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CAPACITY OF THE RANGE IN DIMENSION 5: ROUGH
VARIANCE BOUNDS

By Bruno Schapira

This is a companion paper to [Sch], where we prove some techni-
cal estimates. In particular we obtain an upper bound for the variance
of the capacity of the range.

1. Introduction. We prove here technical estimates needed for the
companion paper [Sch]. In particular the estimates gathered here show the
following rough variance bound:

Var(Cap(Rn)) = O(n log n),

where Rn = {S0, . . . , Sn} is the range of a random walk on Z5.

2. Preliminaries.

2.1. Notation. We recall here some of the main notation of [Sch]. We
consider (Xi)i≥1 a sequence of independent and identically distributed ran-
dom variables, whose law is a symmetric and irreducible probability mea-
sure having a finite d-th moment. The associated random walk is the process
(Sn)n≥0 defined by Sn = S0 +X1 + · · ·+Xn, for all n ≥ 0. The walk is called
aperiodic if the probability to be at the origin at time n is nonzero for all
n large enough, and it is called bipartite if this probability is nonzero only
when n is even.

For x ∈ Zd, we denote by Px the law of the walk starting from S0 = x.
When x = 0, we simply write it as P. We denote its total range as R∞ :=
{Sk}k≥0, and for 0 ≤ k ≤ n ≤ +∞, set R[k, n] := {Sk, . . . , Sn}.

For an integer k ≥ 2, the law of k independent random walks (with the
same step distribution) starting from some x1, . . . , xk ∈ Z5, is denoted by
Px1,...,xk , or simply by P when they all start from the origin.

We define

(2.1) HA := inf{n ≥ 0 : Sn ∈ A}, and H+
A := inf{n ≥ 1 : Sn ∈ A},

respectively for the hitting time and first return time to a subset A ⊂ Zd,
that we abbreviate respectively as Hx and H+

x when A is a singleton {x}.
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We let ‖x‖ be the Euclidean norm of x ∈ Zd. If X1 has covariance matrix
Γ = ΛΛt, we define its associated norm as

J ∗(x) := |x · Γ−1x|1/2 = ‖Λ−1x‖,

and set J (x) = d−1/2J ∗(x) (see [LL10] p.4 for more details).
For a and b some nonnegative reals, we let a ∧ b := min(a, b) and a ∨

b := max(a, b). We use the letters c and C to denote constants (which
could depend on the covariance matrix of the walk), whose values might
change from line to line. We also use standard notation for the comparison
of functions: we write f = O(g), or sometimes f . g, if there exists a
constant C > 0, such that f(x) ≤ Cg(x), for all x. Likewise, f = o(g) means
that f/g → 0, and f ∼ g means that f and g are equivalent, that is if
|f − g| = o(f). Finally we write f � g, when both f = O(g), and g = O(f).

2.2. Transition kernel and Green’s function. We denote by pn(x) the
probability that a random walk starting from the origin ends up at position
x ∈ Zd after n steps, that is pn(x) := P[Sn = x], and note that for any
x, y ∈ Zd, one has Px[Sn = y] = pn(y − x). Recall the definitions of Γ and
J ∗ from the previous subsection, and define

(2.2) pn(x) :=
1

(2πn)d/2
√

det Γ
· e−

J∗(x)2
2n .

Theorem 2.1 (Local Central Limit Theorem). There exists a con-
stant C > 0, such that for all n ≥ 1, and all x ∈ Zd,

|pn(x)− pn(x)| ≤ C

n(d+2)/2
,

in the case of an aperiodic walk, and for bipartite walks,

|pn(x) + pn+1(x)− 2pn(x)| ≤ C

n(d+2)/2
.

In addition, under our hypotheses (in particular assuming E[‖X1‖d] <∞),
there exists a constant C > 0, such that for any n ≥ 1 and any x ∈ Zd (see
Proposition 2.4.6 in [LL10]),

(2.3) pn(x) ≤ C ·
{
n−d/2 if ‖x‖ ≤

√
n,

‖x‖−d if ‖x‖ >
√
n.

It is also known (see the proof of Proposition 2.4.6 in [LL10]) that

(2.4) E[‖Sn‖d] = O(nd/2).
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Together with the reflection principle (see Proposition 1.6.2 in [LL10]), and
Markov’s inequality, this gives that for any n ≥ 1 and r ≥ 1,

(2.5) P
[

max
0≤k≤n

‖Sk‖ ≥ r
]
≤ C ·

(√
n

r

)d
.

Now we define for ` ≥ 0, G`(x) :=
∑

n≥` pn(x). The Green’s function is
the function G := G0. A union bound gives

(2.6) P[x ∈ R[`,∞)] ≤ G`(x).

By (2.3) there exists a constant C > 0, such that for any x ∈ Zd, and ` ≥ 0,

(2.7) G`(x) ≤ C

‖x‖d−2 + `
d−2
2 + 1

.

It follows from this bound (together with the corresponding lower bound
G(x) ≥ c‖x‖2−d, which can be deduced from Theorem 2.1), and the fact
that G is harmonic on Zd \ {0}, that the hitting probability of a ball is
bounded as follows (see the proof of [LL10, Proposition 6.4.2]):
(2.8)

Px [ηr <∞] = O
(

rd−2

1 + ‖x‖d−2

)
, with ηr := inf{n ≥ 0 : ‖Sn‖ ≤ r}.

We shall need as well some control on the overshoot. We state the result we
need as a lemma and provide a short proof for the sake of completeness.

Lemma 2.2 (Overshoot Lemma). There exists a constant C > 0, such
that for all r ≥ 1, and all x ∈ Zd, with ‖x‖ ≥ r,

Px[ηr <∞, ‖Sηr‖ ≤ r/2] ≤ C

1 + ‖x‖d−2
.

Proof. We closely follow the proof of Lemma 5.1.9 in [LL10]. Note first
that one can alway assume that r is large enough, for otherwise the result
follows from (2.8). Then define for k ≥ 0,

Yk :=

ηr∑
n=0

1{r + k ≤ ‖Sn‖ < r + (k + 1)}.

Let

g(x, k) = Ex[Yk] =
∞∑
n=0

Px[r + k ≤ ‖Sn‖ ≤ r + k + 1, n < ηr].
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One has

Px[ηr <∞, ‖Sηr‖ ≤ r/2] =
∞∑
n=0

Px[ηr = n+ 1, ‖Sηr‖ ≤ r/2]

=
∞∑
n=0

∞∑
k=0

Px[ηr = n+ 1, ‖Sηr‖ ≤ r/2, r + k ≤ ‖Sn‖ < r + k + 1]

≤
∞∑
k=0

∞∑
n=0

Px
[
ηr > n, r + k ≤ ‖Sn‖ ≤ r + k + 1, ‖Sn+1 − Sn‖ ≥

r

2
+ k
]

=
∞∑
k=0

g(x, k)P
[
‖X1‖ ≥

r

2
+ k
]

=
∞∑
k=0

g(x, k)
∞∑
`=k

P
[r

2
+ ` ≤ ‖X1‖ <

r

2
+ `+ 1

]
=
∞∑
`=0

P
[r

2
+ ` ≤ ‖X1‖ <

r

2
+ `+ 1

]∑̀
k=0

g(x, k).

Now Theorem 2.1 shows that one has Pz[‖S`2‖ ≤ r] ≥ ρ, for some constant
ρ > 0, uniformly in r (large enough), ` ≥ 1, and r ≤ ‖z‖ ≤ r + `. It follows,
exactly as in the proof of Lemma 5.1.9 from [LL10], that for any ` ≥ 1,

max
‖z‖≤r+`

∑
0≤k<`

g(z, k) ≤ `2

ρ
.

Using in addition (2.8), we get with the Markov property,

∑
0≤k<`

g(x, k) .
(r + `)d−2

1 + ‖x‖d−2
· `2,

for some constant C > 0. As a consequence one has

Px[ηr <∞, ‖Sηr‖ ≤ r/2]

.
1

1 + ‖x‖d−2
∞∑
`=0

P
[r

2
+ ` ≤ ‖X1‖ <

r

2
+ `+ 1

]
(r + `)d−2(`+ 1)2

.
1

1 + ‖x‖d−2
E
[
‖X1‖d−2(‖X1‖ − r/2)21{‖X1‖ ≥ r/2}

]
.

1

1 + ‖x‖d−2
,

since by hypothesis, the d-th moment of X1 is finite.

2.3. Basic tools. We state here some basic results, which are (for the
most part) proved in [Sch].



CAPACITY OF THE RANGE IN DIMENSION 5: VARIANCE BOUNDS 5

Lemma 2.3. There exists C > 0, such that for all x ∈ Zd, and ` ≥ 0,∑
z∈Zd

G`(z)G(z − x) ≤ C

‖x‖d−4 + `
d−4
2 + 1

.

Lemma 2.4. One has,

(2.9) sup
x∈Zd

E[G(Sn − x)] = O
(

1

n
d−2
2

)
,

and for any α ∈ [0, d),

(2.10) sup
n≥0

E
[

1

1 + ‖Sn − x‖α

]
= O

(
1

1 + ‖x‖α

)
.

Moreover, when d = 5,

(2.11) E

(∑
n≥k

G(Sn)
)2 = O

(
1

k

)
.

Proof. Only the last statement needs a proof, the others are proved in
[Sch]. One simply write, using the Markov property at the second line,

E

(∑
n≥k

G(Sn)
)2 =

∑
x,y

G(x)G(y)E

 ∑
n,m≥k

1{Sn = x, Sm = y}


≤ 2

∑
x,y

G(x)G(y)
∑
n≥k

∑
`≥0

pn(x)p`(y − x) = 2
∑
x,y

G(x)G(y)Gk(x)G(y − x)

Lemma 2.3

.
∑
x

1

‖x‖4
Gk(x)

(2.7)

.
1

k
.

Lemma 2.5. Let S and S̃ be two independent walks starting respectively
from the origin and some x ∈ Zd. Let also ` and m be two given nonnegative
integers (possibly infinite for m). Define

τ := inf{n ≥ 0 : S̃n ∈ R[`, `+m]}.

Then, for any function F : Zd → R+,

(2.12) E0,x[1{τ <∞}F (S̃τ )] ≤
`+m∑
i=`

E[G(Si − x)F (Si)].
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In particular, uniformly in ` and m,

(2.13) P0,x[τ <∞] = O
(

1

1 + ‖x‖d−4

)
.

Moreover, uniformly in x ∈ Zd,

(2.14) P0,x[τ <∞] =

 O
(
m · `

2−d
2

)
if m <∞

O
(
`
4−d
2

)
if m =∞.

