Licence – Mathématiques Algèbre 2

Cours à distance – DM2 – Corrigé

Exercice 1.

Calculez le quotient et le reste des divisions euclidiennes :

1.
$$de\ 2X^7 - 3X^5 + X^2 - 7X + 2\ par\ X^3 - 2X + 1$$
;

Par calculs successifs, on obtient:

- $2X^7 3X^5 + X^2 7X + 2 = 2X^4(X^3 2X + 1) + X^5 2X^4 + X^2 7X + 2$;
- $2X^7 3X^5 + X^2 7X + 2 = (2X^4 + X^2)(X^3 2X + 1) 2X^4 + 2X^3 7X + 2;$ $2X^7 3X^5 + X^2 7X + 2 = (2X^4 + X^2)(X^3 2X + 1) + 2X^3 4X^2 5X + 2;$ $2X^7 3X^5 + X^2 7X + 2 = (2X^4 + X^2 2X)(X^3 2X + 1) + 2X^3 4X^2 5X + 2;$

Le quotient de la division vaut donc $2X^4 + X^2 - 2X + 2$ et le reste $-4X^2 - X$.

2.
$$de\ 3X^5 - 1\ par\ 2X^3 - 2X^2 + X - 1$$
;

Par calculs successifs, on obtient:

- $\begin{array}{l} \bullet \ \, 3X^5 1 = \frac{3}{2}X^2(2X^3 2X^2 + X 1) + 3X^4 \frac{3}{2}X^3 + \frac{3}{2}X^2 1\,; \\ \bullet \ \, 3X^5 1 = \left(\frac{3}{2}X^2 + \frac{3}{2}X\right)(2X^3 2X^2 + X 1) + \frac{3}{2}X^3 + \frac{3}{2}X 1\,; \end{array}$
- $3X^5 1 = (\frac{3}{2}X^2 + \frac{3}{2}X^2 + \frac{3}{4})(2X^3 2X^2 + X^2 1) + \frac{3}{2}X^2 + \frac{3}{4}X^2 \frac{1}{4}$

Le quotient de la division vaut donc $\frac{3}{4}(2X^2+2X+1)$ et le reste $\frac{1}{4}(6X^2+3X-1)$.

3.
$$de X^4 - i par X^2 + 2iX - 1$$
.

Par calculs successifs, on obtient:

- $\begin{array}{l} \bullet \ \, X^4-i=X^2(X^2+2iX-1)-2iX^3+X^2-i\,;\\ \bullet \ \, X^4-i=(X^2-2iX)(X^2+2iX-1)-3X^2-2iX-i\,;\\ \bullet \ \, X^4-i=(X^2-2iX-3)(X^2+2iX-1)+4iX-3-i. \end{array}$

Le quotient de la division vaut donc $X^2 - 2iX - 3$ et le reste 4iX - 3 - i.

Exercice 2.

Pour tout $n \in \mathbb{N}$, on pose $P_n := (X+2)^{n+1} - X(X+1)^n$.

1. Calculer P_0 , P_1 , P_2 , P_3 et P_4 .

Par calculs directs, on a:

$$P_0 = 2$$
 $P_1 = 3X + 4$ $P_2 = 4X^2 + 11X + 8$ $P_3 = 5X^3 + 21X^2 + 31X + 16$ $P_4 = 6X^4 + 34X^3 + 76X^2 + 79X + 32$.

- 2. Pour tout $n \in \mathbb{N}$, déterminer :
 - (a) le degré et le coefficient dominant de P_n ;

Puisque P_n est une différence entre deux polynômes de degré n+1, son degré vaut au plus n+1. Toutefois les terme de degré n+1 de $(X+2)^n$ et $X(X+1)^n$ valent tous les deux 1 et s'annulent donc dans P_n . Par contre, d'après la formule du binôme de Newton, le terme de degré n de $(X+2)^{n+1}$ vaut $\binom{n+1}{n}.X^n.2=(2n+2)X^n$, tandis que celui de $X(X+1)^n$ vaut 1 $X cdot (\binom{n}{n-1})X^{n-1} = nX^n$; par différence, on en déduit que le coefficient de degré n de P_n vaut $n+2 \neq 0$. On a donc $\deg(P_n)=n$ et le coefficient dominant vaut n+2.

^{1.} et ce même pour n=0 car par convention $\binom{0}{-1}=0$

- (b) le coefficient constant. Toujours par la formule du binôme de Newton, le coefficient constant de $(X+2)^{n+1}$ vaut 2^{n+1} tandis que celui de $X(X+1)^n$ vaut 0 puisqu'il se factorise par X. Par différence, on en déduit que le coefficient constant de P_n vaut 2^{n+1} .
- 3. Soit $n \in \mathbb{N}^*$. La famille (P_0, P_1, \dots, P_n) forme-t-elle une base du \mathbb{R} -espace vectoriel $\mathbb{R}[X]_n$?

 On remarque que (P_0, \dots, P_n) est une famille de polynômes dont les degrés sont échelonnés de 0 à n. On en déduit qu'il forment une base, ou bien parce que la matrice dont les colonnes sont les coordonnées de ces polynômes dans la base $(1, X, \dots, X^n)$ de $\mathbb{R}[X]_n$ est triangulaire supérieure avec des coefficients non nuls sur la diagonale; ou bien parce que c'est une famille libre de $\mathbb{R}[X]_n$ de cardinal $n+1=\dim\left(\mathbb{R}[X]_n\right)$. En effet, par récurrence sur n, le résultat est vrai pour n=0 car la famille ne contient alors qu'un seul polynôme non nul; et si pour n>0 on a $\sum_{k=0}^n \alpha_k P_k = 0$ avec $\alpha_0, \dots, \alpha_n \in \mathbb{R}$, alors le coefficient de degré n du terme de gauche valant $(n+2)\alpha_n$ et celui de droite valant 0, on a $\alpha_n=0$ et donc $\sum_{k=0}^{n-1} \alpha_k P_k = 0$. L'hypothèse de récurrence permet alors de conclure.

La famille (P_0, P_1, \ldots, P_n) forme donc une base de $\mathbb{R}[X]_n$.

4. Montrer que, pour tout $n \in \mathbb{N}^*$, $P_{n+1} - P_n$ est divisible par X + 1.

On a

$$P_{n+1} - P_n = (X+2)^{n+2} - X(X+1)^{n+1} - (X+2)^{n+1} + X(X+1)^n$$

$$= (X+2)^{n+2} - (X+2)^{n+1} + X(X+1)^n - X(X+1)^{n+1}$$

$$= (X+2)^{n+1}(X+2-1) + X(X+1)^n(1-X-1)$$

$$= (X+2)^{n+1}(X+1) - X^2(X+1)^n$$

$$= (X+1)((X+2)^{n+1} - X^2(X+1)^{n-1}).$$

Le polynôme $P_{n+1} - P_n$ est donc bien divisible par X + 1 dès lors que $n \ge 1$.