Analyse I

PLANCHE 3: DÉRIVATION

Dérivabilité, dérivée,

Exercice 1 [Opérations sur les dérivées] •

Soit $-\infty \le a < b \le \infty$, $x \in]a,b[$ et f,g deux applications de]a,b[dans \mathbb{R} . On suppose que f et g sont dérivables en x.

- 1. Montrer que (f+g) est dérivable en x et (f+g)'(x) = f'(x) + g'(x).
- 2. Montrer que fg est dérivable en x et (fg)'(x) = f'(x)g(x) + f(x)g'(x).
- 3. On suppose que $g(y) \neq 0$ pour tout $y \in]a,b[$. Montrer que f/g est dérivable en x et que :

$$(f/g)'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}.$$

Exercice 2 [Dérivabilité de $x \mapsto x^n$] •

Soit n un entier relatif. On considère la fonction à valeurs dans \mathbb{R} définie par $f_n(x) = x^n$.

- 1. Quel est l'ensemble de définition de f_n (distinguer suivant les valeurs de n).
- 2. Montrer que f_n est dérivable sur D et déterminer sa dérivée.

Exercice 3 [calcul de dérivées] •

Calculer les dérivées des fonctions suivantes :

- 1. $f_1(x) = x \ln(x)$; $f_2(x) = \sin(\frac{1}{x})$; $f_3(x) = \sqrt{1 + \sqrt{1 + x^2}}$; $f_4(x) = \left(\ln(\frac{1+x}{1-x})\right)^{\frac{1}{3}}$; $f_5(x) = x^x$; $f_6(x) = \arctan(\frac{1}{x}) + \arctan(x)$
- 2. On note $\Delta(f) = \frac{f''}{f}$. Calculer $\Delta(f \times g)$
- 3. Soit $f:]1, +\infty[\to]-1, +\infty[$ définie par $f(x)=x\ln(x)-x.$ Montrer que f est une bijection . Notons $g=f^{-1}.$ Calculer g(0) et g'(0).
- 4. Calculer les dérivées successives de $f(x) = \ln(1+x)$.
- 5. Calculer les dérivées successives de $f(x) = x^3 \ln(x)$.

Exercice 4 [Dérivabilité de $x \mapsto x^n$] •

Soit n un entier relatif. On considère la fonction à valeurs dans \mathbb{R} définie par $f_n(x) = x^n$.

- 1. Quel est l'ensemble de définition de f_n (distinguer suivant les valeurs de n).
- 2. Montrer que f_n est dérivable sur D et déterminer sa dérivée.

Exercice 5 [Dérivabilité de $x \mapsto x^{1/n}$] •

Soit n un entier supérieur ou égal à 2 et soit $g: [0, +\infty[\to \mathbb{R} \text{ la fonction } g_n(x) = x^{1/n}.$ Rappelons que g est par définition la fonction réciproque de la restriction à $[0, +\infty[$ de la fonction $f_n(x) = x^n$.

1. Montrer que g_n est dérivable sur $]0, +\infty[$ et déterminer sa dérivée.

2. Montrer que le graphe de g_n admet une demi-tangente verticale en 0.

Exercice 6 •

Soit f une fonction dérivable sur \mathbb{R} . Calculer la dérivée des fonctions suivantes.

$$\exp f(x)$$
; $(f(\sin x))^2$; $\log |f(x)|$; $f(\log |f(x)|)$.

Exercice 7 •

Soit $f \colon x \mapsto 1/x$ définie sur R_+^* . On admettra l'existence d'une fonction \ln (logarithme népérien) définie et dérivable sur R_+^* , s'annulant en 1 et vérifiant $\ln' = f$.

- 1. Montrer que la fonction ln est ainsi définie de manière unique.
- 2. Montrer que ln est strictement croissante.
- 3. a. Soit a > 0 et $g_a : R_+^* \to \mathbb{R}$ définie par $g_a(x) = \ln(ax) \ln(a)$. Montrer que g_a est dérivable et calculer g_a' et $g_a(1)$.
 - b. En déduire que pour tout $a, b > 0, \ln(ab) = \ln(a) + \ln(b)$.
- 4. Montrer, en étudiant une fonction bien choisie, que pour tout x > 0, $\ln(x) \le x 1$.

