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Abstract

We consider the extinction time of the contact process on increasing sequences of finite
graphs obtained from a variety of random graph models. Under the assumption that the
infection rate is above the critical value for the process on the integer line, in each case we
prove that the logarithm of the extinction time divided by the size of the graph converges in
probability to a (model-dependent) positive constant. The graphs we treat include various
percolation models on increasing boxes of Zd or Rd in their supercritical or percolative
regimes (Bernoulli bond and site percolation, the occupied and vacant sets of random
interlacements, excursion sets of the Gaussian free field, random geometric graphs) as well
as supercritical Galton-Watson trees grown up to finite generations.

1 Introduction

In this paper, continuing our earlier work [26], we present a robust method allowing to prove
the existence of an exponential rate of convergence of the contact process extinction time on
various models of random graphs, when the infection parameter is large enough.

In the contact process, each vertex of a graph is at any point in time either healthy (state 0) or
infected (state 1). The continuous-time dynamics is defined by the specification that infected
vertices become healthy with rate one, and transmit the infection to each neighboring vertex
with rate λ > 0. We refer to [16] for a standard reference on the contact process.

The configuration in which all vertices are healthy is absorbing for the dynamics, and in finite
graphs it is reached with probability one. In certain situations, the dynamics stays active for a
very long time before reaching this absorbing state, and this behavior can be understood as
an instance of metastability. To be more precise, let τG be the hitting time of the absorbing,
“all-healthy” (or “empty”) state when the process is started from the configuration in which all
vertices are infected. The distribution of τG depends on the graph G and the infection rate λ.
One typically considers a sequence of graphs (Gn) (which could be deterministic and nested,
or an increasing sequence of random graphs from the same random graph model), fixes λ > 0
and studies the asymptotic behavior of τGn . For a variety of sequences (Gn), it is known that,
if λ is large enough, then there exists c > 0 such that

P (τGn > exp{c|Gn|})
n→∞−−−→ 1, (1.1)

where for any graph G we let |G| denote its number of vertices (see for instance Theorem 3.9
in Section I.3 of [16], Theorem 1.3 in [20] and Theorem 1.5 in [9]). Evidently, the meaning of
“λ large enough” depends on the chosen sequence of graphs. For instance, for certain random
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graphs with power law degree distributions, λ > 0 suffices, whereas for boxes of Zd, one must
take λ larger than λc(Zd), the critical value for the d-dimensional contact process, defined as
the supremum of values of λ for which the process on Zd started from a single infection almost
surely reaches the empty configuration. Recently, in [20] and [26], it has been established
that for values of the infection rate above λc(Z) – the critical value of the one-dimensional
contact process –, statement (1.1) (or at least a slightly weaker result in which exp{c|Gn|} is
replaced by exp{c|Gn|/(log |Gn|)1+ε}) holds for arbitrary sequences of connected graphs (Gn)
with |Gn| → ∞.

A natural refinement of (1.1) is the statement that 1
|Gn| · log τGn converges (in some sense)

to something positive as n → ∞. The first result of this kind was given in [13]: there it
is proved that for λ > λc(Z) and (Gn) given by line segments of length n, there exists a
constant γ ∈ (0,∞) such that

1

|Gn|
· log(τGn)

n→∞−−−→ γ in probability. (1.2)

This was generalized in [19] to boxes of Zd (with λ > λc(Zd)), and the same result was proved
in [9] for d-regular trees truncated at height n (with λ larger than the upper critical value of
the contact process on the infinite d-regular tree; see [16] for the definition).

Our goal in this paper is to establish results of the type (1.2) for sequences (Gn) obtained
from random graph models. As we rely on techniques developed in our previous work [26],
where the assumption λ > λc(Z) was crucial, we also need this assumption here, though we do
not believe it to be sharp in any of the settings we consider. This being said, our method is
quite robust, and depends essentially on the graphs Gn possessing some kind of self-similar
structure which allows for a recursive decomposition.

Let us list the choices of sequences of random graphs (Gn) covered by our main theorem.
For now we only refer to these random graph models by their names and the assumptions
we place on their defining parameters; in Sections 3 and 4, we will present each model in
detail. We abuse notation and denote by Bn both the set {−n, . . . , n − 1}d ⊆ Zd and the
set [−n, n]d ⊆ Rd.

1. For d ≥ 2, perform supercritical Bernoulli bond percolation on Bn and let Gn be the
resulting maximal component (that is, the connected component with largest cardinality).

2. For d ≥ 3, perform supercritical Bernoulli site percolation on Bn and let Gn be the
resulting maximal component.

3. For d ≥ 3 and u > 0, let Iu be the occupied set of random interlacement with intensity u
on Zd; let Gn be the maximal component of the subgraph of Zd induced by Iu ∩Bn.

4. For d ≥ 3 and u > 0 sufficiently small, let Vu be the vacant set of random interlacement
with intensity u on Zd; let Gn be the maximal component of the subgraph of Zd induced
by Vu ∩Bn.

5. For d ≥ 3, let ϕ = (ϕx)x∈Zd be the Gaussian free field on Zd. Let E≥hϕ = {x ∈ Zd : ϕx ≥
h} for h ∈ R small enough, and let Gn be the maximal component of the subgraph of Zd
induced by E≥hϕ ∩Bn.

6. For d ≥ 2, consider the supercritical random geometric graph on Bn and let Gn be the
resulting maximal component.

7. Let ν be a probability measure on N with
∑

k kν(k) > 1 and
∑

k k
2ν(k) < ∞. Let G

be a Galton-Watson tree with offspring distribution ν and either conditioned on being
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infinite, or conditioned on reaching generation n. Let Gn be the subgraph of G induced
by the set of vertices at distance at most n from the root.

