Géométrie II

Série 1

Contenu du cours:

- définition des espaces métriques;
- isométries;
- ensembles d-ouverts;
- différentes définitions de la continuité;
- exemples de métriques : d_k sur \mathbb{R}^n et sur $\mathcal{C}[0,1]$ pour $1 \leq k \leq \infty$.

Références suggérées :

- J. Dixmier, Topologie générale;
- J. Djugundji, Topologie.

Ex.1

Pour tout $k \in \mathbb{N}^*$, vérifier les axiomes de distance pour la fonction

$$d_k:$$
 (x,y)
 \longrightarrow
 \mathbb{R}^+

$$\sum_{i=1}^n |x_i - y_i|^k$$

et la fonction

$$\begin{array}{cccc} \mathcal{C}[0,1]\times\mathcal{C}[0,1] & \longrightarrow & \mathbb{R}^+ \\ d_k \colon & & & & & & \left(\int_0^1 |f(t)-g(t)|^k dt\right)^{\frac{1}{k}} \end{array}.$$

Ex.2 *

Soit (X, d_X) , (Y, d_Y) et (Z, d_Z) des espaces métriques et $f: X \longrightarrow Y$, $g: Y \longrightarrow Z$ des fonctions continues. Montrer que la composition $g \circ f: X \longrightarrow Z$ est continue.

Ex.3 *

Trouver un sous-espace de \mathbb{R}^3 muni de la distance euclidienne d_2 qui soit isométrique à un ensemble de 4 points muni de la distance discrète.

L'espace métrique (\mathbb{R}^2, d_2) possède-t-il lui aussi un tel sous-espace?

Ex.4 *

Montrer que les sous-espaces métriques (0,1), (0,2) et [0,1) de $(\mathbb{R},|\cdot|)$ sont deux à deux non isométriques.

Ex.5 *

Montrer que la fonction $f \colon \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = x^2$ pour tout $x \in \mathbb{R}$ est continue en 1, et expliciter un δ pour tout ε donné.