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Abstract. We obtain the convergence in law of a sequence of excited (also
called cookies) random walks toward an excited Brownian motion. This last

process is a continuous semi-martingale whose drift is a function, say ϕ, of
its local time. It was introduced by Norris, Rogers and Williams as a simpli-
fied version of Brownian polymers, and then recently further studied by the
authors. To get our results we need to renormalize together the sequence of
cookies, the time and the space in a convenient way. The proof follows a gen-
eral approach already taken by Tóth and his coauthors in multiple occasions,
which goes through Ray-Knight type results. Namely we first prove, when ϕ

is bounded and Lipschitz, that the convergence holds at the level of the local
time processes. This is done via a careful study of the transition kernel of an
auxiliary Markov chain which describes the local time at a given level. Then
we prove a tightness result and deduce the convergence at the level of the full
processes.

1. Introduction

1.1. General overview. Self-interacting random processes play a prominent role
in the probability theory and in statistical physic. One fascinating aspect is that
behind an apparent simplicity, they can be extremely hard to analyze rigorously.
Just to mention one striking example, it is still not known whether once reinforced
random walks on a ladder are recurrent in general (see however [Sel] and [Ver] for
a partial answer and the surveys [MR] and [Pem] for other problems on reinforced
processes). A major difficulty in these models is that we loose the Markovian
property and in particular the usual dichotomy between recurrence and transience
can be broken. A famous example where this happens is for vertex reinforced
random walks on Z: it is now a well known result in the field, first conjectured
and partially proved by Pemantle and Volkov [PemV], that almost surely these
processes eventually get stuck on five sites [Tar]. For analogous results concerning
self-attracting diffusions, see [CLJ], [HRo] and [R].

Beside this very basic, yet fundamental, problem of recurrence, a question of
particular interest is to understand the connections between the various discrete and
continuous models. In particular an important challenging conjecture is that self-
avoiding random walks on Z

2 converge, after renormalization, toward the SLE8/3

(see [LSW] for a discussion on this and [DCS] for some recent progress). There are
in fact not many examples where invariance principles or central limit theorems
were fully established. But for instance it was proved that random walks perturbed
at extrema converge after the usual renormalization toward a perturbed Brownian
motion (see e.g. [Dav] and [W]).

In this paper we are interested in the class of so-called excited random processes,
which are among the most elementary examples of self-interacting processes. By
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 2

this we mean that the interaction with the past trajectory is as localized as possible:
the evolution of these processes at any time only depend on their local time at their
present position. A discrete version was introduced relatively recently by Benjamini
and Wilson [BW] and a generalization, called multi-excited or cookie random walks,
was then further studied by Zerner [Z] and many other authors (see in particular
[MPRV] and references therein). Closely related models were also considered in
[ABK], [BKS], [K] and [KRS]. Dolgopyat [D] observed that in dimension 1, in the
recurrent regime, and after the usual renormalization, multi-excited random walks
also converge toward a perturbed Brownian motion (we will give a more precise
statement later). However, as we will see below, the latter are not, in some sense,
the most natural continuous versions of excited processes. Somewhat more natural
ones were introduced two decades ago by Norris, Rogers and Williams [NRW2], in
connection with the excluded volume problem [NRW1], and as a simplified model
for Brownian polymers. They were later called excited Brownian motions by the
authors [RS].

The aim of this paper is to show that excited Brownian motions can be ap-
proached in law by multi-excited random walks in the Skorokhod space, i.e. in the
sense of the full process. For this we need to use a nonstandard renormalization,
namely we need to scale together and appropriately the sequence of cookies, which
govern the drift of the walk, the space and the time. Now let us give more details,
starting with some definitions:

A multi-excited or cookie random walk (Xε(n), n ≥ 0) is associated to a sequence

ε := (εi, i ≥ 1) ∈ (−1, 1)N,

of cookies in the following way: set

pε,i :=
1

2
(1 + εi),

for all i ≥ 1, and let (Fε,n, n ≥ 0) be the filtration generated by Xε. Then Xε(0) :=
0 and for all n ≥ 0,

P[Xε(n+ 1)−Xε(n) = 1 | Fε,n] = 1− P[Xε(n+ 1)−Xε(n) = −1 | Fε,n] = pε,i,

if #{j ≤ n : Xε(j) = Xε(n)} = i. We notice that the case of random cookies has
also been studied in the past, for instance by Zerner [Z], but here we consider only
deterministic ε.

