let p be a regular double point of D, and denote
by So and Su the sheets of D that meet at p such that So is over Su with respect to the projection direction.
We shall call over-region of p the region which belongs to So, and under-regions of p the other two. An
under-region shall moreover be said positive or negative, depending on whether a basis of TpB3 made of a
positive basis for TpSo concatenated with a vector of TpSu which points to the considered under-region, is
positive or negative; see Figure I.10 for an illustration. For every i ∈ {1, . . . , n}, we finally call ith bottom and
top regions the unique regions that contain, respectively, Ci × {0} and Ci × {1}.

To define π1(L), we fix a basepoint which is higher than any point of L in the projection direction. Then
for each region r, we define µr ∈ π1(L) as the loop which starts at the basepoint, runs straight above a given
point p ∈ r, goes down along the projection direction, turns positively around p, that is along the boundary
of a small oriented disc which meet positively L in p, and then goes back to the basepoint. In particular, for
every i ∈ {1, . . . , n}, we define the ith bottom and top meridians as the meridians associated, respectively, to
the ith bottom and top regions.

Proposition 4.11 (e.g. [CKS04]).
• For every regular double point p of D, µr+

= µ
µr0
r− , where r0 is the over-region, r+ the positive under-

region and r− the negative under-region of p.
• For every singular point p of D, [µr1 ; µr2 ] = 0 where r1 and r2 are the two regions to which p is

adherent.

These relations provides actually a presentation for π1(L), called the Wirtinger presentation, which can
be seen as a generalization of the presentation given in Section 3.3. Indeed, given a string 2–link L with a
ribbon filling R, one can push R onto a neighborhood of {0} × B2 × I such that
• the ribbon singularities of R are all in {0} × B2 × I;
• R is all in {0} × B2 × I, except in a neighborhood of each essential preimage of its ribbon singularities,

parametrized as
{

(x, t) | x ∈ B2, t ∈ (−1, 1)
}

, B2 × {0} being the ribbon singularity, where the first

coordinate in B3 × I � B1 × B2 × I goes as εte
1

t2−1 , for some ε , 0, when t runs from −1 to 1.
When projecting along the first coordinate, we obtain a broken surface diagram D which, near ribbon singu-
larity, looks locally like Figure I.11, and whose singular set is exactly the union of all the circles of regular
double points which arise by pair near the ribbon singularities. It is immediately observed that regions of
D, except for the small disk components each of whose boundaries comes from a circle of regular double
points6, are in one-to-one correspondence with chambers of R, as defined in Section 3.2.1, and it can be
easily checked that the above relations and the relations given in Section 3.3 on the associated meridians
are the same. In particular, the definitions of bottom and top meridians given above and in Section 3.3 do
coincide.

Corollary 4.12. For any, possibly singular, string 2–link L, π1(L) is normally generated by either the bottom
or by the top meridians.

6see for instance the small disk inside the thin tube in Figure I.11
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Figure I.11: Projecting a ribbon singularity in B3

Consequently, the construction of the Art2 map, given in Section 3.5 for ribbon string 2–links, can be
extended to all (non-singular) string 2–links. Moreover, as a by-product of the construction, we also obtain
that for any string 2–link L, Rπ1(L) is isomorphic to RFn generated by the bottom meridians, and that Art2(L)
sends xi to the ith top meridian, that is to its conjugate by a ith longitude, defined in Section 3.3.

4.3.2 RFn–colorings

To extend Art2 to (at least some) self-singular string 2–links, we shall adopt a strategy which is close to what
has been done for welded string links in Section 2.2.1.

Definition 4.13. An RFn–coloring of a, possibly self-singular, broken surface diagram D for a, possibly
self-singular, string 2–link is a map ν :

{
regions of D

}
−→ RFn such that:

• for every i ∈ {1, . . . , n}, the ith bottom region is sent to the ith generator of RFn;
• for every regular double point p of D, ν(r+) = ν(r−)ν(r0) where r0 is the over-region, r+ the positive

under-region and r− the negative under-region of p.
No further condition is assigned to triple, branch nor singular points.

For any string 2–link L, a fundamental example of RFn–coloring is the Wirtinger coloring, which sends
each region to its associated meridian in Rπ1(L) � RFn. The map Art2(L) can be deduced from it, since
Art2(L) sends the ith generator to the image of the ith top region under the Wirtinger coloring.

An RFn–coloring is merely an example of surface diagram coloring, as considered e.g. in [CKS04]. As
explained there or in [Ros98b], RFn–colorings are somehow preserved by Roseman moves (a)–(g), in the
sense that there is a one-to-one correspondence between the set of coloring before and after the move. It can
indeed be checked, move by move, that knowing the values of the coloring on the regions which meet the
boundary of the 3–ball supporting the move is sufficient to recover in a unique and consistent way the whole
coloring inside the 3–ball. This is also clear for singular Roseman self-moves. This proves the following:

Lemma 4.14 ([6, Lem. 4.4]). The number of possible RFn–coloring for a, possibly singular, broken surface
diagram of a, possibly singular, string 2–link is invariant under Roseman and singular Roseman moves.

In the ribbon case, RFn–colorings are closely related to the (x1, . . . , xn)–colorings defined in Section
2.2.1. Indeed, for a ribbon string 2–link L, one can fix a ribbon filling R and the associated—in the sense
of the previous section—broken surface diagram D to see, using the correspondence between regions and
chambers mentioned in the previous section and the correspondence between chambers and elements of
the associated welded system mentioned in Section 3.2.1, that RFn–colorings of D are in one-to-one corre-
spondence with (x1, . . . , xn)–colorings of Conn(R). As a corollary of Theorem 4.9 and Proposition 2.10, we
obtain hence:

Proposition 4.15 ([6, Prop. 4.5]). For any broken surface diagram of either a string 2–link or a self-singular
string 2–link which is link-homotopic to a string link, there is a unique RFn–coloring. For broken surface
diagrams of string 2–links, this is the Wirtinger coloring.
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Now if D1 and D2 are two broken surfaces diagrams for two, possibly singular, string 2–links which are
link-homotopic, then they are connected by a finite sequence of Roseman moves and singular Roseman self-
moves. If one fix a RFn–coloring for D1, then it will propagate all along the sequence, and at each step, the
coloring will change only in the 3–ball which contains the move. As a result, the images of the top regions
will remains the same for D1 and D2. If L is a string 2–link or a self-singular string 2–link which is link-
homotopic to a string 2–link then, after Proposition 4.15, we can hence define a map Art2(L) ∈ AutC(RFn) as
the map which sends, for every i ∈ {1, . . . , n}, the ith generator of RFn to the image of the ith top region under
the unique RFn–coloring of any broken surface diagram for L. We obtain for free that, for string 2–links, it
coincides with the topology–grounded Art2 map defined above, and that it is invariant under link-homtopy.
Consequently:

Corollary 4.16. The Art2 map for string 2–links is invariant under link-homotopy.

4.3.3 Conclusion

The stage is now set, and combining Theorem 4.9, Theorem 3.18 and Corollary 4.16, we obtain:

Theorem 4.17 ([6, Prop. 4.7]). The map Art2 : 2–SLlh
n −→ AutC(RFn) is a group isomorphism.

In the light of Corollary 1.9, this can be rephrased as:

Corollary 4.18 ([6, Th. 4.8]). Up to link-homotopy, string 2–links are classified by non repeating Milnor
numbers.

Another corollary is that, at least for d = 2, the notion of ribbon link-homotopy appears to be equivalent
to the usual link-homotopy in the sense that two ribbon string 2–links are ribbon link-homotopic iff they are
link-homotopic.

Remark 4.19. The Art2 invariant can be defined—and seen to classify 2–SLlh
n —from scratch using only RFn–

colorings, without mentionning at all Habegger–Lin topological contruction and, in particular, without using
Stallings’ theorem. But what Habegger–Lin approach does provide is that the “combinatorial” longitudes in
RFn extracted from Art2 using Corollary 1.9 are indeed “topological” longitudes in the reduced fundamental
group.
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Perspectives

Theorem 4.17 can be seen as a full accomplishment of the combinatorial welded knot theory in topology.
Along the road, it opens a number of questions that we partially review now.

Injectivity of the Tube map

From the beginning of its study, an important question regarding the relationship between welded and ribbon
objects remains open:

Question 1. Is the Tube map injective ?

Actually, this question splits in several subquestions as it can be asked for several type of objects. In this
dissertation, we have indeed focus on the string link case, but welded knot theory can be extended to any
kind of knotted objects such as links or braids. The Tube map is similarly defined toward the appropriate
class of ribbon knotted surfaces.

Proposition 3.17 provides a positive answer up to link-homotopy, but the question is unanswered up to
isotopy. However, when restricted to welded braids, which are welded string links staying transverse to the
foliation tt∈I I × {t}, T. Brendle and A. Hatcher proved in [BH13b] that it is injective. On the other hand, for
welded links, the global reversal move on welded diagrams—which essentially reverse all the signs and the
partial order on arrows, and which is somehow related to the torus eversion in dimension 4—is known to let
the Tube map invariant; see [Win09] and [9, Prop. 2.7 & 3.5]. Still, it is not known whether the Tube map is
injective on welded links quotiented by global reversal moves.

For ribbon string 2–links, the boundary rigidity prevent eversions to be performed and the injectivity
problem remains intact. As emphasized by Proposition 3.7 and Section 3.2.2, the main issue to deal with the
Tube map is the question of ribbon filling changes. Moves R1, R2 and R3 correspond indeed to some local
ribbon filling changes and Question 1 can be rephrased as:

Question 1.1.
• Do these local changes generate all ribbon filling changes on string 2–links ?
• Do these local moves and the global change induced by the eversion generate all ribbon filling changes

on knotted tori ?

A strongly related question is the embedding of classical knotted objects among welded ones. Indeed,
when restricted to welded diagrams with no virtual crossing, it is known that the Tube map is injective.
This is due to the fact that links and string links are classified by their peripheral systems, and that the
Wirtinger presentations provide a way to identify the fundamental group, the meridians and the longitudes
of a classical object with the ones of its image under Tube. From this point of view, the global reversal move
just corresponds to inverting the longitudes. Again, Question 1 can be rephrased as:

Question 1.2.
• Are welded string links classified by their peripheral systems ?
• Are welded links classified by their peripheral systems up to longitude reversing ?

Classification of string d–links up to link-homotopy

In the light of Theorem 4.17, Theorem 3.18 naturally raises the following question:

Question 2. Are string d–links classified by Artd ?

It is indeed easily seen that the fundamental group of any string d–link is normally generated by bottom
and top meridians, so that Artd can be defined for every string d–links. Following the d = 2 case, Question
2 reduces to:

Question 2.1. Is Artd invariant under link-homotopy ?
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Figure I.12: A string 2–link which is no closure

Question 2.2. Is any string d–link link-homotopic to a ribbon one ?

Bartels–Teichner theorem, on which Theorem 4.9 strongly relies, holds in all dimension d ≥ 2. It is
hence very likely that the answer to Question 2.2 is yes. But to apply the same strategies than in Section
4, we are missing the d–dimensional counterpart of broken surface diagrams, that is a full control on the
generic projection of string d–links on an hyperplane. Indeed, as we get higher in dimension, the singular
locus of the projection get more intricate. This may be not an issue for generalizing RFn–coloring and
dealing accordingly with Question 2.1, since only regular double points are playing a role there; but it is for
dealing with a higher dimensional analogue of Lemma 4.6.

A last question, which should be a corollary of Question 2 but may be answered on its own is the
following:

Question 2.3. Are ribbon and usual link-homotopies equivalent on ribbon string d–links ?

Classification of torus-links up to link-homotopy

One of the main motivation of Habbegger and Lin classification of string links up to link-homotopy was the
similar classification for links. Compared with Milnor seminal work in [Mil54], they indeed showed that the
undeterminacy in Milnor invariants corresponds exactly to the undeterminacy when closing a string link into
a link. Consequently, Milnor numbers are completely well defined for string links and, as stressed in Section
1.2, equivalent to the Art map when restricted to the non repeating ones. Besides, Habegger and Lin gave
in [HL98] a classification scheme which provides an algebraic interpretation for the string links closure, and
leads to a classification of links up to link-homotopy by a quotient of AutC(RFn).

This classification scheme was succesfully applied in [8, Sec. 2.4] to ribbon torus-links—which are
embedded tori in S 4 bounding some ribbon solid tori—up to link-homotopy. However, it does not apply to
general torus-links—which are embedded tori in S 4—since they are not all the closure of a string 2–links.
Indeed, in [6, Appendix A], we present an invariant of torus-links defined as the evaluation, for a given
broken surface diagram, of the homology class in one torus-component of its intersection with another torus-
component; computed on the broken surface diagram obtained by spinning the 3–component link shown in
Figure I.12 around a line, and while spinning making the component 1 run a full turn around component 3, it
shows that the underlying torus-link is not the closure of any string 2–link, even up to link-homotopy. This
motivates the following:

Question 3. Can torus–links be algebraically classified up to link-homotopy and how the ribbon subclass
would fit inside this classification ?

Classification of string 2–links up to concordance

Besides the relevance of welded knot theory for the study of knotted surfaces, Theorem 4.17 expresses also
the substance of the ribbon subclass. One of the main point of the present dissertation is indeed that, up
to link-homotopy, ribbon objects are simultaneously generic enough to provide an angle to the general case
and rigid enough to be studied using tools inherited from the classical 3–dimensional knot theory.
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One can wonder to what extent link-homotopy can be replaced by some weaker quotient while keeping
their genericity to ribbon objects. In the light of general Milnor invariants, concordance is the second
candidate after link-homotopy, and this leads to the following question:

Question 4. Is any string 2–link concordant to a ribbon one ?

A positive answer would immediately raise the following questions:

Question 5.
• Can ribbon string 2–links be algebraically classified up to concordance ?
• Can string 2–links be algebraically classified up to concordance ?