3. Statement of the main results. Set

ϕnk := PSk [H+
Rn =∞ | Rn], and Znk := 1{S` 6= Sk, for all ` = k + 1, . . . , n},

for all 0 ≤ k ≤ n. By definition of the capacity one has

Cap(Rn) =
n∑
k=0

Znk · ϕnk .

Consider now (Sn)n∈Z a two-sided random walk starting from the origin
(that is (Sn)n≥0 and (S−n)n≥0 are two independent walks starting from the
origin), and denote its total range by R∞ := {Sn}n∈Z. Then for k ≥ 0, let

ϕ(k) := PSk [H+
R∞

=∞ | (Sn)n∈Z], and Z(k) := 1{S` 6= Sk, for all ` ≥ k+1},

and define

Cn :=
n∑
k=0

Z(k)ϕ(k), and Wn := Cap(Rn)− Cn.

We first prove the following result.

Lemma 3.1. One has
E[W 2

n ] = O(n).

Proof. Note that Wn = Wn,1 +Wn,2, with

Wn,1 =
n∑
k=0

(Znk − Z(k))ϕnk , and Wn,2 =
n∑
k=0

(ϕnk − ϕ(k))Z(k).
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Consider first the term Wn,1 which is easier. Observe that Znk − Z(k) is
nonnegative and bounded by the indicator function of the event {Sk ∈ R[n+
1,∞)}. Bounding also ϕnk by one, we get

E[W 2
n,1] ≤

n∑
`=0

n∑
k=0

E[(Zn` − Z(`))(Znk − Z(k))]

≤
n∑
`=0

n∑
k=0

P [S` ∈ R[n+ 1,∞), Sk ∈ R[n+ 1,∞)] .

Then noting that (Sn+1−k − Sn+1)k≥0 and (Sn+1+k − Sn+1)k≥0 are two in-
dependent random walks starting from the origin, we obtain

E[W 2
n,1] ≤

n+1∑
`=1

n+1∑
k=1

P[HS` <∞, HSk <∞] ≤ 2
n+1∑
`=1

n+1∑
k=1

P[HS` ≤ HSk <∞]

≤ 2
∑

1≤`≤k≤n+1

P[HS` ≤ HSk <∞] + P[HSk ≤ HS` <∞].

Using next the Markov property and (2.6), we get with S and S̃ two inde-
pendent random walks starting from the origin,

E[W 2
n,1] ≤ 2

∑
1≤`≤k≤n+1

E[G(S`)G(Sk − S`)] + E[G(Sk)G(Sk − S`)]

≤ 2
n+1∑
`=1

n∑
k=0

E[G(S`)] · E[G(Sk)] + E[G(S` + S̃k)G(S̃k)]

≤ 4

 sup
x∈Z5

∑
`≥0

E[G(x+ S`)]

2

(2.9)
= O(1).

We proceed similarly with Wn,2. Observe first that for any k ≥ 0,

0 ≤ ϕnk − ϕ(k) ≤ PSk [HR(−∞,0] <∞ | S] + PSk [HR[n,∞) <∞ | S].

Furthermore, for any 0 ≤ ` ≤ k ≤ n, the two terms PS` [HR(−∞,0] < ∞ | S]
and PSk [HR[n,∞) <∞ | S] are independent. Therefore,

E[W 2
n,2] ≤

n∑
`=0

n∑
k=0

E[(ϕn` − ϕ(`))(ϕnk − ϕ(k))] ≤ 2

(
n∑
`=0

P
[
HR[`,∞) <∞

])2

+ 4
∑

0≤`≤k≤n
P
[
R3
∞ ∩ (S` +R1

∞) 6= ∅, R3
∞ ∩ (Sk +R2

∞) 6= ∅
]
,(3.1)
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where in the last term R1
∞, R2

∞ and R3
∞ are the ranges of three (one-

sided) independent walks, independent of (Sn)n≥0, starting from the origin
(denoting here (S−n)n≥0 as another walk (S3

n)n≥0). Now (2.14) already shows
that the first term on the right hand side of (3.1) is O(n). For the second
one, note that for any 0 ≤ ` ≤ k ≤ n, one has

P
[
R3
∞ ∩ (S` +R1

∞) 6= ∅, R3
∞ ∩ (Sk +R2

∞) 6= ∅
]

≤ E
[
|R3
∞ ∩ (S` +R1

∞)| · |R3
∞ ∩ (Sk +R2

∞)|
]

= E
[
E[|R3

∞ ∩ (S` +R1
∞)| | S, S3] · E[|R3

∞ ∩ (Sk +R2
∞)| | S, S3]

]
(2.6)

≤ E

(∑
m≥0

G(S3
m − S`)

)(∑
m≥0

G(S3
m − Sk)

)
= E

(∑
m≥k

G(Sm − Sk−`)
)(∑

m≥k
G(Sm)

)
≤ E

(∑
m≥`

G(Sm)
)21/2

· E

(∑
m≥k

G(Sm)
)21/2

(2.11)
= O

(
1

1 +
√
k`

)
,

using invariance by time reversal at the penultimate line, and Cauchy-
Schwarz at the last one. This concludes the proof of the lemma.

Now as noticed in [Sch], one has

Var(Cn) = 2

n∑
`=1

∑̀
k=1

Cov(Z(0)ϕ(0), Z(k)ϕ(k)) +O(n).

We write now ϕ(0) and ϕ(k) as a sum of terms involving intersection and
non-intersection probabilities of different parts of the path (Sn)n∈Z. For
this, we consider some sequence of integers (εk)k≥1 satisfying k > 2εk, for
all k ≥ 3, and whose value will be fixed later. One first step is to reduce the
influence of the random variables Z(0) and Z(k), which play a very minor
role in the whole proof. Thus we define

Z0 := 1{S` 6= 0, ∀` = 1, . . . , εk}, and Zk := 1{S` 6= Sk, ∀` = k+1, . . . , k+εk}.

One has

E[|Z(0)− Z0|] = P[0 ∈ R[εk + 1,∞)]
(2.6)

≤ Gεk(0)
(2.7)
= O(ε

−3/2
k ),
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and the same estimate holds for E[|Z(k) − Zk|], by the Markov property.
Therefore,

Cov(Z(0)ϕ(0), Z(k)ϕ(k)) = Cov(Z0ϕ(0), Zkϕ(k)) +O(ε
−3/2
k ).

Then recall that we consider a two-sided walk (Sn)n∈Z, and that ϕ(0) =
P[H+

R(−∞,∞) =∞ | S]. Thus one can decompose ϕ(0) as follows:

ϕ(0) = ϕ0 − ϕ1 − ϕ2 − ϕ3 + ϕ1,2 + ϕ1,3 + ϕ2,3 − ϕ1,2,3,

with

ϕ0 := P[H+
R[−εk,εk] =∞ | S], ϕ1 := P[H+

R(−∞,−εk−1] <∞, H
+
R[−εk,εk] =∞ | S],

ϕ2 := P[H+
R[εk+1,k] <∞, H

+
R[−εk,εk] =∞ | S], ϕ3 := P[H+

R[k+1,∞) <∞, H
+
R[−εk,εk] =∞ | S],

ϕ1,2 := P[H+
R(−∞,−εk−1] <∞, H

+
R[εk+1,k] <∞, H

+
R[−εk,εk] =∞ | S],

ϕ1,3 := P[H+
R(−∞,−εk−1] <∞, H

+
R[k+1,∞) <∞, H

+
R[−εk,εk] =∞ | S],

ϕ2,3 := P[H+
R[εk+1,k] <∞, H

+
R[k+1,∞) <∞, H

+
R[−εk,εk] =∞ | S],

ϕ1,2,3 := P[H+
R(−∞,−εk−1] <∞, H

+
R[εk+1,k] <∞, H

+
R[k+1,∞) <∞, H

+
R[−εk,εk] =∞ | S].

We decompose similarly

ϕ(k) = ψ0 − ψ1 − ψ2 − ψ3 + ψ1,2 + ψ1,3 + ψ2,3 − ψ1,2,3,

where index 0 refers to the event of avoiding R[k−εk, k+εk], index 1 to the
event of hitting R(−∞,−1], index 2 to the event of hitting R[0, k − εk − 1]
and index 3 to the event of hitting R[k+εk+1,∞) (for a walk starting from
Sk this time). Note that ϕ0 and ψ0 are independent. Then write

Cov(Z0ϕ(0), Zkϕ(k)) = −
3∑
i=1

(Cov(Z0ϕi, Zkψ0) + Cov(Z0ϕ0, Zkψi))

(3.2)

+

3∑
i,j=1

Cov(Z0ϕi, Zkψj) +
∑

1≤i<j≤3
(Cov(Z0ϕi,j , Zkψ0) + Cov(Z0ϕ0, Zkψi,j)) +R0,k,

where R0,k is an error term. The main purpose of this paper is to prove the
following estimates.

Proposition 3.2. One has |R0,k| = O
(
ε
−3/2
k

)
.
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Proposition 3.3. One has

(i) |Cov(Z0ϕ1,2, Zkψ0)|+ |Cov(Z0ϕ0, Zkψ2,3)| = O
(√

εk
k3/2

)
,

(ii) |Cov(Z0ϕ1,3, Zkψ0)|+|Cov(Z0ϕ0, Zkψ1,3)| = O
(√

εk
k3/2
· log( kεk ) + 1

ε
3/4
k

√
k

)
,

(iii) |Cov(Z0ϕ2,3, Zkψ0)|+|Cov(Z0ϕ0, Zkψ1,2)| = O
(√

εk
k3/2
· log( kεk ) + 1

ε
3/4
k

√
k

)
.

In the same fashion as Part (i) of the previous proposition, we show:

Proposition 3.4. For any 1 ≤ i < j ≤ 3,

|Cov(Z0ϕi, Zkψj)| = O
(√

εk

k3/2

)
, |Cov(Z0ϕj , Zkψi)| = O

(
1

εk

)
.

Our last result deals with the first sum in the right-hand side of (3.2).

Proposition 3.5. There exists a constant α ∈ (0, 1), such that

Cov(Z0ϕ1, Zkψ0) = Cov(Z0ϕ0, Zkψ3) = 0,

|Cov(Z0ϕ2, Zkψ0)|+ |Cov(Z0ϕ0, Zkψ2)| = O
(√

εk

k3/2

)
,

|Cov(Z0ϕ3, Zkψ0)|+ |Cov(Z0ϕ0, Zkψ1)| = O
(

εαk
k1+α

)
.

