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Abstract. We consider symmetric activated random walks on Z, and show that the critical density
ζc satisfies c

√
λ 6 ζc(λ) 6 C

√
λ for small λ, where λ denotes the sleep rate.

1. Introduction

The Activated Random Walk model is a system of interacting random walks that we consider on the
graph Z. Each walk performs a continuous-time simple symmetric random walk, and falls asleep at
an exponential time of parameter λ. When it falls asleep, the walk stays still. When not sleeping,
we call it active. When an active walk meets a sleeping walk, the latter is reactivated and resumes
its movement.
An important property of this model is that it has an absorbing-state phase transition. With an
initial density of walks below a critical value, ζc(λ), the system fixates, that is all walks eventually
sleep. Above ζc, the system stays active, that is, each walk is reactivated infinitely many times.
This model was popularized in Dickman, Rolla, and Sidoravicius (2010), and several non-trivial
bounds for ζc = ζc(λ) were proved in the past few years. Results concerning biased and unbiased
walks, in different dimensions and graphs were obtained in Rolla and Sidoravicius (2012); Shellef
(2010); Amir and Gurel-Gurevich (2010); Cabezas, Rolla, and Sidoravicius (2014); Taggi (2016);
Cabezas, Rolla, and Sidoravicius (2018); Sidoravicius and Teixeira (2017); Rolla and Tournier
(2018); Stauffer and Taggi (2018); Rolla, Sidoravicius, and Zindy (2019). See Rolla (2020) for a
detailed account.1

For unbiased jumps in one dimension, it was shown in Basu, Ganguly, and Hoffman (2018) that
ζc < 1 for λ small and ζc → 0 as λ → 0. Proving that ζc < 1 for some λ in d = 2 is still an open
problem. Existence of slow stabilization phase and a fast stabilization phase for a conservative
finite-volume dynamics was studied in Basu, Ganguly, Hoffman, and Richey (2019).
Our main result gives a diffusive upper bound for ζc(λ) when d = 1, improving the recent result by
Basu, Ganguly and Hoffman Basu, Ganguly, and Hoffman (2018).
Theorem 1.1. There are positive constants c and C such that, for small λ > 0,

c
√
λ 6 ζc(λ) 6 C

√
λ. (1.1)

The lower bound follows from the procedure introduced in Rolla and Sidoravicius (2012), see §5.
As in Basu, Ganguly, and Hoffman (2018), in order to get the upper bound in (1.1) we prove
a quantitative estimate for the finite-volume dynamics, defined as follows. For a finite interval
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V ⊆ Z, consider a dynamics such that walks are lost forever when they escape V . This process
eventually stabilizes, when all walks left in V are sleeping, and its law is denoted Pη0

V when the
initial configuration is η0.
To prove activity the following condition is enough. For a finite domain V , we call S(V ) the number
of sleeping walks in V after stabilization of V in the finite-domain dynamics. For r > 1, we let
Vr := {−r, . . . , r}.

Theorem 1.2. There exist positive constants α and β, such that for any configuration η0, any
λ > 0 and any r > 1,

Eη0
Vr

[eαS(Vr)] 6 eβ
√
λ·r. (1.2)

Theorem 1.2 implies that there are positive constants C and c, such that for any r integer, and any
initial configuration η0,

Pη0
Vr

(
S(Vr) > 2C

√
λr
)
6 e−cr. (1.3)

As discussed in §2 below, this in turn implies that every ζ > C
√
λ is in the active phase of the

ARW model, which gives the upper bound of Theorem 1.1 with the same constant C.
Another consequence of Theorem 1.2 is that every ζ > C

√
λ is in the “metastable” phase for the

fixed-energy version of the ARW, in the following sense. Consider the ARW dynamics on the ring
Zn = Z/nZ, with initial condition i.i.d. Poisson of mean ζ > C

√
λ, and let its law be denoted

PZn . Let T denote the total activity in the system, measured by adding the total time each site is
occupied by active walks, counted with multiplicity.