In the light of the classical concordance group complexity, and knowing that classical links embed in the
ribbon subclass of knotted tori, Question 5 may look rather bold. Nevertheless, the concordance quotient
for the image of classical objects under the Tube map may be simpler than the direct quotient for classical
objects7. Moreover, the complexity of the classical concordance group is largely due to the failure of the
Whitney trick in dimension 4; in higher dimension, the Whitney towers machinery should collapse, and
with it the higher order Sato–Levine and Arf invariants [CST12], leaving Milnor invariants a possible set of
classifying invariants.

A weaker form of Question 4 would be the following:

Question 6. Is any string 2–link link-concordant to a ribbon one ?

In view of the correspondance between Theorem 4.9 and Bartels–Teichner theorem, this statement may
appear more reasonable as the latter builds on a theorem of Bartels which states that all embedded spheres are
link-concordant to trivial ones. All the above questions can hence be recasted in terms of link-concordance.

Extensions of classical local moves

Although knot and link theory has its roots and foundations in the topology of embedded circles in 3–space,
its study was early turned combinatorial by considering generic projections. This opened a new way to
think the topology in terms of combinatorial local moves. First, ambient isotopies were proved in [Rei27]
to correspond to Reidemeister moves (R1, R2, R3); then general homotopy to crossing changes (CC), link-
homotopy to self-crossing changes (SC), link-homology—introduced by Murakami and Nakanishi [MN89]
and Matveev [Mat87]–to delta moves (∆). Other local moves were also investigated, still within some
topological perspectives, such as the band-pass move (BP) which is motivated by the crossing of two bands,
but also from more algebraic or even purely combinatorial considerations.

Welded knot theory is an extension of the classical knot theory and one can wonder what happen with
the above interpretations of topological quotient in term of local moves. Since Aut0C(RFn) ⊂ AutC(RFn), a
by-product of Theorems 1.13 and 2.13 is that SV extends SC in the sense that two classical objects which are
SV–equivalent in the welded realm are actually SC–equivalent in the classical one. Similar extensions for
CC, BP and ∆ to the welded case were investigated in [5]. Unexpectedly, it appeared that some moves can be
extended in several distincts ways. For instance, CC can be extended by either itself or by the virtualization
move (V)—which just remove any arrow in a welded system. The ∆ move can also be extended by either
the fused move (F)—which allow, for a welded system W, any permutation of the order on each Wi—or by
the virtual conjugation (VC)—which exchange the role of the head and the tail in a arrow.

But welded knot theory can also be seen as some intermediate step toward ribbon knotted surfaces, and
thus toward knotted surfaces. And besides, any classical local move induces a natural local move on broken
surface diagrams by spinning it around a line. For instance, spinning SC leads to the self-circle crossing
change (SCC), and it is easily seen that a ribbon link-homotopy can be realized using Roseman moves and
SCC only. But on the other hand, SCC is a special case of link-homotopy and preserves hence the Art2 map.
It follows that if two ribbon string 2–links are SCC–equivalent, then they are SV–equivalent in the sense

7see, for instance, the complexity of the Kontsevitch integral [Kon93, Bar95] compared with the Alexander polynomial—which,
up to the self–linking, is essentially the universal invariant for finite type invariants on welded knots [BD16]—although classical knots
embed in welded ones
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that they are the images under Tube of two SV–equivalent welded systems. In other words, SV can be seen
as some residue of SCC, hence of SC, on the ribbon surfaces subclass. This residue point of view allows
to distinguish a preferred extension between several. For instance, the spinning of CC—that is the circle
crossing change (CCC)—is obviously an unknotting operation on ribbon string 2–links; but according to
their classifying invariants given in [5, Sec. 3], V is an unknotting operation on welded systems while CC is
not. It follows that, better than CC, V is the residue of CC on the ribbon subclass.

Question 7. Is F the residue of ∆ on the ribbon subclass ?

As mentioned above, CC is a move which extends itself to the welded realm. This is not true for every
move. One can indeed see that the classical trefoil can be unknotted using BP and welded moves, whereas
the Arf invariant prevents this from happening within the classical theory. In [5], we introduced an ad hoc
welded extension wBP of BP.

Question 8. What is the residue of BP on the ribbon subclass, and how it is related to wBP ?



Chapter II

From codes to quantum codes
via (algebraic) topology

Introduction

In computer science, error-correcting codes were developed to detect and correct the errors that may occur
while transmitting a message. The strategy is to embed the set of possible messages, seen as a F2–vector
space, in a larger space so that the message can be coated with redundancy. All codes are not equally
efficient, and the most common parameters to compare them are their lengths, corresponding to the length
after coding, their dimensions, corresponding to the length before coding, and their minimum distances,
which quantifies the maximal number of errors that can be corrected. Moreover, since decoding a general
code is an NP–complete problem, the existence of some efficient1 decoding algorithm for a given code is also
of particular interest. In this respect, LDPC codes, introduced par R. Gallager in his PhD thesis [Gal62], have
distinguished themeselves: families of such codes with increasing length have dimensions and minimum
distances growing linearly with the length, and some low complexity iterative decoding algorithms can be
applied on them with a capacity close to the Shannon limit [RSU01].

In quantum computer science, error-correction is all the more important as quantum decoherence even-
tually produces errors. Deemed impossible at first because of the no-cloning theorem, A. R. Calderbank, P.
Shor [CS96] and, independently, A. Steane [Ste96] have nevertheless set up a, so-called, stabilizator coding
scheme, enabling quantum error-correction. Among them, they more particularly brought to light the sub-
class of CSS codes. Although the classical and quantum theories of correcting codes are radically different,
the notions of length, dimension and minimum distance are similarly found in the CSS code setting; and even
LDPC code can be defined, which not only eases the conception of decoding algorithms—see for instance
[PC08], but also the physical implementation since it reduces the set of qubits which are liable to interact.
But more important, the data of a CSS code is equivalent to the data of two orthogonal classical codes, pro-
viding hence a natural angle for code theorists. From this point of view, the length and the dimension of the
CSS code can be easily deduced from those of the two classical codes, but the minimum distance can only
be bounded below. This approach has nevertheless been quite fruitful as, for instance, [Pos01], [MMM04],
[COT07], [GFL08], [Hag08], [IM07], [Djo08], [SRK08], [Aly08], [AMT12], [TZ14], [CDZ13] or [Del12]
can attest.

But combinatorially, the data of a CSS code corresponds also to a chain complex of length three given
with a basis, and the correspondence can even be pushed further: the length of the code is equal to the
dimension of the central space, the dimension is the dimension of the homology, and the minimum distance is
the minimum weight for a representative of a non zero class in homology or in cohomology. This unexpected
convergence of quantum codes and (algebraic) topology has been early observed by A. Kitaev, and it led
to several fruitful applications; see [Kit03], [FM01], [FLM02], [BMD07], [Zém09] ou [10] for as many
families of codes, all of which are LDPC.

1with polynomial complexity
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Many LDPC families of CSS codes are hence known, based on disparate constructions. But one property
gathers them all: contrary to the classical case, none of them has a minimum distance growing faster than
the αth power of the length, for any α > 1

2 . In this regard, the best families are Freedman–Luo–Meyer’s
one, whose dimension grows as

√
n and the minimum distance as

√
n
√

ln(n) where n is the length, and
Tillich–Zémor’s one, whose dimension is linear with the length and the minimum distance as the square root
of the length. The question whether this square root barrier is fortuitous or not remains open, and a lot of
effort is made to overcome it. It is with the idea that this barrier may be beaten by families of iterated powers
that the work presented below has been initiated.

In the present dissertation, we deepen the interplay between chain complexes and CSS codes by trans-
posing to the latter the standard notion of tensor product ⊗ defined for the former. Implicitely used in several
previous constructions, we provide a formal framework for it. More precisely, we define two notions of
product for CSS codes, a standard one ⊗, and a reduced one ⊗r with a slightly improved length. It should
be mentioned that S. Bravyi et M. Hastings has already introduced an homological product � for a reduced
class of CSS codes; although different, we shall see that the ⊗ and � products are closely related.

For ⊗ and ⊗r, as well as for their iterated powers, we establish explicit formulas for the resulting pa-
rameters except the minimum distance which remains challenging to control. However—and this is actually
the main result of the second part of this dissertation—we give a criterion of cohomological nature which
provides a lower bound for the minimum distance of a product of CSS codes, the product being either ⊗, ⊗r

or �. It was somehow expected that, for two codes C and D, the minimum distance of their product should
be greater than both dC and dD; but better than that, we obtain as a corollary of our criterion that, except in
some trivial situations,

dC⊗D, dC⊗rD, dC�D ≥ 2 max(dC, dD).

This additional 2 factor has major consequences on the generic behavior of iterated powers. It follows indeed
from it that the iterated powers of any honest CSS code generates an LDPC family with minimum distances
tending exponentially to infinity. More surprising, even if a CSS code has no quantum degeneracy—which
is, for a CSS code seen as two orthogonal classical codes C1 and C2, a minimum distance strictly greater than
both the minimum distances of C1 and C2—its `th power, for ` large enough, does.

Using our criterion, we recover J-P. Tillich and G. Zémor’s codes, given in [TZ14]. We also recover some
Khovanov codes that we defined in [10]—and we take, by the way, this opportunity to recall their definition
since they are also an occurence of a combinatorial model emerging from topology which is recycled in
another field. We discuss the connections between ⊗ and � and explain how one can be extracted from
the other. And finally, we provide three new families of CSS codes, respectively based on finite projective
geometry, classical cyclic codes, and classical Reed–Muller codes. These three situations share the property
of having a large group of automorphisms, and this facilitates the use of our criterion. Among all these
families, the best one contains a subfamily which is almost LDPC—in the sense that the weight grows
slower than any positive power of the length—with a dimension growing faster than the αth power of the
length and a minimum distance faster than the βth power of the length, for any α < 1 and any β < 1

2 , leaving
open once again the square root barrier conjecture.

Notation and setting

We shall consider F–spaces, which are finite-dimensional vector spaces over a field F. All the theoretical
material present in this paper can actually be adapted to work for any field but, in order to simplify notation,
and since it is sufficient for all the applications we consider here, we restrict this presentation to the F2 :=
Z
/
2Z case.
For any finite set Ω = {x1, . . . , xs}, we shall denote by |Ω| its cardinality and by Span(x1, . . . , xs) the

F2–space abstractly generated by its elements x1, . . . , xs. Now let C be any F2–space. We shall denote by
C∗ := Hom(C,F2) the dual space of C. Every map f : A → B induces a dual map f ∗ : B∗ → A∗ defined by
f ∗(ϕ) = ϕ ◦ f for every ϕ ∈ B∗. For every X ⊆ C, we denote its orthogonal space

{
ϕ ∈ C∗ | ϕ|X ≡ 0

}
by X⊥.

If C is given with a basis B, then the bijection
(
A ⊂ B 7→

∑
b∈A

b ∈ C
)

identifies the elements of C
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with the subsets of B. We shall freely use this identification, denoting subsets {a1, . . . , as} ⊂ B, and hence
the related elements of C, by unordered concatenations a1a2 · · · as. Associated to B, there is a natural dual
basis B∗ :=

{
b∗ | b ∈ B

}
for C∗, where b∗ is defined by b∗(b′) = δbb′ for all b′ ∈ B. Here, δ stands for

the Kronecker delta. Still using the subset identification mentioned above, we shall denote by b ∈ x, where
x ∈ C and b ∈ B, the fact that b∗(x) , 0, which means that b appears in the decomposition of x; and by |x|
the Hamming weight of x ∈ C, which is the number of b ∈ B such that b ∈ x. We shall also denote with
brackets the scalar product defined on C by 〈b1, b2〉 := δb1b2 for all b1, b2 ∈ B. The following map:

C −→ C∗

x 7−→ y 7→ 〈x, y〉

is then an isomorphism sending B on B∗. For every X ⊂ C, it induces an isomorphism between X⊥ and{
x ∈ E | ∀y ∈ C, 〈x, y〉 = 0

}
. In order to reduce the amount of notation, we shall freely use this identification

without mentionning it. The dual of a map f : A → B would hence be seen as f ∗ : B → A, and it is easily
checked that MatB∗ ( f ∗) = tMatB( f ).

By convention and unless otherwise specified, F2–spaces shall be denoted using roman capital letters,
with an index i when it corresponds to the degree i part of a graded2 space; chain complexes1 using cursive
capital letters; maps of chain complexes by ∂, possibly with a distinctive index or exponent; quantum codes1

using calligraphic capital letters; and classical codes1 using a slightly modified type of calligraphic capital
letters. A same letter shall be used for associated objects: typically C shall be the CSS code1 associated to
the chain complex C defined as the 2–nilpotent1 map ∂ (or ∂C ) defined on C := ⊕

i∈Z
Ci. The map ∂i shall be

then the restricted map ∂|Ci . If a classical code is involved in the story, then it should be C .

1 CSS codes and chain complexes

1.1 Classical error-correcting codes

We begin by a very brief overview of classical error-correcting codes, but we refer the reader to [MS77] for
a comprehensive survey. In classical computer engineering, information is modeled by sequences of bits,
each of which is either 0 or 1. As a matter of fact, sequences of fixed length n ∈ N can be interpreted as
vectors in Fn

2, or more generally, as vectors in some n–dimensional F2–space given with a basis.
When transmitted, information can be altered, for instance by the swap of some of its bit values. Error-

correcting codes are an attempt to overcomme this phenomenon by coating information with redundancy so
that alterations of a small number of bits can be detected and possibly corrected. Accordingly, a classical
code C is a subspace of an F2–space E given with a basis BE . For coding and decoding reasons, it is often
more convenient to consider linear codes only, which are codes being actually vector subspaces. In this case,
C can be described either by a generating map gC : A ↪→ E such that Im(gC ) = C , or by a parity-check map
pC : E � B such that Ker(pC ) = C ;and these maps can, in turn, be given by their matrices.

