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Abstract

We study the boundary of the range of simple random walk on Zd in the transient case
d ≥ 3. We show that volumes of the range and its boundary differ mainly by a martingale.
As a consequence, we obtain an upper bound on the variance of order n log n in dimension
three. We also establish a Central Limit Theorem in dimension four and larger.

1 Introduction

Let (Sn, n ≥ 0) be a simple random walk on Zd. Its range Rn = {S0, . . . , Sn} is a familiar
object of Probability Theory since Dvoretzky and Erdös’ influential paper [DE]. The object of
interest in this paper is the boundary of the range

∂Rn = {x ∈ Rn : there exists y ∼ x with y 6∈ Rn}, (1.1)

where x ∼ y means that x and y are at (graph) distance one. Our interest was triggered by
a recent paper of Berestycki and Yadin [BY] which proposes a model of hydrophobic polymer
in an aqueous solvent, consisting of tilting the law of a simple random walk by exp(−β|∂Rn|).
One interprets the range as the space occupied by the polymer, and its complement as the
space occupied by the solvent. Hydrophobic means that the monomers dislike the solvent, and
the polymer tries to minimize the boundary of the range. The Gibbs’ weight tends to minimize
contacts between the monomers and the solvent, and the steric effect has been forgotten to make
the model mathematically tractable. Besides its physical appeal, the model gives a central role
to the boundary of the range, an object which remained mainly in the shadow until recently. To
our knowledge it first appeared in the study of the entropy of the range of a simple random walk
[BKYY], with the conclusion that in dimension two or larger, the entropy of the range scales
like the size of the boundary of the range. Recently, Okada [Ok1] has established a law of large
numbers for the boundary of the range for a transient random walk, and has obtained bounds
on its expectation in dimension two.

Theorem 1.1. [Okada] Consider a simple random walk in dimension d = 2. Then

π2

2
≤ lim

n→∞

E
[
|∂Rn|

]
n/ log2(n)

≤ 2π2, (1.2)

where part of the result is that the limit exists. Moreover, when d ≥ 3, almost surely

lim
n→∞

|∂Rn|
n

= P
(
{z : z ∼ 0} 6⊂ R∞ ∪ R̃∞, H0 =∞

)
, (1.3)

where R∞ is the range of a random walk in an infinite time horizon, and H0 is the hitting time
of 0, whereas quantities with tilde correspond to those of an independent copy of the random
walk.
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The range of a random walk has nice properties: (i) it is an increasing function of time, (ii)
the event that Sk belongs to Rn for k ≤ n is σ(S0, . . . , Sk)-measurable, (iii) the volume of the
range Rn is the union of the collection of sub-ranges {Sk, k ∈ I} as I runs over a partition of
[0, n]. A little thought shows that the boundary of the range shares none of these properties,
making its study more difficult. The thrust of our study is to show that for a transient random
walk, range and boundary of the range are nonetheless correlated objects. Indeed, we present
two ways to appreciate their similar nature. On one hand the sizes of the boundary of the range
and some range-like sets defined below (the Rn,V ) differ mainly by a martingale. On the other
hand, we show that the boundary of the range, as the range itself, can be analyzed through a
dyadic decomposition of the path. To make the first statement precise, we need more notation.
Let V0 = {z : z ∼ 0}, be the neighbors of the origin, and for any nonempty subset V of V0,
let Rn,V be the set of sites of Zd whose first visit occurs at some time k ≤ n, and such that
(Sk+V0)∩Rck−1 = Sk+V . In particular, Rn,V behaves like the range in the sense that properties
(i)-(ii) listed above do hold, and as we will see below, their variance can be bounded using the
same kind of techniques as for the range.

Note also that Rn is the disjoint union of the Rn,V , with V subset of V0. We are now ready
for our first observation.

Proposition 1.2. There is a martingale (Mn, n ∈ N), adapted to the standard filtration such
that for any positive integer n,

|∂Rn| =
∑
V⊂V0

ρV |Rn−1,V |+Mn + En, (1.4)

with ρ∅ = 0 and for any non-empty V in V0

ρV = P
(
V 6⊂ R∞

)
and E

(
E2
n

)
=


O(n) if d = 3
O(log3(n)) if d = 4
O(1) if d ≥ 5.

(1.5)

Remark 1.1. The decomposition (1.4) is simply Doob’s decomposition of the adapted process
|∂Rn| − En, as we see more precisely in Section 3. The key observation however is that the
increasing process (in Doob’s decomposition) behaves like the range.

Jain and Pruitt [JP] have established a Central Limit Theorem for the range in dimension
three with a variance scaling like n log n. Proposition 1.2 makes us expect that the boundary
of the range has a similar behavior. Indeed, we establish the following estimate on the mean
square of the martingale. This estimate is delicate, uses precise Green’s function asymptotics,
and the symmetry of the walk. It is our main technical contribution.

Proposition 1.3. There are positive constants {Cd, d ≥ 3}, such that

Var (Mn) ≤
{
C3 n log n if d = 3
Cd n if d ≥ 4.

Also, following the approach of Jain and Pruitt [JP], we establish the following estimate on
the range-like object Rn,V .

Proposition 1.4. Assume that d = 3, and let V be a nonempty subset of V0. There is a positive
constant C, such that

Var (|Rn,V |) ≤ C n log n. (1.6)
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Then, a useful corollary of Propositions 1.2, 1.3 and 1.4 is the corresponding bound for the
variance of the boundary of the range in dimension 3.

Theorem 1.5. Assume that d = 3. Then, there is a positive constant C, such that

Var (|∂Rn|) ≤ C n log n. (1.7)

Remark 1.2. Using the approach of Jain and Pruitt [JP], it is not clear how to obtain a Central
Limit Theorem for Rn,V (see Remark A.2 of the Appendix).

Now the boundary of the range has a decomposition similar to the classical Le Gall’s decom-
position [LG] in terms of intersection of independent ranges. This decomposition, though simple,
requires more notation to be presented. For integers n,m let R(n, n+m) = {Sk−Sn}n≤k≤n+m,
with the shorthand notation Rn = R(0, n), and note that

R(0, n+m) = R(0, n) ∪
(
Sn +R(n, n+m)

)
.

Observe that
←−
R(0, n) := −Sn + R(0, n) and R(n, n + m) are independent and that by the

symmetry of the walk
←−
R(0, n) (resp. R(n, n+m)) has the same law as R(0, n) (resp. R(0,m)):

it corresponds to the range of a walk seen backward from position Sn. Finally, note the well
known decomposition

|R(0, n+m)| = |R(0, n)|+ |R(n, n+m)| − |
←−
R(0, n) ∩R(n, n+m)|. (1.8)

Equality (1.8) is the basis of Le Gall’s celebrated paper [LG] on the range of recurrent random
walk. It is also a key ingredient in most work on self-intersection of random walks (see the book
of Chen [C], for many references).

To write a relation as useful as (1.8) for the boundary of the range, we introduce more
notation. For Λ ⊂ Zd, we denote Λ+ = Λ +V 0, with V 0 = V0 ∪{0}, and we define its boundary
as

∂Λ = {z ∈ Λ : ∃y ∈ Λc with y ∼ z}.

Now, our simple observation is as follows.

Proposition 1.6. For any integers n,m

0 ≥ |∂R(0, n+m)| −
(
|∂R(0, n)|+ |∂R(n, n+m)|

)
≥ −Z(n,m), (1.9)

with
Z(n,m) = |

←−
R(0, n) ∩R+(n, n+m)|+ |

←−
R+(0, n) ∩R(n, n+m)|. (1.10)

We focus now on consequences of this simple decomposition. For d ≥ 3, we define functions
n 7→ ψd(n), with the following dimension depending growth

ψ3(n) =
√
n, ψ4(n) = logn, and for d > 4, ψd(n) = 1. (1.11)

An essential step for a Central Limit Theorem, is to establish a linear lower bound on the
variance. Our bounds hold in dimension three and larger.