Theorem 1.3. For some c > 0 depending on λ and ζ > C
√
λ, for all large n,

PZn
(
T > ecn

)
> 1− e−cn. (1.4)

Theorem 1.3 follows from Theorem 1.2, see Basu, Ganguly, Hoffman, and Richey (2019, §4) or Rolla
(2020, §6.1).
The proof of Theorem 1.2 follows a general framework introduced in Basu, Ganguly, and Hoffman
(2018). The key idea is to decompose space into blocks with independent instructions, so that they
interact only through the number of walks arriving at the center of each block after having been
“emitted” from a neighboring box. This interaction is described by “coarse-grained odometers,”
one for each block. These are complicated random functions which are entangled by simple mass
balance equations. Instead of trying to say what the tuple of coarse-grained odometers are, one
gets upper bounds by summing over all tuples compatible with the mass balance equations. This
approach ends up reducing the main bound (1.3) to a single-block estimate (Proposition 3.1 below).
For the reader’s convenience we reproduce this framework in §4, following the description given
in Rolla (2020, §5.1).
The main contribution of this paper is to extend the single-block estimate of Basu, Ganguly, and
Hoffman (2018), which was proved for very small λ, to an estimate valid for all λ < C−2 ζ2. This
is done in §3. In the proof we consider the single-block dynamics indexed by the jump times of
the variable which counts the number of walks exiting from the left. We show that the number of
sleeping walks seen at these jump times has a drift downwards, and therefore has finite exponential
moments.

1See also Cabezas and Rolla (2021); Hoffman, Richey, and Rolla (2020); Podder and Rolla (2021); Taggi (2020)
for more recent developments.
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Finally, in §5 we briefly show how the lower bound in Theorem 1.1 follows from the proof of
fixation given in Rolla and Sidoravicius (2012) and diffusive estimates for the h-transform of the
simple random walk.

2. Definitions and main tools

In this section we define more precisely the stochastic process to be studied, describe the site-wise
representation, the Abelian property, and why (1.3) implies the upper bound in Theorem 1.1. We
refer to the recent survey Rolla (2020) for a more complete presentation.

The Abelian property. A seemingly natural way to construct a collection of random walks is to
sample sequences of instructions (going right, going left or sleeping) and attach them to the marks
of each walk’s clock. But for a class of models which includes the ARW, it is convenient to attach the
instructions to the sites of the graph instead. In this setting, each walk is assigned a Poisson clock
which determines when the walk is going to perform an action, but the action itself is determined
by a stack of instructions assigned to the site where the walk is.
These two ways of realizing the process are equivalent if the walks are seen as indistinguishable.
The latter construction provides a convenient coupling of the finite-volume dynamics on every
V ⊆ Z. This coupling is very useful because of the celebrated Abelian property. Some aspects of
the evolution, such as the final configuration and the number of visits to a site, are determined by
the initial configuration and the stacks of instructions assigned to the sites, and do not depend on
the Poisson clocks.

Formal definitions. Let N = {0, 1, 2, . . . } and Ns = N∪{s}, where s represents a sleeping walk. For
convenience we define |s| = 1, and |n| = n for n ∈ N, and write 0 < s < 1 < 2 < · · ·. Also define
s + 1 = 2 and n · s = n for n > 2 and 1 · s = s.
The state of the ARW at time t > 0 is given by ηt ∈ (Ns)Z

d , and the process evolves as follows. For
each site x, a Poisson clock rings at rate (1 + λ) |ηt(x)|1ηt(x)6=s. When this clock rings, the system
goes through the transition η → txsη with probability λ

1+λ , otherwise η → txyη with probability
1
2 ×

1
1+λ for y = x± 1. These transitions are given by

txyη(z) =


η(x)− 1, z = x,

η(y) + 1, z = y,

η(z), otherwise,
txsη(z) =

η(x) · s, z = x,

η(z), otherwise

and only occur if |η(x)| > 1. The operator txs represents a walk at x trying to fall asleep, which
effectively happens if there are no other walks present at x. Otherwise, by definition of n · s, the
system state does not change. The operator txy represents a walk jumping from x to y, where
possible activation of a sleeping walk previously found at y is represented by the convention that
s + 1 = 2.
Given a translation-invariant and ergodic distribution ν on (Ns)Z

