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Abstract

In this paper we study the recurrence and transience of the Zd-valued branching
random walk in random environment indexed by a critical Bienaymé-Galton-Watson
tree, conditioned to survive. The environment is made either of random conductances
or of random traps on each vertex. We show that when the offspring distribution
is non degenerate with a finite third moment and the environment satisfies some
suitable technical assumptions, then the process is recurrent up to dimension four,
and transient otherwise. The proof is based on a truncated second moment method,
which only requires to have good estimates on the quenched Green’s function.
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1 Introduction

In this paper we study the recurrence and transience of the Zd-valued branching
random walk in an environment made of random conductances, indexed by a BienaymÃl’-
Galton-Watson (BGW) tree conditioned to survive. While general criteria now exist for
this question in case of supercritical offspring distribution, see in particular [14, 18, 24],
we focus here on the critical case, which has received much less attention so far, at the
exception of [5, 22], to our knowledge. See also [6, 7] for earlier results on this question
for general tree-indexed random walks.
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Recurrence of the critical snake in random conductances

1.1 Statement of the result

Let q = (qk)k≥0 be a critical offspring distribution (that is
∑
k≥0 kqk = 1) such that∑

k≥0 k
3qk <∞ and σ2 :=

∑
k≥0 k(k − 1)qk > 0 . In the following, let T∞ denote Kesten’s

tree, i.e. the critical BGW tree with offspring distribution q conditioned to survive
(see [17, 20] or [23, Ch. 12] for details).

For x, y ∈ Zd, we write x ∼ y if |x− y| = 1, where | · | is the usual Euclidean norm in
Rd. In the following, an environment ω := (ωx,y)x,y∈Zd shall denote a family of random,
non-negative weights on (Zd)2. In this paper we restrict ourselves to the following two
types of environments.

Definition 1.1. (i) Random conductances: For x, y ∈ Zd, one has ωx,y = ωy,x > 0 if
x ∼ y, and ωx,y = 0 otherwise.

(ii) Random traps: There exists some (random) ρx ∈ [0, 1), x ∈ Zd, such that for
x, y ∈ Zd,

ωx,y =


ρx/(1− ρx) if x = y,

1/(2d) if x ∼ y,
0 otherwise.

(1.1)

The names “random conductances” and “random traps” used throughout this paper
may be slightly abusive when compared to the rest of the literature, but we believe that
they actually help the understanding of our results and what they entail. Depending on
the nature of ω, we also define for x ∈ Zd,

πω(x) :=

{∑
z∼x ωx,z for random conductances,

(1− ρx)−1 for random traps.
(1.2)

Then, letting pω = (pωx,y)x,y∈Zd := (ωx,y/πω(x))x,y∈Zd for a fixed realization ω, this defines
the transition probabilities of a Markov chain in Zd, with invariant measure πω.

Therefore, the critical random walk snake ST∞ : T∞ → Zd in random environment ω
is defined by the (branching) random walk on Zd, indexed by Kesten’s tree T∞, and with
transition probabilities pω. We let P denote the law of the environment ω, and P, Pω

denote respectively the annealed and quenched laws of the critical snake (in particular
P = EPω: precise definitions are provided below).

First, we provide a 0–1 law for the recurrence of the critical random walk snake on
Zd. This is achieved under the following assumption. In the following, τx, x ∈ Zd, denote
the shift operator, i.e. (τxω)y,z = ωy+x,z+x.

Assumption 1.2. [Stationarity and ergodicity] The law P is stationary and ergodic with
respect to translations τx, x ∈ Zd.
Proposition 1.3. Suppose that the environment is made either of random conductances
or random traps, that Assumption 1.2 holds, and that Eπω(0) < +∞. Then we have
either:

(i) The critical random walk snake is recurrent, and

P(∀x ∈ Zd, x is visited infinitely often) = 1,

or,
(ii) The critical random walk snake is transient, and

P(∃x ∈ Zd, x is visited infinitely often) = 0.

Notice that this 0–1 law under the annealed distribution P implies the quenched 0–1
law: for any event A, P(A) = 0 implies Pω(A) = 0 for P-a.e. ω ∈ Ω.
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Recurrence of the critical snake in random conductances

Then we study the recurrence or transience of the critical random walk snake in
random conductances. Before stating our main result, we introduce the following
additional assumption.

Assumption 1.4. [Finite range dependence] There exists R ∈ N such that for any
x ∈ Zd, the families of random variables (ωx,y : y ∼ x) and (ωz,z′ : |x− z| ≥ R, z ∼ z′) are
independent.

We now present our main theorem. In the following, we write ω ∈ Lp(P), p ≥ 1

whenever ωx,y ∈ Lp(P) for all x, y ∈ Zd, x ∼ y.

Theorem 1.5. (i) Let d ≥ 5 and p, q ∈ (1,+∞] such that 1/p + 1/q < 2/d. For any
conductance environment ω ∼ P satisfying Assumption 1.2 and such that ω ∈ Lp(P),
ω−1 ∈ Lq(P), the critical random walk snake is transient P-a.s..

(ii) Let d ≤ 4. There exists a constant p ∈ [1,+∞) such that, for any conductance
environment ω ∼ P satisfying Assumptions 1.2, 1.4 and such that ω, ω−1 ∈ Lp(P), the
critical random walk snake is recurrent P-a.s..

Remark 1.6. (i) Notice that ω ∈ Lp(P) with p ≥ 1 implies Eπω(0) < +∞, hence the 0–1
law from Proposition 1.3 holds under those assumptions.

(ii) In Theorem 1.5.(ii), the integrability assumption on ω, ω−1 is stronger than in
Theorem 1.5.(i). We do not provide an explicit value for the constant p: this is further
commented below.

(iii) The Assumption 1.4 in Theorem 1.5.(ii) can be weakened significantly, in a
way that covers e.g. environments ω that satisfy a polynomial mixing property. This is
discussed more precisely in Remark 3.3 below.

Let us briefly comment this result: Assumption 1.4 and the integrability of ω, ω−1

are required in [3] to obtain estimates on the Green’s function of the random walk
in random environment, from which we deduce the theorem. However, we believe
that our result holds for the random conductance environment under much weaker
assumptions. To support that idea, we consider a random traps environment (see
e.g. [4, 12]), which is simpler to study than the random conductances environment, while
preserving the “trapping effect” it has on the random walk. We provide an analogous
result to Theorem 1.5 under the following assumption. Recall (1.2).

Assumption 1.7. [Bounded long-range correlations] There exists R0 > 0 such that

sup
{
E[πω(x)πω(y)] ; x, y ∈ Zd , |x− y| > R0

}
< +∞ . (1.3)

Theorem 1.8. Let ω be a random traps environment.
(i) Let d ≥ 5, and assume supx∈Zd Eπω(x) < +∞. Then, the critical snake is transient

P-a.s..
(ii) Let d ≤ 4, suppose that Assumptions 1.2, 1.7 hold and that Eπω(0) < +∞. Then

the critical snake is recurrent P-a.s..

Remark 1.9. When d ≤ 2, it is well-known that the (non-branching) random walk in
random conductances or traps is almost surely recurrent (supposing additionally that
supx∈Zd Eπω(x) < +∞ in the case of conductances). This directly implies that the
critical snake is P-a.s. recurrent when d ≤ 2 under assumptions much weaker than in
Theorems 1.5.(ii), 1.8.(ii) and even Proposition 1.3. This statement is presented more
precisely below, see in particular Proposition 4.2.

As mentioned above, in Theorem 1.5.(ii) we do not try to achieve an optimal value for
p: indeed, we strongly believe that p = 1 should be sufficient (similarly to Theorem 1.8),
but to our knowledge this cannot be achieved with our methods at this time.

The proofs of both Theorems 1.5 and 1.8 rely on a second moment method, which
only requires to have good estimates on the quenched Green’s function. In the case
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of constant conductances or uniformly elliptic environment, these estimates are well
known: in particular, similarly as in [22], we obtain an alternate proof to that of Benjamini
and Curien [5], which was based on the notion of unimodularity and mass transport
techniques, together with the result of Kesten [21] on concentration of the snake in a
ball.

Concerning Theorem 1.8 we use an improved second moment method, and we kill the
walk when it reaches deep traps. While we believe that a similar method could be used
in the setting of Theorem 1.5, it would be much more technical and we have refrained to
pursue in this direction.

1.2 Some comments and open questions

Decay of the heat kernel. Our results raise some interesting questions about the
decay of the quenched heat kernel of a simple random walk in random conductance, as
well as for the recurrence/transience of a critical random snake in random conductance
under less restrictive hypotheses. First notice that under Assumption 1.2, denoting by
Pω0 (X2n = 0) the probability that a random walk in random conductance ω starting from
the origin returns to the origin in 2n steps, then either∑

n≥1

nPω0 (X2n = 0) < +∞, (1.4)

holds for P-a.e. ω, or the series in (1.4) is infinite for P-a.e. ω. Now we can ask the
following natural questions.