Altogether these propositions show that Var(Cap(Rn)) = O(n log n), just
by taking εk := bk/4c.

4. Proof of Proposition 3.2. We divide the proof into two lemmas.

Lemma 4.1. One has

E[ϕ1,2,3] = O
(

1

εk
√
k

)
, and E[ψ1,2,3] = O

(
1

εk
√
k

)
.

Lemma 4.2. For any 1 ≤ i < j ≤ 3, and any 1 ≤ ` ≤ 3,

E[ϕi,jψ`] = O
(
ε
−3/2
k

)
, and E[ϕi,j ] · E[ψ`] = O

(
ε
−3/2
k

)
.

Observe that the (ϕi,j)i,j and (ψi,j)i,j have the same law (up to reorder-
ing), and similarly for the (ϕi)i and (ψi)i. Furthermore, ϕi,j ≤ ϕi for any i, j.
Therefore by definition of R0,k the proof of Proposition 3.2 readily follows
from these two lemmas. For their proofs, we will use the following fact.
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Lemma 4.3. There exists C > 0, such that for any x, y ∈ Z5, 0 ≤ ` ≤ m,

m∑
i=`

∑
z∈Z5

pi(z)G(z−y)pm−i(z−x) ≤ C

(1 + ‖x‖+
√
m)5

(
1

1 + ‖y − x‖
+

1

1 +
√
`+ ‖y‖

)
.

Proof. Consider first the case ‖x‖ ≤
√
m. By (2.3) and Lemma 2.3,

bm/2c∑
i=`

∑
z∈Z5

pi(z)G(z−y)pm−i(z−x) .
1

1 +m5/2

∑
z∈Z5

G`(z)G(z−y) .
(1 +m)−5/2

1 +
√
`+ ‖y‖

,

with the convention that the first sum is zero when m < 2`, and

m∑
i=bm/2c

∑
z∈Z5

pi(z)G(z−y)pm−i(z−x) .
1

1 +m5/2

∑
z∈Z5

G(z−y)G(z−x) .
(1 +m)−5/2

1 + ‖y − x‖
.

Likewise, when ‖x‖ >
√
m, applying again (2.3) and Lemma 2.3, we get

m∑
i=`

∑
‖z−x‖≥ ‖x‖

2

pi(z)G(z − y)pm−i(z − x) .
1

‖x‖5
∑
z∈Z5

G`(z)G(z − y) .
‖x‖−5

1 +
√
`+ ‖y‖

,

m∑
i=`

∑
‖z−x‖≤ ‖x‖

2

pi(z)G(z − y)pm−i(z − x) .
1

‖x‖5
∑
z∈Z5

G(z − y)G(z − x) .
‖x‖−5

1 + ‖y − x‖
,

which concludes the proof of the lemma.

One can now give the proof of Lemma 4.1.

Proof of Lemma 4.1. Since ϕ1,2,3 and ψ1,2,3 have the same law, it suf-

fices to prove the result for ϕ1,2,3. Let (Sn)n∈Z and (S̃n)n≥0 be two indepen-
dent random walks starting from the origin. Define

τ1 := inf{n ≥ 1 : S̃n ∈ R(−∞,−εk−1]}, τ2 := inf{n ≥ 1 : S̃n ∈ R[εk+1, k]},

and
τ3 := inf{n ≥ 1 : S̃n ∈ R[k + 1,∞)}.

One has

(4.1) E[ϕ1,2,3] ≤
∑

i1 6=i2 6=i3

P[τi1 ≤ τi2 ≤ τi3 ].
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We first consider the term corresponding to i1 = 1, i2 = 2, and i3 = 3. One
has by the Markov property,

P[τ1 ≤ τ2 ≤ τ3 <∞]
(2.13)

. E

[
1{τ1 ≤ τ2 <∞}
1 + ‖S̃τ2 − Sk‖

]
(2.12)

.
k∑

i=εk

E

[
G(Si − S̃τ1)1{τ1 <∞}

1 + ‖Si − Sk‖

]
.

Now define Gi := σ((Sj)j≤i)∨σ((S̃n)n≥0), and note that τ1 is Gi-measurable
for any i ≥ 0. Moreover, the Markov property and (2.3) show that

E
[

1

1 + ‖Si − Sk‖
| Gi
]
.

1√
k − i

.

Therefore,

P[τ1 ≤ τ2 ≤ τ3 <∞] .
k∑

i=εk

E

[
1{τ1 <∞} ·

G(Si − S̃τ1)

1 +
√
k − i

]

.
∑
z∈Z5

P[τ1 <∞, S̃τ1 = z] ·

 k/2∑
i=εk

E[G(Si − z)]√
k

+
k∑

i=k/2

E[G(Si − z)]
1 +
√
k − i


(2.9)

.
1√
kεk
· P[τ1 <∞]

(2.13)

.
1

εk
√
k
.

We consider next the term corresponding to i1 = 1, i2 = 3 and i3 = 2, whose
analysis slightly differs from the previous one. First Lemma 4.3 gives

P[τ1 ≤ τ3 ≤ τ2 <∞] =
∑
x,y∈Z5

E

1{τ1 ≤ τ3 <∞, S̃τ3 = y, Sk = x}
k∑

i=εk

G(Si − y)


(4.2)

=
∑
x,y∈Z5

 k∑
i=εk

∑
z∈Z5

pi(z)G(z − y)pk−i(x− z)

P
[
τ1 ≤ τ3 <∞, S̃τ3 = y | Sk = x

]

.
∑
x∈Z5

1

(‖x‖+
√
k)5

(
P[τ1 ≤ τ3 <∞ | Sk = x]

√
εk

+ E

[
1{τ1 ≤ τ3 <∞}

1 + ‖S̃τ3 − x‖

∣∣∣ Sk = x

])
.

We then have

P[τ1 ≤ τ3 <∞ | Sk = x]
(2.13)

. E

[
1{τ1 <∞}

1 + ‖S̃τ1 − x‖

]
(2.12)

.
∑
y∈Z5

Gεk(y)G(y)

1 + ‖y − x‖
Lemma 2.3

.
1

(1 + ‖x‖)
√
εk

+
∑

‖y−x‖≤ ‖x‖
2

Gεk(y)G(y)

1 + ‖y − x‖
.
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Moreover, when ‖x‖ ≥ √εk, one has

∑
‖y−x‖≤ ‖x‖

2

Gεk(y)G(y)

1 + ‖y − x‖

(2.7)

.
1

‖x‖6
∑

‖y−x‖≤ ‖x‖
2

1

1 + ‖y − x‖
.

1

‖x‖2
,

while, when ‖x‖ ≤ √εk,∑
‖y−x‖≤ ‖x‖

2

Gεk(y)G(y)

1 + ‖y − x‖

(2.7)

. (1 + ‖x‖)ε−3/2k .
1

εk
.

Therefore, it holds for any x,

(4.3) P[τ1 ≤ τ3 <∞ | Sk = x] .
1

(1 + ‖x‖)
√
εk
.

Similarly, one has

E

[
1{τ1 ≤ τ3 <∞}

1 + ‖S̃τ3 − x‖

∣∣∣ Sk = x

]
≤ E

∑
y∈Z5

G(y − S̃τ1)G(y − x)

1 + ‖y − x‖
1{τ1 <∞}



≤ E

[
1{τ1 <∞}

1 + ‖S̃τ1 − x‖2

]
≤
∑
y∈Z5

Gεk(y)G(y)

1 + ‖y − x‖2
.

1

(1 + ‖x‖2)√εk
.

(4.4)

Injecting (4.3) and (4.4) into (4.2) finally gives

P[τ1 ≤ τ2 ≤ τ3 <∞] .
1

εk
√
k
.

The other terms in (4.1) are entirely similar, so this concludes the proof of
the lemma.

For the proof of Lemma 4.2, one needs some additional estimates that we
state as two separate lemmas.

Lemma 4.4. There exists a constant C > 0, such that for any x, y ∈ Z5,

k−εk∑
i=εk

∑
z∈Z5

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

(
1

1 + ‖z − x‖
+

1√
k − i

)

≤ C ·


1

k5/2

(
1

1+‖x‖2 + 1
εk

)
+ 1

k3/2ε
3/2
k (1+‖y−x‖)

if ‖x‖ ≤
√
k

1
‖x‖5εk

(
1 + k√

εk(1+‖y−x‖)

)
if ‖x‖ >

√
k.
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Proof. We proceed similarly as for the proof of Lemma 4.3. Assume first
that ‖x‖ ≤

√
k. On one hand, using Lemma 2.3, we get

k/2∑
i=εk

1√
k − i

∑
z∈Z5

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

.
1

k3

∑
z∈Z5

Gεk(z)G(z−y) .
1

k5/2
√
kεk

,

and,

k/2∑
i=εk

∑
z∈Z5

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5(1 + ‖z − x‖)

.
1

k5/2

∑
z∈Z5

Gεk(z)G(z − y)

1 + ‖z − x‖

.
1

k5/2

 ∑
‖z−x‖≥ ‖x‖

2

Gεk(z)G(z − y)

1 + ‖z − x‖
+

∑
‖z−x‖≤ ‖x‖

2

Gεk(z)G(z − y)

1 + ‖z − x‖


.

1

k5/2

(
1

(1 + ‖x‖)√εk
+

1

1 + ‖x‖2

)
.

1

k5/2

(
1

1 + ‖x‖2
+

1

εk

)
.

On the other hand, by (2.3)

k−εk∑
i=k/2

∑
‖z‖>2

√
k

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

(
1

1 + ‖z − x‖
+

1√
k − i

)
.

1

k2

∑
‖z‖>2

√
k

G(z − y)

‖z‖5
. k−

7
2 .

Furthermore,

k−εk∑
i=k/2

1√
k − i

∑
‖z‖≤2

√
k

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

.
1

k2εk

∑
‖z‖≤2

√
k

G(z − y)

1 + ‖z − x‖3
.

(k2εk)
−1

1 + ‖y − x‖
,

and

k−εk∑
i= k

2

∑
‖z‖≤2

√
k

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

1

1 + ‖z − x‖
.

1

k3/2ε
3/2
k

∑
‖z‖≤2

√
k

G(z − y)

1 + ‖z − x‖3

.
1

k3/2ε
3/2
k

1

1 + ‖y − x‖
.

Assume now that ‖x‖ >
√
k. One has on one hand, using Lemma 2.3,

k−εk∑
i=εk

∑
‖z−x‖≥ ‖x‖

2

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

(
1

1 + ‖z − x‖
+

1√
k − i

)
.