On the other hand excited Brownian motions are solutions of a stochastic differential
equation of the type:

dYt = dBt + ϕ(LYt

t ) dt,

where B is a Brownian motion, L·
· is the local time process of Y and ϕ : R → R is

some measurable (bounded) function.

So at a heuristic level the discrete and the continuous models are very similar:
the drift is a function of the local time at the present position. But the analogy can
be pushed beyond this simple observation. In particular criteria for recurrence and
nonzero speed in both models (see respectively [KZ] and [RS]) are entirely similar
(see below). Our results here give now a concrete link. We first prove that when ϕ
is bounded and Lipschitz, the local time process of Xε, conveniently renormalized,

ha
l-0

05
21

87
0,

 v
er

si
on

 3
 - 

19
 A

ug
 2

01
1



EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 3

converges to the one of Y , exactly in the same spirit as in Tóth’s papers on self-
interacting random walks (see [T2]). Then we obtain a tightness result and deduce
a convergence in the Skorokhod space at the level of the processes (see Theorem 1.4
below). For proving the convergence of the local time processes we use a standard
criterion of Ethier and Kurtz [EK] on approximation of diffusions. To show that we
can apply it here we introduce some auxiliary Markov chains describing the local
time on each level and we make a careful analysis of the transition kernels of these
Markov chains (see Section 2).

Acknowledgments: We thank an anonymous referee for encouraging us to prove the

main result without the recurrence hypothesis and with weaker assumptions on the

regularity of ϕ.

1.2. Description of the results. For a ∈ Z and v ∈ N, set

τε,a(v) := inf {j : #{i ≤ j : Xε(i) = a and Xε(i+ 1) = a− 1} = v + 1} .
Consider the process (Sε,a,v(k), k ∈ Z) defined by

Sε,a,v(k) = #{j ≤ τε,a(v)− 1 : Xε(j) = k and Xε(j + 1) = k − 1}.
In particular, when τε,a(v) is finite, Sε,a,v(a) = v. We will say that Xε is recurrent
when all the τε,a(v)’s are finite. A criterion for recurrence when εi ≥ 0 for all i or
when εi = 0 for i large enough is given in [Z] and [KZ] (namely in these cases, Xε

is a.s. recurrent if, and only if,
∑

i εi ∈ [−1, 1]).
Assume now that ϕ is bounded and let εn = (εi(n), i ≥ 1) be defined by

εi(n) :=
1

2n
ϕ

(
i

2n

)
for all n ≥ 1 and all i ≥ 1.

Since ϕ is bounded, if n is large enough then εn ∈ (−1, 1)N and Xεn is well defined.
Then for a ∈ R and v ≥ 0, set

Λ(n)
a,v(x) :=

1

n
Sεn,[2na],[nv]([2nx]) for all x ∈ R.(1)

We give now the analogous definitions in the continuous setting. First for a ∈ R,
let

τa(v) := inf{t > 0 : La
t > v} for all v ≥ 0,

be the right continuous inverse of the local time of Y at level a. Again we say that
Y is a.s. recurrent if all these stopping times are a.s. finite. This is equivalent (see
[RS, Theorem 1.1]) to the condition C+

1 = C−
1 = +∞, where

C±
1 :=

∫ ∞

0

exp

[
∓
∫ x

0

h(z)
dz

z

]
dx,

and where

h(z) :=

∫ z

0

ϕ(ℓ) dℓ for all z ≥ 0.

In particular when ϕ is nonnegative or compactly supported this is equivalent to∫∞

0 ϕ(ℓ) dℓ ∈ [−1, 1]. Then set

Λa,v(x) := Lx
τa(v)

.