1. We will show in Lemma 4.1 below, that the critical random snake is transient as
soon as (1.4) is satisfied for P-a.e. ω, in any dimension d ≥ 1. It is known, that this
condition cannot be satisfied in dimensions 1 and 2, at least under the hypothesis
that E[πω(0)] < +∞, since in this case it is known that the simple random walk, and
a fortiori the critical random snake, is recurrent (see below for more details). But
the question of whether or not there exists a distribution of random conductances
such that (1.4) holds in dimension 3 or 4 is still open, to the best of our knowledge.

2. Likewise, the question of whether or not, in dimension d ≥ 5, (1.4) is always
satisfied for any distribution of random conductances seems to be also open. Note
that in [8], it is shown that for bounded conductances in d ≥ 5, one always has
limn→∞ n2Pω0 (X2n = 0) = 0, which is close to show (1.4), but not quite. In the other
direction, it is also shown in [8] that for any κ > 1/d, there exists a law of random
conductances for which n2Pω0 (X2n = 0) ≥ C(ω)e−(logn)κ , and furthermore for any
sequence (λn)n≥0 increasing, converging to infinity, there exists a law of random

conductances such that Pω0 (X2n = 0) ≥ C(ω)
λnn2 , along a subsequence. But none of

these bounds contradicts the validity of (1.4).

3. Finally one can ask whether the condition
∑
n≥1 nP

ω
0 (X2n = 0) = +∞, for P-a.e. ω,

always implies recurrence of the critical random snake.

Hitting probability of a finite BRWRE. For x ∈ Zd, d ≥ 1, let L̃(x) denote the local time
at x of a branching random walk in random environment (ST̃ , T̃ ), where T̃ is a critical
BGW tree not conditioned to survive. Our second moment method can be adapted to
prove that, under the assumptions of Theorem 1.5, one has,

P
(
L̃(x) > 0

)
&


|x|−2 if d = 3,

log(|x|)−1|x|−2 if d = 4,

|x|−(d−2) if d ≥ 5 .
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Matching upper bounds follow from Markov’s inequality for d ≥ 5, but would require
additional arguments in lower dimension, as for the lower bounds in dimension one and
two. In the wake of the discussion started by Benjamini and Curien [5, Section 3.2],
these results would be needed to study more intricate questions on the behavior of the
snake in random conductances, such as obtaining in the recurrent case the variance of
the local time at 0 of a “truncated” snake, or the growth rate of its range. We believe
that answering these questions would require several deep results (such as [21]) to be
adapted from the homogeneous setting to the random environment case, so we leave
them to further work.

More general random environments. We believe that Theorems 1.5 or 1.8 should also
hold in more general environments, e.g. for the combination of the conductance and
trap environments from Definition 1.1. However proving this would require substantial
additional work, since one would need to adapt [3] (see in particular Proposition 3.1
therein, as well as [2, Proposition 4.7]) to that particular setting. Nonetheless, we do
prove that the 0-1 law holds for the combined environment of traps and conductances,
see (2.2) below.

Outline of the paper

In Section 2 we introduce some precise notation and definition for the critical random
walk snake, and we prove the 0–1 law in Proposition 1.3 by rewriting the random process
as an ergodic dynamical system. In Section 3 we provide some Green’s function estimates
on (non-branching) random walks in random environment, many of them coming from [3].
Finally in Section 4, we prove both Theorems 1.5 and 1.8. First we prove the transience
for d ≥ 5 with a direct first moment computation, then we prove the recurrence for d ≤ 4

with the foretold second moment method.

For the sake of completeness, we also present a proof of Proposition 4.2 —that is, the
recurrence of the random walk in random conductances for d ≤ 2— in Appendix A.

Notation

In the remainder of this paper, c denotes a constant that may change from one occurrence
to another, and c1, c2, . . . denote constants that may change from one paragraph to
another.

2 Proof of the 0-1 law

In this section we introduce some notation and prove Proposition 1.3. This 0-1 law is
analogous to [14, Propositions 1.2 and 1.3], in the case of a super-critical BRWRE with
no death: however, for the critical snake, the proof is very different. It follows from two
observations: first, under our assumptions, the environment can be seen from the point
of view of the particle with an explicit change of measure Q ∼ P; and second, the critical
snake in random environment with law Q can be seen as an ergodic dynamical system.

2.1 Point of view of the particle

Define

Ω :=

{
ω ∈ (R+)(Zd)2 ; ∀x ∈ Zd, πω(x) :=

∑
z∈Zd

ωx,z < +∞
}
, (2.1)

and let (Ω,FΩ) denote the measurable space of random environment configurations on
Zd. For the sake of generality, in this section we consider a mixed environment of traps
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and conductances: more precisely, let P be a probability distribution on Ω such that,
P-almost surely for all x, y ∈ Zd,

ωx,y =


ρx/(1− ρx) if x = y,

ωy,x > 0 if x ∼ y,
0 otherwise,

(2.2)

where ωx,y, x ∼ y is an i.i.d. family of positive variables, and ρx, x ∈ Zd is an i.i.d. family
of random variables in [0, 1), independent from the ω’s. If ρx ≡ 0, P is the law of a
random conductance environment; and if ωx,y ≡ 1/2d for all x ∼ y, it is a random trap
environment. We shall prove that Proposition 1.3 holds for any such “mixed” environment
which satisfies Assumption 1.2 and Eπω(0) < +∞.

For P-almost every ω ∈ Ω, the family pωx,y = ωx,y/πω(x), x, y ∈ Zd, denotes the
(quenched ) transition probabilities of a random walk in random environment (RWRE).
Let (Xn)n≥0 denote the RWRE, write Pωx for its quenched law in ω ∈ Ω started from
x ∈ Zd, and let Px := EPωx be its annealed law (when x = 0, we may omit the subscript).

Recall that τx, x ∈ Zd denotes the shift operators in Zd. Then, starting from some
fixed ω ∈ Ω, the sequence (τXnω)n≥0 under Pω0 defines a Markov chain on the space of
all environments Ω, which is called the point of view of the particle, and its transition
kernel R satisfies for f : Ω→ R bounded measurable and ω ∈ Ω,

(Rf)(ω) :=
∑
z∈Zd

ω0,z

πω(0)
f(τzω) . (2.3)

We have the following classical result, which follows directly from [10, Lemma 2.1 and
Proposition 2.3] (see also [11, Theorem 1.2]).

Proposition 2.1. Let ω be a random environment with law P as in (2.2). Suppose that
Assumption 1.2 holds, and that Eπω(0) < +∞. Then the Markov chain (τXnω)n≥0 admits
a stationary and reversible probability measure Q, given by

dQ

dP
(ω) :=

πω(0)

E[πω(0)]
> 0 . (2.4)

In particular, P and Q are absolutely continuous with respect to one another. Moreover,
(τXnω)n≥0 is ergodic under Q.

2.2 Ergodicity of the snake

For P, Q two probability measures on (Ω,FΩ), let E =: EP, resp. EQ, denote the
expectation under P, resp. Q. Let us now define a measure-preserving dynamical system
on critical snakes in random environment. We first introduce some notation for the
critical snake.

Let (T,FT) denote the usual measurable space of planar trees (i.e. rooted, ordered,
locally finite trees). Recall that T∞ denotes Kesten’s tree: more precisely, it is almost
surely composed of an infinite spine, denoted Spine(T∞) ⊂ T∞, of individuals reproducing
according to the mass-biased distribution (kqk)k≥0; and all other individuals reproduce
according to q. Also, let T denote an (almost surely finite) random BGW tree such that
all vertices reproduce according to q, except for the root which reproduces according to
((k + 1)qk+1)k≥0. As a matter of fact, T has the same law as the finite descendant tree
supported by an element u ∈ Spine(T∞) from the spine of Kesten’s tree. Let PT∞ (resp.
PT ) denote the law of T∞ (resp. T ).