Theorem 1.1. For any λ > λc(Z) and any of the choices of (Gn) listed above, there exists a
(deterministic) constant γ ∈ (0,∞) such that the extinction time of the contact process on Gn

with rate λ and started from full occupancy satisfies:

1

|Gn|
· log τGn

n→∞−−−→ γ in probability.

Our main tool to prove Theorem 1.1 is Proposition 2.3 below, which was proved in our previous
paper [26]; it states that on any (deterministic) graph, and for any λ larger than λc(Z), the
expected extinction time is larger than the product of the expected extinction times on any
collection of disjoint connected subgraphs, up to some correction term. This result allows us
to use a block decomposition in the same vein as in the proof of Mountford [19] in the case of
boxes of Zd. The main graph property which is required is as already mentioned some kind of
self-similarity, namely that at each scale n, the graph Gn can be decomposed as a union of
subgraphs, which are copies (in law) of the original graph at a smaller scale.

Few results are available for the contact process on random graphs obtained from percolation-
type models; see for instance [2, 7, 35] and references therein. The contact process on
the supercritical random geometric graph has also been previously considered by Ménard
and Singh [17], who proved that the critical infection rate is positive, and by Can [5] who
obtained sharp bounds on the expected value of the extinction time on Gn when the radius of
connectedness goes to infinity. The contact process on Galton-Watson trees has been studied
by in Pemantle [21].

Finally, let us mention that for several important random graph models, it would be interesting
to obtain results of the form (1.2), but our present techniques are not applicable (at least not
directly). These include the configuration model, the Erdós-Renyi random graph, random planar
maps, and Delaunay triangulations of the plane (provided that in each case, the parameters
defining the graph and the value of λ yield a regime of exponentially large extinction time).

The paper is organized as follows. In the next section we gather known important results for
the contact process. In Section 3, we consider all the percolation-type models we treat (models
1 to 6 in the list above), starting with those which are subgraphs of Zd. In this case, very
similarly to [11] and [25], we list a number of general conditions under which the conclusion of
Theorem 1.1 hold true, and which are known to be satisfied in all the models mentioned above.
The case of Galton-Watson trees is treated separately in the last section, as the proof in this
setting presents some substantial differences.

1.1 Notation and conventions for graphs

We use the convention that a graph G = (V,E) is a collection of vertices V and edges E
between vertices, and we assume that graphs are undirected, with no loops, and no multiple
edges. They are also assumed to be locally finite, meaning that any vertex has only finitely
many neighbors (or edges emanating from this vertex).

We denote by |V | and |E| respectively the number of vertices and edges in the graph, and use
the convention that |G| also denotes the number of vertices in the graph.

If G = (V,E) and V ′ ⊆ V , the subgraph of G induced by V ′ is the graph G′ = (V ′, E′),
where E′ is the set of edges of E with both extremities in V ′.

Finally, we use the notation Zd to refer both to the set of d-dimensional vectors with integer
coordinates, and to the graph with these vectors are vertices, and edges connecting vectors
at `1-distance one from each other.
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2 Prelimaries on the contact process on finite graphs

For a full account of the contact process on Zd and other locally finite graphs, we refer the
reader to the book of Liggett [16]. Here we merely recall some bounds on the expected
extinction time of the process on finite graphs. We start with the following basic fact, which
provides a general upper bound, and indicate its short proof for the reader’s convenience.

Lemma 2.1. For any λ > 0, and any finite connected graph G = (V,E),

E[τG] ≤ exp(|V |+ 2λ|E|).

Proof. The probability that extinction occurs before time 1 is larger than the probability that
all vertices recover and no transmission occurs before time 1, which is at least exp(−|V |−2λ|E|).
Then, τG is stochastically dominated by a random variable following the geometric distribution
with parameter exp(−|V |−2λ|E|); the expectation of this random variable is exp(|V |+2λ|E|).

On the other hand, general lower bounds were provided in [20] and [26]:

Theorem 2.2. Assume λ > λc(Z).

[20] For any d > 0, there exists c̄ > 0 such that for any connected graph G with degrees
bounded by d, we have

E[τG] > exp{c̄|G|}.

[26] For any ε > 0, there exists ĉ > 0 such that for any connected graph G with at least two
vertices, we have

E[τG] > exp

{
ĉ|G|

(log |G|)1+ε

}
.

Next, let us recall the general result from [26] alluded to in the introduction, which is also our
main tool.

Proposition 2.3 ([26], Proposition 2.9). There exists a constant c0 > 0, such that for any
finite connected graph G and any λ > λc(Z), the following holds: for any N ≥ 1, and any
finite collection of disjoint connected subgraphs G1, . . . , GN ⊆ G, one has

E[τG] ≥ c0

(2|G|3)N+1
·
N∏
i=1

E[τGi ].

We note that this result was stated and proved for trees only in [26], but the identical statement,
with the same proof, works for general graphs.

Finally, the following is useful in turning bounds on expectations into bounds on probabilities:

Lemma 2.4 ([20], Lemma 4.5). For any t > 0,

P (τG ≤ t) ≤
t

E[τG]
.
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3 Percolation-type models

3.1 General lattice model

We consider here random graphs obtained from percolation-type models on Zd (models 1-5 in
the list before Theorem 1.1). Rather than treating model by model, we will be able to treat
them all at once by following an approach similar of that of [11] and [25]. That is, we will
first present a list of four properties to be satisfied by a probability measure P under which a
random subgraph G of Zd is defined. Next, letting Gn be the maximal component of G ∩Bn,
we will prove the statement of Theorem 1.1 by only making use of the mentioned properties.
Finally, at the end of this subsection, we will give formal definitions of the aforementioned five
models (Bernoulli bond and site percolation, occupied and vacant set of random interlacements,
excursion set of the Gaussian free field), and provide references that show that each model
satisfies the four properties (at least for some choices of their defining parameters).