The Ray-Knight theorem describes the law of (Λa,v(x), x ∈ R) (a proof is given in
[NRW2] when v = 0, but it applies as well for v > 0), when τa(v) is a.s. finite,
and we recall this result now. To fix ideas we assume that a ≤ 0. An analogous
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 4

result holds for a ≥ 0. So first we have Λa,v(a) = v. Next, Λa,v is solution of the
stochastic differential equation:

dΛa,v(x) = 2
√
Λa,v(x) dBx + 2(1 + h (Λa,v(x))) dx for x ∈ [a, 0],(2)

dΛa,v(x) = 2
√
Λa,v(x) dBx + 2h (Λa,v(x)) dx for x ∈ [0,∞),(3)

where B is a Brownian motion, and (3) holds up to the first time, say w+
a,v, when

it hits 0, and then is absorbed in 0 (i.e. Λa,v(x) = 0 for x ≥ w+
a,v). Similarly

(Λa,v(a − x), x ≥ 0) is solution of (3) (with a drift −2h instead of 2h and an
independent Brownian motion) up to the first time, say w−

a,v, when it hits 0, and
then is absorbed in 0.

For d ≥ 1, we denote by D(R,Rd) the space of càdlàg functions f : R → R
d

endowed with the usual Skorokhod topology (see for instance Section 12 in [Bil]).
The space D(R,R) will also simply be denoted by D(R). It will be implicit that all
convergences in law of our processes hold in these spaces.

Our first result is the following theorem:

Theorem 1.1. Assume that ϕ is bounded and Lipschitz. Assume further that for

n large enough, Xεn is recurrent and that Y is recurrent. Then for any finite set

I, any ai ∈ R and vi ≥ 0, i ∈ I,

(Λ(n)
ai,vi(x), x ∈ R)i∈I

L
=⇒
n→∞

(Λai,vi(x), x ∈ R)i∈I .

As announced above, this theorem gives the convergence of a sequence of excited
random walks toward the excited Brownian motion (associated to ϕ) at the level
of the local times. We will also extend this result in a non homogeneous setting,
i.e. when ϕ is allowed to depend also on the space variable. We refer the reader to
Section 3 for more details. Actually we will need this extension to prove Theorem
1.1 in the case |I| ≥ 2. This will be explained in Section 4.

Note that if ϕ is compactly supported or nonnegative (and bounded Lipschitz), and
if
∫∞

0 ϕ(ℓ) dℓ ∈ (−1, 1), then Y is recurrent and Xεn as well for n large enough.

A consequence of Theorem 1.1 is the following

Corollary 1.2. Under the hypotheses of Theorem 1.1, for any finite set I, any

ai ∈ R and vi ≥ 0, i ∈ I,
(

1

4n2
τεn,[2nai]([nvi])

)

i∈I

L
=⇒
n→∞

(
τai

(vi)
)
i∈I

.

For ui ∈ R, i ∈ I, denote by θ
(i)
ui some independent geometric random variables

with parameter 1 − e−ui , independent of Xεn . Denote also by γ
(i)
ui , i ∈ I, some

independent exponential random variables with parameter ui, independent of Y .
Then as in [T1], we can deduce from the previous results the

Corollary 1.3. Under the hypotheses of Theorem 1.1, for any λi ≥ 0, i ∈ I,
(

1

2n
Xεn(θ

(i)
λi/(4n2))

)

i∈I

L
=⇒
n→∞

(
Y (γ

(i)
λi

)
)
i∈I

.

Finally we get the following:
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 5

Theorem 1.4. Assume that ϕ is bounded and Lipschitz. For t ≥ 0, set X(n)(t) :=
Xεn([4n

2t])/(2n), which is well defined at least for n large enough. Then

(X(n)(t), t ≥ 0)
L

=⇒
n→∞

(Y (t), t ≥ 0).

Note that, as opposed to the previous results, we do not assume in this last theorem
that Xεn and Y are recurrent.
To obtain this result we need to prove the tightness of the sequenceXεn([4n

2·])/(2n),
n ≥ 1. This is done by using a coupling between different branching processes, sim-
ilar to those which were used for proving Corollary 1.2. The convergence of finite-
dimensional distributions follows from Corollary 1.3 and an inversion of Laplace
transform.