Proposition 1.7. Assume that d ≥ 3. There are positive constants {cd, d ≥ 3}, such that

Var (|∂Rn|) ≥ cd n. (1.12)
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The idea behind the linear lower bound (1.12) is to show that there is a clock process whose
fluctuations are normal (on a scale square root of the time elapsed), and which is independent
of the boundary of the range process. Thus, typical fluctuations of the clock process, provoke a
time change at constant boundary of the range. Note that in dimension 3, this technique does
not allow to obtain a lower bound of order n log n, matching our upper bound (see also Remark
A.2 for some additional comment on this).

We now formulate our main Theorem.

Theorem 1.8. When dimension is larger than or equal to three, there are constants {Cd, d ≥ 3},
such that for any positive integer n

Cdψd(n)

n
≥ E[|∂Rn|]

n
− lim
k→∞

E[|∂Rk|]
k

≥ 0. (1.13)

Assume now that the dimension is four or larger. Then, the limit of Var(|∂Rn|)/n exists, is
positive, and for all n ≥ 1,∣∣∣∣Var(|∂Rn|)

n
− lim
k→∞

Var(|∂Rk|)
k

∣∣∣∣ ≤ Cd
√
nψd(n)

n
. (1.14)

Moreover, a standard Central Limit Theorem holds for |∂Rn|.

Remark 1.9. We have stated our results for the simple random walk, but they hold, with
similar proofs, for walks with symmetric and finitely supported increments.

Okada obtains also in [Ok1] a large deviation principle for the upper tail (the probability
that the boundary be larger than its mean), and in [Ok2] he studies the most frequently visited
sites of the boundary, and proves results analogous to what is known for the range.

In a companion paper [AS], we obtain large deviations for the lower tail, and provide appli-
cations to phase transition for a properly normalized Berestycki-Yadin’s polymer model.

The rest of the paper is organized as follows. In Section 2, we fix notation, recall known
results on the Green’s function, and prove a result about covering a finite subset. In Section 3, we
establish the Martingale decomposition of Proposition 1.2 and prove Proposition 1.3. We prove
Proposition 1.7 in Section 4. In Section 5, we present the dyadic decomposition for the boundary
of the range and deduce Theorem 1.8, using Le Gall’s argument. Finally in the Appendix, we
prove Proposition 1.4.

2 Notation and Prerequisites

For any y, z ∈ Zd, we denote by ‖z − y‖ the Euclidean norm between y and z, and by 〈y, z〉
the corresponding scalar product. Then for any r > 0 we denote by B(z, r) the ball of radius r
centered at z:

B(z, r) := {y ∈ Zd : ‖z − y‖ ≤ r}.
For x ∈ Zd, we let Px be the law of the random walk starting from x, and denote its standard
filtration by (Fk, k ≥ 0). For Λ a subset of Zd we define the hitting time of Λ as

HΛ := inf{n ≥ 1 : Sn ∈ Λ},

that we abbreviate in Hx when Λ is reduced to a single point x. Note that in this definition we
use the convention to consider only times larger than or equal to one. At some point it will also
be convenient to consider a shifted version, so we also define for k ≥ 0,

H
(k)
Λ := inf{n ≥ k : Sn ∈ Λ}. (2.1)
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We will need bounds on the heat kernel, so let us recall a standard result:

P(Sn = z) ≤ C 1

nd/2
exp(−c‖z‖2/n) for all z and n ≥ 1, (2.2)

for some positive constants c and C (see for instance [HSC]). Now we recall also the definition
and some basic properties of Green’s function. For u, v ∈ Zd, the Green’s function is

G(u, v) = Eu
[∑
n≥0

1I{Sn = v}
]

= Pu[Hv <∞] ·G(0, 0),

and we use extensively the well-known bound (see [LL, Theorem 4.3.1]):

G(0, z) = O
(

1

1 + ‖z‖d−2

)
. (2.3)

We also consider Green’s function restricted to a set A ⊂ Zd, which for u, v ∈ A is defined by

GA(u, v) = Eu
[HAc−1∑

n=0

1I{Sn = v}
]
.

We recall that GA is symmetric (see [LL, Lemma 4.6.1]):

GA(u, v) = GA(v, u) for all u, v ∈ A,

and that G is also invariant by translation of the coordinates: G(u, v) = G(0, v − u). Also, for
n ≥ 0,

Gn(u, v) = Eu
[ n∑
k=0

1I{Sn = v}
]
. (2.4)

It is well known (use (2.3) and Theorem 3.6 of [LG]) that for ψd defined in (1.11), we have, for
some positive constants {Cd, d ≥ 3}∑

z∈Zd

G2
n(0, z) ≤ Cd ψd(n). (2.5)

We can now state the main result of this section.

Lemma 2.1. Let Λ be a fixed finite subset of Zd, and fix z ∈ Λ. Then, there is a constant c(Λ),
such that for any two neighboring sites y ∼ y′,

Py(Λ ⊂ R∞)− Py′(Λ ⊂ R∞) = c(Λ)
〈y′ − y, y − z〉
‖y − z‖d

+O
(

1

‖y − z‖d

)
. (2.6)

Moreover,

c(Λ) =
1

dvd

∑
x∈Λ

∑
v/∈Λ

1I{v∼x}Pv
(
HΛ =∞

)
Px
(
Λ ⊂ R∞

)
,

where vd denote the volume of the unit ball in Rd.
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Proof. First, since Λ is finite, and (2.6) is an asymptotic result, we can always assume that y
and y′ do not belong to Λ. Now by a first entry decomposition

Py(Λ ⊂ R∞) =
∑
x∈Λ

Py
(
SHΛ

= x, HΛ <∞
)
Px
(
Λ ⊂ R∞

)
. (2.7)

Next, fix x ∈ Λ and transform the harmonic measure into the restricted Green’s function (see
for instance [LL, Lemma 6.3.6]):

Py
(
SHΛ

= x, HΛ <∞
)

=
1

2d

∑
v∈Λc, v∼x

GΛc(y, v) =
1

2d

∑
v∈Λc, v∼x

GΛc(v, y).

Note also (see [LL, Proposition 4.6.2]) that

GΛc(v, y) = G(v, y)− Ev
[
1I{HΛ <∞}G(SHΛ

, y)
]
.

Therefore,

Py
(
SHΛ

= x,HΛ <∞
)
−Py′

(
SHΛ

= x,HΛ <∞
)

=
1

2d

∑
v∈Λc, v∼x

(
G(v, y)−G(v, y′)

)
− 1

2d

∑
v∈Λc, v∼x

Ev
[
1I{HΛ <∞}

(
G
(
SHΛ

, y
)
−G

(
SHΛ

, y′
))]

.

(2.8)

Now, since Λ is finite, we have ([LL, Corollary 4.3.3]) the expansion for any z′ ∈ Λ+ (recall that
z is a given site in Λ),

G(z′, y)−G(z′, y′) =
2

vd

〈y′ − y, y − z〉
‖y − z‖d

+O
(

1

‖y − z‖d

)
. (2.9)

Combining (2.7), (2.8) and (2.9) we obtain the result (2.6).

3 Martingale Decomposition

In this Section, we establish Proposition 1.2, as well as Proposition 1.3 dealing with the variance
of the martingale.

