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CAPACITY OF THE RANGE IN DIMENSION 5: ROUGH
VARIANCE BOUNDS

By BRUNO SCHAPIRA

This is a companion paper to [Sch], where we prove some techni-
cal estimates. In particular we obtain an upper bound for the variance
of the capacity of the range.

1. Introduction. We prove here technical estimates needed for the
companion paper [Sch]. In particular the estimates gathered here show the
following rough variance bound:

Var(Cap(R,,)) = O(nlogn),
where Ry, = {So,...,S,} is the range of a random walk on Z°.

2. Preliminaries.

2.1. Notation. We recall here some of the main notation of [Sch]. We
consider (X;);>1 a sequence of independent and identically distributed ran-
dom variables, whose law is a symmetric and irreducible probability mea-
sure having a finite d-th moment. The associated random walk is the process
(Sn)n>0 defined by S,, = So+ X1+ - -+ X,,, for all n > 0. The walk is called
aperiodic if the probability to be at the origin at time n is nonzero for all
n large enough, and it is called bipartite if this probability is nonzero only
when n is even.

For z € Z%, we denote by P, the law of the walk starting from Sy = x.
When z = 0, we simply write it as P. We denote its total range as Roo :=
{Sk}rk>0, and for 0 < k <n < 400, set Rlk,n| := {Sk,...,Sn}.

For an integer k > 2, the law of k independent random walks (with the
same step distribution) starting from some w1, ...,z € Z°, is denoted by
Ps,.... .z, or simply by P when they all start from the origin.

We define

(2.1) Ha:=inf{n>0 : S, € A}, and HJ}:=inf{n>1: S, € A},

respectively for the hitting time and first return time to a subset A C Z%,
that we abbreviate respectively as H, and H; when A is a singleton {z}.
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We let ||z]| be the Euclidean norm of 2 € Z%. If X; has covariance matrix
I' = AA?, we define its associated norm as

T (x) = |- T~ 'a'? = A" 2],

and set J(z) = d~27*(z) (see [LL10] p.4 for more details).

For a and b some nonnegative reals, we let a A b := min(a,b) and a V
b := max(a,b). We use the letters ¢ and C' to denote constants (which
could depend on the covariance matrix of the walk), whose values might
change from line to line. We also use standard notation for the comparison
of functions: we write f = O(g), or sometimes f < g, if there exists a
constant C' > 0, such that f(z) < Cg(x), for all z. Likewise, f = o(g) means
that f/g — 0, and f ~ g means that f and g are equivalent, that is if
|f —g| = o(f). Finally we write f =< g, when both f = O(g), and g = O(f).

2.2. Transition kernel and Green’s function. We denote by p,(z) the
probability that a random walk starting from the origin ends up at position
x € Z% after n steps, that is p,(z) := P[S, = z], and note that for any
x,y € Z% one has P,[S, = y] = pn(y — z). Recall the definitions of I" and
J* from the previous subsection, and define

1 _J*2<I)2
- e n
(27rn)%/2/det T
THEOREM 2.1 (Local Central Limit Theorem). There exists a con-

stant C' > 0, such that for alln > 1, and all x € Z¢,

_ C
[pn(7) — Py ()] < @

(2.2) Pn(2) :=

i the case of an aperiodic walk, and for bipartite walks,

_ C
[P0 () + Pry1(7) — 2P, (2)] < @

In addition, under our hypotheses (in particular assuming E[|| X1]|¢] < oo),
there exists a constant C' > 0, such that for any n > 1 and any = € Z¢ (see
Proposition 2.4.6 in [LL10]),
nd2 i |l < Vi,

]|~ if [l > V.

It is also known (see the proof of Proposition 2.4.6 in [LL10]) that

(2.3) pulz) < C- {

(2.4) E[[|Sa]|Y] = O(n?/?).
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Together with the reflection principle (see Proposition 1.6.2 in [LL10]), and
Markov’s inequality, this gives that for any n > 1 and r > 1,

(2.5) P {Oxgggnnsku > r] <C- (iﬁ)d

Now we define for £ > 0, Gy(z) := }_,~,pn(x). The Green’s function is
the function G := Gy. A union bound gives

(2.6) Plx € R[¢,00)] < Gy(x).
By (2.3) there exists a constant C' > 0, such that for any 2 € Z¢, and £ > 0,
C

(2.7) Gy(x) < = .
)22 + £ + 1

It follows from this bound (together with the corresponding lower bound
G(z) > c||z]|>~¢, which can be deduced from Theorem 2.1), and the fact
that G is harmonic on Z? \ {0}, that the hitting probability of a ball is
bounded as follows (see the proof of [LL10, Proposition 6.4.2]):

(2.8)

,r.d—2
P, [777" < OO] =0 <

We shall need as well some control on the overshoot. We state the result we
need as a lemma and provide a short proof for the sake of completeness.

LEMMA 2.2 (Overshoot Lemma). There exists a constant C > 0, such
that for all v > 1, and all x € Z%, with ||z| > r,

C

P.[n, < oo, ||S,.|| <7/2] < —————.
$[n7‘ H TH— /]_1_’_H$Hd_2

ProoF. We closely follow the proof of Lemma 5.1.9 in [LL10]. Note first
that one can alway assume that r is large enough, for otherwise the result
follows from (2.8). Then define for & > 0,

Nr
Yii= Y {r+k<|Sul <r+(k+1)}.

n=0

Let

gl k) =B [Vi] =D Pulr+k <||Sull S v+ k+1,n<n,l.
n=0
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One has

Pyl <00, [[Sy, | <7/21 =D Pulnr =n+1, |18, | <r/2)

n=0

(o] o
=D ) Palpe=n+1, 1S, < r/2, 7+ k< |[Sull <r+k+1]
n=0 k=0

o0 oo
r
< E g P, [nr>n,r+k§||5n||§7"+k+1, ||Sn+1—Sn||2§+k:|
k=0n=0

g(x, k)P [HX1” > g +k] = gz, k) P [g+€§ X1 < %+€+1}
k=0 {=k
l

1 T

P{%—Ffﬁ [ X1 ] <%+€+1] kzog(x,k).

~
Il
=)

Now Theorem 2.1 shows that one has P,[||Sy2|| < 7] > p, for some constant
p > 0, uniformly in 7 (large enough), ¢ > 1, and r < ||z|| < r + £. It follows,
exactly as in the proof of Lemma 5.1.9 from [LL10], that for any ¢ > 1,

> |

max Z g9(z, k) <

<r+4¢
I=ll<r+£ 052

Using in addition (2.8), we get with the Markov property,

S glak) < r+0? 2,

~Y —
1 rlld—2
oSt + =
for some constant C' > 0. As a consequence one has

Py < 00, |[Sy. || < 7/2]

1 = T T
S ———— P[f < ||X —+/ 1] 0320 +1)?
ST L p sl < g+ i e Ty
1 1

E I 142 01X - /22101 %] = r/2}]

< —_,
R il ~ A ]2

since by hypothesis, the d-th moment of X7 is finite. O

2.3. Basic tools. We state here some basic results, which are (for the
most part) proved in [Sch].
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LEMMA 2.3. There exists C > 0, such that for all x € Z%, and ¢ > 0,

Y Gu(2)G(z— ) < ¢ .
ot x4t + 72 +1
LEMMA 2.4. One has,
(2.9 sup B(G(5, — )] = 0 (7).
zEeZ4 nz

and for any o € [0,4d),

1 1
2.10 El——m | =0 —— ).
(2.10) 30 [HHSn—xH"‘] <1+kua>

Moreover, when d =5,

(2.11) E (ZG(Sn))2 :o(i).

n>k

PROOF. Only the last statement needs a proof, the others are proved in
[Sch]. One simply write, using the Markov property at the second line,

E|(Yasn) | =X e@ewE | Y 1su=r 5=y

n>k nm>k

<2 G@)G) Y D pa(a)pely —2) =2 G(x)G(y)Gr(z)G(y — x)
T,y n>k £>0 z,Y

Lemma 2.3 1 (2.7) 1
S ) Gk S -
— ||| k

O]

LEMMA 2.5. Let S and S be two independent walks starting respectively
from the origin and some x € Z%. Let also £ and m be two given nonnegative
integers (possibly infinite for m). Define

Ti=inf{n >0 : S, € R[(,{+m]}.
Then, for any function F : 7Z¢ — R,

l+m
(2.12) Eoo[1{r < o0} F(S,)] < Y E[G(S; — 2)F(S))).
i=£
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In particular, uniformly in £ and m,

(2.13) Po [ < 00] = O (W) .