As for Theorem 1.1 an extension of this result to the non homogeneous setting can
be proved (see Theorem 7.1 at the end of the paper).

Let us mention now a related result of Dolgopyat [D]. He proved a functional central
limit theorem for excited random walks when ε is fixed, and in the recurrent regime;
more precisely when εi ≥ 0 for all i and α :=

∑
i εi < 1. In this case the limiting

process is a perturbed Brownian motion, i.e. the process defined by

Xt = Bt + α

(
sup
s≤t

Xs − inf
s≤t

Xs

)
for all t ≥ 0,

with B a Brownian motion.

We will first prove Theorem 1.1 in the case |I| = 1 in Section 2. In section 3,
we will extend the result to the non homogeneous setting and in Section 4 we will
deduce the result in the general case |I| ≥ 1. Corollaries 1.2 and 1.3 will be proved
respectively in Section 5 and 6, and Theorem 1.4 in Section 7.

2. Proof of Theorem 1.1 in the case |I| = 1

We assume in this section that |I| = 1. Let a ∈ R and v ≥ 0 be given. To fix
ideas we assume that a ≤ 0. The case a ≥ 0 is similar. Moreover, we only prove the

convergence of Λ
(n)
a,v on the time interval [a,∞), since the proofs of the convergence

on (−∞, a] and on [0,+∞) are the same.

2.1. A criterion of Ethier and Kurtz. It is now a standard fact and not difficult
to check (see however [BaS] or [KZ] for more details) that for all a ∈ N

− and v ∈ N,

(1) the sequence (Sε,a,v(a), . . . , Sε,a,v(0)) has the same law as (Vε,v(0), . . . , Vε,v(−a)),
where (Vε,v(k), k ≥ 0) is some Markov chain starting from v, which is in-
dependent of a,

(2) conditionally to w = Sε,a,v(0), the sequence (Sε,a,v(k), k ≥ 0) has the

same law as some Markov chain (Ṽε,w(k), k ≥ 0), starting from w, which is
independent of a,

(3) the sequence (Sε,a,v(a− k), k ≥ 1) has the same law as (Ṽ−ε,v+1(k), k ≥ 1),
where by definition (−ε)i = −εi for all i ≥ 1.

Moreover, the sequences (Sε,a,v(a − k), k ≥ 1) and (Sε,a,v(k), k ≥ 0) are indepen-

dent. The laws of the Markov chains Vε,v and Ṽε,v will be described in Subsection
2.2 in terms of another Markov chain Wε, see in particular (8) and (9). Note that
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 6

this idea to use the Markovian property of the process Sε,a,v goes back at least to
Kesten, Kozlov and Spitzer [KKS].

In the following, in order to lighten the presentation we will forget about the de-
pendence on the starting point (which does not play any serious role here) in the

notation for Vε and Ṽε. Thus Vε and Vεn should be understood respectively as Vε,v

and Vεn,[nv], where the v will be clear from the context, and similarly for Ṽε and

Ṽεn .

Now we first prove the convergence of Λ
(n)
a,v on [a, 0]. The proofs of the convergence

on [0,+∞) and on the full interval [a,+∞) are similar and will be explained in
Subsection 2.6.

So on [a, 0], Λ
(n)
a,v can be decomposed as a sum of a martingale part M

(n)
a,v and a

drift part B
(n)
a,v :

(4) Λ(n)
a,v(x) =

[nv]

n
+M (n)

a,v (x) +B(n)
a,v (x) for all x ∈ [a, 0],

with the following equalities in law:

M (n)
a,v (x) =

1

n

[2nx]−[2na]∑

k=1

{
Vεn(k)− E[Vεn(k) | Vεn(k − 1)]

}
,(5)

and

B(n)
a,v (x) =

1

n

[2nx]−[2na]∑

k=1

{
E[Vεn (k) | Vεn(k − 1)]− Vεn(k − 1)

}
.(6)

Let also A
(n)
a,v be the previsible compensator of (M

(n)
a,v )2. We have the equality in

law:

(7) A(n)
a,v(x) =

1

n2

[2nx]−[2na]∑

k=1

{
E[Vεn(k)

2 | Vεn(k − 1)]− E[Vεn(k) | Vεn(k − 1)]2
}
,

for all x ∈ [a, 0].