We let Ω = {0, 1}S , where S is either the set of vertices or edges of Zd (as usual, elements
of Ω can be identified with subsets of the vertex (or edge) set of Zd). In the percolation
terminology, given ω ∈ Ω, a vertex (or edge) is said to be open if its ω-value is one, and to
be closed otherwise. A configuration ω ∈ Ω then defines a subgraph G = G(ω) of Zd in the
standard manner. That is, if S is the set of vertices of Zd, then G is the subgraph of Zd
induced by {x : ωx = 1}, and if S is a set of edges, then G has all the vertices of Zd and the
set of edges {e : ωe = 1}. (The second situation is only needed to include the case of Bernoulli
bond percolation). We endow Ω with the σ-algebra generated by the coordinate maps, and
note that any probability measure P on Ω then defines a random subgraph G of Zd.
Our two first assumptions on P are the following:

P is translation invariant and ergodic with respect to spatial shifts of Zd (3.1)

and

P-almost surely G has a unique infinite connected component, denoted by G∞. (3.2)

Under these hypotheses, for any n ≥ 1, we let Gn be the maximal connected component of G
intersected with the box Bn := {−n, . . . , n− 1}d (with the convention that if there are more
than one maximal connected component, one chooses Gn among them in an arbitrary way).

Our next assumption ensures that with high probability, connected components of G ∩ Bn
distinct from Gn have small diameter. So under (3.2), we consider

there exists a constant ∆ > 0, such that for all n large enough,

P

 G∞ ∩Bn 6= ∅, and any two
connected components of G ∩Bn with diameter

larger than n
10 are connected in B2n

 ≥ 1− exp(−(log n)1+∆). (3.3)

Note that when the above assumption holds, one can easily derive the following useful fact:
for all n large enough,

P
(

any two connected components of G∞ ∩Bn
are connected in B4n

)
≥ 1− exp(−(log 2n)1+∆). (3.4)

Indeed, any connected component of G∞ ∩ B2n intersecting Bn necessarily has a diameter
larger than n, so that one can apply (3.3) in B2n. Let us also mention that for our purposes
this hypothesis (3.3) could be weakened, for instance a super-polynomial decay as in Section 5
of [32] would be sufficient.
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Finally our last assumption gives a bound on the decay of correlations for events depending on
the configurations inside two disjoint boxes, as the distance between the two boxes diverges.
Note that we have not tried to find an optimal condition for the proof here, and so we assume
that the decay of correlations is at least polynomially fast. Indeed this is good enough for the
proof, and it is satisfied by all the models of interest to us here. We let ‖ · ‖ be the Euclidean
norm. Then we consider

there exists a constant C0 such that for any x ∈ Zd, and any events A and B
depending only on the configurations inside Bn and x+Bn respectively, one has:

|Cov(1A,1B)| ≤ C0( n
2

‖x‖)
d−2.

(3.5)

We restate now Theorem 1.1 in this general setting.

Theorem 3.1. Let P denote a probability measure on {0, 1}Zd
, d ≥ 2, satisfying (3.1), (3.2),

(3.3) and (3.5), and let (Gn)n≥1 and G∞ be as defined above. Consider now the contact
process on Gn, with infection rate λ > λc(Z), starting from full occupancy, and denote by τGn

its extinction time. There exists γ ∈ (0,∞) such that

1

|Gn|
· log τGn

(P)−−−→
n→∞

γ. (3.6)

Before proving this result let us start with some preliminary facts concerning the sizes of the
connected components inside Bn.

Proposition 3.2. Let P denote a probability measure on {0, 1}Zd
, d ≥ 2, satisfying (3.1), (3.2),

and (3.3). Then with the above notation, for any ε ∈ (0, 1) there exists δ > 0 such that for n
large enough the following holds with probability higher than 1− exp{−(log n)1+δ}:

G∞ ∩Bn has a single component of cardinality larger than nd−ε; (3.7)

all other components of G ∩Bn either have cardinality smaller (3.8)

than nε or are contained in Bn\Bn−nε.

Proof. Fix ε > 0, and define `n = bnε/d/2c. Given a connected graph G ⊆ Zd, we say G crosses
an annulus x+ (B`n\B`n/4) if the vertex set of G intersects both x+Bb`n/4c and x+ (B`n)c.

By (3.3), (3.4) and a union bound, there exists δ > 0 such that, for n large enough, the
following conditions are satisfied with probability at least 1− exp{−(log n)1+δ}:

• for any x ∈ Bn, the graph G∞∩ (x+B`2n) has a unique component C (x) that crosses x+
(B`n\B`n/4);

• for any x ∈ Bn, any connected component of G ∩ (x+B`n) with diameter larger than
`n/10 is connected to C(x) in x+B2`n ;

• for any x, y ∈ Bn with x ∼ y, we have that C (x) and C (y) are connected together in
G∞ ∩ (x+B4`n).

In particular, all the graphs C (x) for x ∈ Bn−8`n are subgraphs of a single component C ?

of G∞ ∩Bn. Noting that C ? intersects all boxes x+B`n for x ∈ Bn−8`n , it follows that C ?

has at least b(n− 8`n)d/(`n)dc ≥ nd−ε vertices.

Now, let C be some component of G ∩ Bn distinct from C ?. Then, C cannot cross any
annulus x+ (B`n\B`n/4) with x ∈ Bn−8`n . It thus follows that at least one of the following
two conditions hold:
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• C has diameter smaller than `n (so |C | ≤ nε);

• C is contained in Bn\Bn−9`n ⊆ Bn\Bn−nε (so |C | ≤ 2d · nd−1 · 9`n).