d , let ρ(ν) =
∫
|η(0)|ν(dη) < ∞

denote its average density. If ρ(ν) <∞, there exists a process (ηt)t>0 with transition rates described
above and such that η0 has law ν, see Rolla (2020, §11). We use Pν to denote the underlying
probability measure. We say that the system fixates if, for each x ∈ Z, ηt(x) remains constant for
all t large enough, otherwise we say that the system stays active.
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There exists a function λ 7→ ζc(λ), which is non-decreasing, such that the system fixates a.s. if
ρ(ν) < ζc(λ) and stays active a.s. if ρ(ν) > ζc(λ) Rolla (2020, Theorem 2.13). Moreover, denoting
Mr the number of walks which exit Vr in the finite-domain dynamics, if ν is a product measure and
lim supr→+∞

EνVrMr

r > 0, then the system stays active almost surely Rolla (2020, Theorem 2.11).
In particular, the bound (1.3) implies the upper bound in Theorem 1.1.
We now describe the site-wise construction, which provides the Abelian property used in the proof
of Theorem 1.2.

Site-wise representation and stabilization. We now use η to denote configurations in (Ns)Z
d instead

of a continuous-time process. We say that site x is unstable for the configuration η if η(x) > 1.
Otherwise, x is said to be stable. By toppling site x we mean the application of an operator txy or
txs to η. Toppling a site x is legal if x is unstable.
Let (tx,j)x∈Zd,j∈N be a fixed field of instructions, that is, for each x and j, tx,j equals txs or txy for
some y. Let h ∈ NZd . This field h counts how many topplings occur at each site. The toppling
operation at x is defined by Φx(η, h) =

(
tx,h(x)+1η, h+δx

)
. Given a finite sequence a = (x1, . . . , xk),

define Φa = Φxk ◦Φxk−1 ◦· · ·◦Φx1 .We write Φaη as a short for Φa(η, 0). Given V ⊆ Zd, we say that
η is stable in V if every x ∈ V is stable for η. We say that a is contained in V if x1, . . . , xk ∈ V .
We say that a stabilizes η in V if Φaη is stable in V .
The Abelian property reads as follows. If a and b are both legal toppling sequences for η that are
contained in V and stabilize η in V , then Φaη = Φbη.
We construct the measures Pη0

V explicitly by taking all the tx,j i.i.d. sampled with the distribution
described above, plus Poisson clocks. By the Abelian property, S(V ) it is determined by η0 and
Φaη0, for any sequence a of topplings which is contained in V and stabilizes η0 in V (so the Poisson
clocks will no longer be mentioned). A convenient choice of a, which is called a toppling procedure,
is absolutely central in §4 where we sketch the description of a machinery which relates the main
result of §3 to (1.2).

3. Single-block estimate

In this section we state and prove a single-block estimate. For 0 < λ 6 1, and K ∈ 2N, define the
domains V = {−K, . . . ,K} and U = {−K

2 , . . . ,
K
2 }. Let ξ ∈ {0, 1}

U be a fixed initial configuration
supported on U .

0

L(m)

m

S(m)

KK
2

−K −K
2

Figure 3.1. Illustration of the dynamics inside a block with K = 10
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For m = 0, 1, 2, . . ., consider stabilization of the configuration ξm = ξ + mδ0 obtained by adding
m walks at site x = 0 to the configuration ξ. Let L(m) and S(m) count how many walks exit V
from the left and how many walks are sleeping in V after ξm is stabilized in V , see Figure 3.1.
Dependence on ξ and V is omitted in the notation.
Note that L(·) is a non-decreasing random function.

Proposition 3.1. For some α > 0, δ > 0 and M <∞, for all 0 < λ 6 δ, taking K = 2d δ√
λ
e, and

V = {−K, . . . ,K}

sup
ξ

sup
`

∑
m>0

Eξ
m

V [eαS(m)1L(m)=`] 6M. (3.1)

