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Abstract

We study the boundary of the range of simple random walk on Z% in the transient case
d > 3. We show that volumes of the range and its boundary differ mainly by a martingale.
As a consequence, we obtain an upper bound on the variance of order nlogn in dimension
three. We also establish a Central Limit Theorem in dimension four and larger.

1 Introduction

Let (S,, n > 0) be a simple random walk on Z¢. TIts range R, = {So,...,S,} is a familiar
object of Probability Theory since Dvoretzky and Erdos’ influential paper [DE]. The object of
interest in this paper is the boundary of the range

OR, = {x € R, : there exists y ~ x with y € R, }, (1.1)

where z ~ y means that = and y are at (graph) distance one. Our interest was triggered by
a recent paper of Berestycki and Yadin [BY] which proposes a model of hydrophobic polymer
in an aqueous solvent, consisting of tilting the law of a simple random walk by exp(—/3|0R,]|).
One interprets the range as the space occupied by the polymer, and its complement as the
space occupied by the solvent. Hydrophobic means that the monomers dislike the solvent, and
the polymer tries to minimize the boundary of the range. The Gibbs’ weight tends to minimize
contacts between the monomers and the solvent, and the steric effect has been forgotten to make
the model mathematically tractable. Besides its physical appeal, the model gives a central role
to the boundary of the range, an object which remained mainly in the shadow until recently. To
our knowledge it first appeared in the study of the entropy of the range of a simple random walk
[BKYY], with the conclusion that in dimension two or larger, the entropy of the range scales
like the size of the boundary of the range. Recently, Okada [Ok1] has established a law of large
numbers for the boundary of the range for a transient random walk, and has obtained bounds
on its expectation in dimension two.

Theorem 1.1. [Okada] Consider a simple random walk in dimension d = 2. Then
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where part of the result is that the limit exists. Moreover, when d > 3, almost surely

lim ]872”\

n—o0 n

=P({z: 2~0} ¢ Roo URoo, Hy = 00), (1.3)

where R is the range of a random walk in an infinite time horizon, and Hy is the hitting time
of 0, whereas quantities with tilde correspond to those of an independent copy of the random
walk.
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The range of a random walk has nice properties: (i) it is an increasing function of time, (ii)
the event that Sy belongs to R, for k < n is o(S,. .., Sk)-measurable, (iii) the volume of the
range R, is the union of the collection of sub-ranges {Sg,k € I} as I runs over a partition of
[0,n]. A little thought shows that the boundary of the range shares none of these properties,
making its study more difficult. The thrust of our study is to show that for a transient random
walk, range and boundary of the range are nonetheless correlated objects. Indeed, we present
two ways to appreciate their similar nature. On one hand the sizes of the boundary of the range
and some range-like sets defined below (the R, ) differ mainly by a martingale. On the other
hand, we show that the boundary of the range, as the range itself, can be analyzed through a
dyadic decomposition of the path. To make the first statement precise, we need more notation.
Let Vo = {z: z ~ 0}, be the neighbors of the origin, and for any nonempty subset V' of V),
let R, v be the set of sites of Z% whose first visit occurs at some time k < n, and such that
(Sk+Vo)NRE_; = Si+V. In particular, R,y behaves like the range in the sense that properties
(1)-(ii) listed above do hold, and as we will see below, their variance can be bounded using the
same kind of techniques as for the range.

Note also that R, is the disjoint union of the R,, v/, with V' subset of V. We are now ready
for our first observation.

Proposition 1.2. There is a martingale (M, n € N), adapted to the standard filtration such
that for any positive integer n,

|8Rn‘ = Z 1% ‘,R'n—l,V| + Mn + gna (14)
VW

with pyg = 0 and for any non-empty V in Vy

O(n) ifd =3
pv =P(V ¢ Rs) and E(E2) =< O(log’(n)) ifd=4 (1.5)
O(1) if d > 5.

Remark 1.1. The decomposition (1.4) is simply Doob’s decomposition of the adapted process
|OR,| — En, as we see more precisely in Section 3. The key observation however is that the
increasing process (in Doob’s decomposition) behaves like the range.

Jain and Pruitt [JP] have established a Central Limit Theorem for the range in dimension
three with a variance scaling like nlogn. Proposition 1.2 makes us expect that the boundary
of the range has a similar behavior. Indeed, we establish the following estimate on the mean
square of the martingale. This estimate is delicate, uses precise Green’s function asymptotics,
and the symmetry of the walk. It is our main technical contribution.

Proposition 1.3. There are positive constants {Cq,d > 3}, such that

Csnlogn ifd=3

Var (M) < { Cyn ifd > 4.

Also, following the approach of Jain and Pruitt [JP], we establish the following estimate on
the range-like object R, v .

Proposition 1.4. Assume that d = 3, and let V be a nonempty subset of Vy. There is a positive
constant C, such that
Var(|Rn,v|) < Cnlogn. (1.6)



Then, a useful corollary of Propositions 1.2, 1.3 and 1.4 is the corresponding bound for the
variance of the boundary of the range in dimension 3.

Theorem 1.5. Assume that d = 3. Then, there is a positive constant C, such that
Var(|0R,]) < Cnlogn. (1.7)

Remark 1.2. Using the approach of Jain and Pruitt [JP], it is not clear how to obtain a Central
Limit Theorem for R,y (see Remark A.2 of the Appendiz).

Now the boundary of the range has a decomposition similar to the classical Le Gall’s decom-
position [LG] in terms of intersection of independent ranges. This decomposition, though simple,
requires more notation to be presented. For integers n,m let R(n,n+m) = {Sk — Sy tn<k<ntm.,
with the shorthand notation R,, = R(0,n), and note that

R(0,n+m) =R(0,n) U (S, + R(n,n+m)).

Observe that %(O,n) = =S, + R(0,n) and R(n,n + m) are independent and that by the

symmetry of the walk %(O, n) (resp. R(n,n+m)) has the same law as R(0,n) (resp. R(0,m)):
it corresponds to the range of a walk seen backward from position S,. Finally, note the well
known decomposition

IR0, +m)| = |R(0,n)| + |R(n,n+m)| — |R(0,n) N R(n,n +m)|. (1.8)

Equality (1.8) is the basis of Le Gall’s celebrated paper [LG] on the range of recurrent random
walk. It is also a key ingredient in most work on self-intersection of random walks (see the book
of Chen [C], for many references).