1

‖x‖5εk
.
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On the other hand,

k−εk∑
i=εk

∑
‖z−x‖≤ ‖x‖

2

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

1

1 + ‖z − x‖
.

k

‖x‖5ε3/2k

∑
z∈Z5

G(z − y)

1 + ‖z − x‖3

.
k

‖x‖5ε3/2k (1 + ‖y − x‖)
,

and

k−εk∑
i=εk

1√
k − i

∑
‖z−x‖≤ ‖x‖

2

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

.

√
k

‖x‖5εk

∑
z∈Z5

G(z − y)

1 + ‖y − x‖3

.

√
k

‖x‖5εk(1 + ‖y − x‖)
,

concluding the proof of the lemma.

Lemma 4.5. There exists a constant C > 0, such that for any x, y ∈ Z5,∑
v∈Z5

1

(‖v‖+
√
k)5

(
1

1 + ‖x− v‖
+

1

1 + ‖x‖

)
1

(‖x− v‖+
√
εk)5

(
1

1 + ‖y − x‖
+

1

1 + ‖y − v‖

)

≤ C ·


1

k2εk

(
1√
εk

+ 1
1+‖x‖ + 1

1+‖y−x‖ +
√
εk

(1+‖x‖)(1+‖y−x‖)

)
if ‖x‖ ≤

√
k

log(
‖x‖√
εk

)

‖x‖5√εk

(
1

1+‖y−x‖ + 1√
k

)
if ‖x‖ >

√
k.

Proof. Assume first that ‖x‖ ≤
√
k. In this case it suffices to notice that

on one hand, for any α ∈ {3, 4}, one has∑
‖v‖≤2

√
k

1

(1 + ‖x− v‖α)(1 + ‖y − v‖4−α)
= O(

√
k),

and on the other hand, for any α, β ∈ {0, 1},∑
‖v‖>2

√
k

1

‖v‖10+α(1 + ‖y − v‖)β
= O(k−5/2−α−β).

Assume next that ‖x‖ >
√
k. In this case it is enough to observe that∑

‖v‖≤
√
k
2

(
1

1 + ‖x− v‖
+

1

‖x‖

)(
1

1 + ‖y − x‖
+

1

1 + ‖y − v‖

)
.

k2

(1 + ‖y − x‖)
,
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∑
‖v‖≥

√
k
2

1

‖v‖5(√εk + ‖x− v‖)5
.

log( ‖x‖√εk )

‖x‖5
,

∑
‖v‖≥

√
k
2

1

‖v‖5(√εk + ‖x− v‖)5(1 + ‖y − v‖)
.

log( ‖x‖√εk )

‖x‖5

(
1√
k

+
1

1 + ‖y − x‖

)
.

Proof of Lemma 4.2. First note that for any `, one has E[ψ`] = O(ε
−1/2
k ),

by (2.14). Using also similar arguments as in the proof of Lemma 4.1, that
we will not reproduce here, one can see that E[ϕi,j ] = O(ε−1k ), for any i 6= j.
Thus only the terms of the form E[ϕi,jψ`] are at stake.

Let (Sn)n∈Z, (S̃n)n≥0 and (Ŝn)n≥0 be three independent walks starting
from the origin. Recall the definition of τ1, τ2 and τ3 from the proof of
Lemma 4.1, and define analogously

τ̂1 := inf{n ≥ 1 : Sk+Ŝn ∈ R(−∞,−1]}, τ̂2 := inf{n ≥ 1 : Sk+Ŝn ∈ R[0, k−εk−1]},

and
τ̂3 := inf{n ≥ 1 : Sk + Ŝn ∈ R[k + εk + 1,∞)}.

When ` 6= i, j, one can take advantage of the independence between the
different parts of the range of S, at least once we condition on the value of
Sk. This allows for instance to write

E[ϕ1,2ψ3] ≤ P[τ1 <∞, τ2 <∞, τ̂3 <∞] = P[τ1 <∞, τ2 <∞]P[τ̂3 <∞] . ε
−3/2
k ,

using independence for the second equality and our previous estimates for
the last one. Similarly,

E[ϕ1,3ψ2] ≤
∑
x∈Z

P[τ1 <∞, τ3 <∞ | Sk = x]× P[τ̂2 <∞, Sk = x]

.
∑
x∈Z5

1

(1 + ‖x‖)
√
εk
· 1

(1 + ‖x‖+
√
k)5

(
1

1 + ‖x‖
+

1
√
εk

)
.

1

εk
√
k
,

using (4.3) and Lemma 4.3 for the second inequality. The term E[ϕ2,3ψ1] is
handled similarly. We consider now the other cases. One has

(4.5) E[ϕ2,3ψ3] ≤ P[τ2 ≤ τ3 <∞, τ̂3 <∞] + P[τ3 ≤ τ2 <∞, τ̂3 <∞].
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By using the Markov property at time τ2, one can write

P[τ2 ≤ τ3 <∞, τ̂3 <∞]

≤
∑
x,y∈Z5

E

( ∞∑
i=0

G(Si − y + x)

) ∞∑
j=εk

G(Sj)

P[τ2 <∞, S̃τ2 = y, Sk = x].

Then applying Lemmas 2.3 and 4.3, we get

E

( εk∑
i=0

G(Si − y + x)

) ∞∑
j=εk

G(Sj)


=
∑
v∈Z5

E

[(
εk∑
i=0

G(Si − y + x)

)
1{Sεk = v}

]
E

 ∞∑
j=0

G(Sj + v)


.
∑
v∈Z5

1

1 + ‖v‖
·

(
εk∑
i=0

pi(z)G(z − y + x)pεk−i(v − z)

)

.
∑
v∈Z5

1

1 + ‖v‖
1

(‖v‖+
√
εk)5

(
1

1 + ‖v − y + x‖
+

1

1 + ‖y − x‖

)
.

ε
−1/2
k

1 + ‖y − x‖
.

(4.6)

Likewise,

E

 ∞∑
i=εk

G(Si − y + x)

 ∞∑
j=εk

G(Sj)

 ≤ ∑
z∈Z5

Gεk(z)

(
G(z − y + x)

1 + ‖z‖
+

G(z)

1 + ‖z − y + x‖

)
.

1
√
εk(1 + ‖y − x‖)

.(4.7)

Recall now that by (2.14), one has P[τ2 < ∞] . ε
−1/2
k . Moreover, from the

proof of Lemma 4.1, one can deduce that

E

[
1{τ2 <∞}
‖S̃τ2 − Sk‖

]
.

1√
kεk

.

Combining all these estimates we conclude that

P[τ2 ≤ τ3 <∞, τ̂3 <∞] .
1

εk
√
k
.
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We deal next with the second term in the right-hand side of (4.5). Applying
the Markov property at time τ3, and then Lemma 4.3, we obtain

P[τ3 ≤ τ2 <∞, τ̂3 <∞]

≤
∑
x,y∈Z5

 k∑
i=εk

E[G(Si − y)1{Sk = x}]

P[τ3 <∞, τ̂3 <∞, S̃τ3 = y | Sk = x]

.
∑
x,y∈Z5

1

(‖x‖+
√
k)5

(
1

1 + ‖y − x‖
+

1
√
εk

)
P[τ3 <∞, τ̂3 <∞, S̃τ3 = y | Sk = x]

.
∑
x∈Z5

1

(‖x‖+
√
k)5

(
P[τ3 <∞, τ̂3 <∞ | Sk = x]

√
εk

+ E

[
1{τ3 <∞, τ̂3 <∞}

1 + ‖S̃τ3 − x‖

∣∣∣ Sk = x

])

.
∑
x∈Z5

1

(‖x‖+
√
k)5

(
1

εk(1 + ‖x‖)
+ E

[
1{τ3 <∞, τ̂3 <∞}

1 + ‖S̃τ3 − x‖

∣∣∣ Sk = x

])
,

(4.8)

using also (4.6) and (4.7) (with y = 0) for the last inequality. We use now
(2.8) and Lemma 2.2 to remove the denominator in the last expectation
above. Define for r ≥ 0, and x ∈ Z5,

ηr(x) := inf{n ≥ 0 : ‖S̃n − x‖ ≤ r}.

On the event when r/2 ≤ ‖S̃ηr(x)−x‖ ≤ r, one applies the Markov property
at time ηr(x), and we deduce from (2.8) and Lemma 2.2 that

E

[
1{τ3 <∞, τ̂3 <∞}

1 + ‖S̃τ3 − x‖

∣∣∣ Sk = x

]
≤ P[τ3 <∞, τ̂3 <∞ | Sk = x]

1 + ‖x‖

+

log2 ‖x‖∑
i=0

P
[
τ3 <∞, τ̂3 <∞, 2i ≤ ‖S̃τ3 − x‖ ≤ 2i+1 | Sk = x

]
2i

.
1

√
εk(1 + ‖x‖2)

+

log2 ‖x‖∑
i=0

P [η2i+1(x) ≤ τ3 <∞, τ̂3 <∞ | Sk = x]

2i

.
ε
−1/2
k

1 + ‖x‖2
+

P[τ̂3 <∞]

1 + ‖x‖3
+

log2 ‖x‖∑
i=0

22i

1 + ‖x‖3
max
‖z‖≥2i

P0,0,z

[
HR[εk,∞) <∞, H̃R∞ <∞

]
,

where in the last probability, H and H̃ refer to hitting times by two inde-
pendent walks, independent of S, starting respectively from the origin and
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from z. Then it follows from (4.6) and (4.7) that

(4.9) E

[
1{τ3 <∞, τ̂3 <∞}

1 + ‖S̃τ3 − x‖

∣∣∣ Sk = x

]
.

1
√
εk(1 + ‖x‖2)

.

Combining this with (4.8), it yields that

P[τ2 ≤ τ3 <∞, τ̂3 <∞] .
1

εk
√
k
.

The terms E[ϕ1,3ψ3] and E[ϕ1,3ψ1] are entirely similar, and we omit repeat-
ing the proof. Thus it only remains to consider the terms E[ϕ2,3ψ2] and
E[ϕ1,2ψ2]. Since they are also similar we only give the details for the former.
We start again by writing

(4.10) E[ϕ2,3ψ2] ≤ P[τ2 ≤ τ3 <∞, τ̂2 <∞] + P[τ3 ≤ τ2 <∞, τ̂2 <∞].