The efficiency of a given code C ⊂ E can be evaluated according to different parameters. The most
common and obvious ones are:
• its length nC , defined as the dimension of E, which corresponds to the length of the message after

coding;
• its dimension kC , defined as the dimension of C , which corresponds to the length of the message before

coding;
• its minimum distance dC , defined as the minimum weight for a non trivial element of C , that is the min-

imum number of element of the basis BE necessary to describe a vector in C \ {0}, which corresponds
to twice the number of errors that can be corrected.

There are, of course, many other parameters to analyse the strengths and the weaknesses of a classical code.
The ability of being quickly decoded is, for example, particularly sought after. With this in mind, R. Gallager
pointed out in his PhD thesis [Gal62] the remarkable efficiency of low density parity-check (LDPC) codes,

2see next sections for definitions
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which are codes described by a sparse parity-check matrix: families of such codes with length tending to
infinity have not only dimensions and minimum distances growing linearly with the length, but there also
exist very efficient decoding algorithms for them [RSU01]. Consequently, we introduce a fourth parameter
for C , namely its weight wC , defined as the maximal weight of a row of MatBE ,BB (pC ), where pC : E � B is
a parity-check map for C and BB is a given basis for B.

Finally, we define the dual of C as the code C⊥ ⊂ E∗, which can alternatively be seen as
{

x ∈ E
∣∣ ∀y ∈

C , 〈x, y〉 = 0
}
⊂ E. It is easily checked that p∗C and g∗C are, respectively, a generating map and a parity-check

map for C⊥—so that, up to transpose, C and C⊥ exchange their generating and parity-check matrices—and
that nC⊥ = nC and kC⊥ = nC − kC .

1.2 From quantum errors to CSS codes

This section is a rough overview of error-corrrecting quantum codes adressed to non specialists. For more
details, the interested reader is referred to [NC10], [Pre] or to the introduction of [Del12].

1.2.1 Qubits and their errors

In quantum theory, the elementary piece of information is the qubit. It is a unitary element in the C–spaceH
spanned by two generators, usually denoted by |0〉 and |1〉. We denote the space of qubits by H1. Actually,
a qubit can be physically apprehended only up to C–scalars, so that only its image in the projective quotient
is relevant, but since it will be fruitful to deal with signs issues, we shall often switch between the (non
commutative) affine and the (commutative) projective spaces. For convenience, we shall use notation with
tildas each time we deal with affine elements.

Unlike the classical case, multiple qubits do not just concatenate: they can entangle. From the postulates
of quantum mechanics, n qubits are described by unitary elements in H⊗n; they are hence of the form∑
x∈{0,1}n

αx|x〉 with
∑

x |αx|
2 = 1. We denote the space of such n–qubits byHn

1 .

Transmitting, or even just keeping stored, an n–qubit may alter it. On a single qubit, a set of possible
alterations is the Pauli group G̃1, generated by three elements:

X̃ :
|0〉 7→ |1〉
|1〉 7→ |0〉 , Ỹ :

|0〉 7→ −i|1〉
|1〉 7→ i|0〉 , Z̃ :

|0〉 7→ |0〉
|1〉 7→ −|1〉 .

Of course, they are not the only errors which may occur, but they are an orthogonal basis for them. As we
will see later, it is sufficient to focus our effort on them. We can note that every such Pauli error is of the
form εÃ with ε ∈ S :=

{
± 1,±i

}
and Ã ∈ Ẽ :=

{
I, X̃, Ỹ , Z̃

}
and that any two errors always do commute or

anti-commute. We denote by G1 the projective quotient of G̃1. It is an abelian group which is generated by
only two elements, say X and Z, the images of X̃ and Z̃. On an n–qubit, every factor can be altered by an
error. The group G̃n = G̃⊗n

1 , defined as the set Ẽn × S with the obvious product, forms an orthogonal basis
for errors on n–qubits. Here again, every two elements do commute or anti-commute; and the projective
quotient Gn of G̃n is En, where E :=

{
I, X,Z, XZ

}
. The group Gn is abelian but we say that two elements

commute or anti-commute if, respectively, their lifts in G̃n do commute or anti-commute. Note that it does
not depend on the choosen lifts.

For every A ∈
{

X,Y,Z
}

, we say that an error E ∈ Gn is of type A if it belongs toEn
A, whereEA :=

{
I, A
}

,
that is if it acts on every qubit by either I or A. It is straightforwardly checked that two errors of same type
commutes whereas errors of different kinds anti-commute.

1.2.2 CSS codes

A quantum code C of length n ∈ N∗ and dimension k ∈ ~1, n� is a 2k–dimensional subspace of H⊗n; a
codeword is any of its elements. It makes possible the storage of a k–qubit in the form of an n–qubit, what
enables, as we shall see, a correction process for small alterations of the codewords. The terminology, here,
may be misleading since the dimension of a quantum code refers to the number of encoded qubits and not
to the actual dimension of the code as a C–space.
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Let G be a subgroup of Gn such that G is liftable to a group G̃ ⊂ G̃n. For every g ∈ G, we denote by g̃ its
lift in G̃. We define CG as FixG̃(Hn

1 ) :=
{

x ∈ Hn
1 | ∀g̃ ∈ G̃, g̃(x) = x

}
; this actually depends only on G and

not on the choosen lift G̃.

Lemma 1.1. If G is generated by (n − k) independent elements of Gn, then CG is a quantum code, so-called
stabilizer code, of dimension k.

Definition 1.2. A CSS code is a stabilizer code CG given with a set of generators for G which are all of type
either X or Z.

Since En
X and En

Z are both abelian and made of order 2 elements, they are both isomorphic to Fn
2.

As a matter of fact, such a set of generators can be described as the rows of two matrices HX ,HZ ∈

∪
p∈N∗

MatF2 (p, n): to a row (a1, · · · , an) ∈ Fn
2 of HA with A = X or Z, we associate (Aa1 , · · · , Aan ) ∈ En

A.

The fact that G is liftable in G̃n means that every two generators x and y commute. Of course, if x, y ∈ En
X

or x, y ∈ En
Z , this is trivially satisfied; but since X̃ and Z̃ anticommute, x ∈ En

X and y ∈ En
Z do commute iff

they share an even number of non-zero entries, that is if the product of the associated rows in HX and in HZ

is zero.
Finally, generators in En

X are necessarily independent from those in En
Z , so the minimal number of in-

dependent generators for G is rk(HX) + rk(HZ). As a matter of fact, two matrices HX and HZ such that
HX

tHZ = 0 describe a CSS code C whose length n is equal to their common number of columns, and whose
dimension is k = n− rk(HX)− rk(HZ). We also define the weight of C has the maximal weight—which is the
maximal number of non trivial entries—of a row in HX or in HZ ; however, this parameter is not intrinsically
associated to C but to the matrices HX and HZ and depends hence on a choice of generators for G.

As a conclusion, we observe that since CSS codes are given by two matrices whose product is null, they
can be interpreted as pairs of classical codes which are orthogonal, in the sense that each is contained in the
orthogonal of the other. In Section 1.3.3, we will give another interpretation related to algebraic topology.

1.2.3 Decoding and minimum distance

In quantum physics, measurements can be seen as orthogonal projections. More precisely, for a given

orthogonal decomposition Hn =
⊥

⊕Vi, there is an associated measure which sends a unitary element
∑

xi ∈

Hn
1 to 1

||xi0 ||
xi0 with probability ||xi0 ||

2.
Now, let CG be a CSS code and {E1, · · · , En−k} be a minimal set of n − k generators for G. For every

σ := (s1, · · · , sn−k) ∈ Fn−k
2 , we set C(σ) := {x ∈ Hn

1 | ∀i ∈ ~1, n − k�, Ẽi(x) = (−1)si x}. For every error
E ∈ Gn, we define its syndrome σ(E) :=

(
s1(E), · · · , sn−k(E)

)
∈ Fn−k

2 by si(E) = 0 iff E commutes with Ei.
We can note that if x ∈ CG and E ∈ Gn, then Ẽ(x) ∈ C(σ(E)). The weight of an error is the number of qubits
it alters. For every σ ∈ Fn−k

2 , we choose a minimally weighted error Eσ of syndrome σ.

The decompositionHn =

⊥

⊕
σ∈Fn−k

2

C(σ) holds and the associated measure µ discretizes the set of possible

alterations of a codeword. Now, let e(x0) be a codeword x0 ∈ CG = FixG̃(Hn
1 ) altered by an error e and

assume that µ projects it to E(x0) where E is a Pauli error of syndrome σE . Then one can try to correct the
error by computing x0 := ẼσE Ẽ(x0). By construction, ẼσE Ẽ has a syndrome equal to zero, so it commutes
with all elements in G. If it is actually in G, then x0 = x0 and we got back the initial codeword. However, it
may happen that ẼσE Ẽ does not belong to G, and the decoding process then fails.

The minimum distance of a code is the minimal weight of a non detectible error that does alter codewords.
For a CSS code CG, it is the minimal weight of an error which commutes with all the elements of G but does
not belong to G. It corresponds, as we will see in the proof of Proposition 1.15, to the minimal weight of
a vector which is in the kernel of one of the matrices HX or HZ without being spanned by the rows of the
other.

Like in the classical case, efficient decoding algorithm often come with matrices HX and HZ which are
sparse in the sense that the weight is small compared to the length [PC08]. We say that a family (C`)`∈N is
LDPC if the weight of C` increases at most as the logarithm of the length of C` when ` goes to infinity.
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Notation 1.3. For any code, we denote its parameters by ~n, k, d,w�, or ~n, k, d� if ommiting w, where n is
the length of the code, k its dimension, d its minimum distance and w its weight.

1.3 From chain complexes to CSS codes

Here, we review some basic notions of algebraic topology and relate them to CSS codes. For further details,
we refer the interested reader to [Wei94], [HS97], [ML95] or [Lan02].

1.3.1 Definitions

In the litterature, chain complexes are often defined as sequences of F–spaces (Ci)i∈Z which are all zero but
a finite number of them, together with a collection of linear maps either all of the form ∂i : Ci → Ci+1 or all
of the form ∂i : Ci → Ci−1. An alternative way to describe them is to consider the direct sum C := ⊕

i∈Z
Ci and

regard the collection of maps (∂i)i∈Z as a graded endomorphism of C. In the present dissertation, we shall
adopt the latter approach.

Definition 1.4. A linear map ∂ ∈ End(C), for some F2–space C, is 2–nilpotent if it satisfies ∂2 = 0.
An ε–chain complex C , for ε = ±1, is a 2–nilpotent map ∂ ∈ End(C) such that
• C is Z–graded, that is it decomposes into C := ⊕

i∈Z
Ci;

• ∂ shifts the degree by exactly ε, that is Im(∂|Ci ) ⊂ Ci+ε for every i ∈ Z.
If omitted, ε shall be assumed to be +1.

Since C is finite-dimensional, there is only a finite number of degrees i such that Ci , {0}. The support
of a non trivial chain complex C is the smallest interval {a, a + 1, . . . , b − 1, b} of integers such that Ci = {0}
for i < a or i > b; we say that C is k–length, for k ∈ N∗, if b − a + 1 ≤ k. A basis B for C is the data of a
basis for each space Ci, that is an identification of Ci with a power of F2; we say then that C is based.

Notation 1.5. Chain complexes shall be represented as

· · ·
∂i−2 // Ci−1

∂i−1 // Ci
∂i // Ci+1

∂i+1 // Ci+2
∂i+2 // · · · .

In explicit based cases, Ci shall be represented by dots set vertically, one for each generator, and ∂i shall be
represented by edges joining a generator x to the elements of ∂i(x). For instance, the following picture:

• •

•

• • •

•

• •

represents the complex Span(x1
1)

∂1 // Span(x2
1, x

2
2, x

2
3)

∂2 // Span(x3
1, x

3
2, x

3
3)

∂3 // Span(x4
1, x

4
2) , where

• xi
j is the generator represented by the jth dot, from top to bottom, in the ith column, from left to right;

• ∂1(x1
1) = x2

1 + x2
2 + x2

3, ∂2(x2
1, x

2
2, x

2
3) = (x3

1 + x3
3, x

3
1 + x3

2, x
3
2 + x3

3) and ∂3(x3
1) = ∂3(x3

2) = ∂3(x3
3) = x4

1 + x4
2.

This graph notation has the drawback to leave out the degrees which are then given only up to a global shift;
this should however not be a problem for the purpose of the present dissertation.

Definition 1.6. For any ε–chain complex C , we define its dual C ∗ as the (−ε)–chain complex ∂∗ ∈ End(C∗)
defined by C∗ := ⊕

i∈Z
Hom(Ci,F) and ∂∗(ϕ) = ϕ ◦ ∂ for every ϕ ∈ C∗.

If C is based, then the maps ∂i can be given by their matrices. Using the identification between an
F2–space and its dual mentioned in the Notation section, C ∗ can be seen as the chain complex obtained by
reversing all the arrows and transposing all the matrices. In particular, if C is given by a graph as in Notation
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1.5, then C ∗ is given by reading the graph from right to left. We say that a chain complex C is symmetric if
it is presented by a graph G whose left/right mirror image is, up to reordering the dots in each column, again
G. It implies, in particular, that C and C ∗ are isomorphic.

Definition 1.7. For any ε–chain complex C , we define its homology groups H•(C ) := ⊕
i∈Z

Hi(C ) by Hi(C ) :=

Ker(∂i)
/
Im(∂i−ε). For any x ∈ Ker(∂), we denote by [x] its class in H•(C ). Homology groups of C ∗ are also

called cohomology groups of C and denoted by H•(C ) := ⊕
i∈Z

Hi(C ). We say that C is acyclic if all its

homology groups are trivial.