To write a relation as useful as (1.8) for the boundary of the range, we introduce more
notation. For A C Z¢, we denote A* = A + Vg, with Vo = V5 U {0}, and we define its boundary
as

ON={z€ A : Jye A°with y ~ z}.

Now, our simple observation is as follows.

Proposition 1.6. For any integers n,m
0> |0R(0,n +m)| — (|OR(0,n)| + |[0R(n,n+ m)|) > —Z(n,m), (1.9)

with
Z(n,m) = [R(0,n) NR*(n,n +m)| + [R*(0,n) N R(n,n +m)|. (1.10)

We focus now on consequences of this simple decomposition. For d > 3, we define functions
n +— g(n), with the following dimension depending growth

P3(n) = /n, y(n) = logn, and for d > 4, Ya(n) = 1. (1.11)

An essential step for a Central Limit Theorem, is to establish a linear lower bound on the
variance. Our bounds hold in dimension three and larger.

Proposition 1.7. Assume that d > 3. There are positive constants {cq, d > 3}, such that

Var (|0R,|) > cqn. (1.12)



The idea behind the linear lower bound (1.12) is to show that there is a clock process whose
fluctuations are normal (on a scale square root of the time elapsed), and which is independent
of the boundary of the range process. Thus, typical fluctuations of the clock process, provoke a
time change at constant boundary of the range. Note that in dimension 3, this technique does
not allow to obtain a lower bound of order nlogn, matching our upper bound (see also Remark
A.2 for some additional comment on this).

We now formulate our main Theorem.

Theorem 1.8. When dimension is larger than or equal to three, there are constants {Cy,d > 3},
such that for any positive integer n

Catpa(n) _ E[ORa] | E[OR4]]

n - n k—00 k

> 0. (1.13)
Assume now that the dimension is four or larger. Then, the limit of Var(|ORy|)/n ezists, is
positive, and for alln > 1,

Var([0Rn|) . Var(|0Ri])| _ Cavntba(n)

n k—o00 k - n

. (1.14)

Moreover, a standard Central Limit Theorem holds for |OR,,]|.

Remark 1.9. We have stated our results for the simple random walk, but they hold, with
similar proofs, for walks with symmetric and finitely supported increments.

Okada obtains also in [Okl] a large deviation principle for the upper tail (the probability
that the boundary be larger than its mean), and in [Ok2] he studies the most frequently visited
sites of the boundary, and proves results analogous to what is known for the range.

In a companion paper [AS], we obtain large deviations for the lower tail, and provide appli-
cations to phase transition for a properly normalized Berestycki-Yadin’s polymer model.

The rest of the paper is organized as follows. In Section 2, we fix notation, recall known
results on the Green’s function, and prove a result about covering a finite subset. In Section 3, we
establish the Martingale decomposition of Proposition 1.2 and prove Proposition 1.3. We prove
Proposition 1.7 in Section 4. In Section 5, we present the dyadic decomposition for the boundary
of the range and deduce Theorem 1.8, using Le Gall’s argument. Finally in the Appendix, we
prove Proposition 1.4.

2 Notation and Prerequisites

For any y,z € Z¢, we denote by ||z — y|| the Euclidean norm between y and z, and by (y, z)
the corresponding scalar product. Then for any r > 0 we denote by B(z,r) the ball of radius r
centered at z:

B(z,r):={yeZ? : ||z—y| <r}.

For x € Z%, we let P, be the law of the random walk starting from x, and denote its standard
filtration by (Fj, k > 0). For A a subset of Z¢ we define the hitting time of A as

Hy:=inf{n >1 : S, € A},

that we abbreviate in H, when A is reduced to a single point z. Note that in this definition we
use the convention to consider only times larger than or equal to one. At some point it will also
be convenient to consider a shifted version, so we also define for k > 0,

HY :=inf{n >k : S, € A}. (2.1)



We will need bounds on the heat kernel, so let us recall a standard result:

1
P(S, = z) < Cd—/2 exp(—c||z||*/n) for all z and n > 1, (2.2)
n

for some positive constants ¢ and C (see for instance [HSC]). Now we recall also the definition
and some basic properties of Green’s function. For u,v € Z¢, the Green’s function is

G(u,v) = EU[Z 1{S, = u}} = P,[H, < o0 - G(0,0),

n>0

and we use extensively the well-known bound (see [LL, Theorem 4.3.1]):

1
G(0,2)=0 <1+H2Hd_2> . (2.3)

We also consider Green’s function restricted to a set A C Z%, which for u,v € A is defined by

Hpc—1

Ga(u,v) = Eu[ Y IS, = v}].

n=0

We recall that G4 is symmetric (see [LL, Lemma 4.6.1]):
Ga(u,v) = Gy(v,u) for all u,v € A,

and that G is also invariant by translation of the coordinates: G(u,v) = G(0,v — u). Also, for
n >0,

Gn(u,v) = Eu[zn: 1{S, = u}] (2.4)
k=0

It is well known (use (2.3) and Theorem 3.6 of [LG]) that for ¢4 defined in (1.11), we have, for
some positive constants {Cy,d > 3}

> G (0,2) < Catpa(n). (2.5)
z€Z4

We can now state the main result of this section.

Lemma 2.1. Let A be a fived finite subset of Z2, and fix z € A. Then, there is a constant c(A),

such that for any two neighboring sites y ~ 1/,

Py(A C Roo) — Py (A C Roo) = c(A)W 40 (M) . (2.6)

Moreover,

1
C(A) = — Z Z ﬂ{va}Pv (HA = OO) P, (A - Roo)7
dvq €A vgA

where vy denote the volume of the unit ball in R?.