By the Abelian property, for each fixed m, it does not matter whether we add the m walks and
stabilize ξm at once, or whether we stabilize ξ0, add a walk at x = 0, stabilize again, and repeat
this process m times. It turns out that the latter is more convenient.
In words, the above estimate means the following. We add walks at x = 0 and stabilize the resulting
configuration. We repeat this until a certain m for which L(m) = `, that is, until exactly ` walks
have exited from the left. We then compute a factor of eαS , and a new one for each new walk
addition, until another walk exits from the left. After that, L(m) > ` + 1 and no more term
contributes to the sum.
In the remainder of this section we prove the above estimate. In the next section we show how it
implies Theorem 1.2.
We first reduce the problem to the case ξ ≡ 0, by considering a sequence of positions x ∈ U where
new walks will be added, instead of placing them all at x = 0. Let k denote the number of walks
in configuration ξ, and label the sites x ∈ U with ξ(x) = 1 as x−k+1, x−k+2, . . . , x−1, x0. Also, let
0 = x1 = x2 = · · ·, and write x = (xm)m>−k. For m > −k, define ξm = δx−k+1 + δx−k+2 + · · ·+ δxm .
In words, starting from ξ−k ≡ 0, walks are added one by one until we arrive at ξ0 = ξ, and new
walks are added at site x = 0 after that. With this construction, we can define L(m) and S(m)
for m > −k, starting from L(−k) = S(−k) = 0. Now note that we can bound the left-hand side
of (3.1) by a sum over m > −k. By re-indexing the sum in (3.1), it is enough to show

sup
x

sup
`

∑
m>0

Eξ
0

V [eαS(m)1L(m)=`] 6M, (3.2)

with initial configuration ξ0 ≡ 0 and the supremum over x ∈ UN instead.

We now proceed to the proof of (3.2), denoting Eξ
0

V by E.
Given ε > 0 to be fixed later, take δ such that a sleepy walk reaches distance 4d δ√

λ
e before falling

asleep, with probability at least 1− ε for every 0 < λ 6 δ.
So each time we release a walk in V , the probability of it falling asleep before exiting V is at most
ε. Also, each time we release a walk in U , the probability of exiting V from the left before falling
asleep is at least p = 1

4 − ε.
The key idea of the proof is to look at times when L increases:

τ` = inf{m : L(m) > ` }, for ` ∈ N. (3.3)
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This allows us to read the sum over all values of the odometer, in terms of the values of S around
τ`, through the simple identity

E
[ ∑
m∈N

eαS(m)1L(m)=`
]

= E
[ τ`+1−1∑
m=τ`

eαS(m)
]
.

We will show that (S(τ`))`=0,1,2,... is typically small as it has a drift downward.
Denote by F` the σ-field of the instructions revealed when stabilizing ξτ` . If L(τ`) > `, then
τ`+1 = τ` and of course S(τ`+1) = S(τ`).
Suppose that L(τ`) = ` occurs. Then τ`+1 > τ` + 1, and it is convenient to think of each walk we
add after the τ`-th as coming with its own trajectory independent of F`. We mark each new walk
as follows:

• A mark left if it exits from the left before it tries to sleep.
• A mark right if it exits from the right before it tries to sleep.
• A mark sleep if it tries to sleep before it exits.

Let G`+1 denote the number of walks added until the first marked left. Then

τ`+1 − τ` 6 G`+1.

Since each new walk is marked left with probability at least p,

G`+1 4 G,

where G denotes a geometric random variable with parameter p and 4 denotes stochastic
domination for the conditional distribution of G`+1 given F`. Also, let Z`+1 denote the number of
walks marked sleep before the G`+1-th one. Then Z`+1 is a sum of G`+1− 1 independent Bernoulli
variables of parameter at most ε, hence

Z`+1 4 Z,

where Z + 1 is geometric with parameter p
p+ε .

Assuming that not only L(τ`) = ` but also S(τ`) > 0 occur, let X`+1 denote the indicator of the
event that the first walk addition after τ` causes a sleeping walk to be reactivated and exit V .
Regardless of the position of the sleeping walks, the probability that the first walk added causes
one of them to reactivate is at least p. Once that occurs, the probability that the reactivated walk
falls asleep again before exiting V is at most ε. Hence, we have

X`+1 < X,

where X is a Bernoulli with parameter p− ε.
Thus, using notation ∇`f = f(τ`+1)− f(τ`), when L(τ`) = ` we have

∇`S 6 Z`+1 − 1S(τ`)>0 ·X`+1. (3.4)

Still on the event that L(τ`) = `, another key relation is

∇`(L+ S) 6 1 + Z`+1. (3.5)

Indeed, the left-hand side equals the number of walks added minus the number of walks which exit
from the right in the time-period (τ`, τ`+1]. This in turn equals the number N of new walks added
which are not marked right, minus the number of sleeping walks that are reactivated and exit from
the right. Finally, N is bounded by the right-hand side, proving (3.5).
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To control the behavior of S(τ`), we will bound it by the function

F (`) = 2× S(τ`) + L(τ`)− `.