Exercice 8 [Dérivée non continue] •

On définit f de \mathbb{R} dans \mathbb{R} par :

$$f(x) = 0$$
, si $x \le 0$,
 $f(x) = x^2 \sin(\frac{1}{x})$, si $x > 0$.

Montrer que f est dérivable en tout point de \mathbb{R} et calculer f'(x) pour tout $x \in \mathbb{R}$. La dérivée de f est-elle continue ?

Exercice 9 •

Pour $x \in \mathbb{R}$, on pose $f(x) = x + e^x$. Montrer que f est strictement croissante, continue et bijective de \mathbb{R} dans \mathbb{R} . On note g l'application réciproque de f. Montrer que g est deux fois dérivable sur \mathbb{R} . Calculer g'(1) et g''(1).

Exercice 10 [Exercice de rédaction] •

Soit φ une application de $]0,\infty[$ dans \mathbb{R} , dérivable (en tout point de $]0,\infty[$) et t.q. $\lim_{x\to\infty}\varphi(x)=0$.

- 1. On suppose que $\varphi'(x) \leq 0$ pour tout x > 0. Montrer que $\varphi(x) \geq 0$ pour tout x > 0.
- 2. On suppose que $\varphi'(x) < 0$ pour tout x > 0. Montrer que $\varphi(x) > 0$ pour tout x > 0.

Applications de la dérivée : Rolle, Accroissements finis, extrema locaux, convexité

Exercice 11 [Application du théorème de Rolle] •

- 1. Dessiner le graphe de fonction vérifiant : f admet deux minimum locaux et un maximum local ; h admet un minimum local qui n'est pas global et un maximum local qui est global ; k admet une infinité d'extremum locaux ; k n'admet aucun extremum local
- 2. Calculer en quel point la fonction $f(x) = ax^2 + bx + c$ admet un extremum local.
- 3. Soit $f:[0;2]\to\mathbb{R}$. une fonction deux fois dérivable telle que f(0)=f(1)=f(2)=0. Montrer qu'il existe c,d tels que f'(c)=f'(d)=0. Montrer qu'il existe e tel que f''(e)=0.
- 4. Montrer que chacune des 3 hypothèses du théorème de Rolle est nécessaire.

Exercice 12 [Extremum local] •

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = |1 - x^2|$.

1. Montrer que f est dérivable sur $\mathbb{R} \setminus \{-1,1\}$ mais n'est pas dérivable en -1 et en 1.

2. Montrer que f admet un maximum local en 0 et des minima locaux en -1 et en 1.

Exercice 13 •

Soit I un intervalle ouvert et $f: I \to \mathbb{R}$ une fonction dérivable. Soit k un entier ≥ 2 . On suppose qu'il existe k nombres réels distincts appartenant à I en lesquels f s'annule. Démontrer qu'il existe au moins k-1 nombres réels distincts appartenant à I en lesquels f' s'annule.

Exercice 14 •

1. Montrer que pour tout réel x > 0 on a la double inégalité :

$$\frac{1}{x+1} < \log(x+1) - \log(x) < \frac{1}{x}$$

2. En déduire que pour tout entier $n \ge 1$, on a :

$$\log(n+1) < 1 + \frac{1}{2} + \ldots + \frac{1}{n} < 1 + \log(n)$$

3. Posons $u_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \log(n)$. Montrer que la suite (u_n) est décroissante et convergente.

