Analyse

DEVOIR DE CONTRÔLE CONTINU 2

Exercice 1

Soit $(a, b) \in \mathbb{R}^2$ et $n \in \mathbb{N}$. On considère l'application polynôme :

$$f_n(x) = x^n + ax + b, \quad x \in \mathbb{R}.$$

- 1. On suppose n pair. Montrer que f_n ne peut avoir plus de deux racines réelles.
- 2. On suppose n impair. Montrer que f_n ne peut avoir plus de 3 racines réelles.

Exercice 2

- 1. On rappelle que $\arcsin: [-1,1] \to [0,\pi]$ est la bijection réciproque de la fonction sinus restreinte à l'intervalle $[0,\pi]$. Justifier que \arcsin est dérivable sur]-1,1[et calculer sa dérivée.
- 2. Montrer que l'application $f: x \in]-1,1[\to (\arcsin(x))^2$ est dérivable sur]-1,1[.
- 3. Montrer que

$$(1-x^2)f''(x) - xf'(x) = 2, \quad \forall x \in]-1,1[.$$

- 4. En déduire que $f \in \mathcal{C}^{\infty}(]-1,1[)$.
- 5. Excrire une relation entre $f^{(n+2)}$, $f^{(n+1)}$ et $f^{(n)}$.

Exercice 3 Soit $f \mathbb{R} \to \mathbb{R}$. On suppose que f est dérivable sur \mathbb{R} , que f a une limite en $+\infty$ et que f' a une limite m en $+\infty$. Montrer que m=0.

Exercice 4

1. Soit I un intervalle ouvert, soit $a \in I$ et soit $f \colon I \to \mathbb{R}$ une fonction dérivable en a. Pour chacune des deux affirmations suivantes, dire si elle est vraie ou fausse ? Justifiez soigneusement en donnant une démonstration ou un contre-exemple.

Affirmation (1): Si f'(a) = 0, alors f admet un extremum local en a.

Affirmation (2): Si f admet un extremum local en a, alors f'(a) = 0.

2. On considère l'application polynomiale :

$$P(x) = x^{27} - 15x^3 + x^2 - 9$$

- (a) Calculer P(-1) et P(0).
- (b) Montrer que P admet au moins trois racines réelles distinctes $x_1 < x_2 < x_3$.
- (c) Montrer qu'il existe $a \in]x_1, x_2[$ tel que P admette un extremum local en a.

Exercice 5

Démontrer que pour tous réels x et y appartenant à l'intervalle $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$, on a :

$$\frac{1}{2}|x-y| \le |\cos x - \cos y| \le |x-y|$$

Exercice 6 Soit f la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $f(x) = \sqrt{\sin(x)} + x$.

- 1. Montrer que f est bien définie et que c'est une bijection de $\left[0, \frac{\pi}{2}\right]$ sur un intervalle I à déterminer.
- 2. Montrer que f^{-1} est dérivable sur l'intérieur de $I \setminus \{0\}$ et calculer sa dérivée.
- 3. Montrer que f^{-1} est dérivable sur I tout entier.

Exercice 7 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable telle que f' soit décroissante.

- 1. Montrer que, pour tout $x \in \mathbb{R}$, il existe $c_x \in]x, x+1[$ tel que $f(x+1)-f(x)=f'(c_x).$
- 2. Montrer que, pour tout $x \in \mathbb{R}$, on a $f(x+1) f(x) \le f'(x) \le f(x) f(x-1)$.
- 3. Application : montrer que $\sum_{k=1}^{n} \frac{1}{k}$ tend vers $+\infty$ quand n tend vers $+\infty$.
- 4. Montrer que si f admet de plus une limite finie en $+\infty$ alors $\lim_{x\to\infty}f'(x)=0$.
- 5. Trouver une fonction g dérivable sur \mathbb{R} , admettant une limite finie en $+\infty$ mais telle que g' ne tende pas vers 0 en $+\infty$.