Moreover, uniformly in x € Z¢,

(2.14) By | | O m'f%d) ifm < oo
. T < o] = _
: o(r')

if m = oc.

3. Statement of the main results. Set
Oy = PSk[H;En =00 | Ry], and Z}} := 1{Sy # Sk, forall { =k +1,...,n},

for all 0 < k < n. By definition of the capacity one has
n
Cap(Rn) = > Z¢ - ¢
k=0

Consider now (Sy)nez a two-sided random walk starting from the origin
(that is (Sp)n>0 and (S_p)n>0 are two independent walks starting from the
origin), and denote its total range by R := {Sn tnez. Then for k > 0, let

(k) :=Pg, [H% = 00 | (Sp)nezl, and Z(k) := 1{S; # Sk, for all £ > k+1},

and define

Coi=>"Z(K)p(k), and W, := Cap(Ry)  Cu.
k=0

We first prove the following result.

LEMMA 3.1. One has
E[W7] = O(n).

Proor. Note that W,, = W,, 1 + W, 2, with

n n

Wi =Y (28— Z(k)¢}, and Wao =Y (¢F — (k) Z(k).
k=0 k=0
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Consider first the term W, ; which is easier. Observe that Z;} — Z(k) is
nonnegative and bounded by the indicator function of the event { Sy € R[n+
1,00)}. Bounding also ¢} by one, we get

EWai] <) > E(Z) — Z(0)(Z} — Z(k))]

=0 k=0
<Y > PS e Rn+1,00), S € Rln+ 1,00)].
£=0 k=0

Then noting that (Sp+1-t — Sn+1)k>0 and (Sp4+14% — Sn+1)k>0 are two in-
dependent random walks starting from the origin, we obtain

ntln+l n+1n+1
E(W?2,] <) Y P[Hs, < o0, Hs, <00l <23 Y P[Hg, < Hg, < ]
{=1 k=1 (=1 k=1
<2 P[Hg, < Hg, < oo] +P[Hg, < Hg, < o0].
1<l<k<n+1

Using next the Markov property and (2.6), we get with S and S two inde-
pendent random walks starting from the origin,

EWz]<2 Y E[G(S)G(Sk — So)] + E[G(Sk)G (S — So)]
1<0<k<n+1

<23 STE[G(S))] - EIG(Sy)] + EIG(Se + S)G(Sy)]
(=1 k=0
2

<4 s S EGE+5)| Eoq.

IEEZ5 220
We proceed similarly with W, 2. Observe first that for any k£ > 0,
0 < pp — (k) <Pg, [Hr(—o0,0) < 0 | S] + Ps; [HRpn,o0) < o0 | S].

Furthermore, for any 0 < ¢ < k < n, the two terms Pg,[Hg(_o0,0 < 0 | 5]
and Pg, [HR[n,) < 00 | S] are independent. Therefore,

n o n n 2
E[W;,] < E[(¢} — 0(€)(er — (k)] < 2 (ZP [HRjt,00) < w])
/=0 k=0 /=0
(3.1) + 4 PR3 N(Se+RY) # 2, R, N (S +RL) # 2],
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where in the last term Rl , R2 and R3, are the ranges of three (one-
sided) independent walks, independent of (Sy,)n>0, starting from the origin
(denoting here (S_,,),>0 as another walk (S3),,>0). Now (2.14) already shows
that the first term on the right hand side of (3.1) is O(n). For the second
one, note that for any 0 < ¢ < k < n, one has

PR3 N (Si+RY) # 2, R3, N (S +RE) # 2]
< E[IR3, N (Se + R - [R3, N (Se + RE)]
= E[E[RL N (Se+RL)| | S, $%- B[RS, N (Sk + RZ)| | S, 57

e (Y ash-50) (X asth - )
m>0

m2>0

e[ s ) (S i)

m>k m>k
1/2 1/2
2 2 (2.11) 1
<|(Tes)| El(Tosw)| o ()

using invariance by time reversal at the penultimate line, and Cauchy-
Schwarz at the last one. This concludes the proof of the lemma. ]

Now as noticed in [Sch], one has

n £
Var(Cp) =2 Y Cov(Z(0)p(0), Z(k)e(k)) + O(n).

(=1 k=1

We write now ¢(0) and ¢(k) as a sum of terms involving intersection and
non-intersection probabilities of different parts of the path (S,)nez. For
this, we consider some sequence of integers (ey)i>1 satisfying k > 2gy, for
all £ > 3, and whose value will be fixed later. One first step is to reduce the
influence of the random variables Z(0) and Z(k), which play a very minor
role in the whole proof. Thus we define

Zy:=1{Sy #0, Yl =1,... e}, and Zj := 1{Sy # Sk, V0 = k+1,... k+e}.
One has

E[|Z(0) — Zp|] = P[0 € Rlex + 1, 00)] (256) G-, (0) (2.7 0(6,;3/2),
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and the same estimate holds for E[|Z(k) — Zi||, by the Markov property.
Therefore,

Cov(Z(0)p(0), Z(k)p(k)) = Cov(Zop(0), Zyp(k) + O, '),

Then recall that we consider a two-sided walk (Sy,)nez, and that ¢(0) =

P[H;g(_oom) = 00 | S]. Thus one can decompose ¢(0) as follows:

©(0) =0 — w1 — w2 — 3+ Y12+ P13+ P23 — V1,23,
with

wo :=P[HF, =00 |S], ¢p1:= IP’[H;E

Rl-cier] = <00 Hyp g, oy =01 5],

(—007—Ek—1 R[—Sk,&‘k] -

— + + — — + +
po = P[HR[ek+1,k] < 00, Hy, =00 | 5], 3 := P[HR[kH,m) < oo, Hf oo | 5],

+ —
<00, Hp 1= | S,

—Ek k) [—ex.ex] —

1,2 = P[H{g < 00, H+

(—00,—ex—1] Rlex+1,k]

+
HRepen)

}:OO‘S]’

013 = P[H; < oo, HY

Rlk+1,00) < 09 = oo | 5],

(7007761671]

._ + + +
po3 = PHR . 415y <00 Hppq ooy <00 Hy o, o

©1,2,3 = ]P)[H£(_Oo’_€k_1] < 00, HY

+
Rlep+1.6] < 00 Hy

< oo, Hf }:oo\S].

k+1,00) [—ek.ck

We decompose similarly

o(k) = o — Y1 — Y2 — Y3+ Y12 + Y13+ Y23 — Y123,

where index 0 refers to the event of avoiding R[k — ey, k + €|, index 1 to the
event of hitting R(—oo, —1], index 2 to the event of hitting R[0, k — ex — 1]
and index 3 to the event of hitting R[k+ex+1,00) (for a walk starting from
Sj. this time). Note that ¢ and v are independent. Then write

(3.2)
3

Cov(Zop(0), Zep(k)) = — Y _ (Cov(Zopi, Zitbo) + Cov(Zowo, Zkti))
i=1

3
+ > Cov(Zopi, Zuy) + Y (Cov(Zowi, Zrtbo) + Cov(Zowo, Zrtbi)) + Rk,
ij=1 1<i<j<3

where Ry ) is an error term. The main purpose of this paper is to prove the
following estimates.