Let P be a probability measure on (Ω,FΩ) satisfying Assumption 1.2. Let ω ∈ Ω be
a realization of the environment and x ∈ Zd: then the quenched law Pωx of the critical
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random walk snake (ST∞ , T∞) starting from x is defined as follows. Let T∞ ∼ PT∞ ,
and denote its root ρ. Then construct randomly ST∞ : T∞ → Zd conditionally to T∞ by
induction, letting ST∞(ρ) = x, and for u, v ∈ T∞ such that v is a child of u, letting

Pωx (ST∞(v) = z | ST∞(u) = y) =
ωy,z
πω(y)

, y, z ∈ Zd . (2.5)

Moreover, conditionally on ST∞(u), the random variables ST∞(v), with v a child of u, are
taken independent of each other. We also define the annealed law Px := EPωx , and for
both laws we may omit the subscript x when x = 0. Notice that we use the same notation
for the laws of the critical snake (ST∞ , T∞) and the RWRE (Xn)n≥0 introduced above,
but it will always be clear from context which one is considered. Furthermore, one can
define similarly the (quenched or annealed) law of the tree-indexed random walk (ST , T ),
by letting T ∼ PT and constructing ST by induction with (2.5); again, we abusively use
the same notation for the laws.

We now present an encoding of critical snake realizations for which we have an
explicit, ergodic transformation. For any finite, rooted ordered tree (t , ρ) ∈ T, one can
define a bijection between E(t) the set of edges of t , and {1, . . . ,#E(t)} (e.g. the breadth-
first exploration of t); therefore, if St ,ρ(·) denotes a realization of a Zd-valued random
walk indexed by t , it can be rewritten as a random variable on the measured space
((Zd)#E(t),FS,#E(t)) where FS,#E(t) denotes the product sigma-algebra on (Zd)#E(t).
With these notation at hand, we finally define

A :={(
ω, (xi, t i,Sxiti,i)i≥0

) ∣∣∣ω ∈ Ω , x0 = 0 ; ∀ i ≥ 0, xi ∈ Zd, t i ∈ T and Sxiti,i ∈ (Zd)#E(ti)
}
,

and we endow A with its product sigma-algebra A.
Let ω ∈ Ω, let (ST∞ , T∞) be a realization of the critical snake in ω started from 0 ∈ Zd.

Let (ui)i≥0 := Spine(T∞), and for i ≥ 0 let Ti be the (largest) sub-tree of T∞ rooted in ui
and not containing ui−1 and ui+1. Consider the (injective) mapping,

Φ : (ω,ST∞ , T∞) 7→ (ω, (ST∞(ui), Ti, ST∞ |Ti)i≥0) ∈ A , (2.6)

Therefore, the annealed distribution P of the snake (ω,ST∞ , T∞) induces a probability
measure on (A,A), which we also denote P abusively. Additionally, under the mapping
above one has that (Xi)i≥0 := (ST∞(ui))i≥0 is a RWRE started from 0 with transition
probabilities induced by ω, Ti ∼ PT are i.i.d. and independent from ω, (Xi)i≥0; and for
i ≥ 0, Si := ST∞ |Ti are independent walks indexed by Ti started from Xi ∈ Zd, with
transition probabilities (ωx,y/πω(x))x,y∈Zd .

Let R : A→ A be defined by,

R
(
ω, (xi, t i,Sxiti,i)i≥0

)
:=
(
τx1ω ,

(
xi+1 − x1, t i+1,Sxi+1−x1

ti+1,i+1

)
i≥0

)
. (2.7)

When applied to (the image by Φ of) a critical snake realization (ST∞ , T∞), R is the
transformation that re-roots it at the next vertex along the spine u1, removes the former
root u0 and the finite tree it supported, and shifts the environment and the trajectories in
Zd by X1 := ST∞(u1). The application Φ and the dynamical system (A,R) are illustrated
in Figure 1.

Assume that there exists a probability measure Q ∼ P which is R-invariant and
ergodic, as in Proposition 2.1. We may define P̃ a new annealed probability distribution
of the random snake, where the environment has law Q instead of P and the rest of
the definition is unchanged (that is, the quenched distributions P(·|ω) = Pω(·) = P̃(·|ω)

are identical P-a.s., recall (2.5)). Similarly to P, we may push it forward to A with the
mapping (2.6): then, we prove that the dynamical system (A,A, P̃,R) is ergodic.
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)
Figure 1: Illustration of the dynamical system. An (annealed) realization of the snake is a triplet
(ω,ST∞ , T∞), where the tree T∞ contains an infinite spine (ui)i≥0 and is rooted in u0, i.e. ST∞ (u0) = 0. The
application Φ maps the realization into A, by splitting T∞ into a sequence of finite trees (Ti)i≥0, and defining
STi = ST∞ |Ti and xi = STi (ui). Then, the transformation R : A→ A modifies this sequence by removing
the first tree T0 and shifting the environment ω and the maps STi , so that the new root u1 is sent to 0 in Zd:

see (2.7) for the definitions of ω̃, x̃i+1 and S̃Ti+1
, i ≥ 0.

Lemma 2.2. Let P be such that Assumption 1.2 holds. Suppose that there exists Q a
R-invariant, ergodic measure, and that P and Q are absolutely continuous with respect
to one another. Then:

(i) The probability measures P and P̃ on (A,A) are absolutely continuous with
respect to one another.

(ii) The probability measure P̃ on (A,A) is R-invariant.
(iii) The dynamical system (A,A, P̃,R) is ergodic.

Remark 2.3. Let us point out that this lemma also holds for non-reversible environments.

Proof. These results follow from quite standard arguments regarding dynamical systems
and the point of view of the particle, see e.g. the proof of [11, Theorem 1.2].

(i). Recall that P and P̃ have the same distributions conditionally to ω, P-a.s. by
definition. Therefore one has,

dP̃

dP
(ω, (Xi, Ti,Si)i≥0) =

dQ

dP
(ω) > 0 , for P-a.e. (ω, (Xi, Ti,Si)i≥0) ∈ A .

(ii). Let f : A→ R be a bounded measurable function. Conditioning with respect to
ω and X1, one has,

Ẽ
[
(f ◦ R)

(
ω, (Xi, Ti,Si)i≥0

)]
= EQ

[ ∑
z∈Zd

ω0,z

πω(0)
Ẽ
[
(f ◦ R)

(
ω, (Xi, Ti,Si)i≥0

)∣∣∣ω,X1 = z
]]

= EQ

∑
z∈Zd

ω0,z

πω(0)
Ẽ
[
f
(
τzω, (Xi+1 − z, Ti+1,Si+1 − z)i≥0

) ∣∣∣ω,X1 = z
]

= EQ

∑
z∈Zd

ω0,z

πω(0)
Ẽ
[
f
(
ω′, (Xi, Ti,Si)i≥0

) ∣∣∣ω′ = τzω
] ,

where the last equality is obtained by applying the Markov property. Recalling (2.3) and
that Q is R-invariant, this yields

Ẽ
[
(f ◦ R)

(
ω, (Xi, Ti,Si)i≥0

)]
= EQ

[
Ẽ
[
f
(
ω, (Xi, Ti,Si)i≥0

) ∣∣∣ω]] = Ẽ
[
f
(
ω, (Xi, Ti,Si)i≥0

)]
,
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thus P̃ is R-invariant.
(iii). Let Fn := σ(ω, (Xi, Ti,Si)i≤n), n ≥ 0 be a filtration of A. Let f : A → R be

bounded measurable such that f ◦ R = f P̃-a.e., and define

ϕ(ω) := Ẽ
[
f
(
ω, (Xi, Ti,Si)i≥0

) ∣∣∣ω] , ω ∈ Ω .

We claim that ϕ(τXnω), n ≥ 0 is an (Fn)n≥0-martingale. Indeed,

Ẽ
[
f
(
ω, (Xi, Ti,Si)i≥0

) ∣∣∣Fn] = Ẽ
[
(f ◦ R◦n)

(
ω, (Xi, Ti,Si)i≥0

) ∣∣∣Fn]
= Ẽ

[
f
(
ω′, (Xi, T i,Si)i≥0

) ∣∣∣ω′ = τXnω
]

= ϕ(τXnω) ,

where the second equality follows from the Markov property, with (Xi, T i,Si)i≥0 a copy
of (Xi, Ti,Si)i≥0 in the same environment. Therefore, (ϕ(τXnω))n≥0 converges P̃-a.e.

and in L1(P̃) towards f
(
ω, (Xi, Ti,Si)i≥0

)
.

In particular for A ∈ A a R-invariant set, let f := 1A and define ϕ as above: then
we claim that ϕ(ω) ∈ {0, 1} for Q-a.e ω ∈ Ω. Indeed, otherwise there would exist
[a, b] ⊂ R \ {0, 1} such that Q(ϕ(ω) ∈ [a, b]) > 0. However, Birkhoff’s ergodic theorem
would yield that

1

n

n−1∑
k=0

1{ϕ(τXnω)∈[a,b]} −→
n→+∞

P̃(ϕ(ω) ∈ [a, b] | I) , P̃-a.s. and in L1(P̃) ,

where I is the sigma-field of R-invariant events in A. However, taking the expectation
above we see that Ẽ[P̃(ϕ(ω) ∈ [a, b]|I)] = Q(ϕ(ω) ∈ [a, b]) > 0, which contradicts that
ϕ(τXnω) → 1A P̃-a.s.. We conclude that there exists B ∈ FΩ such that ϕ = 1B Q-a.s..
Since we assumed that A is R-invariant, then B is R-invariant; and since Q is ergodic,
this implies P̃(A) = Q(B) ∈ {0, 1}, which finishes the proof.