It can be noted that, for every f ∈ C∗i , f ∈ Ker(∂∗i−ε) iff f| Im(∂i−ε) ≡ 0, that is iff f induces a well defined
map f̄ on Hi(C ); and moreover that f ∈ Im(∂i) iff f|Ker(∂0) ≡ 0, that is iff f̄ ≡ 0. It follows:

Proposition 1.8. For every chain complex C and every i ∈ Z, Hi(C ) � Hi(C )∗.

As we shall see later, chain complexes are closely related to CSS codes and the parameters of the latter
reflect into parameters for the former, that we define now.

Definition 1.9. If C is a ε–chain complex given with a basis B, then, for each i ∈ Z we denote by
• ni(C ) := dim(Ci) and define the length of C as nC := n0(C );
• ki(C ) := dim

(
Hi(C )

)
and define the dimension of C as kC := k0(C );

• di(C ) := min
{
|x|
∣∣ [x] ∈ Hi(C ) \ {0}

}
, with the convention that min ∅ = ∞, and define the minimum

distance of C as dC := d0(C );
• wi(C ) := max

{
|x|
∣∣ x row of MatB(∂i)

}
and define the weight of C as wC := w0(C ).

Remark 1.10. The above parameters have only a relative dependency with regard to the basis. Indeed, wC

depends only on the restriction of B to C−1 t C0 t C1, dC depends only on its restriction to C0, nC and kC

are independant of B.

1.3.2 Operations on chain complexes

Chain complexes are naturally endowed with sum and product operations. We now recall them and, as far
as possible, we make explicit how the parameters defined in the previous section behave with regard to these
operations.

Definition 1.11. Let C and D be two ε–chain complexes. We define their direct sum C ⊕D as the ε–chain
complex ∂C ⊕ ∂D ∈ End

(
⊕

i∈Z

(
Ci ⊕ Di

))
.

Proposition 1.12. Let C and D be two ε–chain complexes. Then
(
C ⊕D

)∗
� C ∗ ⊕D∗ and for each i ∈ Z,

• Hi(C ⊕D) � Hi(C ) ⊕ Hi(D);
• ni(C ⊕D) = ni(C ) + ni(D) and ki(C ⊕D) = ki(C ) + ki(D);
• if C and D were given with bases BC and BD , then BC t BD provides a basis for C ⊕ D such that

di(C ⊕D) = min
(
di(C ), di(D)

)
and wi(C ⊕D) = max

(
wi(C ),wi(D)

)
.

In particular, we emphasize the fact that adding an acyclic based direct summand does not affect the
parameters except the length which is increased consequently. But conversely, detecting and removing
an acyclic direct summand may alter the minimum distance if the basis does not respect the direct sum
decomposition.

Definition 1.13. Let C and D be two ε–chain complexes. We define the tensor product C ⊗D as the ε–chain
complex IdC ⊗∂D + ∂C ⊗ IdD ∈ End

(
⊕

i∈Z

(
⊕

r∈Z
(Cr ⊗ Di−r)

))
.

Proposition 1.14. Let C and D be two ε–chain complexes. Then
(
C ⊗D

)∗
� C ∗ ⊗D∗ and for each i ∈ Z,

• Hi(C ⊗D) � ⊕
r∈Z

(
Hr(C ) ⊗ Hi−r(D)

)
(Künneth formula);
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• ni(C ⊗D) =
∑
r∈Z

nr(C ).ni−r(D) and ki(C ⊗D) =
∑
r∈Z

kr(C ).ki−r(D);

• if C and D were given with bases BC and BD , then BC ⊗ BD provides a basis for C ⊗ D such that
wi(C ⊗D) = max

{
w j(C ) + wk(D)

∣∣ j + k = i
}

.

Evaluating di(C ⊗ D) is a much more involved problem and it will actually be the main concern of
Section 2.

1.3.3 Chain complex and codes

In Section 1.2.2, CSS codes were roughly defined as pairs of matrices whose product is null. If these matrices
are thought of as the matrices of some linear maps, then the product condition reduces to the composition of
the maps being null. In other words, they describe a 3–length chain complex. Conversely, to any 3–length

piece of based chain complex C :=
(

Ci0−1
∂i0−1
−−−→ Ci0

∂i0
−−→ Ci0+1

)
, one can associate a CSS code C. Here, the

homological degree i0 is actually irrelevant since one can harmlessly shift globally the degrees; as a matter
of fact, we shall assume hereinafter that i0 = 0.

Proposition 1.15. If C is a 3–length piece of based chain complex C :=
(

C−1
∂−1
−−→ C0

∂0
−→ C1

)
and C is the

associated CSS code, then C has parameters ~nC , kC ,min(dC , dC ∗ ),max(wC ,wC ∗ )�.

This statement can be regarded as folklore, but since it is central in our perspective and that it builds a
bridge between two seemingly distant notions, we provide here a proof.

Proof. We set HX := MatB(∂0) and HZ := tMatB(∂−1). Since ∂2 = 0, we have that HX
tHZ = 0 and the

matrices HX and HZ define the CSS code C. Its length is dim(Ci0 ) = nC , its weight max(wC ,wC ∗ ) and its
dimension

nC − rk(HX) − rk(HZ) = dim(C0) − rk(∂0) − rk(∂−1)

= dim
(

Ker(∂0)
)
− rk(∂−1)

= dim
(

Ker(∂0)
/
Im(∂−1)

)
= dim

(
H0(C )

)
= kC .

To compute the minimum distance, we consider an error E which commutes with every element of G
but which is not in G. If E only involves Z alterations, then it can be described by a vector vE ∈ F

n
2 and

the weight of E is |vE |. Since E commutes with all the generators of G induced by the rows of HX , the
vector vE is orthogonal to all these rows and vE ∈ Ker(∂0). But E < G, so vE is not spanned by rows of
HZ and vE < Im(∂−1). It follows that E is non detectible iff [vE] is non zero in H0(C ). If E only involves
X alterations, then a similar reasoning at the dual level shows that E is non detectible iff [vE] is non zero
in H0(C ) = H0(C ∗). Now, for a general E, we factorize it as a product EXEZ where EX and EZ involves,
respectively, only X and Z–alterations. Since every given generator of G involves only X alterations or only
Z ones, the fact that E commutes with them implies that EX and EZ do. But E < G, so at least one of EX or
EZ is not in G. We conclude by noting that the weight of E is greater than each of the weights of EX and
EZ . �

Actually, classical error-correcting codes can also be interpreted as 2–length chain complexes. Indeed,
if C is a classical code given by a parity check map pC : E � B, then setting C0 := E, C1 := B and ∂0 := pC
defines a 2–length chain complex C such that nC = nC , kC = kC , dC = dC and wC = wC . And by setting
furthermore C−1 := {0}, C can also be seen as a CSS code C; it is however a very poor CSS code since
dC ∗ = 1, and hence dC = min(dC , dC ∗ ) = 1, whatever efficient C is. Poor, but not uninteresting, as we shall
see in section 3.1.

It has already been noted that a CSS code can be interpreted as two orthogonal classical codes; this
can now be reformulated, up to duality, as a classical code C1—defined by a parity-check map pC1 := ∂0 :
C0 → C1—considered up to another classical code C−1 ⊂ C1—defined by a generating map gC−1 := ∂−1 :
C−1 → C0. It is then easily observed that nC = nC1 = nC−1

(
= nC ∗1 = nC ∗

−1

)
, kC = kC1 − kC−1

(
= kC ∗

−1
− kC ∗1

)
,
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wC = max(wC1 ,wC ∗
−1

) and, more interestingly, dC ≥ min(dC1 , dC ∗
−1

). It may happen that all minimally weighted
non trivial elements in C1 are actually in C−1; then they are not taken into account in dC. We say that C have
quantum degeneracy if dC > min(dC1 , dC ∗

−1
) or, equivalently, if dC > min(dC−1 , dC ∗1 ).

2 Tensor products for quantum codes

As we have seen in the previous section, 3–length chain complexes and CSS codes are two perspectives on
the same object. Three operations were defined on the former: a dual operation, a direct sum and a tensor
product. It is obviously tempting to transport them to the latter. Duality corresponds simply to the swap of
HX and HZ , and direct sum leads to the standard notion of CSS codes sum. We shall now focus on the tensor
product.

2.1 Definitions

The tensor product on chain complexes has two drawbacks with regard to the CSS code point of view:
• it does not preserve the length of chain complexes, so that a rough product of two CSS codes is

generally 5–length 5 instead of 3–length;
• it shuffles the homology groups of all degrees, so the resulting homology in degree 0 can generally not

be determined by the input homologies in degree 0 only; this actually tends to increase the resulting
dimension, but it is also fatal for the control of the resulting minimum distance.

We shall hence define first a notion of reduced chain complex to circumvent this obstacles.

2.1.1 Reduced chain complex

Definition 2.1. A chain complex C is said to be a short complex if its support is contained in {−1, 0, 1}. It is
also said to be balanced if it has non trivial homology only in degree zero. A balanced short complex is said
to be reduced. We finally say that C , given with a basis B, is honest if it is reduced and if neither MatB(∂0)
nor tMatB(∂−1) has a column of zeros. Finally, we say that a CSS code C is reduced or honest if C is.

For a CSS code C, being reduced but not honest is something one should avoid. Indeed, up to duality, it
means that one of the generator g of C0 is in the kernel of ∂0; then either g is also in the image of ∂−1, but
then C contains a useless direct summand of the form Span(g̃) �

� // Span(g) // // {0} , where g̃ is the
unique preimage of g by ∂−1, and this summand can be removed without altering the minimum distance, or
it is not in the image of ∂−1, but then the minimum distance is drastically pulled down to 1. Fortunatly, it is
very easy to check whether a given short complex is honest or not.

Note that, by definition, a short complex has the following form: C−1
∂−1 // C0

∂0 // C1 . So, in
particular, its homology groups in degree −1 and 1 are, respectively Ker(∂−1) and Coker(∂0), so it is reduced
if and only if ∂−1 is injective and ∂0 is surjective, that is if it has the form C−1

� � // C0 // // C1 . This is
equivalent to requiring that dim

(
H0(C )

)
= dim(C0) − dim(C−1) − dim(C1).

Any chain complex C can be turned into a short one by truncating the degrees higher than 1 and lower
than −1. This operation obviously preserve the parameters of the chain complexe, but the result is generally
not balanced, even if C was. The most natural and canonical way to adjust this is to consider

Ker(∂−1) �
� // C−1

∂−1 // C0
∂0 // C1 // // Coker(∂0) .

But beside its slightly overwidth support, it has also the disadvantage that none of Ker(∂−1) or Coker(∂0)
is naturally based, even if C is. One can, of course, pick randomly a basis, and this choice will have no
consequence on the parameters of the resulting based chain complex, which are the same than those of C ,
but it will have some effects on the parameters obtained after tensor products. For the sake of completeness,
we do mention this canonical balancing process, but as soon as one is ready to get non canonical, the
reduction process described in the next paragraph will eventually end with better parameters.



58 II. From codes to quantum codes, via topology

If C is given with a basis B, then ∂−1 being non injective means that MatB(∂−1) contains some redundant
columns. Similarly, ∂0 being non surjective means that MatB(∂0) contains some redundant rows. By truncat-
ing C , removing a maximal set of such redundant columns and/or rows and modifying accordingly C−1 and
C1, one obtain a reduced chain complex which is easily seen to have the same paramaters than C , except the
weight which may even decrease if the rows with maximal weight were all redundant and removed. At the
linear algebra level, C−1 is replaced by a complement space for Ker(∂−1) spanned by vectors of B, and C1
by its quotient under a complement space of Im(∂0) spanned by vectors of B. This process is however non
canonical since it requires the choice of complement spaces, that is the choice of the redundant columns and
rows to be removed.

Notation 2.2. For every chain complex C , we shall denote
• by Ct its truncation to degrees −1, 0 and 1;
• by Cr the result of the reduction process applied to Ct.

Note however that Cr is an abuse of notation since it depends on several choices made during the reduc-
tion process, but these choices can actually be made algorithmic by searching redundant—or, even better,
maximally weighted redundant—columns or rows in a given order. Note also that if C is based, then so are
Ct and Cr.

2.1.2 Tensor products for CSS codes

Let C and D be two CSS codes. The most direct way to define a tensor product for C and D is to consider
the CSS code associated to (C ⊗ D)t. This would have terrible consequences on the resulting minimum
distance if C and D were not balanced. And even if they are, the same consequences would arise for higher
tensor powers. This motivates not only the following definitions, but it also justifies why we shall then give
a non iterative definition for non reduced tensor powers.

Definition 2.3. For every CSS codes C andD, we define
• C ⊗ D as the CSS code associated to

(
C ⊗D

)
t;

• C ⊗r D as the CSS code associated to
(
C ⊗D

)
r.

We shall also write ⊗(r) when denoting either ⊗ or ⊗r.

One can note that, unlike for chain complexes and because of the truncation, ⊗ on CSS codes is not
anymore an associative operation: one can compute that for three CSS codes C, D and E, C1 is involved
in the degree −1 part of (the chain complex associated to) (C ⊗ D) ⊗ E but not in the degree −1 part of
C ⊗ (D ⊗ E).The reduced product ⊗r is not associative neither, because of all the choices made during the
reduction processes.

Definition 2.4. For every CSS code C and every ` ∈ N∗, we define
• C⊗` as the CSS code associated to

(
C ⊗`

)
t;

• C⊗r` as the CSS code
(
· · ·

((
C ⊗r C

)
⊗r C

)
· · · ⊗r C

)
.

2.2 Properties

2.2.1 Lenghts, dimensions and weights for tensor products

Using Proposition 1.14, one can easily determine most of the parameters of C ⊗ D and C ⊗r D, depending
on those of C and D .