Proof. First, since A is finite, and (2.6) is an asymptotic result, we can always assume that y
and 3’ do not belong to A. Now by a first entry decomposition

Py(A C Roo) = Y _Py(Su, =, Hy < 00)Pr(A C Reo). (2.7)
TEA

Next, fix z € A and transform the harmonic measure into the restricted Green’s function (see
for instance [LL, Lemma 6.3.6)):

1 1
Py(SHA =x, Hy < OO) = ﬁ Z GAC(Z/,U) = ﬁ Z G/\C(U7y)'

vEAC v~ vEAC v~

Note also (see [LL, Proposition 4.6.2]) that
Gre(v,) = G(v,y) — By [I{Hy < 00} G(Sn,,v)|.

Therefore,

Py (Su, =z, Hy < 00) =Py (Su, =z, Hy < 0) = i ve/;)wc (G(v,y) — G(v,y))
> B [1{Hy < o0} (G(Shaoy) — G(Suav))] -

vEAC v~

X (2.8)

2

Now, since A is finite, we have ([LL, Corollary 4.3.3]) the expansion for any 2’ € AT (recall that
z is a given site in A),

2y —yy—2) 1
Gy —Gly)=—""—"—"L+0(+—|. (2.9)
va ly — [l ly — z[|¢
Combining (2.7), (2.8) and (2.9) we obtain the result (2.6). O

3 Martingale Decomposition

In this Section, we establish Proposition 1.2, as well as Proposition 1.3 dealing with the variance
of the martingale.
3.1 Definition of the martingale and proof of Proposition 1.2

For V nonempty subset of Vi and k > 0, let
Iky = ][{Sk ¢ Ri_1 and (Sk + Vb) NRE =S, + V},

and
Ty = T{(Sk+V) £ {5}, j = k}}.
Then for n > 1, define
Jk7n7v = ]I{(Sk + V) z {Sk;, RN Sn}},

and

8'Rn7v = {Sk : Ik,VJk,n,V =1, k< n} (3.1)



Note that OR,, is the disjoint union of the IR, y, for V non empty subset of V. Now instead
of looking at >, o, I, v Jgn,v (Which is equal to [0R,,v]), we look at

n—1

Y,v = Z Iy Jiv.
k=0

However, since Y;, y is not adapted to JF,,, we consider
Xn,V = E[Yn,v | ]:n]a
and think of X,y as a good approximation for [OR,, v|. So we define an error term as
Eny = |0Rnv| — Xnv.
Now the Doob decomposition of the adapted process X, i reads as X, v = M, v + A, v, with

M, v a martingale and A,,  a predictable process. Since

n—1

Xny = LivE[Jey | Fl,
k=0

we have
n—1

Any =Y LivE[Jry | Fil.
k=0
Moreover, the Markov property also gives

ElJey | Fi] = ElJiv] =P(V € Reo) = pvs
for any k£ > 0. Therefore,
|ORnv| = Mpyv + pv|Ro—1v| +Enyv for all V C Vj,
where we defined for m > 0,
Ry =1{Sk : I,y =1, E <m}.

Summing up M, y over nonempty subsets of Vj we obtain another martingale M,, = ZVCVO M.y,
and the error term &, = ZVCV() Env, and since |0R,| is also the sum over nonempty subsets of
the |OR,,v|, we obtain the first part of Proposition 1.2, namely Equation (1.4).

Now we prove (1.5). First note that for any k <n — 1,

1
| kn,V [ k,V‘]:H S, ( Sk+Vo < o) <1+‘|Sn_sk|’d—2>

using (2.3) for the last equality. Then by using invariance of the walk by time inversion, we get

1
st =0 | 3 2w ) ) &2

kK <n

Moreover, by using the heat kernel bound (2.2), we arrive at

, O(1/k) if d=3
- | = 0 %) ifd= :
: [(1 + HSkHd_ZP} 85,8_5/53/’“ ) iizli > 451. >

The desired result follows by using Cauchy-Schwarz.



3.2 Variance of the Martingale

We establish here Proposition 1.3. Let us notice that our proof works for M, only, and not for
all the M,, y’s. If we set for n > 0,

AMn = Mn+1 - an
then, Proposition 1.3 is a direct consequence of the following result.

Bl ={ o §ess (3.4

The proof of (3.4) is divided in three steps. The first step brings us to a decomposition of AM,,
as a finite combination of simpler terms (3.6), plus a rest whose L?-norm we show is negligible.
In the second step, we observe that when we gather together some terms (3.10), their L?-norm
takes a particularly nice form (3.11). Finally in the third step we use these formula and work
on it to get the right bound.

Step 1. In this step, we just use the Markov property to write AM,, in a nicer way, up to some
error term, which is bounded by a deterministic constant. Before that, we introduce some more
notation. For k < n, set

Iy = T{(Sk + Vo) N {Sk, ..., S} =Sk +V}.
The Markov property and the translation invariance of the walk show that for all k < n

]E[thv | ]:n} = Z ]I{VOV’;é(Z)}Ik,n,V/ ]Psn_sk (V N Vl ,(Z Roo) .
V'cVy

Note that Iy, v+ # I n+1,y7 imples that S,41 and Sy are neighbors. However, the number of
indices k such that S,;1 and Sj are neighbors and Ij, 1y = 1 is at most 2d, since by definition
of Iy we only count the first visits to neighbors of S,, 1. Therefore the number of indices k&
satisfying Iy v # 0 and I, v+ # I nt1,v7, for some V', is bounded by 2d. As a consequence, by
using also that terms in the sum defining M,, v are bounded in absolute value by 1, we get

?
L

AM,y = Iv(E[Jrv | Fos1] = ElJeyv | Fol) + LnvE[Jn v | Frgil

33‘
)—‘O

- Z Z Levavezoyds, V{Ikn—H viPs, -5, (VﬂV 7 Reo )
k=0V'CVy

T v P, (V OV & Roo) |+ Loy Elny | Fasa

n—1
= > > Ikvvlkm,vl{PSn-H*Sk (VNV' € R) = Ps,—s, (VNV' € Rec) } + 7y,
E=0VNV'#0

with |r, v| < 2d 4+ 1. Summing up over V, we get

n—1
=3 Y vl {Pss (VOV € Re)=Ps, s, (VV' € Reo) f 47, (35)
k=0 VV'#£0

with |r,,| < 2%(2d +1). Lemma 2.1 is designed to deal with the right hand side of (3.5), with
the result that