3.1 Definition of the martingale and proof of Proposition 1.2

For V nonempty subset of V0 and k ≥ 0, let

Ik,V = 1I{Sk /∈ Rk−1 and (Sk + V0) ∩Rck = Sk + V },

and
Jk,V = 1I{(Sk + V ) * {Sj , j ≥ k}}.

Then for n ≥ 1, define
Jk,n,V = 1I{(Sk + V ) * {Sk, . . . , Sn}},

and

∂Rn,V = {Sk : Ik,V Jk,n,V = 1, k ≤ n}. (3.1)
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Note that ∂Rn is the disjoint union of the ∂Rn,V , for V non empty subset of V0. Now instead
of looking at

∑
k≤n Ik,V Jk,n,V (which is equal to |∂Rn,V |), we look at

Yn,V =
n−1∑
k=0

Ik,V Jk,V .

However, since Yn,V is not adapted to Fn, we consider

Xn,V = E[Yn,V | Fn],

and think of Xn,V as a good approximation for |∂Rn,V |. So we define an error term as

En,V := |∂Rn,V | −Xn,V .

Now the Doob decomposition of the adapted process Xn,V reads as Xn,V = Mn,V +An,V , with
Mn,V a martingale and An,V a predictable process. Since

Xn,V =
n−1∑
k=0

Ik,V E[Jk,V | Fn],

we have

An,V =

n−1∑
k=0

Ik,V E[Jk,V | Fk].

Moreover, the Markov property also gives

E[Jk,V | Fk] = E[Jk,V ] = P(V * R∞) = ρV ,

for any k ≥ 0. Therefore,

|∂Rn,V | = Mn,V + ρV |Rn−1,V |+ En,V for all V ⊂ V0,

where we defined for m ≥ 0,

Rm,V = {Sk : Ik,V = 1, k ≤ m}.

Summing upMn,V over nonempty subsets of V0 we obtain another martingaleMn =
∑

V⊂V0
Mn,V ,

and the error term En =
∑

V⊂V0
En,V , and since |∂Rn| is also the sum over nonempty subsets of

the |∂Rn,V |, we obtain the first part of Proposition 1.2, namely Equation (1.4).
Now we prove (1.5). First note that for any k ≤ n− 1,

|Jk,n,V − E[Jk,V | Fn]| ≤ PSn(HSk+V0 <∞) = O
(

1

1 + ‖Sn − Sk‖d−2

)
,

using (2.3) for the last equality. Then by using invariance of the walk by time inversion, we get

E[E2
n,V ] = O

 ∑
k,k′≤n

E
[

1

(1 + ‖Sk‖d−2)(1 + ‖Sk′‖d−2)

] . (3.2)

Moreover, by using the heat kernel bound (2.2), we arrive at

E
[

1

(1 + ‖Sk‖d−2)2

]
=


O(1/k) if d = 3
O((log k)/k2) if d = 4

O(k−d/2) if d ≥ 5.

(3.3)

The desired result follows by using Cauchy-Schwarz.
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3.2 Variance of the Martingale

We establish here Proposition 1.3. Let us notice that our proof works for Mn only, and not for
all the Mn,V ’s. If we set for n ≥ 0,

∆Mn = Mn+1 −Mn,

then, Proposition 1.3 is a direct consequence of the following result.

E[(∆Mn)2] =

{
O(log n) if d = 3
O(1) if d ≥ 4.

(3.4)

The proof of (3.4) is divided in three steps. The first step brings us to a decomposition of ∆Mn

as a finite combination of simpler terms (3.6), plus a rest whose L2-norm we show is negligible.
In the second step, we observe that when we gather together some terms (3.10), their L2-norm
takes a particularly nice form (3.11). Finally in the third step we use these formula and work
on it to get the right bound.

Step 1. In this step, we just use the Markov property to write ∆Mn in a nicer way, up to some
error term, which is bounded by a deterministic constant. Before that, we introduce some more
notation. For k ≤ n, set

Ik,n,V = 1I {(Sk + V0) ∩ {Sk, . . . , Sn}c = Sk + V } .

The Markov property and the translation invariance of the walk show that for all k ≤ n

E[Jk,V | Fn] =
∑
V ′⊂V0

1I{V ∩V ′ 6=∅}Ik,n,V ′ PSn−Sk

(
V ∩ V ′ * R∞

)
.

Note that Ik,n,V ′ 6= Ik,n+1,V ′ imples that Sn+1 and Sk are neighbors. However, the number of
indices k such that Sn+1 and Sk are neighbors and Ik,V = 1 is at most 2d, since by definition
of Ik,V we only count the first visits to neighbors of Sn+1. Therefore the number of indices k
satisfying Ik,V 6= 0 and Ik,n,V ′ 6= Ik,n+1,V ′ , for some V ′, is bounded by 2d. As a consequence, by
using also that terms in the sum defining Mn,V are bounded in absolute value by 1, we get

∆Mn,V =

n−1∑
k=0

Ik,V (E[Jk,V | Fn+1]− E[Jk,V | Fn]) + In,V E[Jn,V | Fn+1]

=
n−1∑
k=0

∑
V ′⊂V0

1I{V ∩V ′ 6=∅}Ik,V

{
Ik,n+1,V ′PSn+1−Sk

(
V ∩ V ′ * R∞

)
−

Ik,n,V ′PSn−Sk

(
V ∩ V ′ * R∞

)}
+ In,V E[Jn,V | Fn+1]

=

n−1∑
k=0

∑
V ∩V ′ 6=∅

Ik,V Ik,n,V ′
{
PSn+1−Sk

(
V ∩ V ′ * R∞

)
− PSn−Sk

(
V ∩ V ′ * R∞

)}
+ rn,V ,

with |rn,V | ≤ 2d+ 1. Summing up over V , we get

∆Mn =

n−1∑
k=0

∑
V ∩V ′ 6=∅

Ik,V Ik,n,V ′
{
PSn+1−Sk

(
V ∩ V ′ * R∞

)
−PSn−Sk

(
V ∩ V ′ * R∞

)}
+rn, (3.5)

with |rn| ≤ 2d(2d + 1). Lemma 2.1 is designed to deal with the right hand side of (3.5), with
the result that

∆Mn =
n−1∑
k=0

∑
V ∩V ′ 6=∅

c(V ∩ V ′)Ik,V Ik,n,V ′
〈Sn+1 − Sn, Sn − Sk〉

1 + ‖Sn − Sk‖d
+O (Bn) , (3.6)
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with

Bn =
∑

z∈∂Rn

1

1 + ‖Sn − z‖d
. (3.7)

Step 2. The term Bn of (3.7) can be bounded as follows. By using first the invariance of the law
of the walk by time inversion, we can replace the term Sn − z by z. Then we write

E
[
B2
n] = E

[ ∑
z∈∂Rn

1

1 + ‖z‖d

2 ]
=

∑
z,z′∈Zd

1

(1 + ‖z‖d)(1 + ‖z′‖d)
P(z ∈ ∂Rn, z′ ∈ ∂Rn). (3.8)

Then by assuming for instance that ‖z‖ ≤ ‖z′‖ (and z 6= z′), and by using (2.3) we obtain

P(z ∈ ∂Rn, z′ ∈ ∂Rn) ≤ P(Hz <∞, Hz′ <∞)

≤ 2G(0, z)G(z, z′) = O
(

1

1 + ‖z‖d−2‖z′ − z‖d−2

)
. (3.9)

Therefore

E
[
B2
n

]
= O

 ∑
1≤‖z‖<‖z′‖

1

‖z‖2d−2‖z′‖d‖z′ − z‖d−2

 .