Then one has

P[τ3 ≤ τ2 <∞, τ̂2 <∞]

(4.11)

≤
∑
x,y∈Z5

E

 k∑
i=εk

G(Si − y)

k−εk∑
j=0

G(Sj − x)

1{Sk = x}

P[τ3 <∞, S̃τ3 = y | Sk = x]

≤
∑
x,y∈Z5

 k∑
i=εk

k−εk∑
j=0

∑
z,w∈Z5

P[Si = z, Sj = w, Sk = x]G(z − y)G(w − x)


× P[τ3 <∞, S̃τ3 = y | Sk = x].
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Now for any x, y ∈ Z5,

Σ1(x, y) :=

k−εk∑
i=εk

k−εk∑
j=εk

∑
z,w∈Z5

P[Si = z, Sj = w, Sk = x]G(z − y)G(w − x)

≤ 2

k−εk∑
i=εk

∑
z∈Z5

pi(z)G(z − y)

k−εk∑
j=i

∑
w∈Z5

pj−i(w − z)G(w − x)pk−j(x− w)


= 2

k−εk∑
i=εk

∑
z∈Z5

pi(z)G(z − y)

 k∑
j=εk

∑
w∈Z5

pj(w)G(w)pk−i−j(w + x− z)


Lemma 4.3

.
k−εk∑
i=εk

∑
z∈Z5

pi(z)G(z − y)

(‖z − x‖+
√
k − i)5

(
1

1 + ‖z − x‖
+

1√
k − i

)
Lemma 4.4

.


1

k5/2

(
1

1+‖x‖2 + 1
εk

)
+ 1

k3/2ε
3/2
k (1+‖y−x‖)

if ‖x‖ ≤
√
k

1
‖x‖5εk

(
1 + k√

εk(1+‖y−x‖)

)
if ‖x‖ >

√
k.

We also have

Σ2(x, y) :=

k∑
i=k−εk

k−εk∑
j=0

∑
z,w∈Z5

P[Si = z, Sj = w, Sk = x]G(z − y)G(w − x)

=
k∑

i=k−εk

k−εk∑
j=0

∑
z,v,w∈Z5

P[Sj = w, Sk−εk = v, Si = z, Sk = x]G(z − y)G(w − x)

=
∑
v∈Z5

k−εk∑
j=0

∑
w∈Z5

pj(w)pk−εk−j(v − w)G(w − x)

 εk∑
i=0

∑
z∈Z5

pi(z − v)pεk−i(x− z)G(z − y)

 ,

and applying then Lemmas 4.3 and 4.5, gives

Σ2(x, y)

.
∑
v∈Z5

1

(‖v‖+
√
k)5

(
1

1 + ‖x− v‖
+

1

1 + ‖x‖

)
1

(‖x− v‖+
√
εk)5

(
1

1 + ‖y − x‖
+

1

1 + ‖y − v‖

)

.


1

k2εk

(
1√
εk

+ 1
1+‖x‖ + 1

1+‖y−x‖ +
√
εk

(1+‖x‖)(1+‖y−x‖)

)
if ‖x‖ ≤

√
k

log(
‖x‖√
εk

)

‖x‖5√εk

(
1

1+‖y−x‖ + 1√
k

)
if ‖x‖ >

√
k.
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Likewise, by reversing time, one has

Σ3(x, y) :=
k∑

i=εk

εk∑
j=0

∑
z,w∈Z5

P[Si = z, Sj = w, Sk = x]G(z − y)G(w − x)

=

k−εk∑
i=0

k∑
j=k−εk

∑
z,v,w∈Z5

P[Si = z − x, Sk−εk = v − x, Sj = w − x, Sk = −x]G(z − y)G(w − x)

=
∑
v∈Z5

k−εk∑
i=0

∑
z∈Z5

pi(z − x)pk−εk−i(v − z)G(z − y)

 εk∑
j=0

∑
w∈Z5

pj(w − v)pεk−j(w)G(w − x)


.
∑
v∈Z5

1

(‖v − x‖+
√
k)5

(
1

1 + ‖y − v‖
+

1

1 + ‖y − x‖

)
1

(‖v‖+
√
εk)5

(
1

1 + ‖x‖
+

1

1 + ‖x− v‖

)
,

and then a similar argument as in the proof of Lemma 4.5 gives the same
bound for Σ3(x, y) as for Σ2(x, y). Now recall that (4.11) yields

P[τ3 ≤ τ2 <∞, τ̂2 <∞] ≤
∑
x,y∈Z5

(Σ1(x, y) + Σ2(x, y) + Σ3(x, y))P[τ3 <∞, S̃τ3 = y | Sk = x].

Recall also that by (2.13),

P[τ3 <∞ | Sk = x] .
1

1 + ‖x‖
,

and

E

[
1{τ3 <∞}

1 + ‖S̃τ3 − x‖

∣∣∣Sk = x

]
≤
∑
y∈Z5

G(y)G(y − x)

1 + ‖y − x‖
.

1

1 + ‖x‖2
.

Furthermore, for any α ∈ {1, 2, 3}, and any β ≥ 6,

∑
‖x‖≤

√
k

1

1 + ‖x‖α
. k

5−α
2 ,

∑
‖x‖≥

√
k

log( ‖x‖√εk )

‖x‖β
≤

∑
‖x‖≥√εk

log( ‖x‖√εk )

‖x‖β
. ε

5−β
2

k .

Putting all these pieces together we conclude that

P[τ3 ≤ τ2 <∞, τ̂2 <∞] . ε
−3/2
k .

We deal now with the other term in (4.10). As previously, we first write
using the Markov property, and then using (2.12) and Lemma 2.3,

P[τ2 ≤ τ3 <∞, τ̂2 <∞] ≤ E

[
1{τ2 <∞, τ̂2 <∞}

1 + ‖S̃τ2 − Sk‖

]
.
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Then using (2.8) and Lemma 2.2 one can handle the denominator in the last
expectation, the same way as for (4.9), and we conclude similarly that

P[τ2 ≤ τ3 <∞, τ̂2 <∞] . ε
−3/2
k .

This finishes the proof of Lemma 4.2.

5. Proof of Propositions 3.3 and 3.4. For the proof of these propo-
sitions we shall need the following estimate.

Lemma 5.1. One has for all x, y ∈ Z5,

k∑
i=k−εk

E [G(Si − y)1{Sk = x}]

. εk

 log(2 + ‖y−x‖√
εk

)

(‖x‖+
√
k)5(‖y − x‖+

√
εk)3

+
log(2 + ‖y‖√

k
)

(‖x‖+
√
εk)5(‖y‖+

√
k)3

 .

Proof. One has using (2.3) and (2.7),

k∑
i=k−εk

E [G(Si − y)1{Sk = x}] =
k∑

i=k−εk

∑
z∈Z5

pi(z)G(z − y)pk−i(x− z)

.
∑
z∈Z5

εk

(‖z‖+
√
k)5(1 + ‖z − y‖3)(‖x− z‖+

√
εk)5

.
1

ε
3/2
k (‖x‖+

√
k)5

∑
‖z−x‖≤√εk

1

1 + ‖z − y‖3

+
εk

(‖x‖+
√
k)5

∑
√
εk≤‖z−x‖≤ ‖x‖2

1

(1 + ‖z − y‖3)(1 + ‖z − x‖5)

+
εk

(‖x‖+
√
εk)5

∑
‖z−x‖≥ ‖x‖

2

1

(‖z‖+
√
k)5(1 + ‖z − y‖3)

.

Then it suffices to observe that∑
‖z−x‖≤√εk

1

1 + ‖z − y‖3
.

ε
5/2
k

(‖y − x‖+
√
εk)3

,

∑
√
εk≤‖z−x‖≤ ‖x‖2

1

(1 + ‖z − y‖3)(1 + ‖z − x‖5)
.

log(2 + ‖y−x‖√
εk

)

(‖y − x‖+
√
εk)3

,
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∑
z∈Z5

1

(‖z‖+
√
k)5(1 + ‖z − y‖3)

.
log(2 + ‖y‖√

k
)

(‖y‖+
√
k)3

.

Proof of Proposition 3.3 (i). This part is the easiest: it suffices to
observe that ϕ1,2 is a sum of one term which is independent of Zkψ0 and
another one, whose expectation is negligible. To be more precise, define

ϕ0
1,2 := P

[
H+
R[−εk,εk] =∞, H+

R(−∞,−εk−1] <∞, H
+
R[εk+1,k−εk−1] <∞ | S

]
,

and note that Z0ϕ
0
1,2 is independent of Zkψ0. It follows that

|Cov(Z0ϕ1,2, Zkψ0)| = |Cov(Z0(ϕ1,2 − ϕ0
1,2), Zkψ0)| ≤ P [τ1 <∞, τ∗ <∞] ,

with τ1 and τ∗ the hitting times respectively of R(−∞,−εk] and R[k−εk, k]
by another walk S̃ starting from the origin, independent of S. Now, using
(2.3), we get

P[τ1 ≤ τ∗ <∞] ≤ E

1{τ1 <∞}
 k∑
i=k−εk

G(Si − S̃τ1)


≤
∑
y∈Z5

∑
z∈Z5

k∑
i=k−εk

pi(z)G(z − y)

P[τ1 <∞, S̃τ1 = y]

.
εk
k3/2

P[τ1 <∞]
(2.14)

.
√
εk

k3/2
.

Likewise, using now Lemma 2.3,

P[τ∗ ≤ τ1 <∞] ≤ E

1{τ∗ <∞}
 ∞∑
i=εk

G(S−i − S̃τ∗)


≤
∑
y∈Z5

∑
z∈Z5

Gεk(z)G(z − y)

P[τ∗ <∞, S̃τ∗ = y]

.
1
√
εk

P[τ∗ <∞] .
√
εk

k3/2
,

and the first part of (i) follows. But since Z0 and Zk have played no role
here, the same computation gives the result for the covariance between Z0ϕ0

and Zkψ2,3 as well.
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Proof of Proposition 3.3 (ii)-(iii). These parts are more involved.
Since they are entirely similar, we only prove (iii), and as for (i) we only
give the details for the covariance between Z0ϕ2,3 and Zkψ0, since Z0 and
Zk will not play any role here. We define similarly as in the proof of (i),

ϕ0
2,3 := P

[
H+
R[−εk,εk] =∞, H+

R[εk,k−εk] <∞, H
+
R[k+εk,∞) <∞ | S

]
,

but observe that this time, the term ϕ0
2,3 is no more independent of ψ0. This

entails some additional difficulty, on which we shall come back later, but
first we show that one can indeed replace ϕ2,3 by ϕ0

2,3 in the computation of
the covariance. For this, denote respectively by τ2, τ3, τ∗ and τ∗∗ the hitting
times of R[εk, k], R[k,∞), R[k − εk, k], and R[k, k + εk] by S̃. One has

E[|ϕ2,3 − ϕ0
2,3|] ≤ P[τ2 <∞, τ∗∗ <∞] + P[τ3 <∞, τ∗ <∞].