This also shows that C ? is the unique component of G ∩ Bn with cardinality above nd−ε,
completing the proof.

As a corollary, one obtains the following result, interesting in itself.

Corollary 3.3. Under the hypotheses of Proposition 3.2,

|Gn|
|Bn|

n→∞−−−→
(P)

θ := P(0 ∈ G∞). (3.9)

Proof. Fix ε ∈ (0, 1). Also fix n ∈ N and assume that (3.7) and (3.8) hold. Then, Gn is a
component of G∞ ∩Bn.

If C is any component of G ∩ Bn distinct from Gn, then we must have either |C | < nε

or C ⊆ Bn\Bn−nε . If we also assume C is a component of G∞ ∩ Bn, it must be the
case that C intersects the boundary Bn\Bn−1 (since G∞ is connected), so we necessarily
have C ⊆ Bn\Bn−nε . Then,

|G∞ ∩Bn| − |Gn| =
∑

C component
of G∞∩Bn:

C 6=Gn

|C | ≤ |Bn\Bn−nε | = o(nd).

The desired result now follows from noting that, by ergodicity, |G∞ ∩Bn|/|Bn| converges in
probability to θ as n→∞.

We are now in position give the proof of Theorem 3.1.

Proof of Theorem 3.1. Define

Xn :=
1

nd
logE[τGn | Gn] (3.10)

and
γ̃ := lim sup

n→∞
E[Xn]. (3.11)

By Lemma 2.1, the (Xn)n≥1 are bounded random variables, and thus γ̃ is finite. We claim
that it is also positive. Indeed by Theorem 2.2 (noting that Gn is by definition connected and
has degrees bounded by 2d), for n large enough,

E[Xn] ≥ 1

nd
· E
[
logE[τn | Gn] · 1

{
|Gn| >

θ

2
|Bn|

}]

≥ 1

nd
· c̄θ(2n)d

2
· P
(
|Gn| >

θ

2
|Bn|

)
(3.9)

≥ c̄θ2d−2.

(3.12)

Now we prove that (Xn)n≥0 converges in probability to γ̃. Fix ε > 0, and let n0 be such
that E[Xn0 ] ≥ γ̃− ε/2. In what follows we will also assume that n0 is large enough (depending
on ε). We now write for k ∈ N,

nk = (n0)3k , εk = 2−kε, Ek =
k∑
i=1

εi.
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We proceed by induction. Fix k ≥ 0, and assume that we have already proved that

E[Xnk
] ≥ γ̃ − Ek+1. (3.13)

Then we show that for any n ∈ [nk+1, nk+2], we have

P (Xn ≤ γ̃ − Ek+1 − εk+3) <
εk+3

γ̃
,

so E[Xn] > (γ̃ − Ek+1 − εk+3) ·
(

1− εk+3

γ̃

)
≥ γ̃ − Ek+2.

(3.14)

To this end, fix n ∈ [nk+1, nk+2]. We split the box Bn−nk
into N := (bn/nkc − 1)d disjoint

boxes of side length 2nk, and denote by (G(i))1≤i≤N the maximal connected components inside
each of these boxes. Define the event

A =
{

all the (G(i))1≤i≤N are subgraphs of Gn

}
. (3.15)

By Proposition 2.3, on A we have

E[τGn | Gn] ≥ c0

(2|Gn|)3N
·
N∏
i=1

E[τG(i) | G(i)],

so that, with X(i) := (1/ndk) logE
[
τG(i) | G(i)

]
,

Xn · 1A ≥

((nk
n

)d
·
N∑
i=1

X(i) − CN log(|Gn|)
nd

)
· 1A, (3.16)

for some constant C > 0. Now note that, by the definition of N ,

CN log(|Gn|)
nd

≤ Cdnd log(2n)

ndk · nd
≤ εk+5,

at least for n0 large enough. Moreover, Lemma 2.1 implies that all the X(i) are bounded.
Therefore,(

1

N
−
(nk
n

)d) N∑
i=1

X(i) ≤ C1

(
1−N

(nk
n

)d)
≤ C2

(
1− n− 2nk

nk
· nk
n

)
≤ εk+5,

for some positive constants C1 and C2. Using these estimates in (3.16) we get

Xn · 1A ≥

(
1

N
·
N∑
i=1

X(i) − εk+4

)
· 1A.

Consequently,

P(Xn ≤ γ̃ − Ek+1 − εk+3) ≤ P(Ac) + P

(
1

N
·
N∑
i=1

X(i) ≤ γ̃ − Ek+1 − εk+4

)
. (3.17)

We now apply Proposition 3.2 in each of the boxes and deduce that for some δ > 0, with
probability at least 1− exp{−(log n)1+δ}, all the G(i) have cardinality larger than nd−1

k and
are subgraphs of G∞. Note also that the G(i) are by definition at distance at least nk from
the boundary of Bn, since they all belong to Bn−nk

, and by hypothesis one has nk ≥ n1/9.
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Thus by applying again Proposition 3.2 in the box Bn, we get that for n0 large enough, and
for some δ > 0,

P(Ac) ≤ exp{−(log n)1+δ} ≤ εk+4

γ̃
. (3.18)

We now bound the second term in (3.17) using the hypothesis (3.5). To this end we discretize
the random variables (X(i))i≤N , which we recall are bounded by a constant C1 > 0. Set

X̃(i) := εk+5

bC1/εk+5c∑
`=0

1{X(i) ≥ `εk+5}.