Next, we divide the last sum into two parts:∑
1≤‖z‖<‖z′‖

1

‖z‖2d−2‖z′‖d‖z′ − z‖d−2

=
∑

1≤‖z‖<‖z′‖≤2‖z‖

1

‖z‖2d−2‖z′‖d‖z′ − z‖d−2
+

∑
1≤2‖z‖<‖z′‖

1

‖z‖2d−2‖z′‖d‖z′ − z‖d−2

= O

 ∑
1≤‖z‖<‖z′‖≤2‖z‖

1

‖z‖3d−2‖z′ − z‖d−2
+

∑
1≤2‖z‖<‖z′‖

1

‖z‖2d−2‖z′‖2d−2

 = O(1).

Now it remains to bound the main term in (3.6). For two nonempty subsets U and U ′ of V0,
write U ∼ U ′, if there exists an isometry of Zd sending U onto U ′. This of course defines an
equivalence relation on the subsets of V0, and for any representative U of an equivalence class,
we define

Ĩk,n,U =
∑

V ∩V ′∼U
Ik,V Ik,n,V ′ = 1I{V0 ∩ (Rcn − Sk) ∼ U}

and

Hn,U =
n−1∑
k=0

Ĩk,n,U
〈Sn+1 − Sn, Sn − Sk〉

1 + ‖Sn − Sk‖d
.

Note that since the function c(·) is invariant under isometry, we can rewrite the main term in
(3.6) as ∑

U

c(U)Hn,U . (3.10)

Then observe that for any U ,

E[H2
n,U | Fn] =

∥∥∥∥∥
n−1∑
k=0

Ĩk,n,U
Sn − Sk

1 + ‖Sn − Sk‖d

∥∥∥∥∥
2

.
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Moreover, since the law of the walk is invariant under time inversion, and since for any path
S0, . . . , Sn, and any k, the indicator Ĩk,n,U is equal to 1 if and only if it is also equal to 1 for the
reversed path Sn, . . . , S0, we get

E[H2
n,U ] = E[‖Hn,U‖2], (3.11)

where

Hn,U :=
∑

z∈∂R̃n,U

z

1 + ‖z‖d
, with ∂R̃n,U :=

{
Sk : Ĩk,n,U = 1, k ≤ n− 1

}
. (3.12)

Therefore, we only need to prove that for any U ,

E[‖Hn,U‖2] =

{
O(log n) if d = 3
O(1) if d ≥ 4.

(3.13)

Step 3. First note that

E[‖Hn,U‖2] =
∑

z,z′∈Zd

〈z, z′〉
(1 + ‖z‖d)(1 + ‖z′‖d)

P
(
z ∈ ∂R̃n,U , z′ ∈ ∂R̃n,U

)
. (3.14)

In dimension 4 or larger, (3.13) can be established as follows. First Cauchy-Schwarz inequality
gives for all z, z′

|〈z, z′〉| ≤ ‖z‖ ‖z′‖,

Then, by using again the standard bound on Green’s functions, that is (3.9), we get the desired
bound

E[‖Hn,U‖2] = O

 ∑
1≤‖z‖<‖z′‖

‖z‖3−2d ‖z′‖1−d ‖z − z′‖2−d
 = O(1).

We consider now the case d = 3. Since it might be interesting to see what changes in dimension
3, we keep the notation d in all formula as long as possible. Note that if z ∈ ∂R̃n,U , then
‖z‖ ≤ n and Hz is finite. Therefore the restriction of the sum in (3.14) to the set of z, z′

satisfying ‖z‖ ≤ ‖z′‖ ≤ 2‖z‖ is bounded in absolute value by

∑
z

∑
z′

1I{‖z‖≤‖z′‖≤2‖z‖≤2n}
2‖z‖2

(1 + ‖z‖d)2
P (Hz <∞, Hz′ <∞) . (3.15)

Moreover, as we have already recalled, for any z 6= z′, with ‖z‖ ≤ ‖z′‖,

P(Hz <∞, Hz′ <∞) ≤ 2G(0, z)G(z, z′) = O
(

1

‖z‖d−2‖z − z′‖d−2

)
.

Therefore, the sum in (3.15) is bounded above (up to some constant) by

∑
z

∑
z′

1I{1≤‖z‖<‖z′‖≤2‖z‖≤2n} ‖z‖4−3d‖z − z′‖2−d = O

 ∑
1≤‖z‖≤n

‖z‖6−3d

 = O(log n).
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It remains to bound the sum in (3.14) restricted to the z and z′ satisfying ‖z′‖ ≥ 2‖z‖. To this
end observe that the price of visiting z′ first is too high. Indeed,∑

z

∑
z′

1I{1≤2‖z‖≤‖z′‖≤n}
|〈z, z′〉|

(1 + ‖z‖d)(1 + ‖z′‖d)
P (Hz′ < Hz <∞)

= O

(∑
z

∑
z′

1I{1≤2‖z‖≤‖z′‖≤n}‖z‖1−d‖z′‖3−2d‖z − z′‖2−d
)

= O

(∑
z

∑
z′

1I{1≤2‖z‖≤‖z′‖≤n}‖z‖1−d‖z′‖5−3d

)
= O(log n),

where for the first equality we used in particular Cauchy-Schwarz inequality and again the
standard bound on Green’s function, and for the second one, we used that when ‖z′‖ ≥ 2‖z‖,
we have ‖z′‖ � ‖z − z′‖. Thus in (3.14) we consider the events {Hz < Hz′}. We now refine this
argument in saying that after Hz+V0 , and after having left the ball B(z, ‖z‖/2), it cost too much
to return to z + V0 (and the same fact holds for z′). Formally, for any z, define

τz := inf{k ≥ Hz+V0 : Sk /∈ B(z, ‖z‖/2)},

and
σz := inf{k ≥ τz : Sk ∈ z + V0}.

Then define the event
Ez,n,U :=

{
z ∈ ∂R̃n,U

}
∩ {σz =∞}.

Observe next that if 1 ≤ ‖z‖ ≤ ‖z′‖/2,

P
(
z ∈ ∂R̃n,U , z′ ∈ ∂R̃n,U , (Ez,n,U ∩ Ez′,n,U )c

)
= O

(
1

‖z‖2d−4‖z′‖d−2

)
.

Therefore, similar computations as above, show that in (3.14), we can replace the event {z and z′ ∈
∂R̃n,U} by Ez,n,U ∩Ez′,n,U . So at this point it remains to bound the (absolute value of the) sum

∑
‖z′‖≥2‖z‖

〈z, z′〉
(1 + ‖z‖d)(1 + ‖z′‖d)

P
(
Hz < Hz′ , Ez,n,U , Ez′,n,U

)
. (3.16)

We now eliminate the time n-dependence in Ez,n,U and Ez′,n,U by replacing these events respec-
tively by Ez,U and Ez′,U defined as

Ez,U := {Hz <∞} ∩ {V0 ∩ {S0 − z, . . . , Sτz − z}c ∼ U} ∩ {σz =∞}.

Note that when τz ≤ n we have Ez,U = Ez,n,U . This latter relation holds in particular when z
is visited before z′, and z′ is visited before time n. Therefore one has

Ez,n,U ∩ Ez′,n,U ∩ {Hz < Hz′} = Ez,U ∩ Ez′,n,U ∩ {Hz < Hz′}.