Proposition 2.5. If C andD are CSS codes, then
• nC⊗D = nC⊗rD = nC

−1nD
1 + nC

0 nD
0 + nC

1 nD
−1;

• kC⊗D = kC⊗rD = kC
−1kD

1 + kC
0 kD

0 + kC
1 kD
−1;

• dC⊗D = dC⊗rD ≤ min
(
dC
−1dD

1 , d
C
0 dD

0 , d
C
1 dD
−1, d

C ∗

−1 dD∗

1 , dC ∗

0 dD∗

0 , dC ∗

1 dD∗

−1

)
;
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• wC⊗D = max
(
wC
−1 + wD

1 ,w
C
0 + wD

0 ,w
C
1 + wD

−1,w
C ∗

−1 + wD∗

1 ,wC ∗

0 + wD∗

0 ,wC ∗

1 + wD∗

−1

)
;

• wC⊗rD ≤ max
(
wC
−1 + wD

1 ,w
C
0 + wD

0 ,w
C
1 + wD

−1,w
C ∗

−1 + wD∗

1 ,wC ∗

0 + wD∗

0 ,wC ∗

1 + wD∗

−1

)
.

It should be noted that the parameters of tensor products does not depend on the parameters of input CSS
codes, but on those of the underlying chain complexes only. This can however be partially fixed when the
CSS codes are reduced.

Proposition 2.6. If C andD are reduced CSS codes, then
• nC⊗D = nC⊗rD ≤ nCnD + (nC − kC)(nD − kD);
• kC⊗D = kC⊗rD = kCkD.

We want to stress here that, despite appearances, the general upper bound for the minimum distances
does not yield an upper bound dC⊗D ≤ dCdD, even if C andD are reduced. We will see examples satisfying
dC⊗D > dCdD in section 3.1.

2.2.2 Bounds for minimum distances

Tensor products of CSS codes are useless if minimum distances can not be estimated; but Proposition 2.6
gives only an upper bound, which is more a constraint than a control. We give now a criterion which shall
provide a lower bound. But, first, we need to introduce an additional definition. If Ω is a subset of aF2–space
given with a basis B, then we define

overlap(Ω) := max
b∈B

∣∣∣{p ∈ Ω
∣∣ b ∈ p

}∣∣∣.
If, using B, one considers the elements of Ω as vectors and stacks them as the rows of a matrix, then
overlap(Ω) corresponds to the maximum weight of a column.

Definition 2.7. For any N,K ∈ N∗, we say that a based chain complex C is (N,K)–cocontrolled if there
exist a basis [g∗1], . . . , [g∗k] for H0(C ) and, for every i ∈ {1, . . . , k}, a set Ωi ⊂ C∗0 of representatives for [g∗i ]
with |Ωi| ≥ N and overlap(Ωi) ≤ K.

We can now state the main result of this part, which is the following lemma:

Lemma 2.8 ([2, Lem. 2.7]). Let N,K ∈ N∗ and let C be a (N,K)–cocontrolled based chain complex. Then,
for every chain complex D such that either C or D is balanced,

dC⊗D ≥

⌈
N
K

dD

⌉
.

This leads to the following statement for CSS codes:

Theorem 2.9 ([2, Th. 2.8]). Let C be a reduced CSS code such that C and C ∗ are both (N,K)–cocontrolled
with N,K ∈ N∗. Then for all CSS codeD,

dC⊗D, dC⊗rD ≥

⌈
N
K

dD

⌉
.

Remark 2.10. In fact, we will consider a basis g1, . . . , gr of Ker(∂0) ⊂ C0 such that the first elements induce
a basis [g1], . . . , [gk] of H0(C ) and look, for every i0 ∈ {1, . . . , k}, at linear forms in Ker(∂∗−1) which vanish
on all gi but gi0 that is, using the scalar product isomorphism between C0 and C∗0, elements of C0 which share
an even number of generators with all gi but gi0 . As H0(C ∗) � H0(C ) � H0(C )∗, we shall often restrict our
attention on a basis for H0(C ) and its dual. But if the chain complex C is symmetric, then it is sufficient to
consider C since the same Ω–sets can be used again to handle C ∗.

Remark 2.11. Lemma 2.8 implies actually slightly stronger results since
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1. the lower bounds for dC⊗(r)D and dC ∗⊗(r)D∗ can be handled independantly: one may focus on, say, C
to work on dC⊗(r)D and on D∗ for dC ∗⊗(r)D∗ ; this would lead to a lower bound of the form

dC⊗D, dC⊗rD ≥

⌈
min

(
NC

KC
dD ,

ND∗

KD∗

dC ∗

)⌉
;

2. the CSS code C may not be reduced as soon asD is.
For instance, applying Lemma 2.8 with the reduced chain complex D := {0} ↪→ F2 � {0}, we obtain

the following result whose statement, oddly enough, does not involve any tensor product, and which gives a
lower bound for the minimum distance of any CSS code, even not reduced:

Corollary 2.12. If C is a (possibly non reduced) CSS code such that C and C ∗ are both (N,K)–cocontrolled
with N,K ∈ N∗, then dC ≥

⌈
N
K

⌉
.

However, most of the other applications will use only the statement of Theorem 2.9, and often in its one
dimensional case, which is even simpler to state:

Corollary 2.13. Let N,K ∈ N∗ and let C be a reduced CSS code of dimension 1. If there exist two subsets,
Ω ⊆ Ker(∂0) \ Im(∂−1) and Ω′ ⊆ Ker(∂∗−1) \ Im(∂∗0), with |Ω|, |Ω′| ≥ N and overlap(Ω), overlap(Ω′) ≤ K, then
for all CSS codeD,

dC⊗D, dC⊗rD ≥

⌈
N
K

dD

⌉
·

Examples 2.14.
1. In its principal symmetric form, the Steane CSS code with parameter ~7, 1, 3�, that we shall denote by
S7;1;3, has the following associated chain complex:

•

• • •

•

• • •

•

• • •

•

.

We denote the generators in degree 0, from top to bottom, by positive integers from 1 to 7. Us-
ing the subset identification to write down the results, it can be computed by hand that Ker(∂0) =

Span(1235, 2346, 3567, 124),that the homology is generated by {124}, and that dS7;1;3⊗(r)S7;1;3 = 7; this
example was already considered in [BH13a, Section V.A] but for another notion of tensor product that
will be discussed in Section 2.2.4. Using Corollary 2.12 and Theorem 2.9 with

Ω124 :=
{

124, 136, 157, 237, 256, 345, 467
}
,

we actually obtain that dS7;1;3 ≥
⌈

7
3

⌉
= 3 and dS7;1;3⊗(r)S7;1;3 ≥

7
3 dS7;1;3 = 7. This is an example where

Theorem 2.9 and Corollary 2.12 give sharp bounds whereas N
K < N. We shall see in Section 3.3 a

generalization of S7;1;3.
2. In [Kit03], A. Kitaev defined his eponymous CSS codes Kn by considering the chain complex associ-

ated to the (n × n)–grid cell decomposition of the torus:

{ { .
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Bases for C−1, C0 and C1 are respectively given by squares, segments and dots, and maps are given as
the boundary maps. It is well-known that the resulting code has parameters

�
2n2, 2, n, 4

�
. Indeed, it is

easily seen that all the homologically trivial elements of Ker(∂0) are generated by small squares and
non trivial ones by any vertical and any horizontal lines:

g1 := g2 := .

This shows that dKn ≤ n and the converse inequality can be proven using Corollary 2.12 with

Ωg1 :=

 , , · · · ,

 Ωg2 :=

 , , · · · ,

 .

Theorem 2.9 can be applied with unit sets for the Ω’s and the Ω′’s, it leads to a rougher but more general
lower bound:

Corollary 2.15. If C andD are two CSS codes and one of them is reduced, then dC⊗D, dC⊗rD ≥ max(dC, dD).

This lowed bound was more or less predicted, but an unexpected corollary of Theorem 2.9 is that, except
in some trivial cases, this bound is never sharp. Indeed, having a closer look at the overlaps of the Ω’s, we
obtain:

Corollary 2.16 ([2, Cor. 2.18]). If C andD are two honest CSS codes, then dC⊗D, dC⊗rD ≥ 2 max(dC, dD).

As we will see at the end of the next section, this additional 2 factor has major consequences on the
generic behavior of iterated powers.

Unfortunately, we shall end this section by a lemma which kills all hope that one may have to use the
above “ N

K ”–criterion to exhibit an LDPC family of CSS codes with minimum distance growing faster than
the square root of the lengths.

Lemma 2.17 ([2, Rk. 2.13]). If C is (N,K)–cocontrolled, then N
K dC ∗ ≤ nC .

Compared with Corollary 2.12, it follows in particular that, if the minimum distance of a CSS code C
can be well approached by such a (N,K)–cocontrol, then dC .

√
nC.

2.2.3 Parameters for iterated tensor powers

Considering the tensor powers of a given CSS code produces an infinite family of codes which is naturally
LDPC. We will now estimate the asymptotical parameters of such a family. Note that, to make the formulae
less cluttered, we shall omit C in the ni–notation of the next two propositions.

Proposition 2.18 ([2, Cor. 2.20]). Let C be a reduced CSS code. If C and C ∗ are both (N,K)–cocontrolled
with N,K ∈ N∗, then

(
C⊗`
)
`∈N

is a family of CSS codes with parameters�������� ∼ 1
2

√
n0 + 2

√
n−1n1

π`
√

n−1n1

(
n0 + 2

√
n−1n1

)`
, (n0 − n−1 − n1)` , ≥

(
N
K

)`
, ≤ n0`

��������.
In particular, the family is LDPC and the minimum distance grows strictly faster than the log(n0+2

√
n−1n1)

log(N)−log(K) -th
power of the length.
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Proposition 2.19 ([2, Prop. B.1]). Let C be a reduced CSS code. If C and C ∗ are both (N,K)–cocontrolled
with N,K ∈ N∗, then for every ` ∈ N,

(
C⊗r`

)
`∈N

is a family of CSS codes with parameters������ m` , (n0 − 2n1)` , ≥
(

N
K

)`
, ≤ n0`

������,
where, denoting respectively by na and nr the additive and multiplicative means of n−1 and n1,

m` :=
2n2

r

(
n0 − 2na

)`
+
(

n2
−1 + 2nanr + n2

1

)(
n0 + nr

)`
+
(

n2
−1 − 2nanr + n2

1

)(
n0 − nr

)`
2
(
n2
−1 + n2

r + n2
1

) ;

which simplifies into m` = 2
3

(
(n0 + n1)` + (n0 − 2n1)`

)
when C is symmetric. In particular, the family is

LDPC and the minimum distance grows at least as the log(n0+
√

n−1n1)
log(N)−log(K) -th power of the length.

Remark 2.20. In Propositions 2.18 and 2.19, the lower bounds
(

N
K

)` for the minimum distances can be

slighty improved into
⌈
· · ·

⌈⌈
N
K

⌉
N
K

⌉
N
K · · ·

⌉
but, in fact, this only provides a better constant factor for the

minimum distance growth.

Combined with Corollary 2.16, Propositions 2.18 and 2.19 have the following consequence:

Corollary 2.21. If C is an honest CSS code, then the families
(
C⊗`
)
`∈N

and
(
C⊗r`

)
`∈N

are LDPC with
dC⊗` , dC⊗r` ≥ 2` for every ` ∈ N∗.

This has two remarkable outcomes:
• tensoring iteratively any honest CSS code C provides an LDPC family with minimum distance grow-

ing to infinity;
• even if C has no quantum degeneracy, its `-th (reduced) tensor power, for some large enough `, does.

Indeed, it has been noticed that the weights, that is the maximal weigth for a row of Mat
(
∂C

⊗(r)`

0

)
or tMat

(
∂C

⊗(r)`

−1

)
, grow at most linearly with `; but the same is true for the columns of Mat

(
∂C

⊗(r)`

−1

)
or tMat

(
∂C

⊗(r)`

0

)
, and this provides an upper bound for the minimum distance of the classical codes

Im
(
∂C

⊗(r)`

−1

)
and Im

(
∂∗0
C
⊗(r)`
)

which grow hence at most linearly with `. These classical minimum
distances are hence eventually bitten by d

C
⊗(r)` which grows exponentially with `.

2.2.4 Connection with Bravyi–Hasting homological product

In [BH14], Bravyi and Hastings introduced another notion of homological product for CSS codes, that we
will denote here by �. In their framework, they do not consider general chain complexes, but only 2–
nilpotent maps; this data is indeed sufficient to get a composition of maps which is zero, and hence to get a
CSS code. As we shall see, Bravyi and Hastings’ product � is closely related to ⊗.

Definition 2.22. Let C,D be two F2–spaces, and ∂C ∈ End(C), ∂D ∈ End(D) be two 2–nilpotent maps. We
define their homological product as the 2–nilpotent map

∂C � ∂D := ∂C ⊗ IdD + IdC ⊗∂D ∈ End(C ⊗ D).

If C andD are the CSS codes associated to, respectively, ∂C and ∂D, then we define C �D as the CSS code
associated to ∂C � ∂D.

Proposition 2.23 ([BH14]). If C andD are two CSS codes described by 2–nilpotent maps, then kC�D = kCkD
and max(dC, dD) ≤ dC�D ≤ dCdD.
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Bravyi and Hastings show moreover that for a random CSS code C of length n, the minimum distance of
C � C is larger than cn2 for some positive constant c with a probability tending to 1 when n tends to infinity.