PROPOSITION 3.2.  One has |Ry| = O (5,;3/2).
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PROPOSITION 3.3. One has

(i) | Cov(Zop1,2, Zibo)| + | Cov(Zopo, Ziipa3)| = O (k3/2

(ii) | COV(Zotpl,g, Zki/Jo)|-|—| COV(Zotpo, Zk1/)173)| =0 (ﬁ . log(ﬁ) + m )
k

(iii) | Cov(Zopa,3, Ztbo)|+| Cov(Zowo, Zrthr,2)] = O ( s log(£) + 7t ﬂ)
In the same fashion as Part (i) of the previous proposition, we show:

ProposSITION 3.4. Foranyl <i<j <3,
€k 1
|Cov(Zopi. Ziy) = O (k). | Covlzugy. Zuwn) =0 ().
k3/2 Ek
Our last result deals with the first sum in the right-hand side of (3.2).

PROPOSITION 3.5. There exists a constant o € (0, 1), such that
Cov(Zop1, Ziyho) = Cov(Zowo, Zkibs) = 0,

g
‘ COV(Z()(,OQ, kao)’ + | COV(Z()QOO, de}Q)‘ =0 (]:;{37;> s

EO(
| CovlZagas Zun)| + | Cov(Zupn, )] = O (1555 ).
Altogether these propositions show that Var(Cap(R,)) = O(nlogn), just
by taking e := |k/4].

4. Proof of Proposition 3.2. We divide the proof into two lemmas.

LEMMA 4.1. One has

LEMMA 4.2. Foranyl <1< 3 <3, andanyl <0< 3,
—3/2 —3/2
Elpijthe] = O <€k / ) , and E[p;j]-Elp] =0 <5k / ) :

Observe that the (¢;;)i; and (v ;);; have the same law (up to reorder-
ing), and similarly for the (y;); and (¢;);. Furthermore, ¢; ; < ¢; for any 1, j.
Therefore by definition of Ry the proof of Proposition 3.2 readily follows
from these two lemmas. For their proofs, we will use the following fact.
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LEMMA 4.3. There exists C > 0, such that for any x,y € Z°,0 < { < m,

c L !
IPINCLCIINEEE <1+Hx\|+m>5<1+||y—rc\|+1+ﬂ+|lylf>'

i=f €75

PRrROOF. Consider first the case ||z|| < /m. By (2.3) and Lemma 2.3,

Lm/2] _
1 (14 m)5/2
pi(2)G(z=Y)pm-i(2—2) S ———55 Gi(2)G(z—y) S —F——,
2, 20 o 2 O L Vo]

with the convention that the first sum is zero when m < 2¢, and

1 (1—|—m)_5/2
< - _ _ < N P
> nIGC o) £ T 3 G006 S

i=|m/2| z€Z5

Likewise, when ||z| > y/m, applying again (2.3) and Lemma 2.3, we get

Z Z pi(2)G(z — Y)pm—i(z — x) N|| H5ZGZ 9 < L

= el s L+ VE+ ]yl

S [
Z Z pi(2)G(z — y)pm—i(z —2) S & H5 Z G(z - (z—2) 3 ma
= <15 e ’
which concludes the proof of the lemma. O

One can now give the proof of Lemma 4.1.

PrOOF OF LEMMA 4.1. Since @123 and 91 2,3 have the same law, it suf-

fices to prove the result for ¢ 2 3. Let (Sy,)nez and (gn)nzo be two indepen-
dent random walks starting from the origin. Define

mi=inf{n>1: S, € R(—o0, —ex—1]}, 7 :=inf{n > 1 : S, € Rlep+1,k]},

and B

m3:=1inf{n >1: 5, € R[k+1,00)}.
One has
(4.1) Elp123] < Z Plri, < 1y < 7y

i1 #1273
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We first consider the term corresponding to i1 = 1, i9 = 2, and i3 = 3. One
has by the Markov property,

(2.13) < 12) _k _ Qg
Pl <m<m<oo] < L = 2 < o} S G(Sll STjg)Al{g < oo}
a8l ] ~ & 15 =S

Now define G; := o ((5});<i) Vo ((Sp)n>0), and note that 71 is G;-measurable
for any ¢ > 0. Moreover, the Markov property and (2.3) show that

1 1
El— = G| < ——.
[1+||Si—sk| 'Q]NW_i
Therefore,
G(Si — Sn)
P[T1§7'2§7'3<OO ZE[]_{T1<OO}
1=E 1+m
k/2 k
5 E[G(S; — 2)] E[G(Si — 2)]
S Plr < o0, Sy, = 2] - e 2 ol Sl S P
S2 Fn<oeSu=a | 3 TE0— 2 =
2€Z5 1=¢g i=k/2
(2<9) 1 P ](223) 1
Pl < o0 .
Vkeg ' ~ ek

We consider next the term corresponding to ¢; = 1, i3 = 3 and i3 = 2, whose
analysis slightly differs from the previous one. First Lemma 4.3 gives

(4.2)

k
Pln <m<m <o = ZE 1{71<73<ooST3 y,Sk:x}ZG(S—
x,YyELd i=e

:Z ZZ]), Y)Pr—i(T — 2) P[71§73<oo,§T3:y|Sk:x]

z,yELS \i=¢ z€ZLP

1 ]P’[7'1§T3<OO‘S]€:$] 1{7'1§7'3<OO}
< +E — Sp,==z||.
S 2 el iy ( N T 1S a7

We then have

(2.13)
P[TIST3<OO‘S]€:$} S Ew]
1+ S, — ]
(2%2) 3 Ge, (y)G(y) Le‘m%a 23 1 T Ge, (y)G(y)
1+ fly — ] (14 llzl)v/ep, 1+ ly — |

5
yez ly—all< 15t
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Moreover, when [|z| > /), one has

Z Gek(y)G(y) (257) 1 Z 1 < 1 :
< THly=al ¥ TolP 2= Tly—al ~ P
ly—zl|<*5+ ly—=zl|<*5H

while, when ||z|| < /zk,
Z Ge (y)Gly) D 2 < 1
Ay =l €k
Therefore, it holds for any x,

1
1+ [=l)vey

(4.3) Pl <m<oo|Sy=2] 3

Similarly, one has

1{n <7< Gly — S,)G(y —
{m _NTS oo} S, =z| <E Z (y )Gy x)1{71<oo}
1+ Sy — | vz Lty —=]
(4.4)
L+ |1Sn —al? | ~ g L+ lly—=* ™ @+ 2l*)vEr
Injecting (4.3) and (4.4) into (4.2) finally gives
1
Pln<m<m<oo S )
[ <m<m ] ek
The other terms in (4.1) are entirely similar, so this concludes the proof of
the lemma. O

For the proof of Lemma 4.2, one needs some additional estimates that we
state as two separate lemmas.

LEMMA 4.4. There exists a constant C > 0, such that for any x,y € Z°,

S ()
= = HZ—.T”+ k—1)° \1+ |z — =z k—i
1 1 1 1 :
k572 (W + 5) T R (1t y—al) i llall < Vk

1 k .
e (1 Vet if |zl > V.