Exercice 15 [Application des accroissement finis] •

- 1. Soit $f(x) = \frac{x^3}{3} + \frac{x^{1/2}}{2} 2x + 2$. Etudier la fonction f. Tracer son graphe. Montrer que f admet un minimum local et un extremu local.
- 2. Soit $f(x)=\sqrt{x}$. Appliquer le théorème des accroissements finis sur l'intervalle [100;101). En déduire l'encadrement : $10+\frac{1}{22}\leq \sqrt{100}\leq 10+\frac{1}{20}$
- 3. Appliquer le théoème des accroissement finis pour montrer que $\ln(1+x)-\ln(x) \le \frac{1}{x}$ pour tout x strictement positif
- 4. Soit $f(x) = e^x$. Que donne l'inégalité des accroissement finis sur [0;x]

Exercice 16 [Application règle de l'Hôpital (ou règle de Bernoulli)] •

Appliquer la règle de l'Hôpital pour calculer les limites suivantes quand $x \to 0$

$$\frac{x}{(1+x)^n-1}$$
 ; $\frac{\ln(x+1)}{\sqrt{x}}$; $\frac{1-\cos(x)}{\tan(x)}$; $\frac{x-\sin(x)}{x^3}$

Exercice 17 [Etude d'une fonction] •

Soit a > 0. On définit f de \mathbb{R} dans \mathbb{R} de la manière suivante :

$$f(x) = (1 + \frac{a}{|x|})^x$$
, si $x \neq 0$, $f(0) = 1$.

(On rappelle que $b^x = e^{x \ln b}$, pour b > 0 et $x \in \mathbb{R}$.)

- 1. (Continuité de f)
 - (a) Montrer que $e^z \ge 1 + \frac{z^2}{2}$ pour tout $z \in \mathbb{R}_+$. En déduire que $\ln(1+y) \le \sqrt{2y}$, pour tout $y \in \mathbb{R}_+$.
 - (b) En utilisant la question précédente, montrer que $1 \le f(x) \le e^{\sqrt{2ax}}$, pour tout $x \in]0, \infty[$.
 - (c) Montrer que $\lim_{x\to 0, x>0} f(x) = 1$.
 - (d) Montrer que f est continue en 0. [On pourra remarquer que f(x)f(-x) = 1, pour tout $x \in \mathbb{R}$.]

- 2. (Dérivabilité de f sur \mathbb{R}^*) Montrer que f est de classe C^1 sur \mathbb{R}^* et que f'(x) > 0 pour tout $x \neq 0$. [Pour x > 0, on pourra mettre f'(x) sour la forme $f(x)\varphi(x)$ et utiliser l'exercice .] Montrer que f est strictement croissante.
- 3. (Dérivabilité en 0?) Montrer que $\lim_{x\to 0} f'(x) = +\infty$. L'application f est-elle dérivable en 0? (Justifier la réponse...)
- 4. (Limites en $\pm \infty$) Donner (en fonction de a) les limites en $+\infty$ et $-\infty$ de f.

Dans la suite, on note l et m ces limites.

- 5. (Fonction réciproque) Montrer que f est une bijection de \mathbb{R} dans]m,l[. On note g la fonction réciproque de f (de sorte que g est une application de]m,l[dans \mathbb{R}). Montrer que g est dérivable en 1 (noter que g0) et calculer g'(1). [Pour g0) on pourra appliquer le théorème des Accoissements Finis à la fonction g0) entre les points g1) et g1).]
- 6. (Régularité de la fonction réciproque) Montrer que la fonction réciproque de f est de classe C^1 sur]m, l[mais que f n'est pas de classe C^1 sur \mathbb{R} .

Exercice 18 [Fonction convexe] •

Soit φ une fonction de \mathbb{R} dans \mathbb{R} . On suppose que φ est dérivable (c'est-à-dire dérivable en tout point de \mathbb{R}) et que φ' est une fonction croissante.

- 1. Soit x < z < y. Montrer que $\frac{\varphi(z) \varphi(x)}{z x} \le \frac{\varphi(y) \varphi(z)}{y z}$.
- 2. Montrer que φ est convexe, c'est-à-dire que

$$\varphi(tx+(1-t)y) \leq t\varphi(x) + (1-t)\varphi(y) \text{ pour tout } x,y \in \mathbb{R} \text{ et tout } t \in [0,1]. \tag{0.0.1}$$

[Pour x < y et $t \in]0,1[$, on pourra utiliser la question 1 avec z = tx + (1-t)y.]

3. On définit ici la fonction ψ de $\mathbb R$ dans $\mathbb R$ par $\psi(x)=|x|$ si $x\in\mathbb R$. Montrer que ψ est convexe. La fonction ψ est-elle dérivable en tout point de $\mathbb R$?