Sn+1 — Sp, S — S
Z Y oevnv Moy T 1*_1“’5 AT b4 0B, (3.6)
k=0 VNV'0 " k




with

1
Bi= Y e (3.7)
2Ry, L+ 8n — 2l

Step 2. The term B, of (3.7) can be bounded as follows. By using first the invariance of the law
of the walk by time inversion, we can replace the term S,, — z by z. Then we write

2

1 1
E[B;] =E enmroerr Al B P(z € IRy, 2/ € OR,). (3.8
1| ZE%HHZW } ZZ (T + 120D T+ 1127[1) ). (38)

Then by assuming for instance that ||z|| < ||2’|| (and z # 2’), and by using (2.3) we obtain
P(z € ORy, 2 € OR,) < P(H, < 00, Hy < 0)

1
< ") = . .
< 260,960 =0 (). 09

Therefore

1
E[B?| =0
5] 2 EEEA = 2

ISSEIRS e

Next, we divide the last sum into two parts:

> :
| 2]|24=2| 2" ||| 2" — =]|4—2

L<]|z[[ <=l

1 1
N 2 T2 e — 22 2 (1 e B I e R
1<]2<Il=’ | <2l 1<2 )<l

1 1
= 0 + =0(1).
Z HzHSd—QHZI _ sz—Q Z HZHQd—QHzIHQd—2

1<zl <=’ 1 <2]|=]] 12|zl <[]l

Now it remains to bound the main term in (3.6). For two nonempty subsets U and U’ of Vj,
write U ~ U’, if there exists an isometry of Z¢ sending U onto U’. This of course defines an
equivalence relation on the subsets of Vj, and for any representative U of an equivalence class,
we define

Iinu =Y IeyIeny = HVoN (RS — Sp) ~ U}

vnVv/~U
and )
~— = <Sn+1 - Sny Sn - Sk>
H,y= I, .
v =2 fene s, ST

Note that since the function c(-) is invariant under isometry, we can rewrite the main term in

(3.6) as
> e(U) Hyp. (3.10)

U

Then observe that for any U,

E[H? ;| Fol =
g | 7o TS0 S

n—1

~ Sn — Sk
E Ik:,n,U =
k=0

9



Moreover, since the law of the walk is invariant under time inversion, and since for any path
So,--.,Sn, and any k, the indicator I, r is equal to 1 if and only if it is also equal to 1 for the
reversed path S,,..., Sy, we get

E[H} /] = E[|Ha v, (3.11)
where

z . ~ ~
Moy = Z e Vit ORaw= {Sk Doy =1, k<n-— 1}. (3.12)
ZEBR,LU

Therefore, we only need to prove that for any U,

O(logn) ifd=3
Bl ={ o0t Hass (3.13)
Step 3. First note that
21 <szl> - / ~
E([Hool? = > A HZ/Hd)IP’<z € Mny, 2 € aRn,U). (3.14)

2,2/ €74

In dimension 4 or larger, (3.13) can be established as follows. First Cauchy-Schwarz inequality
gives for all z, 2/
(2,2} < llzIl 1|2,

Then, by using again the standard bound on Green’s functions, that is (3.9), we get the desired
bound

ElHaul?] = O > P21z =217 | = o).

L< |z <2l

We consider now the case d = 3. Since it might be interesting to see what changes in dimension
3, we keep the notation d in all formula as long as possible. Note that if z € OR, 7, then
|zl < n and H, is finite. Therefore the restriction of the sum in (3.14) to the set of z,2’
satisfying ||z|| < ||2']] < 2||z|| is bounded in absolute value by

2|
2D L) <2lsl <2n) A e b e <00 Har < o0). (3.15)
z z’

Moreover, as we have already recalled, for any z # 2/, with ||z]| < ||Z/]|,

1
P(H, H, < 2G(0, 2 = )
(0. < o 1 < ) £ 3600606 ) = e, s

Therefore, the sum in (3.15) is bounded above (up to some constant) by

ZZ Tp<a)< <2l <2ny 121117312 = 274 = O Z 12973 | = O(logn).
z z’

1<]lzl<n

10



It remains to bound the sum in (3.14) restricted to the z and 2’ satisfying ||2’|| > 2|z||. To this
end observe that the price of visiting 2’ first is too high. Indeed,

(2. )|
22 Tn<oyz<=i<n AT a1 F He < He < o0)

z z/
=0 (Z D T cops<gapn 211212212 - Z’H“)
7

z z

=0 (Z > ]I{1S2||zSIZ’IISn}||z||1_d||zl“5_3d)

z z

— O(logn),

where for the first equality we used in particular Cauchy-Schwarz inequality and again the
standard bound on Green’s function, and for the second one, we used that when ||2/|| > 2z]|,
we have ||Z/|| < ||z — 2/||. Thus in (3.14) we consider the events {H, < H. }. We now refine this
argument in saying that after H, y;, and after having left the ball B(z, ||z||/2), it cost too much
to return to z 4+ Vp (and the same fact holds for z’). Formally, for any z, define

T, :=inf{k > H, vy, : Sk ¢ B(z |2||/2)},

and
o, =inf{k>1, : Sp€z+VW}.

Then define the event B
E..vu:= {z € 8Rn7U} N{o, = co}.

Observe next that if 1 < ||z|| < ||2']|/2,

- - 1
P (Z S 37?,”7(], Z/ S 872”7[], (Ez,n,U n Ez’,n,U)c) = O (WW) .