Now, let C and D be two CSS codes described by 2–nilpotent maps ∂C ∈ End(C) and ∂D ∈ End(D).
From the chain complex point of view, C is actually the CSS code associated to

C̃ := C
∂C // C

∂C // C ,

which can be reduced into

C := C−
� � ∂C // C

∂C // // C+ ,

where C =: C− ⊕ Ker(∂C) and C+ := C
/
C′+ with C := C′+ ⊕ Im(∂C). We set similar notation for D. As

explicitly shown in [2, Sec. 2.2.5], C ⊗D can be decomposed into an direct sum P1 ⊕P2 ⊕P3 where P1
and P3 are acyclic, and P2 is isomorphic, as a chain complex, to

C ⊗ D− + C− ⊗ D
IdC ⊗∂D+∂C⊗IdD // C ⊗ D

IdC ⊗∂D+∂C⊗IdD // C ⊗ D
/
C′+ ⊗ D′+ ,

which is a partially reduced form of the chain complex associated to ∂C � ∂D. As a consequence, we obtain
that H(∂C � ∂D) � H0(C ⊗ D) � H0(C ) ⊗ H0(D) � H(∂C) ⊗ H(∂D). The homological product can be
hence seen as a subcomplex of the tensor product that contains all the homology. This provides a substantial
reduction of the length, nC

0 nD
0 instead of nC

−1nD
1 +nC

0 nD
0 +nC

1 nD
−1, but the variation of the minimum distance is,

again, more difficult to estimate. However, the mimimum distances are very likely to behave similarly with
both notion of product, and actually, the criterion provided for ⊗ in Theorem 2.9 and all its consequences
hold also true for �. Indeed, a close look at the proof of Lemma 2.8 shows that the isomorphism between
P2 and the partially reduced form of ∂C �∂D preserves the lower bound on the minimum distance, implying
then the following statements:

Theorem 2.24 ([2, Th. 3.10]). Let C be a CSS code defined by a 2–nilpotent map ∂. Let g1, . . . , gr be a
basis for Ker(∂) such that g1, . . . , gk induce a basis for Ker(∂)

/
Im(∂). If, for any i ∈ {1, . . . , k}, there exists

Ωi ⊆ g∗i + Im(∂∗) and Ω′i ⊆ gi + Im(∂), with |Ωi|, |Ω
′
i | ≥ N and overlap(Ωi), overlap(Ω′i) ≤ K; then, for any

CSS codeD defined by a 2–nilpotent map, we have

dC�D ≥
⌈

N
K

dD

⌉
·

Corollary 2.25 ([2, Cor. 3.11]). If C and D are CSS codes described by 2–nilpotent matrices which have
no column nor row of zeros, then dC�D ≥ 2 max(dC, dD).

Conversely, forgetting its grading turns any chain complex into a 2–nilpotent map. We explain now
how the tensor product of two chain complexes can be extracted from the homological product of the as-
sociated 2–nilpotent maps. Recall that every chain complex C is underlain by an F2–space C := ⊕

i∈Z
Ci

and a 2–nilpotent map ∂C := ⊕
i∈Z

∂i. It is easily checked that Ker(∂C)
/
Im(∂C) = H•(C ) := ⊕

i∈Z
Hi(C ). In

particular, ker(∂C)
/
Im(∂C) � H0(C ) whenever C is balanced. Then, if C and D are two reduced com-

plexes, C ⊗ D
∂C�∂D // C ⊗ D

∂C�∂D // C ⊗ D decomposes into the direct sum ⊕
i∈Z

{
C ⊗D

}
i, where

{
C ⊗D

}
i

is the 3–length truncature of C ⊗D centered in degree i. They all have null homology except the summand
i = 0 which actually correponds to (C ⊗D)t. Moreover, any basis induced from bases on C and D respects
this direct sum decomposition; all

{
C ⊗ D

}
i with i , 0 are hence acyclic direct summands which can be

harmlessly removed. It follows that kC�D = kC⊗D and dC�D = dC⊗D . Besides, it is easily checked that
nC�D =

(∑
i nC

i

) (∑
i nD

i

)
. In particular, if C is a based reduced complex, the iterated powers C�`, C⊗`

and C⊗r` have same dimensions and same minimum distances, but differents lengths, which are respectively

(n−1 + n0 + n1)`, O
(

(n0+2
√

n−1n1)`
√
`

)
and O

(
(n0 +

√
n−1n1)`

)
.
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In conclusion, there are two natural notions of product for CSS codes, namely tensor and homological
ones, and it is easy to switch from one to the other. They both generate LDPC families when used iteratively
and it is natural to question whether a construction is better than the other. The answer is actually negative
and, as we summarize below, the qualities of the iterated tensor or homological powers depend on the initial
nature of the input code:
• if the input code is described by a 2–nilpotent map, then one can see it as a chain complex with repeated

space and map; but the homological powers of the original 2–nilpotent map provide shorter codes with
same dimensions than the tensoriel powers. Moreover, the control of the minimum distances provided
by the present dissertation is equal for both;

• if the input code is described by a chain complex, then one can consider the underlying 2–nilpotent
map by forgetting the grading; but the tensor powers of the original chain complex provide shorter
codes with same dimensions and minimum distances, hence better relative parameters, than the ho-
mological powers.

3 Families of CSS codes

We now switch to applications of Theorem 2.9 for the construction of LDPC families of CSS codes, with a
special focus on the growth speed of minimum distances compared to the lengths.

3.1 Tillich–Zemor codes

The theory of error-correcting codes can be seen as the theory of shuffling the canonical basis of a genuine
injection, Fk

2 ↪→ Fn
2 or C2k

↪→ C2n
where k < n, so that the minimum distances get as close to n as

possible. As shown by their long-studied theory, this can be reasonably achieved for classical codes. But
what makes quantum codes much more intricate is that the minimum distances of C involves simultaneously
the minimum distances of C and C ∗, and an artificial increase of dC often leads to a critical decrease for dC ∗ .
Nonetheless, tensor products offer a way to take anyway advantage of CSS codes which has low minimum
distances because of such an imbalance between dC and dC ∗ . Indeed, it follows from Proposition 2.18 that,
for reduced CSS codes C and D, dC⊗D and dC⊗rD are bounded above by the minimum between dC dD and
dC ∗dD∗ . An important fact is that none of dC dD∗ or dC ∗dD is involved in this upper bound; one can hence
tensorize such imbalanced CSS codes so that the weak leg of one is tamed by the strong one of the other.
Initially based on a graph point of view, Tillich–Zemor codes, defined in [TZ14] can be interpreted as an
occurence of such a phenomenon.

Indeed, as explained at the end of Section 1.3.3, a classical code C described by a parity-check matrix
provides a CSS code C with nC = nC , kC = kC and dC = min(dC , dC ∗ ) = min(dC , 1) = 1. From a dual
perspective, a classical code D described by a generating matrix also provides a CSS codeD with nD = nD⊥ ,
kD = kD⊥ and dD = min(dD , dD∗ ) = min(1, dD⊥ ) = 1. Combining these observations with Corollary 2.15
refined in the light of the first point of Remark 2.11, we can reformulate3 Tillich and Zemor’s result as:

Theorem 3.1 ([TZ14]). If C and D are two classical codes given, respectively, by a generating map gC

and a parity-check map pD , then the CSS code C⊗D associated to
(

C−1
� � gC // C0

)
⊗

(
D0

pD // // D1

)
has parameters nC⊗D = nC⊥nD + (nC⊥ − kC⊥ )(nD − kD), kC⊗D = kC⊥kD , dC⊗D = min(dC⊥ , dD) and wC⊗D =

max
(
wC⊥ + wD ,wC⊥ + wD

)
.

We stress here the fact that C−1
� � gC // C0 and D0

pD // // D1 are reduced but not honest, so Corollary
2.15 applies —and, actually, leads to an equality— but Corollary 2.16 does not. Applied to LDPC classical
codes, whose dimensions and minimum distances are linear in the lengths [Gal62], Theorem 3.1 leads to
LDPC families of CSS codes with dimensions linear in the lengths and minimum distances growing as the
square root of the lengths.

3the relationship between Tillich–Zemor hypergraph and homological product was already notified in [FH14]
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: 0–resolution {66

(( : 1–resolution {

Figure II.1: Canonical resolutions for a crossing and their markings

3.2 Khovanov codes

The simplest symmetric honest complex is:

Cunlink :=

•

•
• •

•

•

.

If denoting the generators in degree 0, from top to bottom, by positive integers from 1 to 4, and using the
subset identification, then it can be easily computed that the homology is generated by 12 and 13. Applying
Proposition 2.18 with Ω12 :=

{
24, 13

}
and Ω13 :=

{
34, 12

}
, we obtain that the family of CSS codes(

C⊗`unlink

)
`∈N∗

has asymptotical parameters equal to
�√

3
2π`6`, 2`, 2`, 4`

�
. As its subscript name suggests,

these CSS codes can actually be considered as examples of the “knot theory”-grounded Khovanov codes
that we introduced in [10].

3.2.1 A brief construction of Khovanov chain complexes

Introduced by M. Khovanov in [Kho00], Khovanov homology is a link invariant which was the first exam-
ple of categorification for a polynomial link invariant. Khovanov homology is indeed a bigraded homology
theory defined for link whose graded Euler characteristic recovers Jones polynomial. Combinatorially de-
fined from link diagrams, Khovanov homology produces chain complexes which naturally satisfy properties
which are likely to bring interesting CSS codes. We shall now give a very brief overview of its construction.
However, since we are only interested here in its application to CSS codes, we shall step back from the his-
torical construction to focus on a simpler version which is less interesting for topological purpose but more
adapted to CSS codes: we shall consider only the reduced version over F2 for non oriented pointed links
and work with a non standard basis which actually do not respect the second grading. As a matter of fact we
shall only mention this second grading and drop out some orientation-related global shift of the bigrading.
We refer the interested reader to [Kho00, Kho03, Vir04, Tur17, Shu11] for more details.

Let D be a pointed link diagram with n crossings, which is a generic immersed curve in R2 with n
transverse double points enhanced with an over/under information, and a marked point which is not one of
the double points. A resolution for a crossing of D is a choice of smoothing which remove the double point;
there are two canonical way to do it, shown in Figure II.1 and respectively called the 0 and the 1–resolution.
A resolution for D is a map φ :

{
crossings of D

}
−→ {0, 1}, it can be pictured as the resolution diagram Dφ,

obtained from D by φ(c)–resolving every crossing c of D and adding markings to indicate the nature of the
resolutions as on the rightmost column of Figure II.1. Note that resolution diagrams are not considered up
to isotopies and distinct maps φ always lead to distinct resolution diagrams Dφ. Since it has no crossing
anymore, Dφ is a union of disjoint circles embedded in the plane, and one of this circle is dotted by the
marked point. An enhanced resolution of D, denoted by Dσ

φ , is a resolution Dφ of D together with a labeling
map σ :

{
circles of Dφ

}
−→ {1, x} which sends the dotted circle to x; see Figure II.2 for an illustration.

The labels can be seen as elements of F2[x]
/
x2, and later, when dealing with combinations of enhanced
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7−→ 7−→

x

x
1

a diagram a resolution an enhanced resolution

Figure II.2: From diagrams to enhanced resolutions

diagrams, we shall assume multi-linearity for the labels: a resolution diagram with a circle labeled by a sum
a + b shall be then thought of as a sum of two resolution diagrams, one with the circle labeled by a and the
other labeled by b; in particular, any 0 label on a circle shall make the whole resolution diagram equal to
zero.

Now we define CD as the F2–space spanned by enhanced resolutions and ∂D ∈ End(CD) by

∂D(Dσ
φ ) =

∑
c∈φ−1(0)

∂c(Dσ
φ )

where ∂c(Dσ
φ ) is a sum of enhanced resolutions over Dφ+δc , with δc the Kronecker delta. The resolution Dφ+δc

is nothing but the resolution obtained by changing the smoothing of c. Before stating the enhancing rules,
we note that Dφ+δc differs from Dφ by the merging of two circles into one or the splitting of a circle into two.
The rules are then:
• if two circles are merging, then the resulting circle is labeled by the product of the labels in F2[x]

/
x2;

• if one circle is splitting, then the resulting circles are labeled according to the coproduct of the label
in H∗(CP1;F2) � F2[x]

/
x2, that is

– if the circle is 1–labeled, then there are two contributions obtained as the two ways to distribute
1 and x to the two new circles;

– if the circle is x–labeled, then there is only one contribution obtained by labeling both new circles
by x;

• all the other circles keep their labels unchanged.

Proposition 3.2 ([Kho00]). The map ∂D is 2–nilpotent.

We set a bigrading on CD defined, on every generator, by

deg
(
Dσ
φ

)
=
(
|φ−1(1)| , |φ−1(1)| + |σ−1(1)| − |σ−1(x)|

)
.

It is easily checked that ∂D increases the first grading by 1 and preserves the second. Forgetting the second
grading, we obtain then a length n + 1 chain complex CD. By construction, CD is naturally based, but for
minimum distance reasons, we shall consider another set of generators, where labels are not anymore 1 and
x but signs − := 1 and + := 1 + x; a label − is hence another notation for 1, whereas a +–labeled circle
stands for the sum of the two terms for which the circle is respectively labeled by 1 and by x, all the others
circles being identically labeled. These generators does not respect the second grading anymore, but ∂D is
somehow symmetrized as summarized in Figure II.3.

3.2.2 A few properties of Khovanov chain complexes

We gather now a few properties of Khovanov chain complexes that do sound relevant in a CSS code per-
spective.

Proposition 3.3 ([Kho00, Shu11]). For any pointed link diagram D, and up to grading shift, the homology
of CD depends on the underlying link only, that is it is invariant under Reidemeister moves, shown in Figure
II.4, and moving the marked point.
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ε
∂D
7−−−→

∑
η

η εη ηε
∂D
7−−−→ −εη

∂D
7−−−→

∑
ε

ε ε
∂D
7−−−→

Figure II.3: Enhancing rules for ∂D

here, ε and η are element of {−,+} and the product is the signs multiplication

R1+ : ↔ R1− : ↔ R2 : ↔

R3 : ↔ ↔

.

Figure II.4: Reidemeister moves

With regard to CSS codes, this proposition produces a topological way to control dimensions.

Proposition 3.4 ([Kho00]). For any pointed link diagram D, and up to grading shift, CD! � C ∗D, where D!
is the mirror image of D, obtained by swapping the over/under information at all crossings.

As a CSS code address simultaneously a chain complex and its dual, this proposition ensures that both
can be handled within the Khovanov homology framework.