With Lemma 2.2 at hand, we may finally prove the 0–1 law for the recurrence of the
critical snake in Zd.

Proof of Proposition 1.3. Let ω be a random environment with law P as in (2.2): then
Proposition 2.1 implies that Lemma 2.2 holds. By Lemma 2.2.(i), it is sufficient to prove
the 0–1 law under the distribution P̃; then it also holds for P.

Notice that the event A := {∀x ∈ Zd, x is visited infinitely often} ∈ A is R-invariant:
hence, the ergodicity of (A,A, P̃,R) implies that P̃(A) ∈ {0, 1}. Let us assume that the
event B := {∃x ∈ Zd, x is visited infinitely often} has positive P̃-probability, and show
that it implies P̃(A) > 0 (and thus P̃(A) = 1). Writing a direct union bound, one notices
that P̃(B) > 0 implies that there exists x0 ∈ Zd which is visited infinitely often with
positive probability, i.e. P̃(#S−1

T∞(x0) = +∞) > 0. Let us prove that

∀ z ∈ Zd , P̃(#S−1
T∞(z) < +∞ , #S−1

T∞(x0) = +∞) = 0 ; (2.8)

then, (2.8) and another union bound imply that P̃(A) = P̃(#S−1
T∞(x0) = +∞) > 0, which

concludes the proof.
Let us prove (2.8) under the quenched distribution Pω(·) = P̃(·|ω) for Q-a.e. ω, then

the result follows naturally for the annealed law P̃ = EQP
ω. Let ω ∈ Ω and (ui)i≥0 :=

Spine(T∞), and recall from (2.6) that Ti denotes the finite tree supported by ui. Assume
that x0 is visited infinitely many times, that is the set {(i, v) ; i ≥ 0, v ∈ Ti,ST∞(v) = x0}
is infinite; then notice that it admits an infinite subset {(ik, vk), k ≥ 0} such that ik 6= i`
for all k 6= `. Then, each vertex vk ∈ Tik is the root of a critical BGW sub-tree T̃vk ⊂ Tik
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with offspring distribution q (except when vk = uik ∈ Spine(T∞), in which case vk
has offspring distribution ((k + 1)qk+1)k≥0). Moreover, by the Markov property1, the
trees (T̃vk)k and the walks induced by ST∞ on them are independent, and have positive
probability of visiting z ∈ Zd: therefore, conditionally to #S−1

T∞(x0) = +∞, z is visited
infinitely many times with Pω-probability 1. This finishes the proof.

3 Green’s function estimates

This section gathers, mostly from [3], some quenched estimates on the heat kernel
and Green’s function of the RWRE in conductances or traps, which are the cornerstone
of our proofs in Section 4 below.

For a fixed realization of ω, we consider the heat kernel of a RWRE (Xn)n≥0 in Zd,
that is for x, y ∈ Zd, n ≥ 0,

Pωn (x, y) :=
Pωx (Xn = y)

πω(y)
, (3.1)

and its associated Green’s function,

gω(x, y) :=
∑
n≥0

Pωn (x, y) ∈ [0,+∞] . (3.2)

Since the random walk in random conductances or random traps is reversible, one has
P-a.s. for x, y ∈ Zd,

gω(x, y) = gω(y, x) . (3.3)

Estimates on the heat kernel and Green’s function are very standard in the case of the
homogeneous random walk in Zd, which is equivalent to letting ωx,y := 1x∼y P-a.s. for all
x, y ∈ Zd in our notation. Let us denote with P(·)(·, ·), g(·, ·) its heat kernel and Green’s
function respectively. It is well-known that the homogeneous heat kernel satisfies, for
some c1, c2, c3, c4 > 0,

c1n
−d/2 exp

(
− c2|x− y|2/n

)
≤ Pn(x, y) ≤ c3n

−d/2 exp
(
− c4|x− y|2/n

)
, (3.4)

for all n ∈ N, x, y ∈ Zd such that |x−y| ≤ n and (x−y), n have the same parity (otherwise
Pn(x, y) = 0). In particular when d ≥ 3, a direct computation shows that this implies for
some c5, c6 > 0 and all x, y ∈ Zd that,

c5 (1 + |x− y|2−d) ≤ g(x, y) ≤ c6 (1 + |x− y|2−d) , (3.5)

and g(x, y) = +∞ if d ≤ 2.

Remark 3.1. It follows from [15] that those estimates also hold uniformly P-a.s. for the
heat kernel and Green’s function of a RWRE in a uniformly elliptic environment; that is,
if there exists ε > 0 such that P(ωx,y/πω(x) ≥ ε) = 1 for all x ∼ y.

3.1 RWRE with random traps

We have the following.

Proposition 3.2. Let ω be a random traps environment. Then, one has P-a.s. for all
x, y ∈ Zd,

gω(x, y) = g(x, y) . (3.6)

1To be more precise, this follows from a bit of stopping line theory on Markov branching processes, see e.g.
[9, 13, 19], we do not write the details here.
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Proof. Recall from (3.2) that, for P-a.e. ω, πω(y)gω(x, y) is the expected (quenched)
local time in y of a RWRE (Xn)n≥0, with πω(y) = (1 − ρy)−1 by definition (1.2). Define
recursively τ0 = 0 and for n ≥ 0,

τn+1 := inf{k > τn, Xk 6= Xτn} .

Then, (Yn)n≥0 := (Xτn)n≥0 is exactly a homogeneous, nearest-neighbour random walk
in Zd. Moreover, it is clear that for n ≥ 0, conditionally to Xτn = y ∈ Zd, τn+1 − τn is
a geometric random variable with success probability (1− ρy). Therefore, one has for
P-a.e. ω,

gω(x, y) =
1

πω(y)
Eωx

[∑
k≥0

1{Xk=y}

]
=

1

πω(y)
Eωx

[∑
n≥0

(τn+1 − τn)1{Yn=y}

]
=
∑
n≥0

Pn(x, y) ,

which concludes the proof.

3.2 RWRE with random conductances

In [3], the authors provide estimates on the heat kernel and Green’s function (for
d ≥ 3) for the RWRE in random conductances. We produce some of their results here,
where we mostly kept the same notation for the sake of clarity. Let us mention that all
these were formulated for the continuous time process called the constant speed random
walk (CSRW), but they can straightforwardly be extended to the discrete time setting,
see e.g. [10, Sect. 1.2].

Remark 3.3. In order to lighten the presentation, the authors of the present paper
decided to formulate their results, notably Theorem 1.5.(ii), in the framework of As-
sumption 1.4 (finite range dependence). However, in [3] the authors consider a much
more general setting given by [3, Assumption 1.3], which covers notably environments
with finite range dependence, with non-positive correlations or with a polynomial mixing
property. We claim that the following two theorems, as well as all statements from the
present paper (including Theorem 1.5.(ii)), also hold when Assumption 1.4 is replaced
by the much more general [3, Assumption 1.3], with no change to the proofs or formulae.
We refer to [3] for some motivations to their more general assumption, and several
examples of classical models which are covered by them.

In the following, we always assume ω is made of random conductances. Recall that
we write abusively ω ∈ Lp(P), ω−1 ∈ Lq(P) if one has ωx,y ∈ Lp(P) and (ωx,y)−1 ∈ Lq(P)

for all x ∼ y.

Theorem 3.4 (Upper bounds from [3]). Suppose that Assumption 1.2 holds. Let p, q ∈
(1,+∞] be such that 1/p+ 1/q < 2/d, and assume ω ∈ Lp(P), ω−1 ∈ Lq(P).