Note that
X̃(i) ≤ X(i) ≤ X̃(i) + εk+5,

and that by (3.1), all the (X(i))i≤N have the same distribution as Xnk
. Therefore (3.13) gives,

using also Chebyshev’s inequality,

P

(
1

N
·
N∑
i=1

X(i) ≤ γ̃ − Ek+1 − εk+4

)
(3.13)

≤ P

(
1

N

N∑
i=1

X̃(i) − E[X̃(i)] ≤ −εk+5

)

≤ 1

N2ε2
k+5

·
∑

1≤i,j≤N
|Cov(X̃(i), X̃(j))|. (3.19)

We now bound the covariances using (3.5). Note first that by using the bilinearity of the
covariance and (3.5), we get that for all i, j,

|Cov(X̃(i), X̃(j))| ≤ C0C
2
1

n
2(d−2)
k

d(i, j)d−2
,

where by d(i, j) we mean the distance between the two boxes containing G(i) and G(j). We
deduce that for any fixed i ≤ N , for some constant C > 0,∑

1≤j≤N
|Cov(X̃(i), X̃(j))| ≤ Cnd−2

k · ( n
nk

)2.

Summing next over i, and using that n ≥ n3
k, we obtain

1

N2

∑
1≤i,j≤N

|Cov(X̃(i), X̃(j))| ≤ C ·
nd−2
k

N

(
n

nk

)2

≤ C · 1

nd−2
k

.

Combining this with (3.19) gives, for n0 large enough,

P

(
1

N
·
N∑
i=1

X(i) ≤ γ̃ − Ek+1 − εk+4

)
≤ εk+4

γ̃
.

Together with (3.17) and (3.18) this proves (3.14).

One can then conclude that (Xn)n≥0 converges in probability to γ̃ using a general argument,
which we recall for completeness. For n ≥ 1 and ε > 0, let ϕn(ε) := P(Xn < γ̃ − ε) + ε. For n
large enough we have

γ̃ + ε ≥ E[Xn]

≥ (γ̃ +
√
ϕn(ε)) · P

(
Xn > γ̃ +

√
ϕn(ε)

)
+ (γ̃ − ε) · P

(
γ̃ − ε ≤ Xn ≤ γ̃ +

√
ϕn(ε)

)
≥ γ̃(1− ϕn(ε)) +

√
ϕn(ε) · P

(
Xn > γ̃ +

√
ϕn(ε)

)
− ε,
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which gives

P
(
Xn > γ̃ +

√
ϕn(ε)

)
≤ 2ε(ϕn(ε))−1/2 + γ̃(ϕn(ε))1/2.

Together with (3.14) this gives the convergence in probability of Xn towards γ̃.

The proof of the theorem is almost finished now. Fix ε > 0. On the one hand, the Markov
inequality entails

P
(

1

nd
log τGn ≥ γ̃ + ε

)
≤ P

(
Xn > γ̃ +

ε

2

)
+ e−(γ̃+ε)nd · E

[
τGn1

{
E[τGn | G] ≤ e(γ̃+ε/2)nd

}]
≤ P

(
Xn > γ̃ +

ε

2

)
+ exp

{
−ε

2
nd
}
.

On the other hand, Lemma 2.4 gives

P
(

1

nd
log τGn ≤ γ̃ − ε

)

≤ P
(
Xn ≤ γ̃ −

ε

2

)
+ e(γ̃−ε)nd · E

[
1

E[τGn | G]
1
{
E[τGn | G] ≥ e(γ̃−ε/2)nd

}]
≤ P

(
Xn ≤ γ̃ −

ε

2

)
+ exp

{
−ε

2
nd
}
.

Together with (3.9) this completes the proof of (3.6) with γ = γ̃/θ. The proof of the theorem
is now complete.

3.2 Description of lattice models and verification of assumptions

As mentioned earlier, we now give definitions of five models that fit in the above framework,
and indicate references where proofs of all the hypotheses of the theorem are given for each of
them.

Supercritical Bernoulli bond percolation, d ≥ 2. This is the basic percolation model
defined by the prescription that each edge of Zd is declared open with probability p and closed
with probability 1− p, independently for all edges, where p ∈ [0, 1]. It is thoroughly studied in
the standard reference of Grimmett [14]; there it is shown that there exists pc(d) ∈ (0, 1) such
that there is no infinite component if p < pc and there is a unique infinite component if p > pc.
Here we assume that p > pc. Proofs of (3.1) and (3.2) can be found in [14]. Condition (3.3) is
proved in [23] in dimension d ≥ 3, and in [8] for d = 2. Condition (3.5) follows readily from
independence.

Supercritical Bernoulli site percolation, d ≥ 3. This is defined as above, except that
vertices, rather than edges, are declared to be open of closed. Site percolation is also covered
in the book [14]. Again, a critical value pc(d) ∈ (0, 1) separates a non-percolative phase from a
phase where there is almost surely a unique infinite component. Here we assume that d ≥ 3
and p > pc(d). All the references and observations provided above for supercritical bond
percolation are also valid for supercritical site percolation, except that (3.3) has not been
established for the case d = 2, which is why we exclude it.

Occupied set of random interlacements, d ≥ 3. The model of random interlacements has
been introduced by Sznitman in [31], and detailed expositions are available in [6] and [10]. It
arises as a local limit of the trace of a simple random walk on a d-dimensional torus ran for an
amount of time proportional to the volume of the torus. The proportionality constant u > 0
and the dimension d are the two parameters of the model; as the random walk is required
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to be transient, one takes d ≥ 3. An equivalent definition of the occupied set of random
interlacements is the following: it is the unique random set of vertices Iu ⊆ Zd satisfying

P(Iu ∩K = ∅) = exp{−u · cap(K)}

where K is any finite set of vertices of Zd and cap(K) denotes the discrete capacity of K (see
Chapter 6 of [15]). The density of Iu is thus an increasing function of u. Here we take any d ≥ 3
and any u > 0. Our four conditions are proved in the following references. Conditions (3.1)
and (3.2) are given respectively by Theorem 2.1 and Corollary 2.3 in [31]. Condition (3.3)
follows from Proposition 1 in [28], and condition (3.5) is equation (2.15) in [31] (one also needs
the fact that the capacity of Bn is of order nd−2; see Section 6.5 in [15]).