Therefore, similar computations as above, show that in (3.14), we can replace the event {z and e
ORnu}t by E;nuNE, . So at this point it remains to bound the (absolute value of the) sum

(2, 2)
féwﬂwwm+wm“m<@ﬂww@w% (3.16)
z'| =2z

We now eliminate the time n-dependence in E, ,, y and E./,, 7 by replacing these events respec-
tively by E. y and E,/ ;7 defined as

E.v:={H,<oo}nN{Von{So—z2,...,5, —2}°~U}N{o, = o0}

Note that when 7, < n we have F, y = E. , y. This latter relation holds in particular when z
is visited before 2/, and 2’ is visited before time n. Therefore one has

Ez,n,U N Ez’,n,U N {HZ < Hz’} = Ez,U N Ez’,n,U N {HZ < Hz/}-

In other words in (3.16) one can replace the event E, ,, ;7 by E, ;7. We want now to do the same
for 2/, but the argument is a bit more delicate. First define the symmetric difference of two sets
Aand Bas AAB = (AN B°)U(A°N B). Recall that we assume 1 < ||z|| < ||2']|/2. Let now

11



k < n. By using (2.2) and (2.3), we get for some positive constants ¢ and C (recall also the
definition (2.1)),

P, (Ez’,k,U AEZ'7U) < P <HZ, sks Hgg—:_‘}g < OO)
1
< CEz []I{Hzl<k} 1+ HSk B Z/”d—?]
<

k
1
C ;IPZ(Si —\E (1 - Hsk_in_Q)

ko=l 4

< C ,
- Z; ivi 1+vVk—i

where for the second and third lines we used the Strong Markov Property, and Cauchy-Schwarz
and (3.3) for the fourth one. The last sum above can be bounded by first separating it into two
sums, one with indices i smaller than k/2, and the other sum over indices ¢ > k/2. Then using
a comparison with an integral for the first sum, one can see that

1 "2
PZ EZl,k,U A EZI,U S 07 676”2 ” /(21{3).
( ) 12|V

In particular

1
P.(E.. AE., =0——-1.
sup Pz (B A B o) <||z'u2>

Then it follows by using again the Markov property and (2.3), that
P (EZ,U7 Ez’,n,U AE‘z’,Ua Hz < Hz’) < P (Ez’,n,U AE‘z’,Ua Hz < Hz’)
= > P(H.=n—k)P, (Expu AE.p)
k<n

< P(Hz < n) sup P, (Ez’,k,U AE’z’,U)
k>1

1 1
= 0O < X ) .
[[2]]9=2 " []2]|2

In conclusion, one can indeed replace the event E./,, 7 by E./ iy in (3.16). Now in the remaining
sum, we gather together the pairs (z,2’) and (2, —2'), and we get, using Cauchy-Schwarz again,

(2,2)
P(E:v, Exp, H, < Hy (3.17)
21% A T+ (Fes B He < He)

2
Z ﬁ ’P (EZ’U’ EzlvU’ Hz < HZ/) - P (EZ,Ua E—zl,Uv Hz < H—z/) ‘
1<2]2||<[|2/ || <n [z =2

Then for any 1 < [|z[| < [[2/]|/2, we have
P (EZ,Ua EZ’,U? HZ < Hz’)

= Z P(E;y, H. < Hy, Sy, =y) Py (Haqvy = 00, Eury), (3.18)
yedB(z,)|2]/2)

where by 0B(z,||z||/2) we denote the external boundary of B(z,||z||/2), and where

Ely={Vn{So—=z...,8, —2}°~U}.
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Now for any y € dB(z, ||z||/2), and ||2’|| > 2||z||, by using again (2.3) we get

1
]P)y (HZ+VQ - OO, E217U) - ]P)y (EZ’,U) - O <Hz||d_2||zl”d_2) . (319)

Moreover, the same argument as in the proof of Lemma 2.1, shows that if y and 3/ are neighbors,

1
Py (E.v) =Py (Exu) +O (Hz’—del) :

Therefore if 1 < ||z|| < ||2/||/2 and y € 0B(z, ||2]|/2) we get

Py (E.p) =Py (Evy) +0O <,”y”1) =Py (E.y)+0O (I|z|’ﬁd‘1> ) (3.20)

On the other hand, by symmetry, for any U,

Py (E.p) =Py (E_.yu) .

By combining this with (3.17), (3.18), (3.19) and (3.20), we obtain (3.13) and conclude the proof
of (3.4).

4 Lower Bound on the Variance

In this section, we prove Proposition 1.7. The proof is inspired by the proof of Theorem 4.11 in
[MS], where the authors use lazyness of the walk. Here, since the walk we consider is not lazy,
we use instead the notion of double backtracks. We say that the simple random walk makes
a double backtrack at time n, when S,4+; = Sp,—1 and S,+2 = S,. When this happens the
range (and its boundary) remain constant during steps {n + 1,n 4 2}. With this observation in
mind, a lower bound on the variance is obtained as we decompose the simple random walk into
two independent processes: a clock process counting the number of double-backtracks (at even
times), and a trajectory without double-backtrack (at even times).

4.1 Clock Process

We construct by induction a no-double backtrack walk (gn, n € N). First, g() =0, and §1 and
Sy — Sy are chosen uniformly at random among the elements of V4 (the set of neighbors of the
origin). Next, assume that S, has been defined for all k < 2n, for some n > 1. Let Mo = {(z,y) :

xz ~ 0 and y ~ 2} and choose (X,Y’) uniformly at random in N5\ {(SQn 1— Sgn, )} Then set

§2n+1 = ggn 4+ X and §2n+2 = §2n +Y. (4.1)

Thus, the walk S makes no double-backtrack at even times. Note that by sampling uniformly in
the whole of NV we would have generated a simple random walk (SRW). Now, to build a SRW
out of 5, it is enough to add at each even time a geometric number of double-backtracks. The
geometric law is given by

P(6=Fk)=(1—p)p* forall k>0, (4.2)

with p = 1/(2d)?. Note that the mean of ¢ is equal to p/(1 — p). Now, consider a sequence
(&n, n > 1) of i.i.d. random variables distributed like £ and independent of S. Then define

[k/2]
No=N =0 and Np:=)» & fork>2 (4.3)
=1
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A SRW can be built out from S and N as follows. First, S; = S; for i = 0,1,2. Then, for any
integer k > 1

Soi1 = §2k—1 and Sy = §2k forall i € [k + ]\NIQ(k,l), k+ ]\7%]
This implies that if R is the range of S and OR its boundary, then for any integer k

Ryion, = Ry and IRy 1oN, = ORk. (4.4)

4.2 A Law of Large Numbers and some consequences

Recall that Okada [Okl] proved a law of large numbers for [0R,|, see (1.3), and call v4 the limit

of |OR,|/n. Since N, /n also converges almost surely toward p/[2(1 — p)], we deduce from (4.4)
that _