In other words in (3.16) one can replace the event Ez,n,U by Ez,U . We want now to do the same
for z′, but the argument is a bit more delicate. First define the symmetric difference of two sets
A and B as A∆B = (A ∩ Bc) ∪ (Ac ∩ B). Recall that we assume 1 ≤ ‖z‖ ≤ ‖z′‖/2. Let now
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k ≤ n. By using (2.2) and (2.3), we get for some positive constants c and C (recall also the
definition (2.1)),

Pz
(
Ez′,k,U ∆Ez′,U

)
≤ Pz

(
Hz′ ≤ k ≤ H

(k+1)
z′+V0

<∞
)

≤ C Ez
[
1I{Hz′≤k}

1

1 + ‖Sk − z′‖d−2

]
≤ C

k∑
i=1

Pz(Si = z′)E
(

1

1 + ‖Sk−i‖d−2

)

≤ C

k∑
i=1

e−c‖z
′‖2/i

i
√
i

1

1 +
√
k − i

,

where for the second and third lines we used the Strong Markov Property, and Cauchy-Schwarz
and (3.3) for the fourth one. The last sum above can be bounded by first separating it into two
sums, one with indices i smaller than k/2, and the other sum over indices i ≥ k/2. Then using
a comparison with an integral for the first sum, one can see that

Pz
(
Ez′,k,U ∆Ez′,U

)
≤ C 1

‖z′‖
√
k
e−c‖z

′‖2/(2k).

In particular

sup
k≥1

Pz
(
Ez′,k,U ∆Ez′,U

)
= O

(
1

‖z′‖2

)
.

Then it follows by using again the Markov property and (2.3), that

P
(
Ez,U , Ez′,n,U ∆Ez′,U , Hz < Hz′

)
≤ P

(
Ez′,n,U ∆Ez′,U , Hz < Hz′

)
=

∑
k≤n

P(Hz = n− k)Pz
(
Ez′,k,U ∆Ez′,U

)
≤ P(Hz ≤ n) sup

k≥1
Pz
(
Ez′,k,U ∆Ez′,U

)
= O

(
1

‖z‖d−2
× 1

‖z′‖2

)
.

In conclusion, one can indeed replace the event Ez′,n,U by Ez′,U in (3.16). Now in the remaining
sum, we gather together the pairs (z, z′) and (z,−z′), and we get, using Cauchy-Schwarz again,∣∣∣∣∣∣

∑
1≤2‖z‖≤‖z′‖≤n

〈z, z′〉
(1 + ‖z‖d)(1 + ‖z′‖d)

P
(
Ez,U , Ez′,U , Hz < Hz′

)∣∣∣∣∣∣ (3.17)

≤
∑

1≤2‖z‖≤‖z′‖≤n

2

‖z‖d−1‖z′‖d−1

∣∣∣P (Ez,U , Ez′,U , Hz < Hz′
)
− P

(
Ez,U , E−z′,U , Hz < H−z′

) ∣∣∣.
Then for any 1 ≤ ‖z‖ ≤ ‖z′‖/2, we have

P
(
Ez,U , Ez′,U , Hz < Hz′

)
=

∑
y∈∂B(z,‖z‖/2)

P
(
E∗z,U , Hz < Hz′ , Sτz = y

)
Py
(
Hz+V0 =∞, Ez′,U

)
, (3.18)

where by ∂B(z, ‖z‖/2) we denote the external boundary of B(z, ‖z‖/2), and where

E∗z,U := {V0 ∩ {S0 − z, . . . , Sτz − z}c ∼ U}.
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Now for any y ∈ ∂B(z, ‖z‖/2), and ‖z′‖ ≥ 2‖z‖, by using again (2.3) we get

Py
(
Hz+V0 =∞, Ez′,U

)
= Py

(
Ez′,U

)
−O

(
1

‖z‖d−2‖z′‖d−2

)
. (3.19)

Moreover, the same argument as in the proof of Lemma 2.1, shows that if y and y′ are neighbors,

Py
(
Ez′,U

)
= Py′

(
Ez′,U

)
+O

(
1

‖z′ − y‖d−1

)
.

Therefore if 1 ≤ ‖z‖ ≤ ‖z′‖/2 and y ∈ ∂B(z, ‖z‖/2) we get

Py
(
Ez′,U

)
= P0

(
Ez′,U

)
+O

(
‖y‖

‖z′ − y‖d−1

)
= P0

(
Ez′,U

)
+O

(
‖z‖
‖z′‖d−1

)
. (3.20)

On the other hand, by symmetry, for any U ,

P0

(
Ez′,U

)
= P0

(
E−z′,U

)
.

By combining this with (3.17), (3.18), (3.19) and (3.20), we obtain (3.13) and conclude the proof
of (3.4).

4 Lower Bound on the Variance

In this section, we prove Proposition 1.7. The proof is inspired by the proof of Theorem 4.11 in
[MS], where the authors use lazyness of the walk. Here, since the walk we consider is not lazy,
we use instead the notion of double backtracks. We say that the simple random walk makes
a double backtrack at time n, when Sn+1 = Sn−1 and Sn+2 = Sn. When this happens the
range (and its boundary) remain constant during steps {n+ 1, n+ 2}. With this observation in
mind, a lower bound on the variance is obtained as we decompose the simple random walk into
two independent processes: a clock process counting the number of double-backtracks (at even
times), and a trajectory without double-backtrack (at even times).

4.1 Clock Process

We construct by induction a no-double backtrack walk (S̃n, n ∈ N). First, S̃0 = 0, and S̃1 and
S̃2 − S̃1 are chosen uniformly at random among the elements of V0 (the set of neighbors of the
origin). Next, assume that S̃k has been defined for all k ≤ 2n, for some n ≥ 1. Let N2 = {(x, y) :
x ∼ 0 and y ∼ x} and choose (X,Y ) uniformly at random in N2 \ {

(
S̃2n−1 − S̃2n, 0

)
}. Then set

S̃2n+1 = S̃2n +X and S̃2n+2 = S̃2n + Y. (4.1)

Thus, the walk S̃ makes no double-backtrack at even times. Note that by sampling uniformly in
the whole of N2 we would have generated a simple random walk (SRW). Now, to build a SRW
out of S̃, it is enough to add at each even time a geometric number of double-backtracks. The
geometric law is given by

P(ξ = k) = (1− p)pk for all k ≥ 0, (4.2)

with p = 1/(2d)2. Note that the mean of ξ is equal to p/(1 − p). Now, consider a sequence
(ξn, n ≥ 1) of i.i.d. random variables distributed like ξ and independent of S̃. Then define

Ñ0 = Ñ1 = 0 and Ñk :=

[k/2]∑
i=1

ξi for k ≥ 2. (4.3)
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A SRW can be built out from S̃ and Ñ as follows. First, Si = S̃i for i = 0, 1, 2. Then, for any
integer k ≥ 1

S2i−1 = S̃2k−1 and S2i = S̃2k for all i ∈ [k + Ñ2(k−1), k + Ñ2k].