Formules de Taylor, équivalents, développements limités

Exercice 19 [Application formule de Taylor] •

- 1. Ecrire les trois formules de Taylor en 0 pour $x \to \cos(x)$; $x \to \exp(-x)$ et $x \to sh(x)$
- 2. Ecrire les formules de Taylor en 0 à l'ordre 2 pour $x \to \frac{1}{\sqrt{1+x}}$ et $x \to \tan(x)$
- 3. Ecrire les formules de Taylor en 1 à l'ordre 2 pour $x \to x^3 9x^{1/2} + 14x + 3$
- 4. Avec une formule de Tayor à l'ordre 2 de $\sqrt{1+x}$ trouver une approximation de $\sqrt{1.01}$. Idem avec $\ln(0.99)$

Exercice 20 [Limites] •

1. Calculer les limites suivantes :

$$\lim_{x \to 0} \frac{e^{x^2} - \cos x}{x^2}, \quad \lim_{x \to +\infty} \sqrt{x^2 + 2x + 2} + x, \quad \lim_{x \to -\infty} \sqrt{x^2 + 2x + 2} + x,$$

$$\lim_{x \to 0} \frac{\arctan x - x}{\sin x - x}.$$

2. Calculer

$$l = \lim_{x \to +\infty} \left(\frac{x+1}{x}\right)^x.$$

Donner un équivalent de $l-\left(\frac{x+1}{x}\right)^x$ lorsque x tend vers $+\infty$.

Exercice 21 [Un peu d'analyse numérique] •

Donner une valeur approchée de $\sin(1)$ à 10^{-6} -près, c'est-à-dire donner un nombre réel l tel que $|\sin(1)|$ $l \le 10^{-6}$. [On pourra considérer la fonction sinus sur [0,1] et écrire la formule de Taylor-Lagrange à un ordre convenable à déterminer; on remarquera que le reste dans cette formule se borne facilement.]

Exercice 22 [DL, exemple 1] • On définit f sur $]-\infty,1[$ par :

$$f(x) = \arctan \frac{1}{1 - x}.$$

Donner le développement limité à l'ordre 3 de f en 0.

Exercice 23 $[DL, exemple 2] \bullet$

- 1. Calculer le DL en 0 de $x \to ch(x)$ en utilisant TY. Retrouver ce DL en utilisant $ch(x) = \frac{e^x + e^{-x}}{2}$
- 2. Ecrire le DL en 0 à l'ordre 3 de $\sqrt[3]{1+x}$. Idem avec $\frac{1}{\sqrt{1+x}}$
- 3. Ecrire le DL en 2 à l'ordre 2 de \sqrt{x}
- 4. Justifier l'expression du DL de $\frac{1}{1-x}$ à l'aide de l'unicité du DL et de la somme d'une suite géométrique.

Exercice 24 [DL d'un polynôme...] •

Donner le développement limité à l'ordre 7 en -1 de la fonction f définie sur \mathbb{R} par $f(x) = x^4 - 1$.

Exercice 25 [DL somme, opérations] •

- 1. Calculer le DL en 0 à l'ordre 3 de $exp(x) \frac{1}{1+x}$, puis de xcos(2x) et $cos(x) \times sin(2x)$
- 2. Calculer le DL en 0 à l'ordre 3 de $\sqrt{1+2\cos(x)}$, puis de $\exp(\sqrt{1+2\cos(x)})$
- 3. Calculer le DL en 0 à l'ordre 3 de $\ln(1+\sin(x))$. Idem à l'ordre 6 pour $(\ln(1+x^{1/2}))^{1/2}$
- 4. Calculer le DL en 0 à l'ordre n de $\frac{\ln(1+x^{1/2})}{x^3}$. Idem à l'ordre 3 pour $\frac{e^x}{1+x}$
- 5. Par intégration retrouver la formule du DL de ln(1+x). Idem à l'ordre 3 pour arcos(x)