’872“’ . Vq

n 1—0p

almost surely. (4.5)
Let us show now another useful property. We claim that for any a > 0,

lim P(|(RL)Y NR| > ar) =0, (4.6)

7—00

where R/ is the total range of another simple random walk independent of R. To see this recall
that the process (R;,) is increasing, and therefore using (4.4) one deduce

p

P(|(Rle)" NRS| > ar) SP(Ny 2 ———1) + P(|(Rl) " NRE,| > ar),

with C = 2p/(1 —p) + 1. The first term on the right-hand side goes to 0, in virtue of the law of
large numbers satisfied by IV, and the second one also as can be seen using Markov’s inequality
and the estimate:

E[(RL)TAREI< Y. > G024 2)Ger(0,2 +y) = O(Vrlogr),
z,y€Vo 2€74

which follows from (2.3) and [LG, Theorem 3.6].
A consequence of (4.6) is the following. Define ¢ = v4/[2(1 — p)]. We have that for k large
enough, any t > 1, and r > Vk

) (4.7)

|

p(|aﬁk|zt)z% — PR >t +er) >

and also

P(|0R| < t) > % = P(|0Ry—,| <t —cr) > . (4.8)

E

To see this first note that the set-inequality (1.9) holds as well for R. Hence, with evident
notation

|0Rksr| = |0R,| + [OR(r, k + )| — 2|RY (r, 1 + k) N RS (4.9)

Now observe that the last intersection term is stochastically dominated by |[(R,)" N R, with
R, a copy of R, independent of R;. Therefore, (4.5), (4.6) and (4.9) immediately give (4.7)
and (4.8).

14



4.3 Lower Bound

First, by using (1.13), there is a positive constant Cy > 2d, such that
IE[|OR]] — van| < Cov/n for all n > 1. (4.10)

Take k,, to be the integer part of (1 — p)n. We have either of the two possibilities

(1) P(!@ﬁkn\ < vgn) > or (i7) P(!@ﬁkn\ > vgn) > =. (4.11)

N —
N —

Assume for instance that (i) holds, and note that (ii) would be treated symmetrically. Define,
in=[(1—=p)(n—Ayn)], with A =3Cy/(c(1 —p)), and note that using (4.8)

P(|0R;,| < van — 3Cov/n)) > i, (4.12)
for n large enough. Now set
B, = {2]\7"" _\/%EW""] clA+1,A+ 2]} .
Note that there is a constant c4 > 0, such that for all n large enough
P(B,) > ca. (4.13)
Moreover, by construction,
B, C {zn 2N € [nn+ 3\/5]} . (4.14)

Now using the independence of N and R, (4.4), (4.12), (4.13) and (4.14), we deduce that
P(3m € {0,...,3V/n} : |0Rnim| < van — 3Cov/n) > %‘.
Then one can use the deterministic bound:
|8Rn| < |8Rn+m| + 2dm7
which holds for all n > 1 and m > 0. This gives
ca
P(|0R,| < vgn — 2Chy/n) > o

which implies that Var(|0R,|)/n > C3ca/4 > 0, using (4.10).

5 On Le Gall’s decomposition

In this Section, we establish Proposition 1.6 and Theorem 1.8.
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5.1 Mean and Variance

Inequality (1.9) holds since
2 € IR(0,n)\(Sy, + R(n,n+m)) " UA(S, + R(n,n +m))\RT(0,n) = 2 € IR(0,n + m).

Define

Observe that in (1.9) the deviation from linearity is written in terms of an intersection of two
independent range-like sets. This emphasizes the similarity between range and boundary of the
range. Now (1.9) implies the same inequalities for the expectation.

0> E[X(0,n+m)] — (E[X(0,n)] + E[X (n,n+ m)]) > —E[Z(n,m)]. (5.1)
Combining (1.9) and (5.1), we obtain our key (and simple) estimates
|X(0,n+m) — (X(0,n) + X(n,n +m))| <max (Z(n,m),E[Z(n,m)]). (5.2)
If | X||, = (E[XP])'/P, then using the triangle inequality, we obtain for any p > 0,
X0, +m)lp, = [X(0,n) + X(n,n+m)[lp| < | Z(n,m)llp + | Z(n,m) [ (5.3)

The deviation from linearity of the centered p-th moment will then depend on the p-th moment of
Z(n,m). We invoke now Hammersley’s Lemma [HA], which extends the classical subadditivity
argument in a useful manner.

Lemma 5.1. [Hammersley] Let (ay), (by), and (b)) be sequences such that
an + Ay — b;Ler < amin < n + @m + bpgem for all m and n. (5.4)

Assume also that the sequences (by,) and (b)) are positive and non-decreasing, and satisfy

n

by, + b
> ;T < 0. (5.5)
n>0 n(n+ )
Then, the limit of a,/n exists, and
! b a af b bk
— 44 —k > " lim —~>4+"2—-4 — 5.6
0’ k;nk(wr I g;nk(kﬂ) (5:6)

We obtain now the following moment estimate.

Lemma 5.2. For any integer k, there is a constant Cy such that for any n,m integers,
1/2
E[Z"(n,m)] < Cy((n)el(m))"”. (5.7)
Recall that v is defined in (1.11).

Proof. Observe that Z(n,m) is bounded as follows.

Z(n,m) < 2 Z I{z € R*(0,n) N (Sp + R*(n,n+m))}

2€7Z4
< 23 1z e RH(0,n) N R (n,n+m)}
z€7Z4
< 23 S Y He+aeRO.n), 24y € Rm,n+m)}.

z€Vo yEVQ z€24
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We now take the expectation of the k-th power, and use the independence of %(O,n) and
R(n,n+ m). Then (recalling the defintion (2.4) of G,, and using (2.5) for the last inequality)

k
E[Z*(n,m)] < 2F Z Z Z E [H Tz +x; € %(O,n)}]l{zi +vy € R(n,n+m)}

T1,y1€VY T, yp€Vo FloiFk =1
<28 > 0> Y P(Hepe, <ny Vi=1,.. 0 K)P(Hayy, <m, Vi=1,...,k)
1,y1€V0  Tp,yr€Vo FlrnZk
ki ok o\ 1/2 o\ 1/2
< 2k|V7y| ( S B(H., <n, Vi=1,...k) ) ( N B(H., <m, Vi=1,...,k) )
2142k 21,32k
kY7 |12k 2 2 1/2 2 2 1/2
< 2KV, k!( 3 Gn(O,zl)...Gn(zk,l,zk)> ( 3 Gm(O,zl)...Gm(zk,l,zk)>
21y s2k 21y s2k
1/2
< Oy (whmyuhm))
which concludes the proof. O