(i) There exists c1, c2 > 0 and a random variable N1(x) = N1(x, ω, p, q) < +∞, x ∈ Zd,
such that for P-a.e. ω and all x ∈ Zd, one has

sup
m≥N1(x)

m−d
∑

z:|z−x|≤m

πω(z)p ≤ c1E[πω(0)p] , (3.7)

and, for all n ≥ N1(0)2 and P-a.e. ω, one has

Pωn (0, 0) ≤ c2 n
−d/2 . (3.8)

(ii) If d ≥ 3, there exists c3, c′3 > 0 such that, for |x−y| ≥ N2(x) := c′3N1(x)2 and P-a.e.
ω, one has

gω(x, y) ≤ c3|x− y|2−d . (3.9)
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(iii) Additionally, suppose that Assumption 1.4 holds, and let ζ > 0. There exists
p0 = p0(ζ) ∈ (0,+∞) such that, as soon as ω, ω−1 ∈ Lp0(P), then N1(x) satisfies for some
c4 > 0,

P(N1(x) > n) ≤ c4n
1−dζ , ∀n ∈ N . (3.10)

Furthermore, for d ≥ 3 and all x, y ∈ Zd, one has

gω(x, y) ∈ Lβ(P) , ∀ 0 ≤ β < (dζ − 1)(p0 − 1)/(2p0) . (3.11)

Proof. The upper bound (3.7) is due to Assumption 1.2 and the spatial ergodic theorem
(see also [3, (1.1)]), and (3.8) is given by [3, Theorem 1.2]. The claim (3.9) is directly
stated in [3, Theorem 1.6]. Regarding the tail estimate on N1, it is a consequence of [3,
Proposition 2.2] and [3, Lemma 2.6]. Finally, the integrability of gω(x, y)β is stated in [3,
(4.3)].

Theorem 3.5 (Lower bounds from [3]). Let d ≥ 3, ζ > 0, and suppose that Assump-
tions 1.2 and 1.4 holds. There exists p0 ∈ (0,+∞) and a random variable N(x) =

N(x, ω, p0) ≥ N1(x) such that, as soon as ω, ω−1 ∈ Lp0(P), the following holds:
(i) There exists c5 > 0 such that, for |x− y| ≥ N(x) and P-a.e. ω,

gω(x, y) ≥ c5|x− y|2−d . (3.12)

(ii) N(x) satisfies for some c6 > 0,

P(N(x) > n) ≤ c6n
−d(ζ−1)+2 , ∀n ∈ N . (3.13)

Proof. The claim (3.12) is the content of [3, Theorem 1.6]. Regarding the tail estimate
on N , it is obtained from [3, Proposition 2.2] combined with [3, (3.3)] in the proof of [3,
Theorem 1.4].

3.3 RWRE constrained in a large box

For m ≥ 0, define Λm := Zd ∩ [−m,m]d and ∂Λm := Λm+1 \ Λm. Recall (3.1) and (3.2).
For ω fixed, x, y ∈ Zd and n,m ≥ 0, we define the heat kernel of the walk constrained in
the box of size m by,

Pmn (x, y) :=
Pωx (Xn = y ; ∀ s ≤ n,Xs ∈ Λm)

πω(y)
, (3.14)

(we omit the superscript ω to lighten notation) and gm(x, y) :=
∑
n≥0 P

m
n (x, y) the associ-

ated Green’s function. Notice that gm is symmetric as in (3.3), and that,

Pmn (x, y) ≤ Pωn (x, y) , gm(x, y) ≤ gω(x, y) ,

for n,m ≥ 0, x, y ∈ Zd and for P-a.e. ω. We provide a lower bound on gm(x, y) when
m� |x− y| in the following statement, both for random conductances and random traps.

Lemma 3.6. (i) Let ω be a random conductances environment. Suppose Assumptions 1.2
and 1.4 hold. For n,m ∈ N, consider the event

Ωmn := {ω ; ∀z ∈ Λm , N2(z) ≤ n} . (3.15)

Then P(ΩKnn ) → 1 as n → +∞ for all K > 0. Moreover, under the assumptions of
Theorem 3.5, there exists c,K > 0 such that, for all n ∈ N, ω ∈ ΩKn+1

n and x, y ∈ Λn
satisfying |x− y| ≥ N(x) ∨ (n/2), one has

gKn(x, y) ≥ c |x− y|2−d . (3.16)

(ii) Let ω be a random traps environment. Then, there exists c,K > 0 such that (3.16)
holds P-a.s. uniformly in n ∈ N and x, y ∈ Λn with |x− y| ≥ n/2.
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Proof. We first prove (i). The first statement is straightforward: for K > 0, one deduces
from a union bound that,

P((ΩKnn )c) ≤ (2Kn)dP(N2(0) > n) ,

for some c > 0. Assuming ζ is taken sufficiently large in (3.10), this goes to 0 as n→ +∞.
Then, let τm := inf{s ≥ 1, Xs ∈ ∂Λm} for m ≥ 0. One has,

gω(x, y) = gKn(x, y) +
1

πω(y)
Eωx

[ ∑
s≥τKn

1{Xs=y}

]
≤ gKn(x, y) + sup

z∈∂ΛKn

gω(z, y) ,

where we used the Markov property. Taking x, y ∈ Λn with |x− y| ≥ N(x) ∨ (n/2) and K
sufficiently large, one deduces from (3.9) and (3.12) the desired result for all ω ∈ ΩKn+1

n ,
finishing the proof of (3.16).

Regarding (ii), it is deduced immediately from Proposition 3.2, (3.5) and a similar
argument (we leave the details to the reader).

4 Recurrence and transience of the critical snake

We now present the proofs of recurrence or transience of the critical snake in random
environment, using the Green’s function estimates which we presented in Section 3. In
order to lighten upcoming formulae, we write with an abuse of notation |0|2−d := 1 for
0 ∈ Zd in all the series computations below.

4.1 Transience

Let d ≥ 5. Define,

L∞(0) :=
#S−1
T∞({0})
πω(0)

, (4.1)

the renormalized local time at 0 of the (infinite) critical snake (ST∞ , T∞) defined in
Section 2.2.

Let ω ∈ Ω. Let `(x) denote the local time in x ∈ Zd of a RWRE (Xn)n∈N indexed by
Spine(T∞) ≡ N and started from 0 ∈ Zd. Then, let T ix , i ∈ N, x ∈ Zd be independent,
finite BGW trees with offspring distribution q = (qk)k≥0, except for the root which has
offspring distribution ((k + 1)qk+1)k≥0. Let Six be independent RWRE in Zd started from
x, indexed by T ix in the environment ω. Write Lix,y := #(Six)−1(y), i ∈ N, x, y ∈ Zd the
local time in y of the BRWRE (Six, T ix ) started from x. Then, recalling the mapping (2.6),
one notices that, under Pω0 for P-a.e. ω,

L∞(0)
(d)
=

1

πω(0)

∑
x∈Zd

`(x)∑
i=1

Lix,0 . (4.2)

Some standard computations give that, for x ∈ Zd and i ∈ N,

Eω[`(x)] =
∑
n≥0

Pω0 (Xn = x) = πω(x)gω(0, x) , (4.3)

and Eω[Lix,0] = σ2
∑
n≥0

Pωx (Xn = 0) = σ2πω(0)gω(x, 0) , (4.4)

where we recall that σ2 =
∑
k≥0 k(k − 1)qk, with q the critical BGW reproduction law.

Recall the definitions of Pωn (x, y), gω(x, y) from (3.1–3.2): hence, one has P-a.s. that,

Eω[L∞(0)] =
σ2

πω(0)

∑
x∈Zd

∑
k,`≥0

Pω0 (Xk = x)Pωx (X` = 0) = σ2
∑
n≥0

(n+ 1)Pωn (0, 0) . (4.5)
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We provide the following statement, which holds for any random, elliptic environment
ω ∈ Ω, (in particular, it reaches beyond the framework of Proposition 1.3 or Theorem 1.5).
An environment is called elliptic if P(ωx,y > 0) = 1 for all x ∼ y.

Lemma 4.1. Consider a random, elliptic environment ω ∈ Ω and let P denote its law.
Assume that

∑
n nP

ω
n (0, 0) < +∞ for P-a.e. ω. Then the critical random walk snake is

transient with P-probability one.

Proof of Lemma 4.1. It follows from (4.5) that, for P-a.e. ω, one has L∞(0) < +∞, Pω-
a.s.; hence 0 is visited finitely many times by the critical snake with Pω-probability one
for P-a.e. ω. Then, mimicking the arguments from the proof of Proposition 1.3, if there
existed x0 ∈ Zd which is visited infinitely many times with positive Pω-probability, this
would also hold for 0, yielding a contradiction.

Proof of Theorem 1.5.(i). Recall (3.8): letting p, q ∈ (1,+∞] such that 1/p + 1/q < 2/d,
and assuming ω ∈ Lp(P), ω−1 ∈ Lq(P), one has for d ≥ 5,∑

n≥0

nPωn (0, 0) ≤ N1(0)4 + c
∑

n>N1(0)2

n1−d/2 < +∞ , P-a.s.,

which concludes the proof by Lemma 4.1.

Proof of Theorem 1.8.(i). Recall (4.3–4.5) and Proposition 3.2. In particular, one has
P-a.s.,

Eω[L∞(0)] = σ2
∑
x∈Zd

πω(x)gω(0, x)gω(x, 0) ≤ c
∑
x∈Zd

|x|2(2−d)πω(x) ,

where we used the standard estimate (3.5). Since we assumed supx∈Zd Eπω(x) < +∞,
this yields,

EEω[L∞(0)] ≤ c
∑
x∈Zd

|x|2(2−d)Eπω(x) = c
∑
x∈Zd

|x|2(2−d) .