Using (2.3), (2.12) and Lemma 2.3, we get

P[τ∗ ≤ τ3 <∞] ≤ E

[
1{τ∗ <∞}

1 + ‖S̃τ∗ − Sk‖

]
≤

k∑
i=k−εk

E
[

G(Si)

1 + ‖Si − Sk‖

]

.
k∑

i=k−εk

E
[

G(Si)

1 +
√
k − i

]
.
∑
z∈Z5

k∑
i=k−εk

pi(z)G(z)

1 +
√
k − i

.
√
εk
∑
z∈Z5

1

(‖z‖+
√
k)5

G(z) .
√
εk

k3/2
.

Next, applying Lemma 5.1, we get

P[τ3 ≤ τ∗ <∞]

≤
∑
x,y∈Z5

E

 k∑
i=k−εk

G(Si − y)

1{Sk = x}

P[τ3 <∞, S̃τ3 = y | Sk = x]

. εk
∑
x∈Z5

E

 1{τ3 <∞} log(2 +
‖S̃τ3−x‖√

εk
)

(‖x‖+
√
k)5(
√
εk + ‖S̃τ3 − x‖)3

∣∣∣Sk = x


+E

 1{τ3 <∞} log(2 +
‖S̃τ3‖√

k
)

(‖x‖+
√
εk)5(

√
k + ‖S̃τ3‖)3

∣∣∣Sk = x

 .
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Moreover,

E

1{τ3 <∞} log(2 +
‖S̃τ3−x‖√

εk
)

(
√
εk + ‖S̃τ3 − x‖)3

∣∣∣Sk = x

 (2.12)

≤
∑
y∈Z5

G(y)G(y − x) log(2 + ‖y−x‖√
εk

)

(
√
εk + ‖y − x‖)3

.
1

√
εk(1 + ‖x‖)3

,

and

E

1{τ3 <∞} log(2 +
‖S̃τ3‖√

k
)

(
√
k + ‖S̃τ3‖)3

∣∣∣Sk = x

 (2.12)

≤
∑
y∈Z5

G(y)G(y − x) log(2 + ‖y‖√
k

)

(
√
k + ‖y‖)3

.
1√

k(1 + ‖x‖)(
√
k + ‖x‖)2

.

Furthermore, it holds∑
x∈Z5

1

(‖x‖+
√
k)5(1 + ‖x‖)3

.
1

k3/2
,

∑
x∈Z5

1

(‖x‖+
√
εk)5(1 + ‖x‖)(

√
k + ‖x‖)2

.
1√
kεk

,

which altogether proves that

P[τ3 ≤ τ∗ <∞] .
√
εk

k3/2
.

Likewise,

P[τ2 ≤ τ∗∗ <∞] ≤
∑
x,y∈Z5

E

[
εk∑
i=0

G(Si − y + x)

]
P[τ2 <∞, S̃τ2 = y, Sk = x],

and using (2.7), we get

E

[
εk∑
i=0

G(Si − y + x)

]
=

εk∑
i=0

∑
z∈Z5

pi(z)G(z − y + x)

.
∑

‖z‖≤√εk

G(z)G(z − y + x) + εk
∑

‖z‖≥√εk

G(z − y + x)

‖z‖5

.
εk

(‖y − x‖+
√
εk)2(1 + ‖y − x‖)

+ εk
log
(

2 + ‖y−x‖√
εk

)
(‖y − x‖+

√
εk)3

. εk
log
(

2 + ‖y−x‖√
εk

)
(‖y − x‖+

√
εk)2(1 + ‖y − x‖)

.
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Therefore, using the Markov property,

P[τ2 ≤ τ∗∗ <∞] . εk · E

 log

(
2 +

‖S̃τ2−Sk‖√
εk

)
· 1{τ2 <∞}

(‖S̃τ2 − Sk‖+
√
εk)2(1 + ‖S̃τ2 − Sk‖)


. εk

k∑
i=εk

E[G(Si)] · E

 log
(

2 +
‖Sk−i‖√

εk

)
(‖Sk−i‖+

√
εk)2(1 + ‖Sk−i‖)

 .
Furthermore, using (2.3) we obtain after straightforward computations,

E

 log
(

2 +
‖Sk−i‖√

εk

)
(‖Sk−i‖+

√
εk)2(1 + ‖Sk−i‖)

 .
log
(

2 + k−i
εk

)
√
k − i(εk + k − i)

,

and using in addition (2.9), we conclude that

P[τ2 ≤ τ∗∗ <∞] .
√
εk

k3/2
· log(

k

εk
).

Similarly, using Lemma 4.3 we get

P[τ∗∗ ≤ τ2 <∞]

=
∑
x,y∈Z5

P[τ∗∗ <∞, S̃τ∗∗ = y | Sk = x] · E

 k∑
i=εk

G(Si − y)1{Sk = x}


.
∑
x∈Z5

1

(‖x‖+
√
k)5

(
E

[
1{τ∗∗ <∞}

1 + ‖S̃τ∗∗ − x‖

∣∣∣Sk = x

]
+

P[τ∗∗ <∞ | Sk = x]
√
εk

)
.

Moreover, one has

P[τ∗∗ <∞ | Sk = x] ≤
εk∑
i=0

E[G(Si + x)] .
εk∑
i=0

∑
z∈Z5

1

(1 + ‖z‖+
√
i)5(1 + ‖z + x‖3)

.
∑

‖z‖≤√εk

1

(1 + ‖z‖3)(1 + ‖z + x‖3)
+

∑
‖z‖≥√εk

εk
‖z‖5(1 + ‖z + x‖3)

.
εk log(2 + ‖x‖√

εk
)

(
√
εk + ‖x‖)2(1 + ‖x‖)

,
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and likewise

E

[
1{τ∗∗ <∞}

1 + ‖S̃τ∗∗ − x‖

∣∣∣Sk = x

]
≤

εk∑
i=0

∑
z∈Z5

1

(1 + ‖z‖+
√
i)5(1 + ‖z − x‖3)(1 + ‖z‖)

.
∑

‖z‖≤√εk

1

(1 + ‖z‖4)(1 + ‖z − x‖3)
+

∑
‖z‖≥√εk

εk
‖z‖6(1 + ‖z − x‖3)

.
√
εk

(‖x‖+
√
εk)(1 + ‖x‖2)

.

Then it follows as above that

P[τ∗∗ ≤ τ2 <∞] .
√
εk

k3/2
· log(

k

εk
).

In other words we have proved that

E[|ϕ2,3 − ϕ0
2,3|] .

√
εk

k3/2
· log(

k

εk
).

We then have to deal with the fact that Z0ϕ
0
2,3 is not really independent of

Zkψ0. Therefore, we introduce the new random variables

Z̃k := 1{Si 6= Sk ∀i = k + 1, . . . , ε′k}, ψ̃0 := PSk
[
H+
R[k−ε′k,k+ε

′
k]

=∞ | S
]
,

where (ε′k)k≥0 is another sequence of integers, whose value will be fixed later.
For the moment we only assume that it satisfies ε′k ≤ εk/4, for all k. One
has by (2.7) and (2.14),

(5.1) E[|Zkψ0 − Z̃kψ̃0|] .
1√
ε′k
.

Furthermore, for any y ∈ Z5,

E
[
ϕ0
2,3 | Sk+εk − Sk−εk = y

]
=
∑
x∈Z5

E
[
ϕ0
2,31{Sk−εk = x} | Sk+εk − Sk−εk = y

](5.2)

≤
∑
x∈Z5

P
[
R̃∞ ∩R[εk, k − εk] 6= ∅, R̃∞ ∩ (x+ y + R̂∞) 6= ∅, Sk−εk = x

]
,

where in the last probability, R̃∞ and R̂∞ are the ranges of two independent
walks, independent of S, starting from the origin. Now x and y being fixed,
define

τ1 := inf{n ≥ 0 : S̃n ∈ R[εk, k− εk]}, τ2 := inf{n ≥ 0 : S̃n ∈ (x+ y+ R̂∞)}.
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Applying (2.12) and the Markov property we get

P[τ1 ≤ τ2 <∞, Sk−εk = x] ≤ E

[
1{τ1 <∞, Sk−εk = x}

1 + ‖S̃τ1 − (x+ y)‖

]

≤
k−εk∑
i=εk

∑
z∈Z5

pi(z)G(z)pk−εk−i(x− z)
1 + ‖z − (x+ y)‖

.
1

(‖x‖+
√
k)5

(
1

√
εk(1 + ‖x+ y‖)

+
1

1 + ‖x‖2

)
,

using also similar computations as in the proof of Lemma 4.3 for the last
inequality. It follows that for some constant C > 0, independent of y,∑

x∈Z5

P[τ1 ≤ τ2 <∞, Sk−εk = x] .
1√
kεk

.

On the other hand, by Lemmas 4.3 and 2.5,

P[τ2 ≤ τ1 <∞, Sk−εk = x] .
1

(‖x‖+
√
k)5

(
E

[
1{τ2 <∞}

1 + ‖S̃τ2 − x‖

]
+

P[τ2 <∞]
√
εk

)

.
1

(‖x‖+
√
k)5

(
1

√
εk(1 + ‖x+ y‖)

+
1

1 + ‖x‖2

)
,

and it follows as well that∑
x∈Z5

P[τ2 ≤ τ1 <∞, Sk−εk = x] .
1√
kεk

.

Coming back to (5.2), we deduce that

(5.3) E
[
ϕ0
2,3 | Sk+εk − Sk−εk = y

]
.

1√
kεk

,

with an implicit constant independent of y. Together with (5.1), this gives

E
[
ϕ0
2,3|Zkψ0 − Z̃kψ̃0|

]
=
∑
y∈Z5

E
[
ϕ0
2,3 | Sk+εk − Sk−εk = y

]
· E
[
|Zkψ0 − Z̃kψ̃0|1{Sk+εk − Sk−εk = y}

]
.

1√
kεkε

′
k

.
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Thus at this point we have shown that

Cov(Z0ϕ2,3, Zkψ0) = Cov(Z0ϕ
0
2,3, Z̃kψ̃0) +O

(√
εk

k3/2
· log(

k

εk
) +

1√
kεkε

′
k

)
.