Exercice 26 [Utilisation des DL(1)] •

Donner la limite en 0 de f définie sur $]0, \infty[$ par :

$$f(x) = \frac{e^x - 1 - x}{x^2}.$$

Exercice 27 [Utilisation des DL(2)] •

- 1. Calculer la limite de $\frac{\sin(x)-x}{x}$ lorsque x tend vers 0. Idem avec $\frac{\sqrt{1+x}-sh(\frac{x}{2})}{x^k}$ avec k=1,2,3,...... 2. Calculer la limite de $\frac{\sqrt{x}-1}{\ln(x)}$ lorsque x tend vers 1. Idem avec $\left(\frac{1-x}{1+x}\right)^{\frac{1}{x}}$, puis $\frac{1}{\tan^{1/2}(x)}$ - $\frac{1}{x^{1/2}}$ quand x tend
- 3. Soit f(x) = exp(x) + sh(x). Calculer l'équation de la tangente en x=0 et la position du graphe . Idem avec g(x) = sh(x)
- 4. Calculer le Dl en $+\infty$ à l'ordre 5 de $\frac{x}{x^{1/2}-1}$. Idem à l'ordre 2 pour $(1+\frac{1}{x})^x$
- 5. Soit $f(x) = \sqrt{\frac{x^{1/2} + 1}{x + 1}}$. Déterminer l'asymptote en $+\infty$ et la position du graphe par rapport à cette asymptote.

Exercice 28 [DL d'une fonction réciproque] • On définit f sur \mathbb{R} par $f(x) = 2x + \sin x$.

1. Montrer que f est une bijection de \mathbb{R} dans \mathbb{R} , strictement croissante. On note, dans la suite, g sa fonction réciproque.

- 2. Montrer que f et g sont dérivables en tout point de \mathbb{R} .
- 3. Donner le développement limité à l'ordre 3 en 0 de g.

Exercice 29 [Equivalents] •

- 1. Soit $\alpha > 0$. Montrer que $((1+x)^{\alpha} 1) \sim \alpha x$ en 0.
- 2. Montrer que $(1 + x + x^2) \sim x^2$ en $+\infty$.
- 3. Soit f, g, h des applications de \mathbb{R} dans \mathbb{R} et $\lambda, \mu \in \mathbb{R}$. On suppose que $f \sim \lambda h$ et $g \sim \mu h$ en 0 et que $\lambda + \mu \neq 0$. Montrer que $(f + g) \sim (\lambda + \mu)h$ en 0. Donner un exemple où ce résultat est faux si $\lambda + \mu = 0$.
- 4. Soit f et g des applications de $\mathbb R$ dans $\mathbb R$. On suppose que f(x)>0 et g(x)>0 pour tout $x\in\mathbb R$, $f\sim g$ en 0 et $\lim_{x\to 0}f(x)=\infty$. On pose $h(x)=\ln(x)$ pour x>0. Montrer que $h\circ f\sim h\circ g$ en 0.
- 5. Soit f, g, h des applications de $\mathbb R$ dans $\mathbb R$. On suppose que $f \sim h$ en 0 et que g = o(h) au voisinage de 0. Montrer que $(f+g) \sim h$ en 0.

Exercice 30 [Equivalents] •

Soit f, g, φ, ψ définies pour tout $x \in \mathbb{R}$ par $f(x) = x^3 + 1$, $g(x) = x^4 + 1$, $\varphi(x) = x^3 - 3x$, $\psi(x) = x^3$.

- 1. Montrer que $f \sim g$ en 0.
- 2. Montrer que $\ln(f)$ et $\ln(g)$ sont définies sur $]-1,\infty[$ et que $\ln(f)\not\sim \ln(g)$ en 0.
- 3. Montrer que $\varphi \sim \psi$ en $+\infty$.
- 4. Montrer que $e^{\varphi} \not\sim e^{\psi}$ en $+\infty$.

Exercice 31 [Etude d'une fonction (1)] • Soit la fonction f définie sur $-\frac{\pi}{4}$ par

$$f(x) = \begin{cases} \frac{\ln(1+\tan x)}{\sin x} & \text{si } x \neq 0\\ 1 & \text{si } x = 0. \end{cases}$$

- 1. Montrer que f est continue et dérivable en 0.
- 2. Donner le développement limité de f en 0 à l'ordre 2.
- 3. Donner l'équation de la tangente à la courbe de f au point d'abscisse 0 et la position locale de la courbe de f par rapport à cette tangente.