For d ≥ 5, the latter series converges. Therefore, one has Eω[L∞(0)] < +∞ P-a.s., which
yields the expected result by Lemma 4.1.

4.2 Recurrence for conductances

In this section we prove the recurrence of the critical snake for d ≤ 4. For m ∈ N, we
let Λm := Zd ∩ [−m,m]d and ∂Λm := Λm+1 \ Λm throughout this section.

We first consider the case d ≤ 2, and reproduce the following classical result. Since
the critical snake ST∞ restricted to Spine(T∞) is exactly a RWRE, notice that it directly
implies the recurrence of the critical snake for d ≤ 2.

Proposition 4.2. Let d ≤ 2, and assume ω is a random conductance environment on Zd

such that supx∼y Eωx,y < +∞. Then the RWRE is recurrent P-a.s..

This result is standard, however for the sake of completeness we provide a proof in
Appendix A.

We now assume that d ∈ {3, 4}. We use the Green’s function estimates from Section 3
to prove the recurrence in that case. Throughout this section, we let p0 > 1 be large
and assume ω, ω−1 ∈ Lp0(P) so that all results from Section 3 hold, with ζ taken quite
large in (3.10) and (3.13) (ζ > d is enough). Let us recall that we are not trying to obtain
an optimal value for p0 in this proof. Recall (4.1–4.5). To prove Theorem 1.5.(ii), it is
enough to show that

P(L∞(0) = +∞) > 0 , (4.6)

then the result follows from the 0–1 law, see Proposition 1.3.
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Let us prove (4.6) with a second moment method. Let us consider the BRWRE indexed
by T∞ which is constrained to a box Λm, m ∈ N—that is, particles from the critical snake
(ST∞ , T∞) that leave Λm are removed from the process (even the particles from the spine).
Let `m(x) denote the local time in x ∈ Zd of the RWRE indexed by Spine(T∞) constrained
to Λm; and let Li,mx,y , i ∈ N, x, y ∈ Zd be the local time in y of (Six, T ix ) constrained to Λm.
Then, letting

Lm :=
1

πω(0)

∑
x∈Λm

`m(x)∑
i=1

Li,mx,0 , (4.7)

one has that Lm has same law as the renormalized local time in 0 of the critical snake
constrained to Λm. Moreover, one has Pω-a.s. that Lm is non-decreasing in m and
converges to L∞(0) as m → +∞, for P-a.e. ω (recall (4.2)). We have the following
moment estimates on Lm.

Lemma 4.3. Let d ∈ {3, 4}. As m→ +∞, one has,

E[Lm] �
∑
x∈Λm

|x|2(2−d) �

{
m if d = 3,

logm if d = 4.

Lemma 4.4. Let d ∈ {3, 4}. There exists c2 > c1 > 1 such that, for all m ∈ N, one has,

E[L2
m] ≤ c1E

[
Eω[Lm]2

]
≤ c2 E[Lm]2 .

These two lemmas immediately imply (4.6). Indeed, one deduces from the Paley-
Zygmund inequality that, for all m ∈ N,

P
(
L∞(0) ≥ 1

2E[Lm]
)
≥ P

(
Lm ≥ 1

2E[Lm]
)
≥ c ,

for some uniform c > 0. Since one has E[Lm] → +∞ as m → +∞ by Lemma 4.3, this
yields (4.6), and therefore Theorem 1.5.(ii) by the 0–1 law.

We turn to the proofs of the lemmas. Recall the definition of gm(·, ·) from (3.14).

Proof of Lemma 4.3. Similarly to (4.3–4.5), one has for m ∈ N,

Eω[`m(x)] = πω(x)gm(0, x) , and Eω[Li,mx,0 ] = σ2πω(0)gm(x, 0) , (4.8)

and thus,

Eω[Lm] =
1

πω(0)

∑
x∈Λm

Eω[`m(x)]Eω[L1,m
x,0 ] = σ2

∑
x∈Λm

πω(x)gm(0, x)2 , (4.9)

where we also used that gm(·, ·) and gω(·, ·) are symmetric (recall (3.3)).

Lower bound. Let K > 0 and ΩKn+1
n ⊂ Ω as in Lemma 3.6, N(0) as in Theorem 3.5, and

let us compute a lower bound on E[LKn]. Applying Lemma 3.6, there exists c > 0 such
that,

E[LKn] ≥ σ2E

[
1ΩKn+1

n
(ω)

∑
x∈Λn

(
gKn(0, x)

)2
πω(x)

]
≥ c

∑
n
2≤|x|≤n

|x|2(2−d)E
[
πω(x)1{|x|≥N(0)}1ΩKn+1

n
(ω)
]
, (4.10)

where, in the first inequality, we restricted the sum to Λn ⊂ ΛKn in (4.9). It remains
to show that the latter expectation is bounded from below uniformly in n

2 ≤ |x| ≤ n

for n sufficiently large; then the result follows from standard estimations of the series
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Recurrence of the critical snake in random conductances

∑
x |x|2(2−d). One deduces from the Cauchy-Schwarz inequality and the assumption that

P is stationary that, for n
2 ≤ |x| ≤ n,

E
[
πω(x)1{|x|<N(0)}

]
≤ E

[
πω(0)2

]1/2
P
(
N(0) > n/2

)1/2
,

and E
[
πω(x)1Ω\ΩKn+1

n
(ω)
]
≤ E

[
πω(0)2

]1/2
P
(
Ω \ ΩKn+1

n

)1/2
.

Provided that p0 ≥ 2, the two terms above go to zero as n→ +∞ uniformly in n
2 ≤ |x| ≤ n.

Moreover, by assumption E[πω(x)] is a positive constant uniform in x ∈ Zd, therefore a
union bound yields immediately that the expectation in (4.10) is bounded from below
uniformly in n

2 ≤ |x| ≤ n for n sufficiently large, finishing the proof of the lower bound.

Upper bound. Since gm(0, x) ≤ gω(0, x), one deduces from (4.9), (3.3) and (3.9),

E[Lm] ≤ cE

 ∑
|x|≤N2(0)

gω(x, 0)2πω(x)

+ cE

 ∑
N2(0)≤|x|≤2m

|x|2(2−d)πω(x)

 . (4.11)

Since Eπω(0) < +∞ and P is stationary, the second term is lower than c
∑
|x|≤2m |x|2(2−d)

for some constant c > 0 and all m ∈ N; hence it suffices to prove that the first term is
bounded. Noticing that gω(x, 0) ≤ gω(0, 0) for all x ∈ Zd and P-a.e. ω, one deduces from
Hölder’s inequality for some p ∈ (1, p0) that,

E

 ∑
|x|≤N2(0)

gω(x, 0)2πω(x)

 ≤ E
[
gω(0, 0)2p/(p−1)

](p−1)/p

E

[( ∑
|x|≤N2(0)

πω(x)

)p]1/p

.

(4.12)
Recalling (3.11) and assuming that ζ, p, p0 are taken sufficiently large, the first factor is
a finite constant. Moreover, we have the following.

Claim 4.5. Let p, r ≥ 1 and assume pr ≤ p0. Then there exists c > 0 such that,∥∥∥∥∥ ∑
|x|≤N2(0)

πω(x)r

∥∥∥∥∥
Lp(P)

≤ c
∥∥πω(0)r

∥∥
Lp(P)

‖N2(0)d‖Lp(P) . (4.13)

In particular, this implies that the second factor in (4.12) is finite (assuming again
that ζ is large enough in (3.10)), which finishes the proof of the upper bound and
Lemma 4.3.

Proof of Claim 4.5. By Hölder’s inequality, one has( ∑
|x|≤N2(0)

πω(x)r

)p
≤ cN2(0)d(p−1)

∑
|x|≤N2(0)

πω(x)rp (4.14)

for some c > 0. Recalling (3.7) and taking the expectation, this finishes the proof of the
claim.

We now turn to the proof of the second moment estimates in Lemma 4.4.

Proof of Lemma 4.4. We start by proving the second inequality. Recollecting (4.9), re-
calling that gm(·, ·) is symmetric, that gm(x, y) ≤ gω(x, y), and that gω(x, 0) ≤ gω(0, 0) for
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all x, y,m and P-a.e. ω, one deduces from (3.9) that,

Eω[Lm]2 = σ4
∑

x,y∈Λm

gm(0, x)2gm(0, y)2πω(x)πω(y) (4.15)

≤ c gω(0, 0)4
∑

|x|,|y|≤N2(0)

πω(x)πω(y) + c
∑

x,y∈Λm

|x|2(2−d)|y|2(2−d)πω(x)πω(y)

+ 2 c

 ∑
|x|≤N2(0)

πω(x)

 ∑
y∈Λm

|y|2(2−d)gω(0, 0)2πω(y)

 .