Proposition 3.5 ([Kho00]). For any two pointed link diagrams D1 and D2, CD1#D2 � CD1 ⊗ CD2 , where #
denotes the following connected sum operation:

D1 # D2 = D2D1 .

This proposition obviously relates the tensor product for CSS code considered in this dissertation and
the connected sums of links.

Proposition 3.6 ([10, Cor. 2.11]). With obvious notation for diagrams differing from a Reidemeister move,
and up to the grading shift which realizes an isomorphism at the homology level, we have, for all i ∈ Z

dC
i = 2dC

i dC
i = dC

i

1
3 dC

i ≤ dC
i ≤ 2dC

i
1
8 dC

i ≤ dC
i ≤ 8dC

i

.

This proposition points out the possible relations between local moves on link diagrams and minimum
distances of the associated CSS codes. At least, it offers a way to control minimum distances.

There are other properties that Khovanov homology satisfies and which are relevant for the CSS code
point of view. By construction, CSS codes arising from Khovanov chain complexes have sparse matrices
and families made of them shall hence have a tendancy to be LDPC. There are moreover several long exact
sequences which are useful to compute homologies, but can also be used to estimate minimum distances.
Finally, a reason why Khovanov homology was first believed by the author to yield valuable CSS codes is
Lee spectral sequence, see [Lee05, Ras10], which converges to some very simple homology groups with
generators explicitly described, in a given basis, as high–weighted elements of the initial chain complex.
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Examples 3.7. A very simple example considered in [10] is the LDPC family of CSS codes arising from the
following diagrams of the unknot:

# · · · # = .

The `th diagram of this family is obtained from the trivial diagram by performing ` Reidemeister R1+ and
` Reidemeister R1− moves. It follows from Proposition 3.3 that the homology is one dimensional, from
Proposition 3.4 that the associated chain complexes are symmetric and from Proposition 3.6 that the asso-
ciated CSS codes have minimum distance 2`. Lengths and weights can be computed by hand, showing that
the asymptotical parameters are

�
32`+1
√

8π`
, 1, 2`, 3`

�
. This can also be seen as a consequence of Propositions 3.5

and 2.18.
By considering the following diagrams of unlinks:

# · · · # = ,

we obtain the family given in the incipit of the present section.

3.2.3 (2, `)–torus codes

Even if it is somewhat beyond the scope of tensor products, we end this section by a last, slightly more
involved, example of Khovanov CSS codes, obtained by considering the following diagram of the (2, `)–
torus link:

.

︸              ︷︷              ︸
` crossings

We denote its Khovanov chain complex by C(2,`) := 0→ C(2,`)
0 → C(2,`)

1 → · · · → C(2,`)
` → 0. Using long

exact sequences, all the parameters of C(2,`) can be computed:

i 0 1 2 i ∈ ~3, ` − 1� `

ni 2 ` `(` + 1) 2i−1
(
`
i

)
2`−1

ki 1 0 1 1 1

di 2 ∞
`(`+1)

2

(
`
i

)
1

d∗i 1 ∞ 2 2i−1 2`−1

wi 2 2 3 i + 1 0

w∗i 0 ` 2(` − 1) 2(` − i + 1) 2

where d∗i and w∗i are, respectively, the minimum distance and the weight of C ∗(2,`) in degree i. It follows that
the code Cr

(2,`), defined for every r ∈ {2, . . . , ` − 1} as the 3–length truncation of C(2,`) around degree r, has

parameters
�
2r−1

(
`
r

)
, 1,min

(
2r−1,

(
`
r

))
,max

(
r + 1, 2(` − r + 1)

)�
.
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Figure II.5: The projective plane P2(F2).

Among these CSS codes, low or high values for r gives poor minimum distances, but there is an efficient
inbetween for which 2r−1 ≈

(
`
r

)
. Indeed, some analysis shows that, setting r` := rd

(
α0` − β0 ln(`) + γ0

)
where rd : R −→ Z is any “rounding to the nearest integer” function, α0 is the unique zero in (0, 1) of the
function

(
x 7→ (2x)x(1 − x)1−x − 1

)
, β0 := 1

2 ln
(

2α0
1−α0

) and γ0 := β0 ln
(

2
πα0(1−α0)

)
, we obtain:

Proposition 3.8 ([10, Prop. 5.5]). The family
(
C

r`
(2,`)

)
`≥3

is LDPC and has asymptotical parameter�
n`, 1, >

√
n`

1, 62
,O
(

ln(n`)
)�
,

with n` ∼ cst. 4
α0`

`2β0 .

3.3 Quantum finite geometry codes

Points/lines incidence structures of affine and projective spaces over finite fields are known to be a fruitful
tool for error-correcting codes. It has been used to construct classical LDPC codes in [KLF01] and quantum
codes in [Pos01, Aly08, Far12]. Besides points/lines incidence, we will consider here another incidence
structure, the points/affine charts one, to construct short complexes. For this section, we set q = 2s for some
positive integer s and denote by Fq the field with q elements.

3.3.1 The projective plane

The projective plane P2(Fq) is defined as the set of lines in F3
q passing through the origin. A line in P2(Fq)

corresponds to a plane in F3
q passing through the origin, and a point of P2(Fq) is on a line of P2(Fq) if the

corresponding line in F3
q is contained in the corresponding plane. From now on, “points” and “lines” will

refer to points and lines of P2(Fq). We recall now some classical facts on this finite geometry:

Proposition 3.9.
1. The projective plane contains q2 + q + 1 point and q2 + q + 1 lines.
2. Every line contains q + 1 points and every point is contained in q + 1 lines.
3. Every two distinct points are contained in a unique line and every two distinct lines meet at a unique

point.

Note that each of the above statements express the principle of duality in projective planes, which swaps
point and lines and reverses inclusions.

Example 3.10. For q = 2, the projective plane is also called Fano plane. It contains 7 points and 7 lines and
the point/line incidence structure is usually represented by the picture given in Figure II.5 in which the 6 line
segments and the circle represent the 7 lines of P2(F2).

Additionally we consider affine charts for P2(Fq), which are the complements of lines. We list some
properties that they satisfy:

Proposition 3.11.
1. An affine chart is isomorphic to an affine plane over Fq; in particular it contains q2 elements.
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2. Let L be a line in P2(Fq) and U an affine chart. Then either L is the complement of U, and hence
L ∩ U = ∅, or L ∩ U is an affine line, and hence has q elements. In particular, since q is even, the
number of points of L ∩ U is always even.

3. The affine charts are in one-to-one correspondence with the lines and there are hence q2 + q + 1 of
them.

3.3.2 Classical codes defined from P2(Fq)

We construct two classical codes associated to the projective space P2(Fq), with length
∣∣P2(Fq)

∣∣ = q2 +

q + 1. Vectors of Fq2+q+1 can be regarded as subsets of P2(Fq) and we will freely speak of either vectors or
subsets of P2(Fq). From this point of view, the canonical inner product on Fq2+q+1 can be given a geometric
interpretation since, for S , S ′ ⊆ P2(Fq), 〈S , S ′〉 = |S ∩ S ′| mod 2.

The two codes are:
• C s

lines, spanned by lines of P2(Fq);
• C s

planes, spanned by the affine charts of P2(Fq).
Warning 3.12. We want to stress the fact that, even though the projective spaces are defined over Fq, the
associated classical codes, and hence the quantum codes to follow, are defined over F2.

Proposition 3.13 ([Smi69]). The code C s
lines has dimension kC s

lines
= 3s + 1.

Proposition 3.14 ([2, Prop. 4.7]).
1. C s

planes ⊆ C s⊥
planes;

2. C s
planes ⊆ C s

lines;
3. C s

planes ⊆ C s⊥
lines;

4. kC s
lines
− kC s

planes
= 1.

Remark 3.15. Actually, C s
planes is nothing but the even subcode of C s

lines i.e. the subcodes of vectors of even
weight.

3.3.3 CSS codes defined from P2(Fq)

Definition 3.16 (Quantum finite geometry codes). We define Cs
FG as the CSS code of length q2 + q + 1

associated to the pair C s
planes ⊆ C s

lines.

After reduction, it corresponds to the chain complex:

C s
FG := F3s � � // F22s+2s+1 // // F22s+2s−3s

.

Indeed, point 4. of Proposition 3.14, together with Proposition 3.13, asserts that kC s
planes

= 3s.

Remark 3.17. The code C1
FG is nothing but the ~7, 1, 3� Steane code. This fact is actually well–known, since

the Steane code is known to be constructed from the Hamming code and its dual, while the Hamming code
is already known to be the code Clines(1) spanned by the lines of P2(F).

We define now the set Ω of lines of P2(Fq). As consequences of Propositions 3.9, 3.11 and 3.14, we
obtain:

Lemma 3.18 ([2, Lem. 4.11 and 4.12]).
• Ω ⊂ C s

lines \ C s
planes;

• Ω ⊂ C s⊥
planes \ C s⊥

lines;
• |Ω| = q2 + q + 1;
• overlap(Ω) = q + 1.

Then, using simultaneously Ω for C s
FG and C s ∗

FG in Proposition 2.19, we obtain:

Proposition 3.19. The family
(
Cs⊗r`

FG

)
`∈N∗

of iterated powers of Cs
FG has parameters������∼ Cs

(
4s + 2s + 1 + αs

)`
, 1,≥

(
4s + 2s + 1

2s + 1

)`
,≤ (4s + 2s + 1)`

������
with αs :=

(
2
√

3
)s √

1 +
(

1
2

)s
−
(

3
4

)s and Cs some constant depending only on s.
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In particular, it is a LDPC family with constant a dimension equal to 1, but minimum distances growing
faster than any “< 1

2 ”–power of the lengths.

3.4 Quantum cyclic codes

Based on classical cyclic codes, we present now another CSS codes for which Propositions 2.18 and 2.19
can be efficiently applied. For this section, we set a positive integer n.

3.4.1 Cyclic codes

We first recall classical facts about cyclic codes. For further details we refer the interested reader to [MS77,
Chapter 7]. A cyclic code C ⊆ Fn

2 is a code which is stable under the action of the automorphism

σ :

{
Fn −→ Fn

(x0, . . . , xn−1) 7−→ (xn−1, x0 . . . , xn−2)
.

Hereinafter, we identify Fn
2 and F2[X]

/
(Xn − 1) using the F2–linear isomorphism{

F2[X]
/
(Xn − 1)

∼
−→ Fn

2
f = f0 + f1X + · · · + fn−1Xn−1 7−→ ( f0, . . . , fn−1)

and we define the weight of a polynomial as the number of its nonzero coefficents. Using this identification,
the automorphism σ corresponds in F2[X]

/
(Xn − 1) to the multiplication by X. A code C ⊂ F2[X]

/
(Xn − 1)

is hence cyclic iff it is stable under multiplication by X, that is iff it is an ideal. But since F2[X] is a principal
ideal domain, the ideals of F2[X]

/
(Xn − 1) are in one-to-one correspondence with the divisors of Xn − 1.

Given h ∈ F2[X] such that h | Xn − 1, C h
cyc is defined as the code corresponding to the ideal generated by

h. We shall say that h is a generating polynomial for C h
cyc.

Proposition 3.20.
• For every divisor h of Xn − 1, kC h

cyc
= n − deg(h).

• Generating polynomials are unique up to multiplication by an invertible element of F2[X]
/
(Xn − 1).

• For every divisors h1, h2 of Xn − 1, if h1|h2, then C h2
cyc ⊂ C h1

cyc.

• The dual of a cyclic code is cyclic. More precisely, for every divisor h of Xn − 1, C h⊥
cyc = C g

cyc, where
ḡ := Xn−1

h ∈ F2[X] and g = ḡ
(

1
X

)
.Xdeg(ḡ).

3.4.2 CSS codes defined from cyclic codes

The case n = 2s is never considered in the study of classical cyclic codes. Indeed, the polynomial Xn − 1
is then completely inseparable and all the constructions based on choosing divisors of Xn − 1 having a
prescribed set of roots, such as BCH codes introduced e.g. in [MS77, Chapter 9]), fail. But oddly enough,
this is precisely the case which will lead to CSS codes with interesting families of iterated tensor powers.

Over F2, X2s
− 1 = (X − 1)2s

and the divisors of Xn − 1 are hence exactly the polynomials (X − 1)r with
r ∈ {0, . . . , 2s}. The corresponding cyclic codes C (X−1)r

cyc has dimension n − r and satisfy C (X−1)r⊥
cyc = C (X−1)n−r

cyc .

Definition 3.21 (Quantum cyclic codes). For every integer r ∈ {1, . . . , n−1}, we define Cn,r
cyc as the CSS code

of dimension 1 associated to the pair C (X−1)r

cyc ⊆ Ccyc(X − 1)r−1.

If gr : Fn−r
2 → Fn

2 and gn−r+1 : Fr−1
2 → Fn

2 are, respectively, generating maps for C (X−1)r

cyc and C (X−1)r−1⊥
cyc =

C (X−1)n−r+1

cyc , then Cn,r
cyc corresponds to the chain complex

C n,r
cyc := Fn−r

2
� � gr // Fn

2
g∗n−r+1 // // Fr−1

2 .
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Now, using Proposition 2.19 with

Ω :=
{

Xi(X − 1)r−1 mod (X − 1)n
∣∣ i ∈ {0, . . . , n − 1}

}
Ω′ :=

{
Xi(X − 1)n−r mod (X − 1)n

∣∣ i ∈ {0, . . . , n − 1}
}
,

we obtain:

Proposition 3.22 ([2, Cor. 4.17]). For every s ∈ N∗, the family
(
C4s,2s ⊗r`

cyc

)
`∈N∗

of iterated powers of C42,2s

cyc

has parameters �
∼ Ks(4s + βs)`, 1,≥ 2s`,≤ 2s`

�
with βs := (2

√
2)s
(
1 − 1

2s

)
and Ks some constant depending only on s.