This implies that if R̃ is the range of S̃ and ∂R̃ its boundary, then for any integer k

R
k+2Ñk

= R̃k and ∂R
k+2Ñk

= ∂R̃k. (4.4)

4.2 A Law of Large Numbers and some consequences

Recall that Okada [Ok1] proved a law of large numbers for |∂Rn|, see (1.3), and call νd the limit
of |∂Rn|/n. Since Ñn/n also converges almost surely toward p/[2(1− p)], we deduce from (4.4)
that

|∂R̃n|
n

−→ νd
1− p

almost surely. (4.5)

Let us show now another useful property. We claim that for any α > 0,

lim
r→∞

P
(
|(R′∞)+ ∩ R̃+

r | ≥ αr
)

= 0, (4.6)

where R′∞ is the total range of another simple random walk independent of R̃. To see this recall
that the process (Rn) is increasing, and therefore using (4.4) one deduce

P
(
|(R′∞)+ ∩ R̃+

r | ≥ αr
)
≤ P

(
Ñr ≥

p

1− p
r
)

+ P
(
|(R′∞)+ ∩R+

Cr| ≥ αr
)
,

with C = 2p/(1− p) + 1. The first term on the right-hand side goes to 0, in virtue of the law of
large numbers satisfied by Ñ , and the second one also as can be seen using Markov’s inequality
and the estimate:

E[|(R′∞)+ ∩R+
Cr|] ≤

∑
x,y∈V 0

∑
z∈Zd

G(0, z + x)GCr(0, z + y) = O(
√
r log r),

which follows from (2.3) and [LG, Theorem 3.6].
A consequence of (4.6) is the following. Define c = νd/[2(1 − p)]. We have that for k large

enough, any t ≥ 1, and r ≥
√
k

P
(
|∂R̃k| ≥ t

)
≥ 1

2
=⇒ P

(
|∂R̃k+r| ≥ t+ cr

)
≥ 1

4
, (4.7)

and also

P
(
|∂R̃k| ≤ t

)
≥ 1

2
=⇒ P

(
|∂R̃k−r| ≤ t− cr

)
≥ 1

4
. (4.8)

To see this first note that the set-inequality (1.9) holds as well for R̃. Hence, with evident
notation

|∂R̃k+r| ≥ |∂R̃r|+ |∂R̃(r, k + r)| − 2|R̃+(r, r + k) ∩ R̃+
r |. (4.9)

Now observe that the last intersection term is stochastically dominated by |(R′∞)+ ∩ R̃+
r |, with

R′∞ a copy of R∞, independent of R̃+
r . Therefore, (4.5), (4.6) and (4.9) immediately give (4.7)

and (4.8).
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4.3 Lower Bound

First, by using (1.13), there is a positive constant C0 > 2d, such that

|E[|∂Rn|]− νdn| ≤ C0

√
n for all n ≥ 1. (4.10)

Take kn to be the integer part of (1− p)n. We have either of the two possibilities

(i) P
(
|∂R̃kn | ≤ νdn

)
≥ 1

2
or (ii) P

(
|∂R̃kn | ≥ νdn

)
≥ 1

2
. (4.11)

Assume for instance that (i) holds, and note that (ii) would be treated symmetrically. Define,
in = [(1− p)(n−A

√
n)], with A = 3C0/(c(1− p)), and note that using (4.8)

P
(
|∂R̃in | ≤ νdn− 3C0

√
n
)
) ≥ 1

4
, (4.12)

for n large enough. Now set

Bn =

{
2Ñin − 2E[Ñin ]√

n
∈ [A+ 1, A+ 2]

}
.

Note that there is a constant cA > 0, such that for all n large enough

P(Bn) ≥ cA. (4.13)

Moreover, by construction,

Bn ⊂
{
in + 2Ñin ∈ [n, n+ 3

√
n]
}
. (4.14)

Now using the independence of Ñ and ∂R̃, (4.4), (4.12), (4.13) and (4.14), we deduce that

P
(
∃m ∈ {0, . . . , 3

√
n} : |∂Rn+m| ≤ νdn− 3C0

√
n
)
≥ cA

4
.

Then one can use the deterministic bound:

|∂Rn| ≤ |∂Rn+m|+ 2dm,

which holds for all n ≥ 1 and m ≥ 0. This gives

P(|∂Rn| ≤ νdn− 2C0

√
n) ≥ cA

4
,

which implies that Var(|∂Rn|)/n ≥ C2
0cA/4 > 0, using (4.10).

5 On Le Gall’s decomposition

In this Section, we establish Proposition 1.6 and Theorem 1.8.
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5.1 Mean and Variance

Inequality (1.9) holds since

z ∈ ∂R(0, n)\
(
Sn +R(n, n+m)

)+ ∪ ∂(Sn +R(n, n+m))\R+(0, n) =⇒ z ∈ ∂R(0, n+m).

Define
X(i, j) = |∂R(i, j)| and X(i, j) = X(i, j)− E[X(i, j)].

Observe that in (1.9) the deviation from linearity is written in terms of an intersection of two
independent range-like sets. This emphasizes the similarity between range and boundary of the
range. Now (1.9) implies the same inequalities for the expectation.

0 ≥ E[X(0, n+m)]−
(
E[X(0, n)] + E[X(n, n+m)]

)
≥ −E[Z(n,m)]. (5.1)

Combining (1.9) and (5.1), we obtain our key (and simple) estimates

|X(0, n+m)−
(
X(0, n) +X(n, n+m)

)
| ≤ max

(
Z(n,m),E[Z(n,m)]

)
. (5.2)

If ‖X‖p = (E[Xp])1/p, then using the triangle inequality, we obtain for any p > 0,∣∣‖X(0, n+m)‖p − ‖X(0, n) +X(n, n+m)‖p
∣∣ ≤ ‖Z(n,m)‖p + ‖Z(n,m)‖1. (5.3)

The deviation from linearity of the centered p-th moment will then depend on the p-th moment of
Z(n,m). We invoke now Hammersley’s Lemma [HA], which extends the classical subadditivity
argument in a useful manner.

Lemma 5.1. [Hammersley] Let (an), (bn), and (b′n) be sequences such that

an + am − b′n+m ≤ am+n ≤ an + am + bn+m for all m and n. (5.4)

Assume also that the sequences (bn) and (b′n) are positive and non-decreasing, and satisfy∑
n>0

bn + b′n
n(n+ 1)

<∞. (5.5)

Then, the limit of an/n exists, and

−b
′
n

n
+ 4

∑
k>2n

b′k
k(k + 1)

≥ an
n
− lim
k→∞

ak
k
≥ +

bn
n
− 4

∑
k>2n

bk
k(k + 1)

. (5.6)

We obtain now the following moment estimate.

Lemma 5.2. For any integer k, there is a constant Ck such that for any n,m integers,

E
[
Zk(n,m)

]
≤ Ck

(
ψkd(n)ψkd(m)

)1/2
. (5.7)

Recall that ψd is defined in (1.11).

Proof. Observe that Z(n,m) is bounded as follows.

Z(n,m) ≤ 2
∑
z∈Zd

1I{z ∈ R+(0, n) ∩
(
Sn +R+(n, n+m)

)
}

≤ 2
∑
z∈Zd

1I{z ∈
←−
R+(0, n) ∩R+(n, n+m)}

≤ 2
∑
x∈V 0

∑
y∈V 0

∑
z∈Zd

1I{z + x ∈
←−
R(0, n), z + y ∈ R(n, n+m)}.
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We now take the expectation of the k-th power, and use the independence of
←−
R(0, n) and

R(n, n+m). Then (recalling the defintion (2.4) of Gn and using (2.5) for the last inequality)

E[Zk(n,m)] ≤ 2k
∑

x1,y1∈V 0

. . .
∑

xk,yk∈V 0

∑
z1,...,zk

E

[
k∏
i=1

1I{zi + xi ∈
←−
R(0, n)}1I{zi + yi ∈ R(n, n+m)}

]

≤ 2k
∑

x1,y1∈V 0

. . .
∑

xk,yk∈V 0

∑
z1,...,zk

P
(
Hzi+xi < n, ∀i = 1, . . . , k

)
P
(
Hzi+yi < m, ∀i = 1, . . . , k

)
≤ 2k|V 0|2k

( ∑
z1,...,zk

P
(
Hzi < n, ∀i = 1, . . . , k

)2)1/2( ∑
z1,...,zk

P
(
Hzi < m, ∀i = 1, . . . , k

)2)1/2

≤ 2k|V 0|2kk!
( ∑
z1,...,zk

G2
n(0, z1) . . . G2

n(zk−1, zk)
)1/2( ∑

z1,...,zk

G2
m(0, z1) . . . G2

m(zk−1, zk)
)1/2

≤ Ck

(
ψkd(n)ψkd(m)

)1/2
,

which concludes the proof.