Let us take the expectation E of the upper bound. Assuming p0, ζ are large enough, one
deduces from Claim 4.5 that the term

∑
|x|≤N2(0) πω(x) is bounded in Lp(P) for p ∈ (2, p0).

Assuming also that p is large, this and (3.11) imply by Hölder’s inequality that,

E

gω(0, 0)4
∑

|x|,|y|≤N2(0)

πω(x)πω(y)

 < +∞ .

Regarding the second term, it is dominated by cE[Lm]2, since one deduces from the
Cauchy-Schwarz inequality that E[πω(x)πω(y)] is bounded uniformly in x, y ∈ Zd. Fur-
thermore, for p ∈ (2, p0) and q := p

p−1 < 2, one has by Jensen’s inequality,

E

( ∑
y∈Λm

|y|2(2−d)gω(0, 0)2πω(y)

)q1/q

≤ E

( ∑
y∈Λm

|y|2(2−d)gω(0, 0)2πω(y)

)2
1/2

≤

 ∑
x,y∈Λm

|x|2(2−d)|y|2(2−d)E
[
gω(0, 0)4πω(x)πω(y)

]1/2

.

Again, E
[
gω(0, 0)4πω(x)πω(y)

]
is bounded uniformly in x, y ∈ Zd, provided that p0 and ζ

are large enough in Theorem 3.4. Hence the term above is bounded by c
∑
y∈Λm

|y|2(2−d).
Thus, taking the expectation of the third term in the upper bound (4.15) and applying
Hölder’s inequality, it is lower than cE[Lm] for some c > 0. Finally, recalling Lemma 4.3,
this yields that

E[Eω[Lm]2] ≤ cE[Lm]2 , (4.16)

for some c > 0 and all m ∈ N, which is the expected result.

We now prove the first inequality in Lemma 4.4. Let us write Varω[Lm] := Eω[L2
m]−

Eω[Lm]2. Using the conditional variance decomposition with respect (`m(x))x∈Zd , one
obtains,

Varω(Lm) =
1

πω(0)2

∑
x∈Λm

Eω[`m(x)]Varω(L1,m
x,0 ) +

1

πω(0)2
Varω

( ∑
x∈Λm

`m(x)Eω
[
L1,m
x,0

])
(4.17)

=: Ym + Zm.

We claim the following.

Lemma 4.6. There exists c > 0 such that, for x ∈ Zd, m ∈ N, and P-a.e. ω,

Eω
[
(L1,m

x,0 )2
]
≤ c

∑
y∈Λn

gm(x, y)gm(y, 0)2πω(y)πω(0)2 .
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This lemma comes from a Many-to-two formula: we postpone its proof for now.
By (4.8) and Lemma 4.6, one has,

Ym ≤
1

πω(0)2

∑
x∈Λm

Eω[`m(x)]Eω
[
(L1,m

x,0 )2
]
≤ c

∑
x,y∈Λm

gm(0, x)gm(x, y)gm(y, 0)2πω(x)πω(y),

(4.18)
and,

Zm ≤
1

πω(0)2
Eω

[( ∑
x∈Λm

`m(x)Eω
[
L1,m
x,0

])2
]

≤ 2

πω(0)2

∑
x,y∈Λm

Eω

 ∑
u,v∈Spine(T ),
u≺v or u=v

1{ST (u)=x}1{ST (v)=y}

Eω
[
L1,m
x,0

]
Eω
[
L1,m
y,0

]
≤ c

∑
x,y∈Λm

gm(0, x)2gm(x, y)gm(y, 0)πω(x)πω(y) . (4.19)

Exchanging the notation x and y above, Zm and Ym have the same upper bound. Re-
call Eω[Lm]2 from (4.15): it suffices to show that the r.h.s. of (4.19) is dominated by
cE[Eω[Lm]2] for some c > 0, then we conclude the proof of Lemma 4.4 with (4.17).

Applying (3.3) and the Cauchy-Schwarz inequality twice, the expectation of the r.h.s.
of (4.19) is bounded from above by,

cE
[
Eω[Lm]2

]1/2
E

[ ∑
x,y∈Λm

gm(x, y)2gm(x, 0)2πω(x)πω(y)

]1/2

. (4.20)

Moreover, P is invariant by the translation τ−x for all x ∈ Zd, so one deduces that,

E

 ∑
x,y∈Λm

gm(x, y)2gm(x, 0)2πω(x)πω(y)

 ≤ E

 ∑
u,v∈Λ2m

gm(0, u)2gm(0, v)2πω(0)πω(u)


= cE

[
Eω[L2m]πω(0)

∑
v∈Λ2m

gm(0, v)2

]

≤ cE[L2m]E

πω(0)2

( ∑
v∈Λ2m

gm(0, v)2

)2
1/2

,

(4.21)

where we used (4.9), the Cauchy-Schwarz inequality and (4.16). Moreover, one deduces
from (3.9) and the inequalities gm(0, v) ≤ gω(0, v) ≤ gω(0, 0) that, for P-a.e. ω,

0 ≤
∑

v∈Λ2m

gm(0, v)2 ≤ c gω(0, 0)2N2(0)d + c
∑

v∈Λ2m

|v|2(2−d) . (4.22)

Plugging this into (4.21) and recalling from Lemma 4.3 that E[Lm] � E[L2m], a direct
computation yields that (4.21) is dominated by cE[Lm]2. Recollecting (4.20), this finally

yields that the r.h.s. of (4.19) is bounded from above by the term cE
[
Eω[Lm]2

]1/2
E[Lm] ≤

cE[Eω[Lm]2] for all m ∈ N (where we used Jensen’s inequality), finishing the proof of
Lemma 4.4.
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Proof of Lemma 4.6. For a realization of the critical BRWRE (S1
x, T 1

x ), define U ⊂ T 1
x the

set of vertices u ∈ T 1
x such that, for all w ≺ u, one has S1

x(w) ∈ Λm. Then,

Eω
[
(L1,m

x,0 )2
]

= Eω

[(∑
u∈U

1{S1
x(u)=0}

)2
]

= Eω[L1,m
x,0 ] + Eω

[ ∑
u,v∈U,u 6=v

1{S1
x(u)=0,S1

x(v)=0}

]
.

For u, v ∈ T 1
x , write u ≺ v if u 6= v and v is a descendant of u. On the one hand, one

deduces from Markov’s property that,

Eω

[ ∑
u,v∈U,u≺v

1{S1
x(u)=0,S1

x(v)=0}

]
= Eω

[∑
u∈U

1{S1
x(u)=0} · L̃1,m

0,0

]
= Eω

[
L1,m
x,0

]
Eω
[
L1,m

0,0

]
,

where L̃1,m
0,0 is a copy of L1,m

0,0 , i.e. the local time in 0 of some critical BRWRE (S̃1
0 , T̃ 1

0 )

started from 0 and constrained in Λm; and is taken independent from (S1
x, T 1

x ). On the
other hand, for u, v which are not on the same genealogical line, we let w := u∧ v denote
their most recent common ancestor and c(w) its number of children in T 1

x . Then one
deduces from Markov’s property that,

Eω

[ ∑
w∈U

∑
u,v∈U,

u�w,v�w,
u∧v=w

1{S1
x(u)=0}1{S1

x(v)=0}

]

= Eω

[ ∑
y∈Λm

∑
w∈U

1{S1
x(w)=y}

∑
u,v∈U,

u�w,v�w,
u∧v=w

1{S1
x(u)=0}1{S1

x(v)=0}

]

= Eω

[ ∑
y∈Λm

∑
w∈U

1{S1
x(w)=y} · c(w)(c(w)− 1) · L̃1,m

y,0 · L̃
2,m
y,0

]
,

with L̃i,my,0 , i ∈ {1, 2}, is the local time in 0 of some independent BRWRE started from y

and constrained to Λm. Recalling that the root of T 1
x ∼ PT reproduces as ((k+1)qk+1)k≥0

and that q has a finite third moment, one has

ET
[
c(w)2

]
≤ max

σ2 + 1,
∑
k≥1

k3qk

 < +∞ . (4.23)

Recalling (4.8), one finally obtains,

Eω
[
(L1,m

x,0 )2
]

≤ c πω(0)gm(x, 0) + 2c πω(0)2gm(x, 0)gm(0, 0) + c
∑
y∈Λm

πω(y)πω(0)2gm(x, y)gm(y, 0)2

≤ c
∑
y∈Λm

gm(x, y)gm(y, 0)2πω(y)πω(0)2,

where we used that πω(0)gm(0, 0) = Eω[L1,m
0,0 ] ≥ 1.