Note next that

Cov(Z0ϕ
0
2,3, Z̃kψ̃0) =

∑
y,z∈Z5

E
[
Z0ϕ

0
2,3 | Sk+εk − Sk−ε′k = y

]
× E

[
Z̃kψ̃01{Sk+ε′k − Sk−ε′k = z}

] (
pεk−ε′k(y − z)− pεk+ε′k(y)

)
.

Moreover, one can show exactly as (5.3) that uniformly in y,

E
[
ϕ0
2,3 | Sk+εk − Sk−ε′k = y

]
.

1√
kεk

.

Therefore by using also (2.5) and Theorem 2.1, we see that

|Cov(Z0ϕ
0
2,3, Z̃kψ̃0)|

.
1√
kεk

∑
‖y‖≤ε

6
10
k

∑
‖z‖≤ε

1
10
k ·
√
ε′k

p2ε′k(z) |pεk−ε′k(y − z)− pεk+ε′k(y)|+ 1

εk
√
k
.

Now straightforward computations show that for y and z as in the two sums
above, one has for some constant c > 0,

|pεk−ε′k(y − z)− pεk+ε′k(y)| .
(
‖z‖
√
εk

+
ε′k
εk

)
pεk−ε′k

(cy),

at least when ε′k ≤
√
εk, as will be assumed in a moment. Using also that∑

z ‖z‖p2ε′k(z) .
√
ε′k, we deduce that

|Cov(Z0ϕ
0
2,3, Z̃kψ̃0)| = O

( √
ε′k

εk
√
k

)
.

This concludes the proof as we choose ε′k = b√εkc.

We can now quickly give the proof of Proposition 3.4.

Proof of Proposition 3.4. Case 1 ≤ i < j ≤ 3. First note that Z0ϕ1

and Zkψ3 are independent, so only the cases i = 1 and j = 2, or i = 2 and
j = 3 are at stake. Let us only consider the case i = 2 and j = 3, since the
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other one is entirely similar. Define, in the same fashion as in the proof of
Proposition 3.3,

ϕ0
2 := P

[
H+
R[−εk,εk] =∞, H+

R[εk+1,k−εk] <∞ | S
]
.

One has by using independence and translation invariance,

E[|ϕ2 − ϕ0
2|ψ3] ≤ P[HR[k−εk,k] <∞] · P[HR[εk,∞) <∞] .

√
εk

k3/2
,

which entails

Cov(Z0ϕ2, Zkψ3) = Cov(Z0ϕ
0
2, Zkψ3) +O

(√
εk

k3/2

)
.
√
εk

k3/2
,

since Z0ϕ
0
2 and Zkψ3 are independent.

Case 1 ≤ j ≤ i ≤ 3. Here one can use entirely similar arguments as those
from the proof of Lemma 4.2, and we therefore omit the details.

6. Proof of Proposition 3.5. We need to estimate here the covari-
ances Cov(Z0ϕi, Zkψ0) and Cov(Z0ϕ0, Zkψ4−i), for all 1 ≤ i ≤ 3.

Case i = 1. It suffices to observe that Z0ϕ1 and Zkψ0 are independent, as
are Z0ϕ0 and Zkψ3. Thus their covariances are equal to zero.

Case i = 2. We first consider the covariance between Z0ϕ2 and Zkψ0,
which is easier to handle. Define

ϕ̃2 := P
[
H+
R[−εk,k−εk−1] =∞, H+

R[k−εk,k] <∞ | S
]
,

and note that Z0(ϕ2 − ϕ̃2) is independent of Zkψ0. Therefore

Cov(Z0ϕ2, Zkψ0) = Cov(Z0ϕ̃2, Zkψ0).

Then we decompose ψ0 as ψ0 = ψ1
0 − ψ2

0, where

ψ1
0 := PSk [H+

R[k,k+εk]
=∞ | S], ψ2

0 := PSk [H+
R[k,k+εk]

=∞, H+
R[k−εk,k−1] <∞ | S].

Using now that Zkψ
1
0 is independent of Z0ϕ̃2 we get

Cov(Z0ϕ2, Zkψ0) = −Cov(Z0ϕ̃2, Zkψ
2
0).

Let (S̃n)n≥0 and (Ŝn)n≥0 be two independent walks starting from the origin,
and define

τ1 := inf{n ≥ 0 : Sk−n ∈ R̃[1,∞)}, τ2 := inf{n ≥ 0 : Sk−n ∈ (Sk+R̂[1,∞))}.
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We decompose

Cov(Z0ϕ̃2, Zkψ
2
0)

= E
[
Z0ϕ̃2Zkψ

2
01{τ1 ≤ τ2}

]
+ E

[
Z0ϕ̃2Zkψ

2
01{τ1 > τ2}

]
− E[Z0ϕ̃2]E[Zkψ

2
0].

We bound the first term on the right-hand side simply by the probability
of the event {τ1 ≤ τ2 ≤ εk}, which we treat later, and for the difference
between the last two terms, we use that∣∣∣∣∣1{τ2 < τ1 ≤ εk} −

εk∑
i=0

1
{
τ2 = i, H+

R[k−εk,k−i−1] <∞
}∣∣∣∣∣ ≤ 1{τ1 ≤ τ2 ≤ εk}.

Using also that the event {τ2 = i} is independent of (Sn)n≤k−i, we deduce
that

|Cov(Z0ϕ̃2, Zkψ
2
0)|

≤ 2P[τ1 ≤ τ2 ≤ εk] +

εk∑
i=0

P[τ2 = i]
∣∣∣P [H+

R[k−εk,k−i] <∞
]
− P

[
H+
R[k−εk,k] <∞

]∣∣∣
≤ 2P[τ1 ≤ τ2 ≤ εk] +

εk∑
i=0

P[τ2 = i] · P
[
H+
R[k−i,k] <∞

]
(2.14)

≤ 2P[τ1 ≤ τ2 ≤ εk] +
C

k3/2

εk∑
i=0

iP[τ2 = i]

≤ 2P[τ1 ≤ τ2 ≤ εk] +
C

k3/2

εk∑
i=0

P[τ2 ≥ i]

(2.14)

≤ 2P[τ1 ≤ τ2 ≤ εk] +
C

k3/2

εk∑
i=0

1√
i
≤ 2P[τ1 ≤ τ2 ≤ εk] +

C
√
εk

k3/2
.

Then it amounts to bound the probability of τ1 being smaller than τ2:

P[τ1 ≤ τ2 ≤ εk] =
∑
x,y∈Z5

εk∑
i=0

P [τ1 = i, i ≤ τ2 ≤ εk, Sk = x, Sk−i = x+ y]

≤
∑
x,y∈Z5

εk∑
i=0

P
[
τ1 = i, Sk−i = x+ y, (x+ R̂∞) ∩R[k − εk, k − i] 6= ∅, Sk = x

]

≤
∑
x,y∈Z5

εk∑
i=0

P
[
R̃∞ ∩ (x+R[0, i− 1]) = ∅, Si = y, x+ y ∈ R̃∞

]
× P

[
R̂∞ ∩ (y +R[0, εk − i]) 6= ∅, Sk−i = −x− y

]
,
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using invariance by time reversal of S, and where we stress the fact that in
the first probability in the last line, R and R̃ are two independent ranges
starting from the origin. Now the last probability can be bounded using
(2.6) and Lemma 4.3, which give

P
[
R̂∞ ∩ (y +R[0, εk − i]) 6= ∅, Sk−i = −x− y

]
≤

εk−i∑
j=0

E [G(Sj + y)1{Sk−i = −x− y}]

=

εk−i∑
j=0

∑
z∈Z5

pj(z)G(z + y)pk−i−j(z + x+ y) =

k−i∑
j=k−εk

∑
z∈Z5

pj(z)G(z − x)pk−i−j(z − x− y)

.
1

(‖x+ y‖+
√
k)5

(
1

1 + ‖y‖
+

1√
k + ‖x‖

)
.

It follows that

P[τ1 ≤ τ2 ≤ εk] .
∑
x,y∈Z5

εk∑
i=0

G(x+ y)pi(y)

(‖x+ y‖+
√
k)5

(
1

1 + ‖y‖
+

1√
k + ‖x‖

)
,

and then standard computations show that

(6.1) P[τ1 ≤ τ2 ≤ εk] .
√
εk

k3/2
.

Taking all these estimates together proves that

Cov(Z0ϕ2, Zkψ0) .
√
εk

k3/2
.

We consider now the covariance between Z0ϕ0 and Zkψ2. Here a new prob-
lem arises due to the random variable Z0, which does not play the same role
as Zk, but one can use similar arguments. In particular the previous proof
gives

Cov(Z0ϕ0, Zkψ2) = −Cov((1− Z0)ϕ0, Zkψ2) +O
(√

εk

k3/2

)
.

Then we decompose as well ϕ0 = ϕ1
0 − ϕ2

0, with

ϕ1
0 := P[H+

R[k−εk,k] =∞ | S], ϕ2
0 := P[H+

R[k−εk,k] =∞, H+
R[k+1,k+εk]

<∞ | S].

Using independence we get

Cov((1− Z0)ϕ
1
0, Zkψ2) = E[ϕ1

0] · Cov((1− Z0), Zkψ2).
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Then we define in the same fashion as above,

τ̃0 := inf{n ≥ 1 : Sn = 0}, τ̃2 := inf{n ≥ 0 : Sn ∈ (Sk + R̂[1,∞))},

with R̂ the range of an independent walk starting from the origin. Recall
that by definition 1− Z0 = 1{τ̃0 ≤ εk}. Thus one can write

Cov((1−Z0), Zkψ2) = E[Zkψ21{τ̃2 ≤ τ̃0 ≤ εk}]+E[Zkψ21{τ̃0 < τ̃2}]−P[τ̃0 ≤ εk]E[Zkψ2].

On one hand, using (2.6), the Markov property, and (2.9),

E[Zkψ21{τ̃2 ≤ τ̃0 ≤ εk}] ≤ P[τ̃2 ≤ τ̃0 ≤ εk] ≤
∑
y∈Z5

P[τ̃2 ≤ εk, Sτ̃2 = y] ·G(y)

≤
εk∑
i=0

E [G(Si − Sk)G(Si)] ≤
εk∑
i=0

E[G(Sk−i)] · E[G(Si)] .
1

k3/2

εk∑
i=0

1

1 + i3/2
.

1

k3/2
.

