Géométrie hyperbolique & groupes fuchsiens Série 4

- 1. Soit $h: \mathbb{D} \longrightarrow \mathbb{D}$ une homographie qui préserve le disque de Poincaré. On impose $h^{-1}(0) = a \in \mathring{\mathbb{D}}$ et $h^{-1}(1) = p \in \partial \mathbb{D}$.
 - a. En étudiant l'image par h de $1/\overline{a}$, déterminer h à une constante près.
 - b. Déterminer h.
- 2. Montrer de façon géométrique (sans utiliser l'invariance du birapport par homographie) que le birapport de quatres points est réel si et seulement si ces quatre points sont cocycliques.
- 3. On rappelle que la métrique hyperbolique en un point $z \in \mathbb{H}$ est donnée par $\frac{ds}{\operatorname{Im}(z)}$.
 - a. Calculer la distance hyperbolique entre deux points $(a + re^{i\theta})$ et $(a + re^{i\theta'})$ de \mathbb{H} (*i.e.* le long d'une \mathbb{H} -droite, cf exercice 1 de la série 3), avec $a \in \mathbb{R}$, r > 0 et $\theta, \theta' \in]0, \pi[$.
 - a'. (subsidiaire) Calculer la longueur hyperbolique du segment euclidien entre ces deux même points et comparer avec la distance calculée précédemment.
 - b. Déterminer l'ensemble des points de \mathbb{H} situés à une distance hyperbolique d > 0 de l'axe imaginaire (*i.e.* dont la distance au projeté orthogonale, au sens hyperbolique, sur l'axe imaginaire est égale à d).
 - c. Déterminer la médiatrice hyperbolique de deux points $z_1, z_2 \in \mathbb{H}$ (*i.e.* l'ensemble des points de \mathbb{H} à égale distance hyperbolique de z_1 et de z_2).