Université Aix-Marseille 2018–2019

Licence – Mathématiques Algèbre 2

TD1: Arithmétique

Divisibilité

- **Exercice 1.** Montrer que le carré d'un entier impair est de la forme 8k+1 avec $k \in \mathbb{Z}$.
- **Exercice 2.** Soit $n \in \mathbb{N}$. Déterminer le reste de la division euclidienne de 7^n par 8.
- **Exercise 3.** Trouver le seul entier $n \in \mathbb{N}^*$ non premier tel que n ne divise par (n-1)!.

Exercice 4.

- 1. Déterminer le pgcd de 4147 et 10672. Déterminer le ppcm de 4235 et 2156.
- 2. Exprimer 1 comme
 - (a) combinaison linéaires à coefficients entiers de 7 et 9;
 - (b) combinaison linéaires à coefficients entiers de 41 et 93;
 - (c) combinaison linéaires à coefficients entiers de 15, 33 et 55.

Exercice 5. Soit $a, b \in \mathbb{Z}^*$. Montrer que $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(a, a^2 + b) = \operatorname{pgcd}(a + b, 3a + 2b)$.

Exercice 6. Soit $n_1, n_2 \in N^*$ deux entiers.

- 1. Montrer que si n_1 divise n_2 , alors $2^{n_1} 1$ divise $2^{n_2} 1$.
- 2. Montrer que le reste de la division euclidienne de $2^{n_2} 1$ par $2^{n_1} 1$ vaut $2^r 1$, où r est le reste de la division euclidienne de n_2 par n_1 .
- 3. Montrer que $pgcd(2^{n_1}-1,2^{n_2}-1)=2^{pgcd(n_1,n_2)}-1$.

Exercice 7. On considère l'entier $N_0 := 20!$.

- 1. Déterminer le nombre de diviseurs premiers de N_0 .
- 2. Déterminer le nombre de diviseurs de N_0 .

Exercice 8. Déterminer la plus grande puissance de 3 divisant 100!.

Exercice 9. Soit $n \in \mathbb{N}$. Montrer que n(n+1), n(n+1)(n+2), n(n+1)(n+2)(n+3) et n(n+1)(n+2)(n+3)(n+4) sont respectivement divisibles par 2, 6, 24 et 120.

Exercice 10. Soit $p, q \ge 5$ deux nombres premiers jumeaux, c'est-à-dire dont la différence vaut 2. Montrer que p + q est divisible par 12.

Exercice 11. Soit p un nombre premier.

- 1. Montrer que, pour tout $k \in [1, p-1], p$ divise $\binom{p}{k}$.
- 2. En déduire, par récurrence, que p divise $n^p n$ pour tout $n \in \mathbb{N}^*$.
- 3. (petit théorème de Fermat) En déduire que p divise $n^{p-1}-1$ si et seulement si $n \in \mathbb{N}^*$ est non divisible par p.

Nombres premiers

Exercice 12. Soit $a \in \mathbb{N}^* \setminus \{1\}$

1. Montrer que si $a^n - 1$ est premier, alors $n \in \mathbb{N}^*$ est premier.

2. Montrer que si $a^n + 1$ est premier, alors $n \in \mathbb{N}^*$ est une puissance de deux.

Exercice 13. On indice les nombres premiers par ordre croissant : $p_1 := 2$, $p_2 := 3$, $p_3 := 5$, $p_4 := 7$, $p_5 := 11$, . . .

- 1. Montrer qu'à partir d'un certain rang, on a $p_n < 2^{2^{n-1}}$.
- 2. Montrer qu'à partir d'un certain rang, on a $p_n > 2n$.
- 3. Montrer qu'à partir d'un certain rang, on a $p_{n+2} p_n \ge 6$, et en déduire qu'à partir d'un certain rang, $p_n > 3n$.

Exercice 14. Montrer que, pour tout $n \in \mathbb{N}^*$, on peut trouver n entiers consecutifs non premiers.

Exercice 15.

- 1. (a) Montrer que tout nombre de la forme $4k_1 \dots k_n 1$ avec $k_1, \dots, k_n \in \mathbb{N}^*$ admet au moins un facteur premier de la forme 4k 1 avec $k \in \mathbb{N}^*$.
 - (b) Montrer qu'il y a une infinité de nombres premiers de la forme 4k-1 avec $k \in \mathbb{N}^*$.
- 2. Montrer qu'il y a une infinité de nombres premiers de la forme 6k-1 avec $k \in \mathbb{N}^*$.

Nombres premiers entre eux

Exercice 16. On définit la suite $(F_n)_{n\in\mathbb{N}}$ de Fibonacci par $F_0=F_1=1$ et $F_{n+1}=F_n+F_{n-1}$.