Henceforth, and for simplicity, we think of 14 of (1.11) rather as ¥3(n) = O(y/n), ¥4(n) =
O(log(n)) and for d > 5, ¢4(n) = O(1) (in other words, we aggregate in 1)4 innocuous constants).
As an immediate consequence of (5.1) and Lemma 5.2, we obtain for any n,m € N,

ElloRal] + E[[0Rm[] — max(¢a(n), Ya(m)) < E[[0Rnim|] < E[|ORA[] +E[ORm[].  (5.8)

The inequalities of (5.8) and Hammersley’s Lemma imply that the limit of E[|OR,|]/n exists
and it yields (1.13) of Theorem 1.8.

Variance of X(0,n). Let us write (5.3) for p =2
X0, n +m)ll2 = [ X(0,n) + X (n, 1+ m)|2| <2 Z(n,m)]2. (5.9)
Now, the independence of X (0,n) and X (n,n + m) gives
IX(0,m) + X (n,n+m)|3 = [IX(0,n)lI3 + | X (0,m)]3. (5.10)
By taking squares on both sides of (5.9) and using (5.10), we obtain

IX(0,n+m) |13 <X (0,n)[13 + [X (0, m)lI3 + 41X (0,n) + X (n,n + m)|2[1 Z(n,m)]2

(5.11)
+ 4/ Z(n,m)|3,
and
1X(0,n)[15 + [ X(0,m)[I5 <[X(0,n 4 m)|3 + 4[| X(0,n 4+ m)|[2[|Z(r, m)| 2 (5.12)
+4)Z(n,m)|l3.
Now define for £ > 1, B
Api= sup [|X(0,4)]3.
20 <20+l

Next, using (5.10), (5.11) and Lemma 5.2 with k£ = 2, we deduce that for any £ > 1 and € > 0
(using also the inequality 2ab < ea® + b?/¢),

Apr < (14 2)240 + (1 + é)wg(zf). (5.13)
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We iterate this inequality L times to obtain for some constant C' independent of L

L
1
AL S C( +€)L2L+C - Z 1+€ f lzﬁ 1w2(2L f)
e =1 (5.14)
1
< C L?2F when we choose €= I

Then we use the rough bound of (5.14) as an a priori bound for the upper and lower bounds re-
spectively (5.11) and (5.12) for the sequence a,, = Var (X (0, n)), in order to apply Hammersley’s
Lemma with b, = b, = y/nlogn x ¥4(n). In dimension four or more we do fulfill the hypotheses
of Hammersley’s Lemma, which in turn produces the improved bound Var(|0R,|) < Cn, and
then again we can use Hammersley’s Lemma with a smaller b, = b, = y/ni4(n) which eventu-
ally yields (1.14) of Theorem 1.8. The fact that the limit of the normalized variance is positive
follows from Proposition 1.7.

5.2 Central Limit Theorem

The principle of Le Gall’s decomposition is to repeat dividing each strand into smaller and
smaller pieces producing independent boundaries of shifted ranges. For two reals s,t let [s], [t]

be their integer parts and define X(s,t) = X([s],[t]). For ¢ and k integer, let XIEEZL = X((k—

1)n/2¢ kn/2°). Let also Z,(f% be the functional of the two strands obtained by dividing the k-th
strand after ¢ — 1 divisions. In other words, as in (1.10) (but without translating here) let

Z) =\unU*|+ Ut nU|,
with B
U= {Sik-1)z5]>- -+ Sj2k-1) 271} and U= Sz}

Thus, after L divisions, with 2% < n, we get

2L L 2[ 1

IRED ) ELERTED S8l

i=1 =1 i=1
The key point is that {Xm7 i = 1,...,2"} are independent, and have the same law as

X(0,n/2%) or X(0,n/2F +1). Now, we define the (nonnegative) error term &£(n) as
Z X -
and (1.9) and (1.13) imply that

n
%d

Mh

Note that, in dimension d > 4, we can choose L growing to infinity with n, and such that
E[E(n )]/\f n goes to 0: for instance 2 = \/n/log?(n). Therefore, for such choice of L, it suffices
to prove the Central Limit Theorem for the sum 21221 Xi(fl). Our strategy is to apply the
Lindeberg-Feller triangular array Theorem, that we recall for convenience (see for instance [D,

Theorem 3.4.5] for a proof).



Theorem 5.3 (Lindeberg-Feller). For each integer N let (Xy;: 1 < i < N) be a collection
of independent random variables with zero mean. Suppose that the following two conditions are
satisfied

(i) Zf\;lE[X?W] —02>0as N — oo and

(it) SN E[(Xn.) 2 H{| Xni| > €}] = 0 as N — oo for all e > 0.

Then, Sy = Xni+ ...+ Xy v = oN(0,1) as N — 0.

We apply Lindeberg-Feller’s Theorem with N = 2% and Xy ; = Yi »/v/n. The condition (i)
was proved in the previous subsection. The condition (ii) is usually called Lindeberg’s condition.
To check (ii), we estimate the fourth moment of X (0,n), and as was noticed by Le Gall [LG,
Remark (iii) p.503], this is achieved using the previous decomposition and a sub-additivity
argument. More precisely, using (5.3) with p = 4, we have

X0+ m)ls < ((EEE(0.m)] + 6BX (0. m]EX(0.m)] + BX (0.m)])) "

+ VYa(n)va(m).

Thus, if we define for £ > 1, B
Api= sup [ X(0,9)]ls,

20 <20+l

we obtain (using also that (a + b)'/* < a'/* + b'/* for any a, b),

b1 < (2049 647 + (29
< 21/4142 + 61/4A;/2 + 1ha(29).
Define then A} = supge_;<oe+1 1X(0,1)]|4/2%2, and recall that A, < C42¢, for some constant
Cy > 0, in dimension four and larger. Therefore if d > 4,
21/4

/€/+1 S WAZ + 61/4Cd +

¥a(2°)
5t)/2"

This recursive inequality implies that (A}) is bounded, as well as n — || X(0,n)[3/n. We then
deduce that Lindeberg’s condition is satisfied, and the Central Limit Theorem holds for X (0,n).