Exercice 32 [Etude d'une fonction (2)] •

On définit la fonction f de \mathbb{R} dans \mathbb{R} par $f(x) = 3x + \frac{\cos(x)}{x^2 + 1}$.

- 1. Montrer que f est dérivable et calculer f'(x) pour tout $x \in \mathbb{R}$.
- 2. Montrer que f est strictement croissante.
- 3. Montrer que f est une bijection de \mathbb{R} dans \mathbb{R} .
- 4. Montrer que f admet un développement limité d'ordre 2 en 0 et donner ce développement.
 Donner l'équation de la tangente (à la courbe de f) en 0 et la position locale de la courbe de f par rapport à cette tangente.
- 5. Montrer que q admet un développement limité d'ordre 2 en 1 et donner ce développement.
- 6. Donner les asymptotes de f en $\pm \infty$.
- 7. montrer que $\lim_{x\to\infty} g(x) = \infty$ et donner les asymptotes de g en $\pm\infty$.

Exercice 33 [Etude de $\ln(1-x)/x$] •

- 1. Montrer que pour tout entier n, la fonction $x \mapsto \ln(1+x)$ admet un développement limité à l'ordre n en zéro. Calculer explicitement ce développement pour n=2.
- 2. Soit $g:]0,1[\to \mathbb{R}$ la fonction définie par $g(x) = -\frac{\ln(1-x)}{x}$. Montrer que g se prolonge par continuité en zéro (à droite).

Soit
$$f:[0,1[\to\mathbb{R} \text{ la fonction définie par } f(x)=\left\{ \begin{array}{cc} -\frac{\ln{(1-x)}}{x} & \text{si } x\in]0,1[,\\ 1 & \text{si } x=0. \end{array} \right.$$

- 3. Montrer que f est de classe C^{∞} sur]0,1[.
- 4. Montrer que f est dérivable à droite en zéro et donner la valeur de cette dérivée (notée f'(0)).
- 5. Calculer la fonction dérivée f' sur]0,1[. La fonction f' est-elle continue en zéro ?
- 6. Montrer que pour tout $x \in [0,1[$, on a $\ln(1-x) + \frac{x}{1-x} \ge 0$. En déduire le signe de f'(x) pour $x \in]0,1[$.
- 7. Dresser le tableau de variations de f et tracer l'allure de son graphe sur [0,1[(on pensera à calculer la limite de f en 1).

Exercices Supplémentaires

Exercice 34 [Limite à l'infini]

Soit f une fonction dérivable de $]0, \infty[$ dans \mathbb{R} . On suppose que $\lim_{x\to\infty} f'(x) = 0$. Montrer que $\lim_{x\to\infty} \frac{f(x)}{x} = 0$.

Exercice 35 [Fonctions höldériennes]

Soit f une fonction de \mathbb{R} dans \mathbb{R} , $\beta \in \mathbb{R}$, $\beta > 0$ et $k \in \mathbb{R}$, k > 0. On suppose que, pour tout $x, y \in \mathbb{R}$, $|f(y) - f(x)| \le k|y - x|^{\beta}$.

- 1. Montrer que f est continue en tout point de \mathbb{R} .
- 2. On suppose, dans cette question, que $\beta > 1$. Soit $x \in \mathbb{R}$, montrer que f'(x) = 0. En déduire que f est constante.
- 3. (Exemple) Pour $x \in \mathbb{R}$, on pose $g(x) = |x|^{\frac{1}{2}}$. Montrer que, pour tout $x, y \in \mathbb{R}$, on a $|g(y) g(x)| \le |y x|^{\frac{1}{2}}$. [On pourra montrer qu'on peut supposer $|y| \ge |x|$, et distinguer les cas où x et y sont de même signe et où x et y sont de signe contraire.]

Exercice 36

Soit n un entier ≥ 2 , a et b des nombres réels et P le polynôme de $\mathbb{R}[X]$ défini par $P(X) = X^n + aX + b$.