<C-
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PROOF. We proceed similarly as for the proof of Lemma 4.3. Assume first
that ||z|| < vE. On one hand, using Lemma 2.3, we get

1 pi(2)G(z — 1
S G <
Zz:k ngﬁ (I|z — ;UH_F\/is k3 gz:s e —y) SN
and,
k/2
i=ey se5 (Hz—xllJr\/i) 1+ ||z — ) k5/2 1+Hz—xH
< G (2)G(z—y) G., (2)G(z — )
TR L+ -] 1+ |z — 2]
le=ziz 5! Jo—all< gl

= 2

1 < 1 1 > 1 < 1 1 )
N + S +—.
TN+ lz)vEe T Tzl T RS2 T ]? e
On the other hand, by (2.3)

k— €k
Y i mrmatas) e B S st
72 sjavi | _x” + P ALz =2l vE—i i T

Furthermore,

k—Ek . _ _ 2 —1
Y 7m T T S Fa L Te e STl
i=k/2 Izl <2V

ll2l<2vk
and
kzek Z G(z—y) 1 < 1 Z M
=5 |2 H<2f B x“ +VE =) 1[Iz =] T g2l l2l|<2vR Ltz =l

< 1 1 .
g T+ ly— o]

Assume now that ||z|| > v/k. One has on one hand, using Lemma, 2.3,

k—eg
pi(2)G(2 —y) 1 1 1
2 X o Iz =2l +VEk—1) <1+||2—$||+x/k—z’>§||w||56k'

=k ||p—a> 13

2
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On the other hand,

k—eg

Y OX AT 7D 3
= o<l (lz =zl + VE =i L+ [lz =z ™ ku%/ = 1—|—Hz—x||
k
TP 2@+ [y — all)
and
oL PEICC—Y) VR s GGy
S VR S (=l VE = ™ falPer 1+ Ty — 2P
< vk
N lzlPer(1 + [ly — z[])’
concluding the proof of the lemma. O

LEMMA 4.5.  There exists a constant C > 0, such that for any x,y € Z°,

1

veEZP

1 (1L 1 1 NaD .
k2€k§ﬁ+1+llrll + oy T <1+||xu><1+||y—m||>) if ||z < Vk
log(%

= ) 1 1
NG .
B (1+||y—a:u + ﬁ) if ||z > V.

PROOF. Assume first that ||z|| < v/k. In this case it suffices to notice that
on one hand, for any « € {3,4}, one has

1
= : 5 =OWA),
vl<2vE (14 ||z —vl|*)(1+ Hy_UH4 )

and on the other hand, for any «, 8 € {0, 1},

1
= O(k P2 ),
P L (R T )

Assume next that ||z|| > v/k. In this case it is enough to observe that

1 1 1 1 1
2 ol Vi (1+ o —ol 1+ ||x|r> (le — ol + ver)? <1+nyu -

1 1 1 1 k2
S (et ‘ S 7
Lt |z —ol = T+lly—=| 1+|y—v 1+ ly — =)

k
vl <%k

L+ ly — ol

)
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log(12L)

1
||||Z [oll°(vEr + |z = v})> ™ S el

E3]

1 log(z0) /1 1
Z e ol (veEk +llz =) A+ ly—ol) ~ Jalf <\/%+1+Hy—fc|>'

O]

PRrROOF OF LEMMA 4.2. First note that for any ¢, one has E[¢)y] = (5;1/2),
by (2.14). Using also similar arguments as in the proof of Lemma 4.1, that
we will not reproduce here, one can see that E[y; ;] = O(e ;1), for any i # j.
Thus only the terms of the form E[y; ;1] are at stake.

Let (Sn)nez, (Sn)n>0 and (Sn)nZO be three independent walks starting
from the origin. Recall the definition of 7, 70 and 73 from the proof of
Lemma 4.1, and define analogously

—inf{n > 1: S4+8, € R(—o0, —1]}, 7 := inf{n > 1: S)+5, € R[0, k—ex—1]},

and R
=inf{n >1:5,+ 5, € Rlk+¢er+1,00)}.

When ¢ # i,j, one can take advantage of the independence between the
different parts of the range of S, at least once we condition on the value of
S).. This allows for instance to write

E[(plg”l/}g] < ]P)[Tl < 00, T < 00, 7/:3 < OO] = P[Tl <00, o < OONP)[?g < OO] 5 5];3/27

using independence for the second equality and our previous estimates for
the last one. Similarly,

E[gol,glbg] < ZP[Tl <00, T3 <0 ’ Sk = LL’] X P[?Q < 00, Sk = .CL‘]
€L

1 1 1 1
~ ' + /S )
S2 1+H$H e (1+ |] + VE)® (1+Hw\| \/€k> exVk

x€Ld

using (4.3) and Lemma 4.3 for the second inequality. The term E[pg 31)1] is
handled similarly. We consider now the other cases. One has

(4.5) E[(ng@/)g] < IP’[TQ < 713 < 00, :/'\3 < OO] —i—P[Tg < 7 < 00, ’/7'\3 < OO]
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By using the Markov property at time 79, one can write

Plre < 13 < 00, T3 < 9]

< Z E (Z G(Si—y+ x)) Z G(S;) | | Plry < 00,8, =y, Sk = ).
x,y€Zs =0 j=¢p
Then applying Lemmas 2.3 and 4.3, we get

(Sets-ven) (e
=0

J=¢k

:ZE

(ZG —y+tzx ) 1{S., :v}] E iG(S]ﬂ

vEZP Jj=0
N D e e)
vEZD
(4.6)

<y 1 ( 1 . 1 > e ?
~ €Z51+Ilvll (ol +vER)> \1+ o —y+zll ~ 1+ly—all )~ 1+]ly -z

Likewise,

%) ©o G(Z—y+l') G(Z)
E||DY GSi—y+az)| | D G SZGEk(z)( 1+ [|2| +1+||z—y+:v||)

=€ J=¢k 2€75

1
: VER A+ lly —zll)

(4.7)

Recall now that by (2.14), one has P[m < oo < 5,;1/2. Moreover, from the
proof of Lemma 4.1, one can deduce that

E [l£7'2 < OO}
1S, — Skl

1
~ \/kEk‘

Combining all these estimates we conclude that

Plre < 713 < 00, T3 < 00| <

1
exVk
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We deal next with the second term in the right-hand side of (4.5). Applying
the Markov property at time 73, and then Lemma 4.3, we obtain

P[T3§7'2<OO, 5'\3<OO]

<y ZIE y)1{Sp = z}] | Plr3 < 00,73 < 00, Sy, =y | Sk = 1]
T,y€Z5 \i=¢g
< Z < ! + ! )P[Tg<oo,?3<oo,§T3:y|Sk:a:]
s (el +\f Ty =l Ve
<Z 1 (P[7'3<OO,’7/:3<OO’S]€::L‘] l{T3<OAC/>,7/:3<OO} Sk:x]>
= (lzll + V) Vek 1+ |[Sm — ||
(4.8)
1 1 1{m < 00, T3 < o0}
< —|— — Sk = s
2 el Vi (ek<l+nwu> 15 5 — 2] D

using also (4.6) and (4.7) (with y = 0) for the last inequality. We use now
(2.8) and Lemma 2.2 to remove the denominator in the last expectation

above. Define for r > 0, and = € Z°,
ne(x) :=inf{n >0 : Hgn —z| < r}.

On the event when r/2 < Hgm(x) —z|| <r, one applies the Markov property
at time n,(z), and we deduce from (2.8) and Lemma 2.2 that

<P[Tg<oo,?3<oo|5’k:x]
- 1 [J]]

1{m < o0, T3 < 00} S — 4
k_

L+ IS5, — 2|

log; |lal| p [73 <00, T3 <00, 20 < |8y — x| <2 | Sy =a
+ > 9
=0
I ~
< 1 n Og;QZx||P[772i+1(ZL‘)<T3<OO, 73<OO|Sk:£L‘]
TVEL P = 2
_ o 1 .
&2 PR < o %”E 92i

N +
16 R o (B

x Poo,. R[ak,oo) < oo, Hr, < 00:| )

o T ol ez

where in the last probability, H and H refer to hitting times by two inde-
pendent walks, independent of S, starting respectively from the origin and



CAPACITY OF THE RANGE IN DIMENSION 5: VARIANCE BOUNDS 19
from z. Then it follows from (4.6) and (4.7) that

<
™ VER )?)

