Licence – Mathématiques Algèbre 2

Cours à distance – DM1

Exercice 1. Soit (G, +) un groupe commutatif. On note $\operatorname{End}(G)$ l'ensemble des endomorphismes de G sur lequel on définit la loi + par $f + g : \begin{cases} G \to G \\ x \mapsto f(x) + g(x) \end{cases}$.

Étant donné que G est un groupe, on parle ici d'endomorphismes de groupe.

Montrer que (End(G), +, ∘) est un anneau unitaire.
La loi + sur End(G) est associative et commutative car la loi + sur G l'est. La fonction constante égale au neutre 0_G de G est un endomorphisme de G qui est un élément neutre pour la loi +. Si f ∈ End(G), alors le morphisme g défini par g(x) = -f(x) pour tout x ∈ G est l'inverse de f. Ainsi tout élément de End(G) admet un inverse, et (End(G), +) est un groupe abélien.
La loi de composition est clairement associative. Pour la distributivité, on remarque que

$$f \circ (g+h)(x) = f(g(x) + h(x)) = f(g(x)) + f(h(x)) = f \circ g(x) + f \circ h(x)$$

où la deuxième égalité est due au fait que f est un morphisme de groupe; donc $f \circ (g+h) = f \circ g + f \circ h$. De même.

$$(f+q) \circ h(x) = (f+q)(h(x)) = f(h(x)) + g(h(x)) = f \circ h(x) + g \circ h(x)$$

implique $(f+g) \circ h = f \circ h + g \circ h$. Finalement, $(\text{End}(G), +, \circ)$ est un anneau. Il est unitaire d'unité le morphisme identité.

- 2. Déterminer l'ensemble des inversibles de $\operatorname{End}(G)$. Pour $f \in \operatorname{End}(G)$, f est inversible s'il existe $g \in \operatorname{End}(G)$ tel que $f \circ g = g \circ f = \operatorname{Id}_G$, c'est-à-dire si f est bijectif et que son inverse est aussi un morphisme. Or l'inverse d'un morphisme bijectif est toujours un morphisme. Donc $(\operatorname{End}(G))^{\times} = \operatorname{Aut}(G)$.
- 3. On prend $G = \mathbb{R}^2$. L'anneau $\operatorname{End}(G)$ est-il commutatif? Est-il intègre? Les applications

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (x,0) \end{array} \right. \quad \text{et} \quad g: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (y,0) \end{array} \right.$$

sont des endomorphismes de \mathbb{R}^2 . On a $f \circ g = g$ et $g \circ f = 0$. Ainsi $f \circ g \neq g \circ f$, donc $\operatorname{End}(\mathbb{R}^2)$ n'est pas commutatif, et $g \circ f = 0$ avec $f \neq 0$ et $g \neq 0$, donc $\operatorname{End}(\mathbb{R}^2)$ n'est pas intègre.

4. Même question avec $G = \mathbb{Z}$.

Soit $f \in \text{End}(\mathbb{Z})$. Notons n = f(1). Comme f est un morphisme, pour tout $k \in \mathbb{Z}$, on a f(k) = f(k.1) = k.f(1) = k.n. Donc $\text{End}(\mathbb{Z})$ est l'ensemble des applications μ_n définies par $\mu_n(k) = kn$ avec $n \in \mathbb{Z}$. Notons que μ_n est le morphisme trivial —le neutre de $\text{End}(\mathbb{Z})$ — si et seulement si n = 0.

Pour $m, n \in \mathbb{Z}$, on a $\mu_n \mu_m = \mu_m \mu_n = \mu_{mn}$. Donc $\operatorname{End}(\mathbb{Z})$ est commutatif. De plus, si $\mu_n \mu_m = 0$, alors $\mu_{nm} = 0$ implique nm = 0, donc soit n = 0 et $\mu_n = 0$, soit m = 0 et $\mu_m = 0$. Donc $\operatorname{End}(\mathbb{Z})$ est intègre.

1. Déterminer les diviseurs de zéro de l'anneau $\mathbb{Z}/_{63\mathbb{Z}}$.

Notons déjà que la décomposition de 63 en produit de facteurs premiers est $63 = 3 \times 3 \times 7$.

Si $k \in \mathbb{Z}$ est divisible par 3, alors $k = 3\ell$ avec $\ell \in \mathbb{Z}$ et on a $\overline{21k} = \overline{63\ell} = \overline{0}$; or $\overline{21} \neq \overline{0}$, donc \overline{k} est un diviseur de zéro. Si $k \in \mathbb{Z}$ est divisible par 7, on raisonne de la même façon, en remplaçant 21 par 9, pour conclure que \overline{k} est un diviseur de zéro.

Soit maintenant $k \in \mathbb{Z}$ qui n'est divisible ni par 3 ni par 7. Alors k est premier à 63, donc il existe des entiers u et v tels que uk + 63v = 1. On en déduit que $\overline{uk} = \overline{1}$, donc que \overline{k} est inversible dans $\mathbb{Z}/63\mathbb{Z}$. Or un élément inversible ne peut pas être un diviseur de zéro.

Finalement, les diviseurs de zéro dans $\mathbb{Z}/_{63\mathbb{Z}}$ sont les classes des entiers divisibles par 3 ou 7 (l'énumération n'est pas demandée, mais la voici à titre indicatif : $\overline{0}$, $\overline{3}$, $\overline{6}$, $\overline{7}$, $\overline{9}$, $\overline{12}$, $\overline{14}$, $\overline{15}$, $\overline{18}$, $\overline{21}$, $\overline{24}$, $\overline{27}$, $\overline{28}$, $\overline{30}$, $\overline{33}$, $\overline{35}$, $\overline{36}$, $\overline{39}$, $\overline{42}$, $\overline{48}$, $\overline{49}$, $\overline{51}$, $\overline{54}$, $\overline{56}$, $\overline{57}$, $\overline{60}$).

2. Un élément a d'un anneau est nilpotent s'il existe un entier k > 0 tel que $a^k = 0$. Déterminer les éléments nilpotents de $\mathbb{Z}/63\mathbb{Z}$.

Soit $a \in \mathbb{Z}$. En utilisant la décomposition en facteurs premiers de a, on peut écrire $a = 3^{\alpha}7^{\beta}b$ avec $\alpha, \beta, b \in \mathbb{Z}$ et b premier à 3 et 7. Alors, pour $k \in \mathbb{Z}$, $a^k = 3^{k\alpha}7^{k\beta}b^k$. Ainsi, a^k est divisible par 63 si et seulement si $k\alpha \geq 2$ et $k\beta \geq 1$. C'est vrai pour un certain k si et seulement si $\alpha > 0$ et $\beta > 0$, c'est-à-dire si 21 divise a. Ainsi les éléments nilpotents de $\mathbb{Z}/63\mathbb{Z}$ sont les classes des entiers divisibles par 21, à savoir $\overline{0}$, $\overline{21}$ et $\overline{42}$.