In particular, it is a LDPC family with a constant dimension equal to 1, but minimum distances growing
faster than any “< 1

2 ”–power of the lengths.

3.5 Quantum Reed–Muller codes

Finally, we study a last family of CSS codes based on classical Reed–Muller codes, which were first intro-
duced by L. Zhang and I. Fuss in [ZF97]. A. Steane also introduced some quantum codes based on classical
Reed–Muller codes in [Ste99]; his construction is however very different since Steane’s codes are stabilizer
codes, but not CSS codes.

For every r ∈ N∗ and s ∈ {0, . . . , r}, we define:

• Polr := F2[X1, . . . , Xr]
/
(X2

1 − X1, . . . , X2
r − Xr) given with the basis

{
XI :=

∏
i∈I

Xi
∣∣ I ⊂ {1, . . . , r}

}
;

• Polr,s the restriction of Polr to elements of degree4 at most s;
• φr : Polr ↪→ F2r

2 the evaluation map which sends a polynomial P to
(
P(x)

)
x∈Fr

2
;

• φr,s the restriction of φr to Polr,s.
The Reed–Muller code C r,s

RM is defined as the classical code with generating map φr,s.

Proposition 3.23 ([MS77, Theorem 13.4]). For every r ∈ N∗ and s ∈ {0, , . . . , r}, C r,s⊥
RM = C r,r−s−1

RM .

Definition 3.24 (Quantum Reed–Muller codes). For every r ∈ N∗, we define Cr
RM as the CSS code of length(2r

r

)
associated to the pair C 2r,r−1

RM ⊆ C 2r,r
RM .

It corresponds to the chain complex:

C r
RM := Pol2r,r−1

� � φ2r,r−1 // F4r φ∗2r,r−1 // // Pol2r,r−1 .

A basis of the homology of C r
RM is given by the images through φ2r of all XI ∈ Pol2r with |I| = r. Using

Proposition 2.19 with

Ωφ2r(XI ) :=
{
φ2r

(∏
i∈Ic

(Xi + εi)
) ∣∣∣ ∀(εi

)
i∈Ic ∈ F

r
2

}
,

for all I ⊂ {1, . . . , 2r} such that |I| = r, and with Ic := {1, . . . , 2r} \ I, we obtain:

Proposition 3.25 ([2, Prop. 4.21]). For every r ∈ N∗, the family
(
Cr⊗r`

RM

)
`∈N∗

of iterated powers of Cr
RM has

parameters ������������
2
(

3.4r−(2r
r )

2

)`
+
(2r

r

)`
3

,

(
2r
r

)`
, 2r`,≤ 4r`

������������.
4defined by deg(XI ) = |I|, with the convention that 0 has degree −∞



3. Families of CSS codes 73

It follows from Stirling series that, by extracting the (` = r)–diagonal subfamily, we obtain an r–indexed
family with parameters �������∼ ( 3

2

)r−1 4r2

e
1

9π e
1
3

√
r
π

,∼
4r2

e
1
8
√
πrr , 2

r2
,≤ 4rr

�������.
Stricto sensu, this family is not LDPC, but the weight grows slower than any positive power of the length.
Furthermore, the dimension grows faster than any “< 1”–power of the length, and the minimum distance
faster than any “< 1

2 ”–power of the length.
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Perspectives

As illustrated in this dissertation, chain complexes and CSS codes are two points of view on the same
combinatorial object, and all the possible contributions of each to the other have not been yet investigated.

CSS codes construction

Here and around, chain complexes have brought to light interesting CSS codes, and it is of course natural to
keep on digging in this direction.

Question 1. Can the chain complex point of view provides more new interesting examples of CSS codes ?

In topology, CW–complexes for manifolds provide an abundant source of chain complexes. Kitaev toric
codes, introduced in [Kit03], fall within this sphere. A nice feature, in this context, is that manifolds may be
enhanced with geometry, and this may provide an efficient tool to deal with minimum distance. Due to its
tendency to dilate distances, hyperbolic geometry is, in particular, quite promising; Freedman–Luo–Meyer
codes, developped in [FLM02], take indeed advantage of it. But one difficulty, then, is to discretize the
construction, in order to get a CSS code, while preserving the distances behavior. Crucial in some of the
most recent breakthrough in topology, CAT(0) cube complexes is an hyperbolic geometry–related context
which is more suitable for discretization, and hence for CSS codes.

Question 1.1. May CAT(0) spaces lead to some new interesting CSS codes ?

But CW–complexes are not the only topological source of chain complexes. Khovanov codes, presented
in Section 3.2, emerged from categorification, a categorical and homological refoundation of classical invari-
ants for links or manifolds. After Khovanov’s seminal construction, it has been developped in many different
directions: Heegaard–Floer [OS04, MOST07] homology categorifying Alexander polynomial, Khovanov–
Rozansky homology [KR08a, KR08b] categorifying HOMFLY–PT polynomial, refined Khovanov homol-
gies for some restricted notions of links [14, 13], etc. The list is far from being exhaustive.

Question 1.2. May categorification lead to some other valuable CSS codes ?

Topology is not the only field which can provide chain complexes. Loosing maybe the geometry that may
help to deal with minimum distances, but gaining on the discrete nature, homological algebra has developped
tools for the study of algebra structures that may also be fruitful in a CSS codes perspective. Actually, it
already is. In [Prz10], Przytycki has indeed shown that Khovanov homology of (2, `)–torus links, used in
Section 3.2.3 to construct CSS codes, can be interpreted as some Hochschild homology of the Z[X]

/
X2

algebra.

Question 1.3. May algebra lead to some new valuable CSS codes ?

Square root barrier conjecture

In the classical setting, families of LDPC codes with a minimum distance growing linearly with the length
has been known for a long time. By comparison, it is striking, in the quantum setting, that whatever the
foundation of the construction is, none of the known LDPC family of CSS codes has a minimum distance
growing at least as some “> 1

2 ”–power of the length.

Question 2. Is there a generic “square root of the length” barrier for the minimum distances of a LDPC
family of CSS codes ?

Such a barrier has already been proven for some class of CSS codes, such as euclidian codes [BPT10]
or surfaces and color codes [Del13, Fet12], but it remains open in general. The very first motivation for
Theorem 2.9 and its corollaries, Propositions 2.18 and 2.19, was to provide a counter-example to the square
root barrier conjecture shaped as an iterated tensor powers family. Unfortunatly, Lemma 2.17 nipped this
hope in the bud, not by saying that such an example does not exist, but that it could not be detected by
use of the tools developped in this dissertation. Indeed, if the minimum distance of a CSS code C can be
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well approached by some (N,K)–cocontrol using Corollary 2.12 , then dC is somehow less than
√

nC. In
one hand, this invites to look at examples which are non suitable for Corollary 2.12; but on the other hand,
this may also lead to a positive answer for the conjecture, if proving that any minimum distance can be
reasonably approached by some (N,K)–cocontrol. This raises the following question:

Question 2.1. Is there a polynomial function P such that, for every CSS code C, the chain complexes C and
C ∗ are (N,K)–cocontrolled for some N,K ∈ N∗ satisfying dC ≤ N

K P(wC) ?

And more generally:

Question 2.2. Is there a polynomial function P such that, for every CSS code C, dC ≤
√

nCP(wC) ?

Decoding

Decoding is a crucial factor for error-correcting codes, and as far as the author knows, the homological
machinery has not been yet exploited to this end. In that direction, spectral sequences are a powerful tool
in homological algebra which starts with a filtered chain complex C and provides an iteratively defined
sequence of chain complexes, called pages. The first page is the associated graded chain complex Cgr, each
subsequent page is the homology of the previous one, and the whole sequence converges to H•(C ). From
a CSS code point of view, it provides a step-by-step approximation of the quantum errors which cannot be
detected. Such a spectral sequence could be a key ingredient in some layered decoding process.

In particular, B. Everitt and P. Turner developped in [ET12] a notion of posets bundle for which they
set a spectral sequence. This framework should be particularly well adapted to CSS codes admitting a local
covering by hypercubes, a property which is met in several known constructions, for instance in Khovanov
codes.

Question 3. Can an efficient layered decoding process be developped, rooted on spectral sequences, and
adapted to hypercubes-covered CSS codes such as Khovanov ones ?

Return on investment for knot theory

Interactions between topology and quantum codes should not be one-way, and some code-related notions,
such as minimum distance, can be pulled back and studied for topological purpose. While studying Kho-
vanov codes, Proposition 3.6 popped up as an elementary tool to analyse minimum distances. It appeared, in
particular, that modifications of the minimum distance when performing a R1 move are very well controlled.
On R2 and R3 moves, the naive control is looser, but computations suggest the following:

Question 4. Do the equalities dC
i = 2dC

i and dC
i = dC

i hold in general or, at least, for some subfamilies
of link diagrams ?

A positive answer would lead to new invariants hidden in Khovanov homology, defined as 1
2n+ dCD

i where
D is a link diagram with n+ positive crossings and i is any integer in the support of CD. Beside the potential
for distinguishing links with same Khovanov homology, this might also have some other applications, for
instance to the computation of Rasmussen invariant. Indeed, based on minimum distance considerations,
generic information on the first page of the Lee spectral sequence may allow to rule out from the very start
some generators which are doomed to die before convergence of the sequence.
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Mathematical Society (EMS), 2012.

[HS97] P. J. Hilton and U. Stammbach. A course in homological algebra, volume 4 of Graduate Texts in
Mathematics. Springer-Verlag, New York, second edition, 1997.
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[SRK08] K. P. Sarvepalli, M. Rötteler, and A. Klappenecker. Asymmetric quantum ldpc codes. Proc. IEEE
Int. Symp. Info. Theo., Toronto:305–309, 2008.

[Sta65] J. Stallings. Homology and central series of groups. J. Algebra, 2:170–181, 1965.

[Ste96] A. Steane. Multiple particle interference and quantum error correction. Proc. Roy. Soc. Lond. A,
452:2551:2551–2577, 1996.

[Ste99] A. Steane. Quantum reed-muller codes. IEEE Trans. Inform. Theory, 45(5):1701–1703, 1999.

[Suz76] S. Suzuki. Knotting problems of 2-spheres in 4-sphere. Math. Sem. Notes Kobe Univ., 4(3):241–
371, 1976.

[Tai84] P. G. Tait. On knots III. Trans. Roy. Soc. Edinburgh, 32:493–506, 1884.

[Tur17] P. Turner. Five lectures on Khovanov homology. J. Knot Theory Ramifications, 26(3):41, 2017.

[TZ14] J-P. Tillich and G. Zémor. Quantum LDPC codes with positive rate and minimum distance pro-
portional to the square root of the blocklength. IEEE Trans. Inform. Theory, 60(2):1193–1202,
2014.

[Vas90] V. A. Vassiliev. Cohomology of knot spaces. Theory of singularities and its applications, Adv.
Sov. Math. 1, 23-69, 1990.

[Vir04] O. Viro. Khovanov homology, its definitions and ramifications. Fund. Math., 184:317–342, 2004.

[Wei94] C. A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Ad-
vanced Mathematics. Cambridge University Press, Cambridge, 1994.

[Win09] B. Winter. The classification of spun torus knots. J. Knot Theory Ramifications, 18(9):1287–1298,
2009.

[Wit94] E. Witten. Quantum field theory and the Jones polynomial. In Braid group, knot theory and
statistical mechanics II, pages 361–451. London: World Scientific, 1994.

[Yaj62] T. Yajima. On the fundamental groups of knotted 2-manifolds in the 4-space. J. Math. Osaka City
Univ., 13:63–71, 1962.

[Yan69a] T. Yanagawa. On ribbon 2-knot: The 3-manifold bounded by the 2-knots. Osaka J. Math., 6:447–
464, 1969.

[Yan69b] T. Yanagawa. On ribbon 2-knots II: The second homotopy group of the complementary domain.
Osaka J. Math., 6:465–473, 1969.

[Yan70] T. Yanagawa. On Ribbon 2-knots III: On the unknotting Ribbon 2-knots in S 4. Osaka J. Math.,
7:165–172, 1970.



OTHER PAPERS 83

[Yur08] E. Yurasovskaya. Homotopy String Links Over Surfaces. PhD thesis, University of British
Columbia, 2008.

[Zém09] Gilles Zémor. On Cayley graphs, surface codes, and the limits of homological coding for quantum
error correction. In Coding and cryptology, volume 5557 of Lecture Notes in Comput. Sci., pages
259–273. Springer, Berlin, 2009.

[ZF97] Lin Zhang and Ian Fuss. Quantum reed-muller codes. ArXiv:quant-ph/9703045, 1997.


	Remerciements
	Avant-propos
	Introductions
	Introduction longue en français
	Short english introduction
	Overview of the personal works

	 From topology to topology, via combinatorics
	Introduction
	Notation and setting
	Classification of classical string links up to link-homotopy
	String links
	Reduced peripheral systems
	Habegger and Lin's Artin–like invariant

	Classification of welded string links up to self-virtualization
	Welded knot theory
	Classification up to self-virtualization

	Classification of ribbon higher dimensional string links up to ribbon link-homotopy
	Ribbon string d–links
	Tube map
	Fundamental group
	Ribbon link-homotopy
	Higher dimensional Artin–like invariant

	Classification of string 2–links up to link-homotopy
	Broken surface diagrams
	Ribbonness and link-homotopy
	Classification up to link-homotopy

	Perspectives

	 From codes to quantum codes, via topology
	Introduction
	Notation and setting
	CSS codes and chain complexes
	Classical error-correcting codes
	From quantum errors to CSS codes
	From chain complexes to CSS codes

	Tensor products for quantum codes
	Definitions
	Properties

	Families of CSS codes
	Tillich–Zemor codes
	Khovanov codes
	Quantum finite geometry codes
	Quantum cyclic codes
	Quantum Reed–Muller codes

	Perspectives

	Bibliography
	Personal papers
	Other papers