Vacant set of random interlacements in strongly percolative regime, d ≥ 3. For d ≥ 3
and u > 0, the vacant set Vu of random interlacements is defined as the complement of Iu.
There exists u∗ ∈ (0,∞) such that Vu has an infinite component if u < u∗ and no infinite
component if u > u∗ ([31], [30]; see also [27] for a short proof). Conditions (3.1) and (3.5)
follow from the same conditions for Iu, for which references were given above. For d ≥ 3
and u ∈ (0, u∗), condition (3.2) is proved in [33]. Condition (3.3) is only known for u small
enough (in the so-called strongly percolative regime of the vacant set), so we assume this
regime is in force here. The proof is given in [34] for d ≥ 5 and in [11] for all d ≥ 3; see
Theorem 2.5 in the latter reference.

Excursion set of Gaussian free field in strongly percolative regime, d ≥ 3. The
Gaussian free field in Zd, d ≥ 3, is the centered Gaussian field ϕ = (ϕx)x∈Zd with covari-
ances E[ϕxϕy] = g(x, y), where g denotes the Green function of simple random walk in Zd. Its
excursion sets are the sets E≥hϕ = {x ∈ Zd : φx ≥ h} for h ∈ R. There is again a critical

value h∗ ∈ R so that E≥hϕ almost surely has an infinite component when h < h∗ and only
finite components if h > h∗ (in fact it is also known that h∗ > 0). This has been proved in [3]
for d = 3 and in [29] for any d ≥ 3. Our condition (3.1) is proved in the paragraph preceding
Lemma 1.5 in [29], and (3.2) is verified in [29], Remark 1.6. Condition (3.3) is included in
Theorem 2.7 in [11]; again this is only known in a strongly percolative regime where h is
smaller than a constant h̄ ≤ h∗, so we assume this regime is in force here. Finally, (3.5) is
given in Proposition 1.1 in [24].

3.3 Random geometric graph

The random geometric graph in Rd, d ≥ 2, is the random graph whose vertex set is a Poisson
point process of intensity one, and the edge set is defined with the rule that two vertices are
connected by an edge if and only if they are at Euclidean distance smaller than some fixed
constant R > 0. It has been shown that there exists a critical value Rc > 0 such that the
graph almost surely has only finite components if R < Rc and a uniue infinite component if
R > Rc. This result and an in-depth treatment in the model can be found in the book of
Penrose [22]. (We observe that the model is parametrized in a different manner there than the
one we take here: the author fixes the radius for connectivity R = 1 and takes the intensity of
the Poisson process of vertices as the parameter of the model, which is denoted λ throughout
the book. This choice is equivalent to ours after a rescaling of Rd).
As mentioned in the Introduction, we assume d ≥ 2, R > Rc, and let Gn be the connected
component with highest cardinality in the graph restricted to Bn = [−n, n]d. Here we will
prove that the statement of Theorem 1.1 holds for these graphs. The proof is very similar to
that of Section 3.1, so we will only describe the points in which the proofs differ.

Below we state a proposition that contains all the properties that we will need concerning the
graphs Gn. Before doing so, let us give two definitions. First, the metric diameter of a graph
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embedded in Rd is defined as the supremum of the `∞-distance between vertices of the graph.
This is not to be confused with the graph-theoretic diameter. Second, consider the modified
version of the random geometric graph on Rd such that a vertex is artificially placed at the
origin (and other vertices and edges are placed as before); let θR be the probability that the
vertex at the origin is in an infinite component. Then (see Chapter 9 of [22]), we have θR > 0
if and only if R > Rc.

Proposition 3.4. For any d ≥ 2, R > Rc and ε > 0, there exists δ > 0 such that for n large
enough the following holds with probability larger than 1 − exp{−(log n)1+δ}. The maximal
component Gn of the random geometric graph with parameter R on Bn has metric diameter
larger than n and |Gn|/(2n)d ∈ ((1− ε) · θR, (1 + ε) · θR). Moreover, any other component has
metric diameter smaller than (log n)2 and cardinality smaller than εnd.

Proof. This follows from putting together Proposition 10.13, Theorem 10.19, and Theorem 10.20
in [22].

Note that Proposition 3.4 immediately gives

|Gn|
(2n)d

n→∞−−−→
(P)

θR.

We define Xn and γ̃ as in (3.10) and (3.11). We would now like to show that γ̃ > 0. However,
unlike the lattice models considered earlier, here no universal upper bound is available for the
degrees in Gn. To remedy this, we use the following result.

Lemma 3.5. For any d ≥ 2 there exists K > 0 such that Gn has a spanning tree with degrees
bounded by K.

The above statement for d = 2 (and K = 5) is Lemma 2.12 in [4]. The proof easily generalizes
to any dimension (with dimension-dependent K). The idea is to take the spanning tree of Gn

in which the sum of the lengths of the edges is the smallest possible, and to show that this tree
has degrees bounded by a dimension-dependent constant. For this, one argues by contradiction:
if the tree had a vertex whose degree was too large, then the edges in the ball of radius R
around this vertex could be rearranged so as to produce a spanning tree with smaller total
edge length.

With this result at hand, we prove that γ̃ is positive with the same computation as in (3.12),
replacing Gn by its spanning tree with bounded degrees. From this point on, the proof of
Theorem 1.1 for (Gn) proceeds in the same way as the one we gave for the lattice models; the
only difference is that, in giving a lower bound to the probability of the event A defined in (3.15),
we use Proposition 3.4 instead of Proposition 3.2 (also note that the computation involving
covariances is unnecessary in this case, since graphs inside disjoint boxes are independent).