We will deduce the convergence of Λ
(n)
a,v from a criterion of Ethier and Kurtz [EK],

namely Theorem 4.1 p.354. According to this result the convergence on [a, 0] in
Theorem 1.1 follows from Propositions 2.1 and 2.2 below. In addition we need to
verify that the martingale problem associated with the operator 2λd2/(dλ)2+2(1+
h(λ))d/dλ is well posed. This follows from Theorem 2.3 p.372 in [EK] (with the
notation of [EK] take r0 = 0 and r1 = +∞).

Proposition 2.1. Let R > 0 be given. Set τRn := inf{x ≥ a : Λ
(n)
a,v(x) ≥ R}.

Then for a ≤ x ≤ 0 ∧ τRn ,

B(n)
a,v (x) = 2

∫ x

a

(1 + h(Λ(n)
a,v(y))) dy +O

(
1√
n

)
,

where the O(n−1/2) is deterministic and only depends on a and R.

Proposition 2.2. Let R > 0 be given. Then for a ≤ x ≤ 0 ∧ τRn ,

A(n)
a,v(x) = 4

∫ x

a

Λ(n)
a,v(y) dy +O

(
1√
n

)
,
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 7

where the O(n−1/2) is deterministic and only depends on a and R.

These propositions will be proved in the Subsections 2.2–2.5.

2.2. An auxiliary Markov chain. Let ε and v ≥ 0 be given. We express here

(see in particular (8) and (9) below) the laws of Vε = Vε,v and Ṽε = Ṽε,v in terms
of the law of another Markov chain Wε. A similar representation already appeared
in Tóth’s paper [T1] on ”true” self-avoiding walks. So let us first define (sε,i, i ≥ 0)
by sε,0 = 0 and for i ≥ 1,

sε,i :=

i∑

j=1

1{Uj≥pε,j},

where (Uj , j ≥ 1) is a sequence of i.i.d random variables with uniform distribution
in [0, 1]. This sε,i is equal in law to the number of times the excited random walk
jumps from level k to k − 1, for some arbitrary k ∈ Z, after i visits at this level k.
For m ≥ 0, set

Wε(m) := inf{i ≥ 0 : sε,i = m}.
Then Wε(m) is equal in law to the number of visits to level k before the m-th jump
from k to k− 1. Moreover, (Wε(m),m ≥ 0) is a Markov chain on N starting from 0
and with transition operator Qε defined for any nonnegative or bounded function
f by

Qεf(r) =
∑

ℓ≥1

f(r + ℓ)2−ℓ(1 + εr+1) . . . (1 + εr+ℓ−1)(1− εr+ℓ),

for all r ∈ N. Furthermore it is immediate that the law of Vε(k + 1) conditionally
on {Vε(k) = m} is equal to the law of Wε(m)−m+ 1:

L(Vε(k + 1) | Vε(k) = m) = L(Wε(m)−m+ 1).(8)

Similarly the law of Ṽε(k + 1) conditionally on {Ṽε(k) = m} is equal to the law of
Wε(m)−m:

L(Ṽε(k + 1) | Ṽε(k) = m) = L(Wε(m)−m).(9)

By convention we denote by Q0 the transition operator associated to the sequence
(εi, i ≥ 1), where εi = 0 for all i. In other words

Q0f(r) = E[f(r + ξ)] for all r ∈ N,

where ξ is a geometric random variable with parameter 1/2, i.e. P(ξ = ℓ) = 2−ℓ,
for all ℓ ≥ 1. Note that E(ξ) = 2 and V(ξ) = 2. In particular, if u is defined by
u(r) = r for all r ∈ N, then for all m ≥ 1,