- 1. Combien le polynôme P' a-t-il de racines réelles ?
- 2. Montrer que le polynôme P a au plus deux racines réeles si n est pair et au plus trois racines réelles si n est impair.

Exercice 37 [Utilisation du théorème des accroissements finis]

Soit f une application continue de \mathbb{R} dans \mathbb{R} . On suppose que f est dérivable pour tout $x \neq 0$ et que $\lim_{x\to 0} f'(x) = +\infty$.

- 1. Montrer que f n'est pas dérivable en 0.
- 2. On suppose maintenant que f est bijective de \mathbb{R} dans \mathbb{R} , strictement croissante et que f(0) = 0. On note g la fonction réciproque de f [l'existence de la function g a été vue en cours]. Montrer que g est dérivable en g0 et que g'(0) = 0.

Exercice 38 [Condition nécessaire et condition suffisante de minimalité] Soit f une application \mathbb{R} dans \mathbb{R} et $a \in \mathbb{R}$.

- 1. On suppose que f est de classe C^1 et que f admet un minimum local en a. Montrer que f'(a) = 0.
- 2. On suppose que f est de classe C^2 , f'(a) = 0 et f''(a) > 0. Montrer que f admet un minimum local en a.
- 3. Donner un exemple pour lequel f est de classe C^2 , f'(a) = 0, f''(a) = 0 et f n'admet pas un minimum local en a.

Exercice 39 [Limite en 0]

Trouver les limites en 0 des fonctions suivantes, définies sur \mathbb{R}^* :

$$f(x) = \frac{1}{x^2} \left(\frac{1}{1+x^2} - \cos(x) \right), \ g(x) = \frac{\arctan(x) - x}{\sin(x) - x}, \ h(x) = \frac{e^x - \cos(x) - \sin(x)}{x^2}.$$

Calculer le DL3 en 0 de f définie pour $x \in]-1,1[$ par $f(x)=\sin(x)-\cos(x)+\tan(x)+\frac{1}{1-x}$.

Calculer le DL3 en $\frac{\pi}{2}$ de f définie pour $x \in]0, \pi[$ par $f(x) = \ln(\sin(x))$.

Exercice 41 [DL4]

Donner le DL4 en 0 des fonctions suivantes (définies de \mathbb{R} dans \mathbb{R}):

$$f(x) = (1 + \sqrt{1 + x^2})^{\frac{1}{2}}, \ g(x) = e^{\cos(x)}.$$

Exercice 42 [DLn]

On définit f de \mathbb{R} dans \mathbb{R} par :

$$f(x) = \frac{x}{e^x - 1} \text{ si } x \neq 0,$$
 $f(0) = 1$ (0.0.2)

Montrer que f est continue en 0 et admet un DLn en 0, pour tout $n \in \mathbb{N}^*$.

Exercice 43 [Développement limité curieux]

On définit f de \mathbb{R} dans \mathbb{R} par :

$$f(x) = e^{-\frac{1}{x^2}} \text{ si } x \neq 0,$$

 $f(0) = 0.$

- 1. Montrer que f est continue en 0.
- 2. Soit $q \in \mathbb{N}^*$. Montrer que, pour tout u > 0, $e^u \ge \frac{u^q}{q!}$.
- 3. Soit $n \in \mathbb{N}^*$, montrer, en utilisant la question précédente, que $\lim_{x\to 0} \frac{f(x)}{x^n} = 0$. En déduire que f admet un développement limité d'ordre n en 0 et donner ce développement.

Exercice 44 [Etude de la fonction $x \mapsto x \arctan x$]

Etudier la fonction f définie sur \mathbb{R} par :

$$f(x) = x \arctan x, \ x \in \mathbb{R}.$$

[Montrer que f est paire. Calculer f' et f". Etudier les asymptotes.]

Exercice 45 [Limite en $+\infty$] Pour x>0 on pose $f(x)=x^2(e^{\frac{1}{x}}-e^{\frac{1}{x+1}})$. Déterminer $\lim_{x\to\infty}f(x)$. [On pourra, sur une une fonction convenable, utiliser un développement limité ou le théorème des accroissements finis.]