1{r3 < 00,73 < 0}
14 |57, — ||

(4.9) Sp=u

Combining this with (4.8), it yields that

1
Pl < 713 < 00,73 < 0] < .
[ ] I~
The terms E[¢1 31)3] and E[pq 391] are entirely similar, and we omit repeat-
ing the proof. Thus it only remains to consider the terms E[pz312] and

E[e1,21)2]. Since they are also similar we only give the details for the former.
We start again by writing

(4.10)  Elpaathe] <Plm <13 <00, o < 00| + P13 <1 < 00, To < 00].
Then one has

(4.11)

Plrs < 19 < 00, T2 < 9]

k‘—&k

k .
<D EDGSi—y | | D] G(S; —2) | 1{Sk = a}| Plrs < 00, S, =y | Sk = 2]

m,yGZE =€k j:()
k k—eg

< Z Z Z Z P[S; = 2,85 = w, S, = z]G(2 — y)G(w — x)

x,yeZ5 \i=¢r j=0 zweZ>

X Plr3 < 00, S, =y | S = ).
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Now for any z,y € Z°,

k— Ekk €k

ZZ Z P[S; =z, 8j = w, S, = z]G(2 —y)G(w — x)

1=¢k j=€k z,wELO

k—ep k—ep,
<2} 3 ()G —) ( > 3 byl = G = D)@ - w>)

i=€y, 2€7Z5

k—ep k
=2) ) pi(2)G(z—y) (Z > pi(w)Gw)pg—i—j(w + x — z))

i=€p z€Z5 Jj=¢k weLd

Lemma 4.3

k—eg
— ) 1 1
2.2 Hz—$||+\/ — )’ <1+Hz—w!!+\/m>

i=€p 2€7Z5
A (1 . 1 1 .
Lemrga 4.4 k5/2 <1+||xH2 + Ek) + W2 (5 y—al) if |z]| < VEk
~ 1 k :
Teler (1 + m) if [z > V.

We also have

k k—eg
Yoz, y) := Z P[S; = 2,8; = w, Sk, = ]G(2 — y)G(w — x)
i=k—ej, j=0 zweZs
k k—ep
= Z P[S; = w, Sk—e, = 0,5 = 2,5, = z]G(z — y)G(w — x)
i=k—e 7=0 z,0,wEZ5
k—eg
= ( pj(w)pk—ek—j(v - w ) (Z Z pl pEk 1('77 - Z)G(Z - y)) )
veZ5 \ j=0 weZ5 1=0 z€Z5

and applying then Lemmas 4.3 and 4.5, gives

Ya(z,y)
e ———
T ( \v|!+f L+l —vf| T4zl ) (lz—vll+vE)> \1+lly—=z[ 1+ |y—v
1 (1 1 1 VEK :
- k%klgr + wle + e ) el < VE
S sl

)
VEE 1 .
lPver (1+||y o T f) if (|| > V.
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Likewise, by reversing time, one has

Y3(z,y) = Z Z Z P[S; = 2,5; = w, Sk, = z]G(z — y)G(w — x)

=€y j=0 z,weZ>

€k k
Z Z PlS;=2z—2,5¢ =v—21,5 =w—21, 5% =—2]G(z —y)G(w — x)

—€k 2,0,WEZS

Il
gM

= sz 2 = T)Ph—ey—i(v — 2)G(2 — y) Z > pi(w = v)pe—j(w)Gw — x)
2€75

veZs \ =0 J=0 wez5

<Z 1 ( 1 n 1 ) 1 ( 1 n 1 )
(fo—al + VAP \L+Ty—oll 1T+ y—al) (ol + van? \I+ [zl 1+ e -0l )’

veZbd
and then a similar argument as in the proof of Lemma 4.5 gives the same
bound for ¥3(x,y) as for Xa(x,y). Now recall that (4.11) yields
Plrs <7 <00, <o) < Y (Si(x,y) + Da(x,y) + Bs(,9)) Plrs < 00, Sr, =y | Sk, = ).
RNYAL
Recall also that by (2.13),

1

Plrs <oo | Sp =a] S />
14 |||

and

1{rs < oo} ’Sk —2| <Y Gy)Gly —x) < 1 .
1+ S — z| s Ty —all ™ 14l
Furthermore, for any « € {1,2,3}, and any 5 > 6,

[l [zl
1 5= log( ) log(\gr) _ 552
e Sk, < S :
2 L+ (| 2 e 2 1 o
x| <vk ]| >V lzll>/Ex
Putting all these pieces together we conclude that

~ —3/2
P[T3§T2<OO, T2<OO]§6k3/ .

We deal now with the other term in (4.10). As previously, we first write
using the Markov property, and then using (2.12) and Lemma 2.3,

Pl <13 <00, s <oo] <E

1+ 187 — Skl

1{m <00, T2 < oo}]
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Then using (2.8) and Lemma 2.2 one can handle the denominator in the last
expectation, the same way as for (4.9), and we conclude similarly that

Plry < 73 < 00, T < 00] S &, /2.
This finishes the proof of Lemma 4.2. O

5. Proof of Propositions 3.3 and 3.4. For the proof of these propo-
sitions we shall need the following estimate.

LEMMA 5.1.  One has for all x,y € Z°,

k
Z E[G y)1{Sk = z}]
i=k—eg
log(2 + 7”2'/;—:“) log(2 + %)

(lzll + VEP(lly = =]l + v/Er)? R Ve lyll + Vk)?
PROOF. One has using (2.3) and (2.7),

k
Z E[G y)1L{Sy = x}| = Z sz Y)pk—i(T — 2)
i=k—

€k i=k—ey, z€7Z5
€k

(Il + VEP @+ Iz = yl*) Iz — 2]l + VEr)®

)

z€Z5

1 1
3/2 Z 1 IE
(lzll + V&) o2 o L+ 2=l

€k 1
MR IR e E i E
VeErRs|lz—al| <

€k 1
+(ch\|+\@) Z (2l + VEP 1+ [z —yl®)’

=l
2
Then it suffices to observe that
5/2

D E
—_ |3 ~ _ 37
G2 e LTl =yl (ly = all + V&)
ly—=ll
Z 1 _ log(2+%)

(T2 = ) A+ Nz = 2l?) ~ (ly — 2zl + Er)?*
VEr<|lz—a| <Lzl
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Z 1 _ log(2+”%/£).
(=l + VEP A+ 11z = yl1®) ™ (lyll + VE)?

2€75

O]

PROOF OF PROPOSITION 3.3 (1). This part is the easiest: it suffices to
observe that ¢12 is a sum of one term which is independent of Z;1y and
another one, whose expectation is negligible. To be more precise, define

:oo,H£ <oo,H7'£[ <oo|S|,

R[islwsk] (700778.%71] Sk+17k78k71]

P, =P [H+
and note that Z()QO%Q is independent of Zp1yg. It follows that

| Cov(Zop1,2, Zibo)| = | Cov(Zo(p1,2 — ¢1.9), Zitbo)| < P < 00, 7 < 00],

with 71 and 7, the hitting times respectively of R(—o0, —ex] and R[k — e, k]
by another walk S starting from the origin, independent of S. Now, using
(2.3), we get

k
Pl <7 <o0] <E | 1{r < o0} Z G(S; — Sr,)

i:k—{;‘k
k ~
< Z Z Z pi(2)G(z —y) | Pl < o0, Sy, =]
YEZLS \2€Z5 i=k—¢y

(2.14)
Ek \/57]4

Likewise, using now Lemma 2.3,

Plr. <71 <oo] <E [1{r, <oo} | Y G(S_i—85,,)

i:€k

< Z Z Ge,(2)G(z —y) | Plm < o0, Sr. =]

yEZS \z2€Z5

iy

1
< oo < X =
= T ]P)[T*< ]N k3/2’
and the first part of (i) follows. But since Zy and Zj, have played no role

here, the same computation gives the result for the covariance between Zypq
and Zp1o 3 as well. ]
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PROOF OF PROPOSITION 3.3 (11)-(111). These parts are more involved.
Since they are entirely similar, we only prove (iii), and as for (i) we only
give the details for the covariance between Zyps 3 and Zj)g, since Zy and
Zy, will not play any role here. We define similarly as in the proof of (i),