4 Galton-Watson trees

In this section we consider a supercritical Galton-Watson tree with offspring distribution having
a finite second moment. This means that if ν is the law of the number of individuals at the
first generation of the tree, then m :=

∑
k∈N kν(k) is larger than one, and σ2 :=

∑
k∈N k

2ν(k)
is finite. We let Z0 = 0 and for n ≥ 1, we let Zn be the number of individuals at generation
(height) n, and let Gn be the subtree of individuals belonging to the first n generations
(including the root, which is in generation zero). In particular |Gn| = 1 + Z1 + · · ·+ Zn. We
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also denote the whole tree by G∞. The events of non-extinction (or survival) and extinction
are defined respectively by

Surv = {|G∞| =∞} , and Ext = Survc = {|G∞| <∞} .

Letting vn = 1 +m+ · · ·mn, it is well known that there exists a nonnegative random variable
W∞ satisfying

Zn
mn
→W∞,

|Gn|
vn
→W∞, almost surely and in L2, (4.1)

and moreover,
P (W∞ = 0 | Ext) = 1, and P (W∞ > 0 | Surv) = 1. (4.2)

The convergence of Zn/m
n (almost surely and in L2) and the two equalities in (4.2) are proved

in Chapter 1 of [1]. The almost sure convergence of |Gn|/vn is then immediate, and the
convergence in L2 of |Gn|/vn can be obtained from Minkowski inequality:(

E

[(
|Gn|
vn
−W∞

)2
])1/2

≤
n∑
i=0

mi

vn

(
E

[(
Zi
mi
−W∞

)2
])1/2

n→∞−−−→ 0.

We now define

Yn =
logE[τGn | Gn]

mn
, Xn =

logE[τGn | Gn]

|Gn|
,

and
γ̃ := lim sup

n→∞
E[Yn].

We first show the following:

Claim 4.1. E[Yn]
n→∞−−−→ γ̃ > 0.

Proof. On {Z1 = k} for k > 0, let G(1), . . . ,G(k) denote the subtrees that descend from the
vertices in the first generation. We have using Proposition 2.3 that

logE[τGn | Gn] ≥
Z1∑
i=1

logE[τG(i) | Gn]− CZ1 log |Gn|,

with the understanding that the right-hand side is zero when Z1 = 0. Hence,

E[Yn] ≥ mn−1

mn
E

[
Z1∑
i=1

logE[τG(i) | Gn]

mn−1

]
− C · E

[
Z1 log |Gn|

vn

]
= E[Yn−1]− C · E

[
Z1 log |Gn|

mn

]
.

Using Cauchy-Schwarz inequality and the fact that log2(k) <
√
k for k large enough,

E [Z1 log |Gn|] ≤
(
E[Z2

1 ] · E[log2 |Gn|]
)1/2

≤ E[Z2
1 ]1/2 ·

(
log2(mn2

) + E
[√
|Gn| · 1{|Gn| ≥ mn2}

])1/2

≤ E[Z2
1 ]1/2 ·

(
n4 log2(m) +

(
E[|Gn|] · P

(
|Gn| ≥ mn2

))1/2
)1/2

≤ E[Z2
1 ]1/2 ·

(
n4 log2(m) +

(
v2
n/m

n2
)1/2

)1/2

≤ n3,
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if n is large enough. We thus have, for n large enough,

E[Yn] ≥ E[Yn−1]− n4

mn
. (4.3)

Next, using (4.1) and (4.2), we can choose ε > 0 such that, for n large enough,

P(εmn < |Gn| < mn/ε) > ε.

Then, if n is large, using Theorem 2.2,

E[Yn] ≥ E
[

logE[τGn | Gn]

mn
· 1{εmn < |Gn| < mn/ε}

]

≥ 1

mn
E
[
log

(
exp

(
ĉ|Gn|

log2 |Gn|

))
· 1{εmn < |Gn| < mn/ε}

]
≥ c

n2
,

(4.4)

for some constant c > 0. Now, (4.3) and (4.4) can be combined to first give γ̃ > 0, and then
again to give E[Yn]

n→∞−−−→ γ̃.

Define next

γ =
m− 1

m
· γ̃.

Claim 4.2. For all ε > 0,

P(Xn < γ − ε | Zn 6= 0)
n→∞−−−→ 0 and P(Xn < γ − ε | Surv)

n→∞−−−→ 0.

Proof. Since P({Zn 6= 0}\Surv)
n→∞−−−→ 0, any of the above convergences follows from the other,

so we will prove the first one. For n ∈ N, we write

n′ = bn/2c, n′′ = n− n′.

On Zn′ = k > 0, let G(1), . . . ,G(k) denote the subtrees that descend from the vertices in
generation n′. On {Zn 6= 0}, we have

Xn ≥
1

|Gn|

Zn′∑
i=1

logE[τG(i) | Gn]− cZn′ log |Gn|
|Gn|

=
vn
|Gn|

· m
n

vn
· Zn

′

mn′ ·
1

Zn′

Zn′∑
i=1

logE[τG(i) | Gn]

mn′′ − cZn′ log |Gn|
|Gn|

.

(4.5)

Conditionally on {Zn′ = k} for k > 0, the random variables (mn′′
)−1 · logE[τG(i) | Gn],

for i = 1, . . . , k, are independent and all have the same distribution as Yn′′ . Hence, for any
ε > 0,

P

(∣∣∣∣∣1k
k∑
i=1

logE[τG(i) | Gn]

mn′′ − E[Yn′′ ]

∣∣∣∣∣ > ε

∣∣∣∣∣ Zn′ = k

)
≤ E[(Yn′′)2]

ε2k
.

