Géométrie II

Série 7

Ex.1 *

Parmi ces propositions, lesquelles sont vraies :

- i. un quotient d'un espace compact est compact ;
- ii. un quotient d'un espace connexe est connexe;
- iii. un quotient d'un espace séparé est séparé.

Ex.2 *

Décrire les topologies des espaces quotients suivant et déterminer si elles sont séparées ou non :

- i. \mathbb{R}^2 avec $(x,y) \sim (tx,ty)$ pour tout t > 0;
- ii. $\mathbb{R}^2 \setminus \{(0,0)\}$ avec $(x,y) \sim (tx,ty)$ pour tout t > 0;
- iii. $\mathbb{R}^2 \setminus \{(0,0)\}$ avec $(x,y) \sim (tx, y/t)$ pour tout t > 0.

Ex.3 *

Soit $M \subset \mathbb{R}^2$ l'espace définie par $M = \{(x,y) \in \mathbb{R}^2 | x \geq 0 \text{ ou } y = 0\}$ et $f \colon M \longrightarrow \mathbb{R}$ la restriction à M de la projection sur la première coordonnée. Montrer que

- i. f n'est ni ouverte ni fermée;
- ii. f correspond à une application quotient.