When L(τ`) = `, by adding relations (3.4) and (3.5), we have

F (`+ 1)− F (`) 6 2Z`+1 − 1S(τ`)>0 ·X`+1. (3.6)

When L(τ`) > `, we have F (`+ 1)−F (`) = −1. To keep the computations short, we still use (3.6)
in this case. Note that indeed this estimate is still valid if we set Z`+1 = 0 4 G and X`+1 = 1 < X
on this event.
Denoting Ẽ = E[ · |F`], from (3.6) we get

ẼeαF (`+1) 6 (Ẽe2αZ`+1) · 1F (`)=0 + eαF (`)(Ẽeα(2Z`+1−X`+1)) · 1F (`)>0. (3.7)

Using Cauchy-Schwarz,

(Ẽeα(2Z`+1−X`+1))2 6 Ẽe4αZ`+1 × Ẽe−2αX`+1 6 Ee4αZ × Ee−2αX =: β2.

Taking expectation in (3.7) we get

EeαF (`+1) 6 Ee2αZ + β EeαF (`).

Now choose ε small so that EX > 2EZ, and α small so that 0 < β < 1. Iterating the previous
inequality gives

EeαF (`+1) 6 (1 + · · ·+ β`)Ee2αZ + β` EeαF (0).

To get an estimate not depending on `, we make the crude bound

EeαF (`) 6 1 + 1
1−βEe

2αZ <∞. (3.8)

To conclude, we make another crude estimate

max{S(τ`), S(τ` + 1), . . . , S(τ`+1)} 6 S(τ`) + (τ`+1 − τ`)

Combined with (3.8), this gives for any fixed `

E
[∑
m

eαS(m)1L(m)=`
]

= E
[ τ`+1−1∑
m=τ`

eαS(m)
]

6 E
[
E
[
eα[S(τ`)+(τ`+1−τ`)](τ`+1 − τ`)

∣∣∣F`

]]
6 EeαS(τ`) × E[GeαG]

6 (1 + 1
1−βEe

2αZ)× E[GeαG] =: M.

By further reducing α, we make E[GeαG] < ∞. This establishes (3.2) and concludes the proof of
Proposition 3.1.

4. Proof of exponential moment

In this section we show how Theorem 1.2 follows from Proposition 3.1 and a general framework
introduced in Basu, Ganguly, and Hoffman (2018). We sketch the main features of the construction,
referring the reader to Rolla (2020, §5.1) for the details.



8 Amine Asselah, Leonardo T. Rolla, and Bruno Schapira

The toppling procedure. Let K ∈ 2N be given. Later on it will be chosen as in Proposition 3.1. We
can suppose 2r+ 1 = (K+ 1)n for some positive integer n. We can also suppose that η0 ∈ {0, 1}Vr ,
otherwise we simply topple every site containing two or more walks until there is no longer such a
site, and start from the resulting configuration.
We assign a different color to each source, that is a lattice site whose position is si = i(K+1)−r, for
i = 1, . . . , n. Sites are grouped into blocks numbered i = 1, . . . , n, of the form {si−K, . . . , si +K},
centered around a source. Each site which is not a source belongs to two blocks, and is assigned
two independent stacks of instructions, one for each block. Walks get the color of the last source
they visited (initially they are assigned the color of the nearest source), and use only instructions of
their own color. We only let walks reactivate other walks if they have the same color, if they have
different colors we treat the sleeping walk as if it was still sleeping. The Abelian property implies
that the configuration at the end of this procedure (which imposes a restriction on re-activation)
gives an upper bound for S(Vr).