0
$2,3 ::P[HR[ eper] O Hy

< oo, Hf <oo|S]7

Rlek,k—eg) Rlk+ek,00)

but observe that this time, the term @873 is no more independent of ¥g. This
entails some additional difficulty, on which we shall come back later, but
first we show that one can indeed replace @2 3 by @813 in the computation of
the covariance. For this, denote respectively by 79, 73, 7 and 7. the hitting
times of Rley, k], R[k,0), R[k — ek, k], and R[k, k + ;] by S. One has

El|p23 — 90873|] < Plre < 00, Tux < 00] + P13 < 00, T < 00].
Using (2.3), (2.12) and Lemma 2.3, we get

L <o} | _ Zk: [ G(S;) }
L+ [|Sn, — Skll] ~ .2 L+ [1S; — Skl

=

Plr <m3 <oo] <E

_Ek

(]

k k
<Y E [ G(5i) ] < pi(Z)G(Z).
i=k—ey, L+ vk —1i 2€75 i=k—ey, L+ vk —i

1 €k

< < Vok
N\FZ(H |+ Vk)> ()Nk3/2

Next, applying Lemma 5.1, we get

Plrs < 7 < 0]

k
< D E Y] GSi—y) | 1{Sk =a}| Plrs < 00,5, =y | Sk = 2]
x,y€ZS i=k—ey,
1Sz —a||
1{m3 < co}log(2 + —=—)
S €k Z VR ’ =z
el (lzll + VE) (Vex + 1S — )

=
(lll + VER3 (Vi + 1155 1)?

1{r3 < oo}log(2 + HST3H) ‘
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Moreover,
1{73 < oo}log(2 + I }x”) (2.12) Z —x)log(2 4+ 7”%”)
=x <
(vei + 55, — al)? f+ PEEIE
S S—
ex(1+ [|=)3
and
S
1{rs < oo} log(2 + 122l s @12 Z — ) log(2 + 141)
= k=X
(VE + |5 )3 f+||y||)

_ 1
T VR ) (VR + )

Furthermore, it holds

1 1
2 (]| + VE)S(1 + ||z)3 ~ k3/2’

x€Z5

> ; <
el + VERPQ + e VE+ )2 ™ VA

HASYA
which altogether proves that

ey

Plms < 7 < 00] S 137

Likewise,

Plre < T < 0] < Z [7‘2<OO,§7—2:y,Sk:.%'],

z,yE€ZLs

ZG —y+x)

=0

and using (2.7), we get

ZG —y+x)

G _
S Y GEGE-y+) e S W
lei<ver BV

ch log (2 + H‘i'/—x”)
(Ily—w\|+\f)( Fly—al) My — 2l + &)
. log (2+”y%/€—::“> ‘

(ly — 2l + vEr)* (1 + ||y — =)

€k

= Z Z pi(2)G(z —y +x)

1=0 z€Z>
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Therefore, using the Markov property,

log (2 + ”S?ﬁsk”> - 1{7 < oo}

(157 = Sell + VER)2 (L + 157, = Skl)

P[TQST**<OO]§E]€‘E

1k

log (2 + 1=l

<ngE ) -E ( e )
([[Sk—ill + v2x)*(1 + [1Sk—ill)

Furthermore, using (2.3) we obtain after straightforward computations,

llSk—l —i
ISk—ill + VER)* (L + 1Sk—ill) | ~ VE —i(er +k — i)’

and using in addition (2.9), we conclude that

N
Plro < T < 00] S w52 og(é_k).
Similarly, using Lemma 4.3 we get
Pl < 7o < 0]
= Z P[Tis < 00, S, =y|Sk= x] Z G(S; — y)1{Sy = =}
x,yE€Zs =€
{7 < 00} ‘ . Plrus < 00 | S = 7]
® 2 +f 1+ 15, —al Ver
Moreover, one has
£k €k 1
Plrys <00 | S = x] < G(S; + x)]
Z; 0% (142 + V)P (1 + ||z + )
1 Ek
S 2 + 2
(1+ 1+ |z+ |3 231+ [z + |3
S R+ ) T 2 T+ e+ )
exlog(2 + lzl

< VEE
~ (VR D2+ [lel)
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and likewise

M)sk:x]gi !

1+ [|Sr, — x| S (L ll2ll + Vi + N1z = 2lI3) A + [l2])

0
1 r
DY + >
~ 1 1 — 6 — 3
e O A=) | & TP+ [ = l)
VEk

< .
™ (2l + vER) A+ [l2]?)

Then it follows as above that

VEK k
]P)[T** S Ty < OO] k3/2 10 (gk)
In other words we have proved that
0 \/Ek k
Efjp2,3 — <P2,3|] S 1372 -log(g).

We then have to deal with the fact that Zogpg3 is not really independent of
Zrg. Therefore, we introduce the new random variables

Zi = 108 # S Vi=k+ 1.2k}, Go = Poy [Hy o oy = 001 ],

where (g}, )k>0 is another sequence of integers, whose value will be fixed later.
For the moment we only assume that it satisfies €}, < e5/4, for all k. One
has by (2.7) and (2.14),

-~ 1
(5.1) E[|Zro — Zkbo|] < =
k
Furthermore, for any y € Z°,
(5.2)
E (093 | Skter = Skeep = 4] = > B[00 31{Sk—c, =} | S, — Sz, =]

TEZS
<Z ['R NRlex, k —6k]§£®,7€ooﬁ($+y+7/€00)7é®7Sk—ak:x}7

YAl

where in the last probability, ﬁoo and ﬁoo are the ranges of two independent
walks, independent of S, starting from the origin. Now x and y being fixed,
define

m=inf{n>0:5, € Rler, k—cpl}, 7o:=inf{n>0:5, € (z+y+Roo)}-
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Applying (2.12) and the Markov property we get

Plr <1 <00, Sp—e, =2 <

1{r < o0, Sk—g, = x}]
L+ |87 = (z +y)ll
k—eg
<3 TR
i=e) z€L5
1

1 1
S (el + Vo) <@<1 et 1T lel2> ’

using also similar computations as in the proof of Lemma 4.3 for the last
inequality. It follows that for some constant C' > 0, independent of v,

1
k&k.

Z ]P)[Tl < 1 < 09, Sk—ak = .Z'} S
TE€Z5

On the other hand, by Lemmas 4.3 and 2.5,

1 1{m < oo} Plre < 0]
Pl <1 <00, Ske, = 2] S E = +

1 1 1
. (]l + V&) <J67«(1+ fetol) "1+ lel2> ’

and it follows as well that

1
Z Plr <711 < 00,8k, =] S .
k&k
z€ZS
Coming back to (5.2), we deduce that
0 < 1
(53) ]E [@2,3 ‘ Sk'+€k - Sk,‘gk = y] ~ k )
€k

with an implicit constant independent of y. Together with (5.1), this gives

E [@8,3’%% — Zk%@

=Y E[¢s ] Skte, — Sk—e, =y] ‘E [IZWO — 210l L{Sk1e, — Sk—ey, = y}]
y€eZs
1

V kerel, .