Since for any k > 0 we have P(Zn′ ≤ k | Zn′ 6= 0)
n′→∞−−−−→ 0, we obtain

P

∣∣∣∣∣∣ 1

Zn′

Zn′∑
i=1

logE[τG(i) | Gn]

mn′′ − E[Yn′′ ]

∣∣∣∣∣∣ > ε

∣∣∣∣∣∣ Zn′ 6= 0

 n′→∞−−−−→ 0.

14



Further using the fact that E[Yn]
n→∞−−−→ γ̃ and P(Zn = 0 | Zn′ 6= 0)

n→∞−−−→ 0, the above gives

P

∣∣∣∣∣∣ 1

Zn′

Zn′∑
i=1

logE[τG(i) | Gn]

mn′′ − γ̃

∣∣∣∣∣∣ > ε

∣∣∣∣∣∣ Zn 6= 0

 n′→∞−−−−→ 0. (4.6)

The desired result now follows from (4.5), (4.6) and the facts that

mn

vn

n→∞−−−→ m− 1

m
,

|Gn|
vn

n→∞−−−→
a.s.

W∞,
Zn′

mn′
n→∞−−−→

a.s.
W∞,

and
lim
n→∞

P(W∞ = 0 | Zn 6= 0) = 0.

Claim 4.3. For all ε > 0,

P(Xn > γ + ε | Zn 6= 0)
n→∞−−−→ 0 and P(Xn > γ + ε | Surv)

n→∞−−−→ 0.

Proof. We will prove the second convergence. Assume by contradiction that there exists ε > 0
such that, for some increasing sequence (nk) with nk →∞,

P(Xnk
> γ + ε | Surv) > ε. (4.7)

Fix a small δ > 0 to be chosen later. Define the events

Bk,1 = Surv ∩ {Xnk
< γ − δ},

Bk,2 = Surv ∩ {γ − δ ≤ Xnk
≤ γ + ε},

Bk,3 = Surv ∩ {Xnk
> γ + ε}.

Also define

qk,0 = E
[
|Gnk

|
vnk

· 1Ext

]
, qk,j = E

[
|Gnk

|
vnk

· 1Bk,j

]
, j ∈ {1, 2, 3}.

Note that
qk,0 + qk,1 + qk,2 + qk,3 = 1. (4.8)

By (4.1) and (4.2) we have

qk,0 ≤ E
[∣∣∣∣ |Gnk

|
vnk

−W∞
∣∣∣∣]+ E [W∞ · 1Ext]

k→∞−−−→ 0. (4.9)

Similarly, we bound

qk,1 ≤ E
[∣∣∣∣ |Gnk

|
vnk

−W∞
∣∣∣∣]+ E

[
W∞ · 1Bk,1

] k→∞−−−→ 0; (4.10)

the convergence follows from the fact that P(Bk,1)
k→∞−−−→ 0, by Claim 4.2. Next,

qk,3 ≥ E
[
W∞ · 1Bk,3

]
− E

[∣∣∣∣ |Gnk
|

vnk

−W∞
∣∣∣∣] .

Noting that (4.7) gives P(Bk,3) > ε for every k, we have

lim inf
k→∞

qk,3 ≥ ε′ := inf
B

E[W∞ · 1B], (4.11)
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where the infimum ranges over all sets B with

B ∈ σ ({Zn : n ≥ 0}) , B ⊆ Surv, P(B) > ε.

Since the law of W∞ conditioned on Surv has no atom at zero, we obtain ε′ > 0.

We now put these estimates together. We start computing

E[Ynk
] =

vnk

mnk
·

E
[
Xnk
· |Gnk

|
vnk

· 1Ext

]
+

3∑
j=1

E
[
Xnk
· |Gnk

|
vnk

· 1Bk,j

]
≥ vnk

mnk
· [(γ − δ) · qk,2 + (γ + ε) · qk,3]

(4.8)
=

vnk

mnk
· [γ + qk,3 · ε+ qk,3 · δ − δ + (qk,0 + qk,1)(δ − γ)] . (4.12)

Using (4.9), (4.10), (4.11) and the convergence vn/m
n → m/(m − 1), by first choosing δ

small enough and then assuming k is large enough, the expression in (4.12) is larger than
m
m−1(γ + ε′ε/2). This gives

lim inf
k→∞

E[Ynk
] > γ̃,

contradicting E[Yn]
n→∞−−−→ γ̃.

The proof of Theorem 1.1 in the case of Galton-Watson trees now follows from Claims 4.2
and 4.3 by the same estimates as in the last paragraph of Section 3.1. Letting P̄(·) denote
either P(· | Surv) or P(· | Zn 6= 0) (and similarly for Ē), we have

P̄
(

1

|Gn|
log τGn > γ + ε

)
≤ P̄

(
Xn > γ +

ε

2

)
+ Ē

[
P
(
τGn > e(γ+ε)|Gn| | Gn

)
· 1
{
Xn ≤ γ +

ε

2

}]
≤ P̄

(
Xn > γ +

ε

2

)
+ Ē

[
e−(γ+ε)|Gn| · E [τGn | Gn] · 1

{
E[τGn | Gn] ≤ e(γ+ ε

2
)|Gn|

}]
n→∞−−−→ 0

and

P̄
(

1

|Gn|
log τGn < γ − ε

)
≤ P̄

(
Xn < γ − ε

2

)
+ Ē

[
P
(
τGn < e(γ−ε)|Gn| | Gn

)
· 1
{
Xn ≥ γ −

ε

2

}]
≤ P̄

(
Xn < γ − ε

2

)
+ Ē

[
e(γ−ε)|Gn| · E [τGn | Gn]−1 · 1

{
E[τGn | Gn] ≥ e(γ− ε

2
)|Gn|

}]
n→∞−−−→ 0.
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