Henceforth, and for simplicity, we think of ψd of (1.11) rather as ψ3(n) = O(
√
n), ψ4(n) =

O(log(n)) and for d ≥ 5, ψd(n) = O(1) (in other words, we aggregate in ψd innocuous constants).
As an immediate consequence of (5.1) and Lemma 5.2, we obtain for any n,m ∈ N,

E[|∂Rn|] + E[|∂Rm|]−max(ψd(n), ψd(m)) ≤ E[|∂Rn+m|] ≤ E[|∂Rn|] + E[|∂Rm|]. (5.8)

The inequalities of (5.8) and Hammersley’s Lemma imply that the limit of E[|∂Rn|]/n exists
and it yields (1.13) of Theorem 1.8.

Variance of X(0, n). Let us write (5.3) for p = 2∣∣‖X(0, n+m)‖2 − ‖X(0, n) +X(n, n+m)‖2
∣∣ ≤ 2‖Z(n,m)‖2. (5.9)

Now, the independence of X(0, n) and X(n, n+m) gives

‖X(0, n) +X(n, n+m)‖22 = ‖X(0, n)‖22 + ‖X(0,m)‖22. (5.10)

By taking squares on both sides of (5.9) and using (5.10), we obtain

‖X(0, n+m)‖22 ≤‖X(0, n)‖22 + ‖X(0,m)‖22 + 4‖X(0, n) +X(n, n+m)‖2‖Z(n,m)‖2
+ 4‖Z(n,m)‖22,

(5.11)

and

‖X(0, n)‖22 + ‖X(0,m)‖22 ≤‖X(0, n+m)‖22 + 4‖X(0, n+m)‖2‖Z(n,m)‖2
+ 4‖Z(n,m)‖22.

(5.12)

Now define for ` ≥ 1,
A` := sup

2`<i≤2`+1

‖X(0, i)‖22.

Next, using (5.10), (5.11) and Lemma 5.2 with k = 2, we deduce that for any ` ≥ 1 and ε > 0
(using also the inequality 2ab ≤ εa2 + b2/ε),

A`+1 ≤ (1 + ε)2A` + (1 +
1

ε
)ψ2

d(2
`). (5.13)
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We iterate this inequality L times to obtain for some constant C independent of L

AL ≤ C(1 + ε)L2L + C(1 +
1

ε
)
L∑
`=1

(1 + ε)`−12`−1ψ2
d(2

L−`)

≤ C L2 2L when we choose ε =
1

L
.

(5.14)

Then we use the rough bound of (5.14) as an a priori bound for the upper and lower bounds re-
spectively (5.11) and (5.12) for the sequence an = Var

(
X(0, n)

)
, in order to apply Hammersley’s

Lemma with bn = b′n =
√
n log n×ψd(n). In dimension four or more we do fulfill the hypotheses

of Hammersley’s Lemma, which in turn produces the improved bound Var(|∂Rn|) ≤ Cn, and
then again we can use Hammersley’s Lemma with a smaller bn = b′n =

√
nψd(n) which eventu-

ally yields (1.14) of Theorem 1.8. The fact that the limit of the normalized variance is positive
follows from Proposition 1.7.

5.2 Central Limit Theorem

The principle of Le Gall’s decomposition is to repeat dividing each strand into smaller and
smaller pieces producing independent boundaries of shifted ranges. For two reals s, t let [s], [t]

be their integer parts and define X(s, t) = X([s], [t]). For ` and k integer, let X
(`)
k,n = X((k −

1)n/2`, kn/2`). Let also Z
(`)
k,n be the functional of the two strands obtained by dividing the k-th

strand after `− 1 divisions. In other words, as in (1.10) (but without translating here) let

Z
(`)
k,n = |U ∩ Ũ+|+ |U+ ∩ Ũ |,

with
U := {S[(k−1) n

2`
], . . . , S[(2k−1) n

2`+1 ]}, and Ũ := {S[(2k−1) n

2`+1 ], . . . , S[k n

2`
]}.

Thus, after L divisions, with 2L ≤ n, we get

2L∑
i=1

X
(L)
i,n −

L∑
`=1

2`−1∑
i=1

Z
(`)
i,n ≤ X(0, n) ≤

2L∑
i=1

X
(L)
i,n .

The key point is that {X(L)
i,n , i = 1, . . . , 2L} are independent, and have the same law as

X(0, n/2L) or X(0, n/2L + 1). Now, we define the (nonnegative) error term E(n) as

X(0, n) =
2L∑
i=1

X
(L)
i,n − E(n),

and (1.9) and (1.13) imply that

E[E(n)] ≤
L∑
`=1

2`ψd(
n

2`
).

Note that, in dimension d ≥ 4, we can choose L growing to infinity with n, and such that
E[E(n)]/

√
n goes to 0: for instance 2L =

√
n/ log2(n). Therefore, for such choice of L, it suffices

to prove the Central Limit Theorem for the sum
∑2L

i=1X
(L)
i,n . Our strategy is to apply the

Lindeberg-Feller triangular array Theorem, that we recall for convenience (see for instance [D,
Theorem 3.4.5] for a proof).
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Theorem 5.3 (Lindeberg-Feller). For each integer N let (XN,i : 1 ≤ i ≤ N) be a collection
of independent random variables with zero mean. Suppose that the following two conditions are
satisfied
(i)
∑N

i=1 E[X2
N,i]→ σ2 > 0 as N →∞ and

(ii)
∑N

i=1 E[(XN,i)
21I{|XN,i| > ε}]→ 0 as N →∞ for all ε > 0.

Then, SN = XN,1 + . . .+XN,N =⇒ σN (0, 1) as N →∞.

We apply Lindeberg-Feller’s Theorem with N = 2L and XN,i = X
L
i,n/
√
n. The condition (i)

was proved in the previous subsection. The condition (ii) is usually called Lindeberg’s condition.
To check (ii), we estimate the fourth moment of X(0, n), and as was noticed by Le Gall [LG,
Remark (iii) p.503], this is achieved using the previous decomposition and a sub-additivity
argument. More precisely, using (5.3) with p = 4, we have

‖X(0, n+m)‖4 ≤
((

E[X
4
(0, n)] + 6E[X

2
(0, n)]E[X

2
(0,m)] + E[X

4
(0,m)]

))1/4

+
√
ψd(n)ψd(m).

Thus, if we define for ` ≥ 1,
A′` := sup

2`<i≤2`+1

‖X(0, i)‖4,

we obtain (using also that (a+ b)1/4 ≤ a1/4 + b1/4 for any a, b),

A′`+1 ≤ (2(A′`)
4 + 6A2

` )
1/4 + ψd(2

`)

≤ 21/4A′` + 61/4A
1/2
` + ψd(2

`).

Define then A′′` = sup2`<i≤2`+1 ‖X(0, i)‖4/2`/2, and recall that A` ≤ Cd2
`, for some constant

Cd > 0, in dimension four and larger. Therefore if d ≥ 4,

A′′`+1 ≤
21/4

21/2
A′′` + 61/4Cd +

ψd(2
`)

2(`+1)/2
.