On the other hand, similarly as above,

E[Zkψ21{τ̃0 < τ̃2}]− P[τ̃0 ≤ εk] · E[Zkψ2]

≤ P[τ̃2 ≤ τ̃0 ≤ εk] +

εk∑
i=1

P[τ̃0 = i]
(
P
[
(Sk + R̂[1,∞)) ∩R[i+ 1, εk] 6= ∅

]
− P[τ̃2 ≤ εk]

)
.

1

k3/2
+

εk∑
i=1

P[τ̃0 = i]P[τ̃2 ≤ i]
(2.14)

.
1

k3/2
+

1

k3/2

εk∑
i=1

iP[τ̃0 = i]

.
1

k3/2
+

1

k3/2

εk∑
i=1

P[τ̃0 ≥ i]
(2.6),(2.7)

.
1

k3/2
+

1

k3/2

εk∑
i=1

1

1 + i3/2
.

1

k3/2
.

(6.2)

In other terms, we have already shown that

|Cov((1− Z0)ϕ
1
0, Zkψ2)| .

1

k3/2
.

The case when ϕ1
0 is replaced by ϕ2

0 is entirely similar. Indeed, we define

τ̃1 := inf{n ≥ 0 : Sn ∈ R̃[1,∞)},

with R̃ the range of a random walk starting from the origin, independent of
S and R̂. Then we set τ̃0,1 := max(τ̃0, τ̃1), and exactly as for (6.1) and (6.2),
one has

P[τ̃2 ≤ τ̃0,1 ≤ εk] .
√
εk

k3/2
,
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and

E
[
(1− Z0)ϕ

2
0Zkψ21{τ̃0,1 < τ̃2}

]
− E[(1− Z0)ϕ

2
0] · E[Zkψ2]

≤ P[τ̃2 ≤ τ̃0,1 ≤ εk] +

εk∑
i=0

P[τ̃0,1 = i] · P[τ̃2 ≤ i] .
√
εk

k3/2
.

Altogether, this gives

|Cov(Z0ϕ0, Zkψ2)| .
√
εk

k3/2
.

Case i = 3. We only need to treat the case of the covariance between Z0ϕ3

and Zkψ0, as the other one is entirely similar here. Define

ϕ̃3 := P
[
H+
R[−εk,εk]∪R[k+εk+1,∞) =∞, H+

R[k,k+εk]
<∞ | S

]
.

The proof of the case i = 2, already shows that

|Cov(Z0ϕ̃3, Zkψ0)| .
√
εk

k3/2
.

Define next

h3 := ϕ3 − ϕ̃3 = P
[
H+
R[−εk,εk] =∞, H+

R[k+εk+1,∞) <∞ | S
]
.

Assume for a moment that εk ≥ k
9
20 . We will see later another argument

when this condition is not satisfied. Then define ε′k := bε10/9k /k1/9c, and note
that one has ε′k ≤ εk. Write ψ0 = ψ′0 + h0, with

ψ′0 := P
[
H+
R[k−ε′k+1,k+ε′k−1]

=∞ | S
]
,

and

h0 := P
[
H+
R[k−ε′k+1,k+ε′k−1]

=∞, H+
R[k−εk,k−ε′k]∪R[k+ε′k,k+εk]

<∞ | S
]
.

Define also

Z ′k := 1{S` 6= Sk, for all ` = k + 1, . . . , k + ε′k − 1}.

One has

Cov(Z0h3, Zkψ0) = Cov(Z0h3, Z
′
kψ
′
0)+Cov(Z0h3, Z

′
kh0)+Cov(Z0h3, (Zk−Z ′k)ψ0).
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For the last of the three terms, one can simply notice that, using the Markov
property at the first return time to Sk (for the walk S), and then (2.6), (2.7),
and (2.14), we get

E[h3(Zk − Z ′k)] ≤ E[Zk − Z ′k]× P[R̃∞ ∩R [k,∞) 6= ∅]

.
1

(ε′k)
3/2
√
k
.

1

ε
5/3
k k1/3

.
1

k
13
12

,

using our hypothesis on εk for the last equality. As a consequence, it also
holds

|Cov(Z0h3, (Zk − Z ′k)ψ0)| . k−
13
12 .

Next we write

(6.3) Cov(Z0h3, Z
′
kh0) =

∑
x,y∈Z5

(pk−2εk(x− y)− pk(x))H1(y)H2(x),

where

H1(y) := E
[
Z ′kh01{Sk+εk − Sk−εk = y}

]
, H2(x) := E [Z0h3 | Sk+εk − Sεk = x] .

Define rk := (k/ε′k)
1/8. By using symmetry and translation invariance,∑

‖y‖≥√εkrk

H1(y) ≤ P
[
HR[−εk,−ε′k]∪R[ε′k,εk]

<∞, ‖Sεk − S−εk‖ ≥
√
εkrk

]
≤ 2P

[
HR[ε′k,εk]

<∞, ‖Sεk‖ ≥
√
εk
rk
2

]
+ 2P

[
HR[ε′k,εk]

<∞, ‖S−εk‖ ≥
√
εk
rk
2

]
(2.14), (2.5)

≤ 2P
[
HR[ε′k,εk]

<∞, ‖Sεk‖ ≥
√
εk
rk
2

]
+

C√
ε′kr

5
k

.

Considering the first probability on the right-hand side, define τ as the first
hitting time (for S), after time ε′k, of another independent walk S̃ (starting
from the origin). One has

P
[
HR[ε′k,εk]

<∞, ‖Sεk‖ ≥
√
εk
rk
2

]
≤ P[‖Sτ‖ ≥

√
εk
rk
4
, τ ≤ εk] + P[‖Sεk − Sτ‖ ≥

√
εk
rk
4
, τ ≤ εk].

Using then the Markov property at time τ , we deduce with (2.14) and (2.5),

P[‖Sεk − Sτ‖ ≥
√
εk
rk
4
, τ ≤ εk] .

1√
ε′kr

5
k

.
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Likewise, using the Markov property at the first time when the walk exit
the ball of radius

√
εkrk/4, and applying then (2.5) and (2.13), we get as

well

P[‖Sτ‖ ≥
√
εk
rk
4
, τ ≤ εk] .

1
√
εkr

6
k

.

Furthermore, for any y, one has

∑
x∈Z5

pk−2εk(x− y)H2(x)
(2.3),(2.13)

.
∑
x∈Z5

1

(1 + ‖x+ y‖)(‖x‖+
√
k)5

.
1√
k
,

with an implicit constant, which is uniform in y (and the same holds with

pk(x) instead of pk−2εk(x− y)). Similarly, define r′k := (k/ε′k)
1
10 . One has for

any y, with ‖y‖ ≤ √εkrk,

∑
‖x‖≥

√
kr′k

pk−2εk(x− y)H2(x)
(2.5),(2.13)

.
1√

k(r′k)
6
.

Therefore coming back to (6.3), and using that by (2.13),
∑

yH1(y) .

1/
√
ε′k, we get

Cov(Z0h3, Z
′
kh0)

=
∑

‖x‖≤
√
kr′k

∑
‖y‖≤√εkrk

(pk−2εk(x− y)− pk(x))H1(y)H2(x) +O

(
1√

kε′k(r
′
k)

6
+

1√
kε′kr

5
k

)

=
∑

‖x‖≤
√
kr′k

∑
‖y‖≤√εkrk

(pk−2εk(x− y)− pk(x))H1(y)H2(x) +O

(
(ε′k)

1
10

k
11
10

)
.

Now we use the fact H1(y) = H1(−y). Thus the last sum is equal to half of
the following:∑
‖x‖≤

√
kr′k

∑
‖y‖≤√εkrk

(pk−2εk(x− y) + pk−2εk(x+ y)− 2pk(x))H1(y)H2(x)

Theorem 2.1,(2.13)

≤
∑

‖x‖≤
√
kr′k

∑
‖y‖≤√εkrk

(pk−2εk(x− y) + pk−2εk(x+ y)− 2pk(x))H1(y)H2(x)

+O

(
(r′k)

4

k3/2
√
ε′k

)
,
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(with an additional factor 2 in front in case of a bipartite walk). Note that the
error term above isO(k−11/10), by definition of r′k. Moreover, straightforward
computations show that for any x and y as in the sum above,

|pk−2εk(x− y) + pk−2εk(x+ y)− 2pk(x)| .
(
‖y‖2 + εk

k

)
pk(cx).

In addition one has (with the notation as above for τ),∑
y∈Z5

‖y‖2H1(y) ≤ 2E
[
‖Sεk − S−εk‖

21{τ ≤ εk}
]

≤ 4E[‖Sεk‖
2]P[τ ≤ εk] + 4E

[
‖Sεk‖

21{τ ≤ εk}
]

(2.5),(2.14)

.
εk√
ε′k

+ E
[
‖Sτ‖21{τ ≤ εk}

]
+ E

[
‖Sεk − Sτ‖

21{τ ≤ εk}
]

(2.5),(2.14)

.
εk√
ε′k

+
∑
r≥√εk

rP [‖Sτ‖ ≥ r, τ ≤ εk]
(2.5),(2.13)

.
εk√
ε′k
,

using also the Markov property in the last two inequalities (at time τ for
the first one, and at the exit time of the ball of radius r for the second one).
Altogether, this gives

|Cov(Z0h3, Z
′
kh0)| .

εk

k3/2
√
ε′k

+
(ε′k)

1
10

k
11
10

.
(εk)

1
9

k
10
9

.

In other words, for any sequence (εk)k≥1, such that εk ≥ k9/20, one has

Cov(Z0h3, Zkψ0) = Cov(Z0h3, Z
′
kψ
′
0) +O

(
(εk)

1
9

k
10
9

+
1

k
13
12

)
.

One can then iterate the argument with the sequence (ε′k) in place of (εk),
and (after at most a logarithmic number of steps), we are left to consider a
sequence (εk), satisfying εk ≤ k9/20. In this case, we use similar arguments
as above. Define H̃1(y) as H1(y), but with Zkψ0 instead of Z ′kh0 in the

expectation, and choose rk :=
√
k/εk, and r′k = k

1
10 . Then we obtain exactly
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as above,

Cov(Z0h3, Zkψ0)

=
∑

‖x‖≤
√
kr′k

∑
‖y‖≤

√
k

(pk−2εk(x− y)− pk(x))H̃1(y)H2(x) +O

(
1

r5k
√
k

+
1

(r′k)
6
√
k

)

=
∑

‖x‖≤
√
kr′k

∑
‖y‖≤

√
k

(pk−2εk(x− y)− pk(x))H̃1(y)H2(x) +O
(

1

k
11
10

)

.
εk
k3/2

+
1

k
11
10

.
1

k
21
20

,

which concludes the proof of the proposition.
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