Géométrie II

Série 6

Ex.1

- a. Donner un exemple de fonction continue $f: X \longrightarrow Y$ et de sous-espaces $A, B \subset X$ tels que $f(A \cap B) \neq f(A) \cap f(B)$.
- b. Déterminer laquelle de ces relations $f(A \cap B) \subset f(A) \cap f(B)$ ou $f(A) \cap f(B) \subset f(A \cap B)$ est, par contre, toujours vérifiée.
- c. Montrer que si A est saturé pour f, alors on a $f(A \cap B) = f(A) \cap f(B)$.

Ex.2 *

Montrer que la boule unité de C[0,1] n'est pas compacte pour la distance d_1 .

Soit X un espace métrique et $K \subset X$ un sous-espace compact. Montrer que la fonction qui donne la distance entre un point $x \in X$ et K est une fonction continue.

Ex.4 *

Soit $f: K \longrightarrow \mathbb{R}$ une fonction continue définie sur un espace compact K.

- a. Montrer qu'il existe un point x_0 de K où f atteint son maximum.
- b. Montrer que si, de plus, K est connexe, alors f(K) est un intervalle fermé.

Ex.5 *

Dans les exemples suivant, déterminer l'espace topologique quotient $X/_{\sim}$ où X est un espace topologique et \sim une relation d'équivalence sur X associé à une partition π (ne pas hésiter à faire un dessin):

- a. $X = \mathbb{R}, \pi = \{\mathbb{R}_{-}^*, \{0\}, \mathbb{R}_{+}^*\};$ b. $X = \mathbb{R}^2, (x_1, y_1) \sim (x_2, y_2) \Leftrightarrow x_1^2 + y_1^2 = x_2^2 + y_2^2;$ c. $X = S^1 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}, (x, y) \sim (-x, -y);$
- d. $X = S^1 = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}, \pi = \{\{(1,0), (-1,0)\}\} \cup \{\{(x,y)\} | x^2 + y^2 = 1, y \neq 0\}.$