4.3 Recurrence for traps

When d ≤ 2, recall that the BRWRE (ST∞ , T∞) restricted to Spine(T∞) has the same
law as the RWRE (Xn)n≥0 in random traps, and that the latter visits the same vertices
of Zd as a simple random walk (recall e.g. the proof of Proposition 3.2). Therefore, the
critical snake is P-a.s. recurrent for d ≤ 2.
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We now assume d ∈ {3, 4}, that Eπω(0) < +∞, and that Assumptions 1.2, 1.7 hold.
Similarly to the random conductances environment, we proceed with a second moment
method, however the truncation we use here is twofold: we kill particles when they leave
the box Λm for some m ∈ N, or when they fall in a “large trap”. Let R > 0 and define,
for P-a.e. ω,

Aω := {x ∈ Zd ; πω(x) ≥ R |x|2} . (4.24)

Let us consider the BRWRE indexed by T∞ which is killed when it reaches either ∂Λm or
Aω. Let Zm denote its renormalized local time in 0: we shall prove that Zm satisfies the
same annealed moment estimates than Lm in Lemmata 4.3 and 4.4, then Theorem 1.8.(ii)
follows from the same arguments as in the conductances case (i.e. the Paley-Zygmund
inequality and Proposition 1.3, we do not reproduce them).

Lemma 4.7. Let d ∈ {3, 4}. One has for some c > 0 uniform in m ∈ N,

E[Zm] ≥

{
cm if d = 3,

c logm if d = 4.

Lemma 4.8. Let d ∈ {3, 4}. One has for some c > 0 uniform in m ∈ N,

E[Z2
m] ≤

{
cm2 if d = 3,

c (logm)2 if d = 4.

Recall the definitions of `m(x), Li,mx,y for the BRWRE killed outside at ∂Λm, and

that (4.8) is unchanged in a random traps environment. We define similarly ˜̀m(x), L̃i,mx,y
for the BRWRE killed at ∂Λm ∪Aω: in particular one has for m ∈ N,

Zm :=
1

πω(0)

∑
x∈Λm

˜̀m(x)∑
i=1

L̃i,mx,0 . (4.25)

Recall also from Proposition 3.2 that Green’s function for the (non-killed) RWRE satisfies
gω(·, ·) = g(·, ·) P-a.s.; and let g̃m denote Green’s function of the (quenched) RWRE killed
at ∂Λm ∪Aω.

Proof of Lemma 4.7. Let K > 0, n ∈ N. Since one has πω(x) ≥ 1 P-a.s. for all x ∈ Zd in
the random traps environment, one deduces from Jensen’s inequality that,

E[ZKn] = σ2E

[ ∑
x∈ΛKn

g̃Kn(0, x)2πω(x)

]
≥ σ2

∑
n/2≤|x|≤n

E
[
g̃Kn(0, x)

]2
.

Let us show that E[g̃Kn(0, x)] ≥ c|x|2−d uniformly in n/2 ≤ |x| ≤ n. Recalling Lemma 3.6,
there exists c1 > 0 such that for n/2 ≤ |x| ≤ n, one has P-a.s.,

c1 |x|2−d ≤ gKn(0, x) ≤ g̃Kn(0, x) +
∑

y∈ΛKn

gω(0, y)gω(y, x)1{y∈Aω} ,

Moreover, the stationarity of ω yields P(y ∈ Aω) = P(πω(0) ≥ R |y|2). Taking the
expectation E above, and using Proposition 3.2 and (3.5), we claim that it is enough to
show that ∑

y∈ΛKn

|y|2−d|x− y|2−dP(πω(0) ≥ R |y|2) ≤ c1
2
|x|2−d , (4.26)

and the result follows. On the one hand we have by Markov’s inequality,∑
y:|x−y|≤n/4

|y|2−d|x− y|2−dP
(
πω(0) ≥ R|y|2

)
≤ c

R
n−d

∑
y:|x−y|≤n/4

|x− y|2−d ≤ c

R
n2−d ,
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for some c > 0 that does not depend on R. On the other hand,∑
y:|x−y|≥n/4

|y|2−d|x− y|2−dP
(
πω(0) ≥ R|y|2

)
≤ c n2−d

∑
y:|x−y|≥n/4

|y|2−dP
(
πω(0) ≥ R|y|2

)
,

and ∑
y:|x−y|≥n/4

|y|2−dP
(
πω(0) ≥ R|y|2

)
≤ c

∫ +∞

0

rP
(
πω(0) ≥ Rr2

)
dr ≤ c

R
,

where we used that E[πω(0)] < +∞. Assuming R is large enough, this finally yields (4.26).

Proof of Lemma 4.8. Recall (4.17–4.19): reproducing this computation with Zm and
using Proposition 3.2, this yields P-a.s.,

Varω(Zm) = Eω[Z2
m]−Eω[Zm]2

≤ c
∑

x,y∈Λm

g(0, x)2g(x, y)g(0, y)πω(x)πω(y)1{πω(x)≤R|x|2,πω(y)≤R|y|2},

and Eω[Zm]2 ≤ c
∑

x,y∈Λm

g(0, x)2g(0, y)2πω(x)πω(y)1{πω(x)≤R|x|2,πω(y)≤R|y|2}.

Recall that, under Assumption 1.7, there exists R0,K > 0 such that for x, y with |x− y| ≥
R0, one has E[πω(x)πω(y)] ≤ K. Moreover, one has for x, y ∈ Zd,

E[πω(x)πω(y)1{πω(x)≤R|x|2,πω(y)≤R|y|2}] ≤ R|x|2E[πω(y)] ≤ c|x|2 .

Thus,

E
[
Eω[Zm]2

]
≤ c

∑
x,y∈Λm

g(0, x)2g(0, y)2
[
K1|x−y|≥R0

+ c|x|21|x−y|<R0

]
≤ c

∑
x,y∈Λm

|x|2(2−d)|y|2(2−d) + c
∑
x∈Λm

|x|4(2−d)+2 .

Using standard series estimates, this yields the upper bound expected in Lemma 4.8.
Similarly, one obtains

EVarω(Zm) ≤ c
∑

x,y∈Λm

|x|2(2−d)|x− y|2−d|y|2−d + c
∑
x∈Λm

|x|3(2−d)+2 .

Using the Cauchy-Schwarz inequality and a shift-invariance argument similarly to (4.20-
4.21), this yields the same upper bound (we leave the details to the reader). Recalling
that E[Z2

m] = EVarω(Zm) + E[Eω[Zm]2], this completes the proof.

A Proof of Proposition 4.2

This is a standard argument, which follows from the well-known Dirichlet principle.
We present the main ideas of the proof here, and refer to [1, Proposition 3.38] (or [16, 23]
among other references) for more details. For m ∈ N and f : Λm+1 → R such that
f(y) = 0 for all y ∈ ∂Λm, its associated Dirichlet energy in ω ∈ Ω is defined by,

Eωm(f) :=
1

2

∑
x,y∈Λm

ωx,y[f(y)− f(x)]2 , (A.1)

and we write E1
m for the Dirichlet energy in homogeneous environment, i.e. ωx,y := 1x∼y

almost surely for x, y ∈ Zd. Then the effective conductance Cω(0, ∂Λm) between 0 and
∂Λm is defined by,

Cω(0, ∂Λm) := inf {Eωm(f) ; f : Λm+1 → R, f(0) = 1, f(y) = 0 ∀ y ∈ ∂Λm} , (A.2)
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and, letting τ+
A := inf{n ≥ 1, Xn ∈ A} the return time to any set A ⊂ Λm+1, one has,

Cω(0, ∂Λm) = πω(0)Pω(τ+
{0} > τ+

∂Λm
) . (A.3)

Moreover, the infimum (A.2) for Eωm (resp. E1
m) is achieved by some harmonic function hω

(resp. h).
It follows from the Dirichlet principle that, for P-a.e. ω, one has

πω(0)Pω(τ+
{0} > τ+

∂Λm
) = Eωm(hω) ≤ Eωm(h) =

1

2

∑
x,y∈Λm

ωx,y[h(y)− h(x)]2 .

Taking the expectation above, this yields,

E
[
πω(0)Pω(τ+

{0} > τ+
∂Λm

)
]
≤ sup

x∼y
E[ωx,y]× E1

m(h) ≤ c P̃(τ+
{0} > τ+

∂Λm
) ,

where P̃ denotes the law of the homogeneous random walk in Zd. When d ≤ 2 the latter
goes to 0 as m→ +∞ (since the homogeneous random walk is recurrent), so this yields
that Pω(τ+

{0} = +∞) = 0 for P-a.e. ω, finishing the proof.
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