Single-block dynamics. For m ∈ N, consider the stabilization of the configuration ξ + mδsi inside
the i-th block. That is, m walks are added to the source si and the configuration is toppled until
it is stable in the block.
We now define random functions denoted by Li(·), Ri(·) and Si(·), illustrated in Figure 3.1. Let
Li(m) count the number of walks that exit the block from the left when ξ + mδsi is stabilized in
the i-th block, let Ri(m) count the number of walks that exit the block from the right, Si(m) the
number of walks sleeping in the block.

Mass balance equations and proof of active phase. Let m∗i denote the number of walks arriving at
the i-th source and acquiring its color. Writing m∗ = (m∗1, . . . ,m∗n), R0 ≡ 0 and Ln+1 ≡ 0, the
vector m∗ satisfies the mass balance equations

mi = Ri−1(mi−1) + Li+1(mi+1) for i = 1, . . . , n. (4.1)

We now rewrite the above system as

Li(mi) = mi−1 −Ri−2(mi−2) (4.2)

for i = 1, . . . , n+ 1, where R−1 ≡ 0 and m0 can be taken as L1(m1).

Estimating the exponential moment. Choose α, δ and M according to Proposition 3.1. Given
0 < λ 6 δ, take K = 2d δ√

λ
e. Also recall that r = (n+ 1)K.

For a non-negative vector m, define

S(m) =
n∑
i=1

Si(mi).

The total number of walks present in the blocks after global stabilization is given by

S∗ = S(m∗).

Recalling that (4.2) is satisfied for i = 1, . . . , n when m = m∗, we have

E[eαS∗ ] =
∑
m

E[eαS(m)1m∗=m]

6
∑
m0

E
[∑
m1

· · ·
∑
mn

n∏
i=1

eαSi(mi)1{Li(mi)=mi−1−Ri−2(mi−2)}

]
.
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Then after taking successively conditional expectations with respect to the filtrations generated by
(Lj(·), Rj(·), Sj(·))j=1,...k, for k = n− 1, . . . , 1, one concludes that (see Rolla (2020, §5.1))

E[eαS∗ ] 6
∑
m0

n∏
i=1

sup
`

E
[∑
mi

eαSi(mi)1{Li(mi)=`}

]
6 rM r/K ,

using Proposition 3.1 for the last inequality. Since S(Vr) is stochastically dominated by S∗, this
concludes the proof of Theorem 1.2.

5. Diffusive lower bound

The lower bound in Theorem 1.1 follows from two facts.
Let (Xn)n>0 be a simple symmetric random walk starting from X0 = 0 and conditioned to be
positive for all n > 0, that is, X is the h-transform of a random walk. For each n ∈ N, let
Zn = max{X1, . . . , Xn}. The following can be found at Rolla (2020, Remark 4.3).

Lemma 5.1. Let N be a geometric random variable with parameter λ
1+λ independent of X. Then

ζc(λ) > 1
EZN

.

The lower bound in (1.1) is a consequence of this and the following.

Lemma 5.2. There exists a constant C such that, for every n,

EZn 6 C
√
n.

Proof. We learned this elegant proof from Nicolas Curien. First we claim that EXn = 1
2nE|S

3
n|, with

(Sn)n>0 the unconditioned walk. Indeed, recall that X is an h-process, with h(x) = x. Therefore
for any x > 0,

P
[
Xn = x

]
= xP

[
Sn = x, Sk > 0 ∀k = 1, . . . , n

]
= x2

n
P
[
Sn = x

]
,

using the Cyclic Lemma for the second equality. The claim follows if we multiply by x and sum
over x > 0. Second, EZn 6 1 + 4EXn. To prove the latter, we compare the distribution functions
of Zn and Xn by

P
[
Xn > k

]
> P

[
τ2k 6 n and Xj > k for all j > τ2k

]
=

= P2k[τk =∞]× P
[
τ2k 6 n

]
= 1

2P
[
Zn > 2k

]
,

where τ denotes hitting time and the 1
2 comes from applying Optional Stopping Theorem to the

martingale [h(Xn)]−1. Summing over k gives the inequality. To conclude just observe that E|S3
n| 6

3n3/2 by computing ES4
n = 3n(n− 1)ES2

1 + nES4
1 6 3n2 and using Jensen’s inequality. �
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