- 1. Déterminer les dix premiers termes de la suite.
- 2. Montrer que F_N est pair si et seulement si 3 divise N+1.
- 3. Montrer que deux termes consécutifs sont toujours premiers entre eux.

Exercice 17. Soit $p, q \in \mathbb{N}^*$ premiers entre eux et $n \in \mathbb{Z}$ divisible par p et par q. Montrer que pq divise n.

Exercice 18. Trouver les solutions entières des équations

- 1. 2045x 64y = 1;
- 2. 171x + 207y = 324.

Exercice 19. Soit $a, b \in \mathbb{Z}$ deux nombres premiers entre eux. On considère l'équation ax + by = ab - 1.

- 1. Déterminer l'ensemble des solutions entières.
- 2. Montrer qu'il n'existe pas de solution entière positive.

Exercice 20. Dans cet exercice, on cherche à déterminer l'ensemble $A \subset \mathbb{N}^*$ des entiers possèdant un multiple qui ne s'écrit (en base 10) qu'avec des 1.

- 1. Montrer que si $n \in A$, alors n est premier avec 2 et avec 5.
- 2. Soit $N \in \mathbb{N}^*$ premier avec 10.
 - (a) On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ avec $u_n:=\underbrace{1\ldots 1}_{n \text{ fois}}$. Montrer qu'il existe deux termes u_{n_1},u_{n_2} dont les restes par division euclidienne par N sont les même.
 - (b) Montrer que si N divise $A.10^k$ avec $A \in \mathbb{N}^*$ et $k \in \mathbb{N}$, alors N divise A.
- 3. Montrer que A est l'ensemble des entiers premiers avec 10.

Congruences

Exercice 21. Soit $n \in \mathbb{N}$. Montrer que

- 1. 3 divise $2^{2n+1} + 1$;
- 2. 6 divise $5n^3 + n$;

- 3. 7 divise $3^{2n+1} + 2^{n+2}$;
- 4. 9 divise $4^n + 15n 1$;
- 5. 11 divise $2^{10n-7} + 3^{5n-2} 2$;
- 6. 17 divise $3.5^{2n+1} + 2^{3n+1}$.

Exercice 22. Déterminer les entiers $n \in \mathbb{Z}$ telles que $n^2 - 3n + 6$ soit divisible par 5.

Exercice 23. Montrer que $10^{10} + 10^{10^2} + \cdots + 10^{10^{10}} \equiv 5[7]$.

Exercice 24. Montrer qu'un entier de la forme 8n + 7 ne peut pas être la somme des carrés de trois entiers.

Exercice 25. En remarquant que $x^4 + x^3 + x^2 + x = x(x+1)(x^2+1)$, déterminer l'ensemble des entiers naturels $n \in \mathbb{Z}$ vérifiant $5^{4n} + 5^{3n} + 5^{2n} + 5^n \equiv 0 \mod 13$.

Exercice 26. Résoudre dans $\mathbb{Z}/5\mathbb{Z}$ les équations suivantes :

1.
$$\begin{cases} \overline{1}x + \overline{2}y = \overline{3} \\ \overline{2}x + \overline{3}y = \overline{4} \end{cases}$$
 2. $x^2 - \overline{4}x - \overline{2} = \overline{0}$.

Exercice 27. Pour tout $n \in \mathbb{N}$, on note r_n le reste de la division euclidienne de $2^{2n} + 2^n + 1$ par 21.

- 1. Montrer que, pour tout $n \in \mathbb{N}$, $r_{n+6} = r_n$.
- 2. Calculer r_n pour tout entiers $n \in [0, 5]$ et en déduire, dans \mathbb{N} , les solutions de l'équation :

$$2^{2n} + 2^n + 1 \equiv 0[21].$$

Exercice 28. Déterminer un inverse pour $\overline{43}$ dans $\mathbb{Z}/320\mathbb{Z}$.

Exercice 29. Déterminer tous les $x \in \mathbb{Z}$ tels que $x \equiv 1[7]$, $x \equiv 4[9]$ et $x \equiv 3[5]$.

Exercice 30. Soit $a \neq b \in \mathbb{Z}$.

- 1. Montrer que, pour tout $k_1, k_2 \in \mathbb{N}$, $a^{k_1} \cdot b^{k_2} \equiv a^{k_1 + k_2} [a b]$.
- 2. En déduire que si n divise a-b, alors n^2 divise a^n-b^n .

Exercice 31.

- 1. Exprimer le petit théorème de Fermat en terme de congruence.
- 2. Montrer que:
 - (a) $30^{239} + 239^{30}$ n'est pas premier:
 - (b) pour tout nombre premier $p \in \mathcal{P} \setminus \{2,3\}$ et tous $a,b \in \mathbb{Z}$, 6p divise $a.b^p b.a^p$;
 - (c) pour tout $a, b \in \mathbb{Z}$, 56 786 730 divise $a.b.(a^{60} b^{60})$.