This recursive inequality implies that (A′′` ) is bounded, as well as n 7→ ‖X(0, n)‖24/n. We then
deduce that Lindeberg’s condition is satisfied, and the Central Limit Theorem holds for X(0, n).

Appendix

A Estimates on Ranges

In this section, we prove Proposition 1.4. We first introduce some other range-like sets allowing
us to use the approach of Jain and Pruitt [JP]. Recall that the sets Rn,V are disjoint, and for
U ⊂ V0, define

Rn,U :=
⋃
V⊃U
Rn,V = {Sk : Sk /∈ Rk−1 and Si /∈ (Sk + U), i ≤ k − 1, 1 ≤ k ≤ n}. (A.1)

Next for U ⊂ V0, define

α(U) =
∣∣Rn,U ∣∣− E

(∣∣Rn,U ∣∣) and β(U) =
∣∣Rn,U ∣∣− E

(∣∣Rn,U ∣∣).
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The definition (A.1) yields

α(U) =
∑
V⊃U

β(V ),

and this relation is inverted as follows:

β(V ) =
∑
U⊃V

(−1)|U\V | α(U).

As a consequence, for V ⊂ V0,

Var(|Rn,V |) = E
(
β2(V )

)
≤ 2|V0\V |

∑
U⊃V

E
(
α2(U)

)
.

We will see below that each Rn,V has the same law as a range-like functional that Jain and
Pruitt analyze by using a last passage decomposition, after introducing some new variables.
But let us give more details now. So first, we fix some V ⊂ V0, and for n ∈ N, set Znn = 1, and

Zi = 1
(
{Si+k 6∈ (Si + V ) ∀k ≥ 1}

)
∀i ∈ N,

Zni = 1
(
{Si+k 6∈ (Si + V ) ∀k = 1, . . . , n− i}

)
∀i < n

Wn
i = Zni − Zi ∀i ≤ n,

where
V = V ∪ {0}.

A key point in this decomposition is that Zn and Zni are independent. Now, define

Rn,V = {Sk : Si 6∈ Sk + V , n ≥ i > k, 0 ≤ k < n}, and |Rn,V | =
n−1∑
i=0

Zni . (A.2)

Since the increments are symmetric and independent, |Rn,V | and |Rn,V | are equal in law. Now,
equality (A.2) reads as

|Rn,V | =
n−1∑
i=0

Zi +

n−1∑
i=0

Wn
i .

Now using that Var(|Rn,V |) ≤ E[(|Rn,V | −
∑

i≤n−1 E[Zi])
2], and that (a + b)2 ≤ 2(a2 + b2) we

obtain

Var(|Rn,V |) ≤ 2
n−1∑
i=1

Var(Zi) + 4
n−1∑
j=1

j−1∑
i=0

Cov(Zi, Zj) + 4
n−1∑
j=1

j∑
i=0

E
(
Wn
i W

n
j

)
. (A.3)

Next for i < j < n, we have (recall the definition (2.1))

E
(
Wn
i W

n
j

)
= P

(
n < H

(i+1)

Si+V
<∞, n < H

(j+1)

Sj+V
<∞

)
=

∑
x/∈V

P(Sj−i = x, HV > j − i)Px
(
n− j < HV <∞, n− j < Hx+V <∞

)
≤

∑
x 6∈V

P(Sj−i = x, HV > j − i)Px
(
n− j < HV <∞, n− j < Hx+V <∞

)
,
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where for the second equality we just used the Markov property and translation invariance of
the walk. The last inequality is written to cover as well the case i = j. Therefore,

j∑
i=0

E
(
Wn
i W

n
j

)
≤

∑
x6∈V

Gj(0, x)Px
(
HV <∞, n− j < Hx+V <∞

)
≤

∑
y,z∈V

∑
x/∈V

Gj(0, x)Px
(
Hy <∞, n− j < Hx+z <∞

)
.

Then Lemma 4 of [JP] shows that

j∑
i=0

E
(
Wn
i W

n
j

)
=


O
(√

j
n−j

)
if d = 3

O
(

log j
n−j

)
if d = 4

O
(
(n− j)1−d/2) if d ≥ 5,

and thus

n−1∑
j=1

j∑
i=0

E
(
Wn
i W

n
j

)
=


O(n) if d = 3
O((log n)2) if d = 4
O(1) if d ≥ 5.

(A.4)

Now, for i < j < n, by using that Zji and Zj are independent, we get

Cov(Zi, Zj) = −Cov(W j
i , Zj).

On the other hand, assuming i < j ≤ n,

E(W j
i Zj) = P

(
j < H

(i+1)

Si+V
<∞, H(j+1)

Sj+V
=∞

)
=

∑
x 6∈V

P(Sj−i = x, HV > j − i)Px
(
HV <∞, Hx+V =∞

)
.

Since in addition,
E(Zj) = Px

(
Hx+V =∞

)
for all x,

and

E(W j
i ) =

∑
x/∈V

P
(
Sj−i = x, HV > j − i

)
Px
(
HV <∞

)
,

we deduce that

Cov(Zi, Zj) =
∑
x 6∈V

P(Sj−i = x, HV > j − i) bV (x),

with

bV (x) := Px
(
HV <∞

)
Px
(
Hx+V =∞

)
− Px

(
HV <∞, Hx+V =∞

)
. (A.5)

Now we need the following equivalent of Lemma 5 of [JP].
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Lemma A.1. For any V ⊂ V0, and x /∈ V ,

bV (x) = Px
(
HV < Hx+V <∞

)
Px(HV =∞) + E(x, V ),

with

E(x, V ) :=
∑

z∈x+V

Px
(
SHx+V

= z, Hx+V < HV

)(
Pz
(
HV <∞

)
− Px

(
HV <∞

))
.

Moreover,

|E(x, V )| = O
(

1

‖x‖d−1

)
.

Assuming this lemma for a moment, we get

aj =

j−1∑
i=0

Cov(Zi, Zj) =

j−1∑
i=0

∑
x 6∈V

P(Sj−i = x, HV > j − i) bV (x)

= O

∑
x/∈V

Gj(0, x)

‖x‖d−1

 = O

 ∑
1≤‖x‖≤j

1

‖x‖2d−3


=

{
O(log j) if d = 3
O(1) if d ≥ 4,

from which we deduce that

n−1∑
j=0

aj =

{
O(n log n) if d = 3
O(n) if d ≥ 4.

(A.6)

Then Proposition 1.4 follows from (A.3), (A.4) and (A.6).

Proof of Lemma A.1. Note first that

bV (x) = Px
(
HV <∞, Hx+V <∞

)
− Px

(
HV <∞

)
Px
(
Hx+V <∞

)
= Px

(
HV < Hx+V <∞

)
+ Px

(
Hx+V < HV <∞

)
− Px

(
HV <∞

)
Px
(
Hx+V <∞

)
.

Moreover,

Px
(
Hx+V < HV <∞

)
=

∑
z∈x+V

Px
(
SHx+V

= z, Hx+V < HV

)
Pz
(
HV <∞

)
= Px

(
Hx+V < HV

)
Px(HV <∞) + E(x, V ).

The first assertion of the lemma follows. The last assertion is then a direct consequence of
standard asymptotics on the gradient of the Green’s function (see for instance [LL, Corollary
4.3.3]). �

Remark A.2. By adapting the argument in [JP] we could also prove that in dimension 3,
Var(|Rn,V |) ∼ σ2n log n, for some constant σ > 0, and then obtain a central limit theorem for
this modified range. However it is not clear how to deduce from it an analogous result for |Rn,V |,
which would be useful in view of a potential application to the boundary of the range.
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