<
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Thus at this point we have shown that

k3/2 Ek Vkere),

~ ~ € k 1
Cov(Zow2,3, Zkto) = Cov(Zogh 3, Zktbo) + O (ﬁ -log(—) + ) :

Note next that

Cov(Zops 3 Zyabo) = Z E [Zoan 5| Skiep — Sh—er = y}
y,2€L5

x E [kaol{sk+e§€ - Sk—a; = Z}} (psk—e;C (y - Z) - pek—i-egC (y)) .
Moreover, one can show exactly as (5.3) that uniformly in y,

1
VEker

Therefore by using also (2.5) and Theorem 2.1, we see that

E [90[2),3 ‘ SkJrEk - Slc—«s;C = y] 5

| COV(ZOSDS 3 Zxtbo)|
5 _ 1
3 D YD VG TR B PI0IE
Ioll<e® eli<et /2T

Now straightforward computations show that for y and z as in the two sums
above, one has for some constant ¢ > 0,

_ i Bl
Py 0= Py 15 (L 4+ %) (e

VEk €k

at least when 62 < €k, as will be assumed in a moment. Using also that
> 1zllpae (2) S €}, we deduce that

~ ~ e
| Cov(Zowl 5, Zitho)| = O ( ﬂ) :

Ek\/E
This concludes the proof as we choose €}, = [\/Ex]. O
We can now quickly give the proof of Proposition 3.4.

PROOF OF PROPOSITION 3.4. Case 1 <i < j < 3. First note that Zyyp
and Zp1y3 are independent, so only the cases i =1 and j = 2, or i = 2 and
J = 3 are at stake. Let us only consider the case i = 2 and j = 3, since the
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other one is entirely similar. Define, in the same fashion as in the proof of
Proposition 3.3,

3 =P | H — o0, H},

Rl-crer] = <oo|S|.

[5k+17k7€/€]

One has by using independence and translation invariance,

Ell2 — ©5]th3] < PlHRr—c, 1 < 0] - P[HR[e, 00) < 0] S

)

N
72

which entails

€k €k
Cov(Zopa, Zibs) = Cov(Zogy, Zyhs) + O (;{;;) N ]:é;,

since Zogpg and Zyy3 are independent.
Case 1 < j <11 < 3. Here one can use entirely similar arguments as those
from the proof of Lemma 4.2, and we therefore omit the details. O

6. Proof of Proposition 3.5. We need to estimate here the covari-
ances Cov(Zppi, Zio) and Cov(Zypo, Zxths—i), for all 1 <7 < 3.

Case ¢ = 1. It suffices to observe that Zyp; and Zgiy are independent, as
are Zypo and Zis. Thus their covariances are equal to zero.

Case 1 = 2. We first consider the covariance between Zypo and Zpiy,
which is easier to handle. Define

Oy =P |H

R[—ek,k—er—1 < | S] )

] = %% H%[k—ak,k]
and note that Zy(p2 — @2) is independent of Zy1)y. Therefore

Cov(Zop2, Zktho) = Cov(Zop2, Zibo)-
Then we decompose g as ¥y = wtl) — wg, where
vy ="Ps, [H;g[k,k—l-sk] = 00| 8, ¢ ="Ps, [H7—£[k,k+ek] = OO’H;;[k—ek,k—l] <oo| 5]
Using now that Zki/)(l] is independent of Zyps we get

Cov(Zopa, Zitho) = — Cov(Zo@a, Zihg).

Let (S,,)n>0 and (§n)n20 be two independent walks starting from the origin,
and define

7 =inf{n > 0: Sp_n € R[1,00)}, 7 :=inf{n >0: Sp_n € (Sp+R[1,0))}.
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We decompose
Cov(Zo@a, Zit)
=E [Zo@2Zi051{m1 < 12} + E [Zo2 Zi51{m1 > 12} — E[Zop2|E[Zs95).

We bound the first term on the right-hand side simply by the probability
of the event {m] < 7o < &1}, which we treat later, and for the difference
between the last two terms, we use that

€k
<7 <ep}-— Zl {7’2 =1, H;'g[k—ak,k—i—l] < oo} < 1{m <71 <ei}.
=0

Using also that the event {7, = i} is independent of (S, ),<k—i, we deduce
that

| Cov(Zo@a, Zibg)|

€k

<ol <m<el+ ) Bl =i [Py, <oo] P [Hiy 4 <]
=0
€k

<2P[m <1 <eg] + ZP[7‘2 =i]-P [H;Q_[kfi K < oo}
1=0

(2.14) C

< Wn <m <ep)+ 55 Y Pl =]

(2.14) C 1 C\/ex
< 2P STQSSk]—FW;ﬂS?P[ﬁ <71 <eg]+ R

Then it amounts to bound the probability of 7 being smaller than 7o:

€k
Plr <1 <ei) = Z ZP[H =4,1 <1 <éep, Sy =2, Sp—i =+ Y]
welb i=0

€k
<> >p [n =i, Sp_i=x+y, (z+Roo) "Rk — 1,k — ] # &, Sy :az}
2yezs i=0

€
< Z iP{ﬁwﬂ(aquR[O,il]) =2,5 =, :EerG'ﬁ,oo}
wyels i=0

xP{ﬁooﬂ(y+R[O,sk—i])#@,Sk_i:—x—y},
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using invariance by time reversal of S, and where we stress the fact that in
the first probability in the last line, R and R are two independent ranges
starting from the origin. Now the last probability can be bounded using
(2.6) and Lemma 4.3, which give

P [ﬁoo N(y+R[0,ex —i]) £ D, Sk = —a — y} < Y E[G(S; +y)1{Ski = —z — y}]
=0
ep—1 k—1i
=YD pi)GE+i Gy = Y Y pi(2)G(—)prij(z —x —y)
j=0 275 Jj=k—ep 2€75

_ 1 ( Lo, 1 )
Tyl +VEP AL+l Ve 2l

It follows that

Pln<m<eals Y. i Gz +y)pi(y) < 1 1 >’

+
e S e+l + VR \ LTl Vi le]

and then standard computations show that

€k
(6.1) P[Tl < T < 5k] S ]:;/3;

Taking all these estimates together proves that

G
Cov(Zop2, Zio) S ]:;/3;

We consider now the covariance between Zywg and Zii2. Here a new prob-
lem arises due to the random variable Zj, which does not play the same role
as Z, but one can use similar arguments. In particular the previous proof
gives

€k
Cov(Zopo, Zkth2) = — Cov((1 — Zo)o, Zitp2) + O <]::/3;> :
Then we decompose as well pg = p§ — 2, with
1. + _ 2. _ + _ +
o = PlHgp,_, g = | 8], wi = PlHgy . i = 00 Hy oy e < 0 151

Using independence we get

Cov((1 = Zo)ey, Zeb2) = Elpg] - Cov((1 — Zo), Ztba).
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Then we define in the same fashion as above,
=inf{n>1:8, =0}, 7 :=inf{n>0:5, € (Sk + R[1,00))},

with R the range of an independent walk starting from the origin. Recall
that by definition 1 — Zy = 1{7p < e }. Thus one can write

Cov((1-20), Zi2) = E[Zpp21{T2 < T < ep}|+E[Zppo {7y < To}|—P[70 < ex]E[Zpao].