Appendix

A Estimates on Ranges

In this section, we prove Proposition 1.4. We first introduce some other range-like sets allowing
us to use the approach of Jain and Pruitt [JP]. Recall that the sets R, are disjoint, and for
U C Vp, define

ﬁn,U = U Rnyv = {Sp : Sk ¢ Ri_1and S; ¢ (Sx+U),i<k—1,1<k<n}. (A1)
VoU

Next for U C V,, define

aU) = |Rou| —E(|Rnu|)  and  BU) = |Ruu| —E(|Rnul).
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The definition (A.1) yields
aU)=>_ B(V),
VoU
and this relation is inverted as follows:
BV =Y (-1)"WVla().
UDVv
As a consequence, for V C 1},

Var(|Rnv|) = E (8(V)) < 2"V YR (o(1)) .
UoVv

We will see below that each R, has the same law as a range-like functional that Jain and
Pruitt analyze by using a last passage decomposition, after introducing some new variables.
But let us give more details now. So first, we fix some V' C Vp, and for n € N, set Z' =1, and

Zi = 1({Siqr € (Si+V) Vk>1}) Vi € N,
Zr = 1({Siqr € (Si+V) Vk=1,....n—i}) Vi<n
where
V =V u{o}.

A key point in this decomposition is that Z, and Z" are independent. Now, define
n—1
Ry ={S: Si¢S+V, n>i>k 0<k<n}, and [R,y|=) Z" (A.2)
i=0

Since the increments are symmetric and independent, [R,, v| and |R,, /| are equal in law. Now,
equality (A.2) reads as

n—1 n—1
Ryl =2 Zit+ 3 Wi
1=0 =0

Now using that Var(|Rnv|) < E[(|Rnv] =Y icn 1 E[Z;])?], and that (a + b)? < 2(a? + b?) we
obtain

n—1 n—17—1 n—1 7
Var(|R,v|) <2 Var(Z) +4) Y Cov(Zi, Z;) +4y Y E(W/W}). (A.3)
i=1 j=114=0 j=114=0

Next for i < j < n, we have (recall the definition (2.1))
_ (i+1) (G+1)
EW!W}) = IP(n<HSi+V<oo,n<HSi+V<oo)
= Z}P’(Sj_i:a:, H7>j—i)IP’x(n—j<H7<oo, n—j<Hm+v<oo)
zgV
ZP(Sj_i:x, H7>j—i)IP’x(n—j<H7<oo, n—j<Hm+V<oo),
gV

IA
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where for the second equality we just used the Markov property and translation invariance of
the walk. The last inequality is written to cover as well the case ¢ = j. Therefore,

J
Z}E(VVZ”W]”) < ZG (0,2) Py (Hy < 00, n—j < H, 3 < 00)
=0 gV

IN

ZZG (0,2)P H<oo n—]<HI+Z<oo)
y,2€V ¢V

Then Lemma 4 of [JP] shows that
; : / ) ifd=3
j pu—

) ifd=4
o(( )ImA2) it d > 5,

and thus
n—1 j O( ) ifd=3
SIS EWW) =< O((logn)?) ifd=4 (A.4)
j=1i=0 O(1) it d>5.

Now, for i < j < n, by using that Zij and Z; are independent, we get
Cov(Zi, Z;) = —Cov(W/, Z;).
On the other hand, assuming ¢ < j < n,

EW/z;) = P(j<H) <00, BT = o0)

Si+V PS4V
= Y P(Sji=x, Hy>j—i)P.(Hy < o0, H, iy = ).
xgV
Since in addition,
E(Zj) =P, (H, i = c0) for all z,

and
E(W/) =Y P(Sj—i ==, Hy > j—i) Py (Hy < o),
zgV
we deduce that

COV(ZZ'7 Zj) = Z P(Sj_i =z, HV > 5 — ’L) bv(.%'),
zgV
with

by (x) =P, (HV < oo) P, (H

w7 =00) — Py (Hyy <00, H, 3y =00). (A.5)

Now we need the following equivalent of Lemma 5 of [JP].
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Lemma A.1. Forany V C Vg, and z ¢V,
by (z) = Po(Hy < H, 3 < 00)Py(Hy = 00) + E(, V),

with

E(x,V) = Zﬁpw(SHzr — 2, H,,y < Hy) (IPZ (Hy < 00) — Py (Hyr < oo)).

Moreover,

aavn:o<hﬁiﬁ.

Assuming this lemma for a moment, we get

j—1 Jj—1
=0 1=0 zgV
) 1
= 0> Gﬂ%ﬁ? =0\ > o
< |z]| ||
2V 1< 2] <5

B O(logj) ifd=3
N o(1) if d > 4,

from which we deduce that
’il [ O(nlogn) ifd=3
2% = o(n) if d> 4.
7=0

Then Proposition 1.4 follows from (A.3), (A.4) and (A.6).

Proof of Lemma A.1. Note first that

by(x) = Po(Hy <00, H, y < o0) =Py (Hy < 00)Pe(H, y < )

T

= P.(Hy < H, v <o) +P,(H, < Hyy < 00) — P, (Hyy < 00)P,(H, 7 < 00).

T T

Moreover,

P.(H,,yv <Hy<oo) = > Pu(Sy =z H

+V x
zex+V

vy < Hy)P,(Hyr < 00)

The first assertion of the lemma follows. The last assertion is then a direct consequence of
standard asymptotics on the gradient of the Green’s function (see for instance [LL, Corollary

4.3.3]).

O

Remark A.2. By adapting the argument in [JP] we could also prove that in dimension 3,
Var(|R,, v|) ~ o®nlogn, for some constant o > 0, and then obtain a central limit theorem for
this modified range. However it is not clear how to deduce from it an analogous result for |R,, v|,

which would be useful in view of a potential application to the boundary of the range.
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