On one hand, using (2.6), the Markov property, and (2.9),

E[Zpol{T <Tp < e} <P <7y <) < Z Pl < ek, Sz =yl - G(y)
yEeZ>
o

1 1 1
< ZE (S5 = S)G(S)) < Y EIG(Sk-0)] - BIGWSI £ 157 > 173 S -
i=0 =0

On the other hand, similarly as above,
E[Zi21{70 < T2}] — P[70 < ek - E[Zpyo]

€k
<Pl < <o + > PR = i] (P [(Sk + RI1,00)) NR[i+1,2] # @] ~ Pl < o]
1=1
1 (2.14) 1 1 €k o ‘
S o +ZPTO =iPR<] S S5+ szp[m =]
i=1

(6. 2)
(2.6),(2.7) 1 1 1
k:3/2 l<;3/2 ZP (SIS 32t 13 ; 11 32 S ETeR

In other terms, we have already shown that

1

| Cov((1 - ZO)‘Ptl)v Zip2)| S 1372

The case when ¢} is replaced by @3 is entirely similar. Indeed, we define
=inf{n >0:S, € R[1,00)},

with R _the range of a random walk starting from the origin, independent of
S and R. Then we set 791 := max(7p, 71), and exactly as for (6.1) and (6.2),
one has

- _ €k
PlTo <701 < er) S ];é,/;,
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and

E [(1 - Zo)pi Zipal{To1 < T2}] — E[(1 — Zo)3] - E[Zito]
< ]P’[7~'2 < ?071 < €k] + ZP[?OJ = Z] ']P)[%:Z < Z] S
i=0

N &

k3
Altogether, this gives

NG

| Cov(Zowo, Zr2)| S 2372

Case ¢ = 3. We only need to treat the case of the covariance between Zyps
and Zg, as the other one is entirely similar here. Define

e + _ +
3=l [HR[—ak,sk1uR[k+ek+1,oo> =00, Hppjopiey <01 5]
The proof of the case i = 2, already shows that
~ €k
| Cov(Zops, Zitho)| S ;ﬂé;
Define next
— =~ _ + _ +
hsg = w3 — @3 =P HR[—Ekﬁk] = 00, HR[k-{—ek-i-l,oo) < 00 ‘ S| .

Assume for a moment that g > %20, We will see later another argument
when this condition is not satisfied. Then define €}, := LE}CO/ K /EY?], and note
that one has ¢} < ej. Write 1o = 9, + ho, with

Yo =P H%[kfs;v+l,k+s;€fl] =[5,
and
ho :=P H’E[kfs;CJrl,kJrs;vfl] =0, H;g[kfek,kfz-:;]UR[k+s§c,k+ek} <oo|S].
Define also
Zp :=1{Sy # Sk, forall { =k +1,....k+¢, — 1}.
One has

Cov(Zohs, Zitho) = Cov(Zohs, Zyihy)+Cov(Zohs, Ziho)+Cov(Zohs, (Zi—2Z,) o).
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For the last of the three terms, one can simply notice that, using the Markov
property at the first return time to Sy (for the walk S), and then (2.6), (2.7),
and (2.14), we get

Elhs(Zk — Z1)) < E[Z), — Z4) X P[Roo N R [k, 00) # 2]
s—1 <L <
(ep)32VE ™ 313 T

using our hypothesis on ¢ for the last equality. As a consequence, it also
holds

13

| COV(Z()hg,, (Zk — Z]/C)I/Jo)‘ g k™12

Next we write

(6.3)  Cov(Zohs, Zpho) = Y (Ph—aey(z — y) — pr(@)) Hi (y) Ha (),
z,yeZs
where

Hi(y) := E [Z;ho1{Skte, — Sk—c, = y}], Hao(x) :=E[Zohs | Spye, — Se, = ]

Define 1y, := (k/ 5;6)1/ 8. By using symmetry and translation invariance,

> Hy <P [HR[—ak,—sgun[e;,ek] < 00, [|Se, = S—,ll = \/;k?”k}
lyll> 2Tk
Tk Tk
<2P |:HR[€;C,€)C} < o0, HSEkH > \/55} + 2P |:H72[€;€,5k} < o0, HS—EkH 2 \/55}
(2.14),(25) Tk C
< 21@[}1 <00, |8 > E —}Jri.
Rl ek H €k H \/TC 2 @rz
Considering the first probability on the right-hand side, define 7 as the first

hitting time (for S), after time ¢}, of another independent walk S (starting
from the origin). One has

Tk
P [Hrpe ey < 00, (150, = Ve
Tk -
<SPS > ver, T < e + PlISe, = Sl = Ve, T < el
Using then the Markov property at time 7, we deduce with (2.14) and (2.5),
1

/
LT

\
P(ISe, — Sl > Ve, T < el S

i
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Likewise, using the Markov property at the first time when the walk exit

the ball of radius |/g;ry/4, and applying then (2.5) and (2.13), we get as
well

Tk 1
P[||S-|| > —,7< < X
5712 Va7 <ol £
Furthermore, for any y, one has
S b (- ) S 1 =
k—2¢e - 2 ~ ~ T
= P (Ut [+ ) (ol + VRP ~ VE

with an implicit constant, which is uniform in y (and the same holds with
pr(z) instead of pr_oc, (z —y)). Similarly, define 7}, := (k/egg)flo One has for
any y, with [[y|| < /g,

Z (2.5),(2.13) 1
Pr-2e,(x —y)Ha(z) S =
el >VEr, V(r})

Therefore coming back to (6.3), and using that by (2.13), Zy Hi(y) <
1/4/¢}, we get
COV(Zth, Z]::ho)

lzl|<VEr, IYlI<VERTE A 1Y

/

= > (Pr-2e (2 — y) — pe(x) Hi(y)Ha(x) + O <(5k1)1“’> _
)| <vEr, IWII<VERTE

k10

Now we use the fact Hi(y) = Hi(—y). Thus the last sum is equal to half of
the following:

> > (Pr-2e (= ) + Pr—se, (x +y) — 2pi(x)) Hi (y) Ha(x)
|zl <vEr, IYII<vERTE
Theorem 2.1,(2.13)
< YD Broe, (@ —y) + Py, (z+y) — 254 (x)) Hi(y) Ha(2)
llz|| <vEr, lVII<vEETs

. O( (i)’ )
k3/2\/‘% ’
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(with an additional factor 2 in front in case of a bipartite walk). Note that the
error term above is O(k~11/19) by definition of r7.- Moreover, straightforward
computations show that for any x and y as in the sum above,

2
_ _ _ Y|I©+ek\
Bz 0= 0) 4 Bz o4 0) = 2] 5 (555 ) e

In addition one has (with the notation as above for 7),

S lyl? Hiy) < 2E [|ISe, — S—c, I21{r < &1}]
YA

< AE[|[S:, IPJPIT < ex] + 4E [|ISe, IP1{r < ex}]

(2.5),(2.14) r ) )
S e PE[ISPLr < ] +E [k — 5o < <))
k
(2.5),(2.14) (2.5),(2.13)
S St Y PlS Az r<al s £

Ve Ve

using also the Markov property in the last two inequalities (at time 7 for
the first one, and at the exit time of the ball of radius r for the second one).
Altogether, this gives

Ek ()10 < (61@)%
k3/2\/ei k1o ko

/20

| Cov(Zohs, Ziho)| <

+
2

In other words, for any sequence (g)x>1, such that e, > k%720 one has

1
£L)9 1
Cov(Zohs,wa=Cov(zoh3,z,zw’o>+0<(’il + )

9 k12

One can then iterate the argument with the sequence (¢}) in place of (ey),
and (after at most a logarithmic number of steps), we are left to consider a
sequence (gi), satisfying e < k%/20_ In this case, we use similar arguments
as above. Define ﬁ[l(y) as Hi(y), but with Zyiy instead of Zjhy in the

expectation, and choose ry, := \/k /ey, and ), = %16 Then we obtain exactly
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as above,

Cov(Zohs, Ziio)

- Z Z (pk—Zak(fU_y)—pk(x))ﬁl(y>H2(x)+O( 1 +( 1 )

5 I\6
el <VEr, llyl<vE vk o (r)5VE
= 1
= 3 Y Gronle—9) - B@)Hi()Ha(x) + O <k)
el <VEr, Iyl <V
€k 1 1
< Py <
SRR

which concludes the proof of the proposition.
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