Qm
0 u(0) = E[ξ1 + · · ·+ ξm] = 2m,

where ξ1, . . . , ξm are i.i.d. geometric random variables with parameter 1/2. Note
also that for all m ≥ 1, E[Wε(m)] = Qm

ε u(0). Thus (8) shows that

(10) E[Vε(k) | Vε(k − 1)]− Vε(k − 1) = QVε(k−1)
ǫ u(0)−Q

Vε(k−1)
0 u(0) + 1,

for all k ≥ 1. So in view of (6) and (10), our strategy for proving Proposition 2.1
will be to estimate terms of the form Qm

ε u(0) − Qm
0 u(0). Note that since x < τRn

by hypothesis, we can restrict us to the case when m ≤ Rn+ 1. Likewise

(11) E[V 2
ε (k) | Vε(k−1)]−E[Vε(k) | Vε(k−1)]2 = QVε(k−1)

ε u2(0)−(QVε(k−1)
ε u(0))2,

for all k ≥ 1. So in view of (7) and (11) we will have also to estimate terms of the
form Qm

ε u2(0)− (Qm
ε u(0))2, for proving Proposition 2.2.
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 8

2.3. Some elementary properties of the operators Qε and Q0. For f : N →
R, we set

|f |∞ = sup
r∈N

|f(r)|,

Lip(f) = sup
r 6=r′

|f(r) − f(r′)|
|r − r′| ,

and

Lip2(f) = sup
ℓ∈N

Lip(∆ℓf),

where ∆ℓf(r) = f(r+l)−f(r). Naturally we say that f is Lipschitz if Lip(f) < +∞.
Note that for any f , Lip2(f) ≤ 2Lip(f) ≤ 4|f |∞. Set

D := {h : N → R : there exists f, g Lipschitz, such that h(r) = f(r) + rg(r)} .
For ε : N → (−1, 1), let Rε := Qε − Q0. Note that when |ε|∞ ≤ 1/2, Rεh and
Qεh are well defined for any h ∈ D. Observe also that Qε1 = Q01 = 1, where 1 is
the constant function on N. In particular Rε1 = 0. Moreover, for any Lipschitz f ,
|Qεf |∞ ≤ |f |∞, and

|Qεf − f |∞ ≤ CLip(f),(12)

where C =
∑

ℓ≥1 ℓ(4/3)
−ℓ. As a corollary we get the

Lemma 2.3. There exists a constant C > 0 such that for all |ε|∞ ≤ 1/2, all j ≥ 0
and all Lipschitz functions f ,

|Qj
εf − f |∞ ≤ CjLip(f).

Proof. Write

Qj
εf − f =

j∑

i=1

Qi−1
ε (Qεf − f),

and then use (12) for each term of the sum. �

Set for all r ≥ 0 and ℓ ≥ 1,

ε̃r,ℓ := −εr+ℓ +
ℓ−1∑

i=1

εr+i,

and define R̃ε by

R̃εf(r) =
∑

ℓ≥1

f(r + ℓ)2−ℓε̃r,ℓ.

This R̃ε is a linearized version of Rε = Qε − Q0, and also the first order term in
the expansion of Rε as |ε|∞ → 0. The next result is immediate.

Lemma 2.4. Assume that |ε|∞ ≤ 1/2. Then for any h ∈ D and any r,

R̃εh(r) = −
∑

ℓ≥1

εr+ℓ

(
h(r + ℓ)2−ℓ −

∞∑

i=ℓ+1

h(r + i)2−i

)
.

In particular R̃ε1 = 0 since
∑∞

i=ℓ+1 2
−i = 2−ℓ. We also get the following
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 9

Lemma 2.5. There exists a constant C > 0 such that for all |ε|∞ ≤ 1/2 and all

h ∈ D, with h(r) = f(r) + rg(r),

(13) R̃εh(r) = fε(r) + rgǫ(r),

where fε and gε satisfy

(i) |fε|∞ ≤ C(Lip(f) + |g|∞)× |ε|∞
(ii) |gε|∞ ≤ CLip(g)× |ε|∞
(iii) Lip(fε) ≤ C(Lip2(f) + Lip(g))× |ε|∞ + C(Lip(f) + |g|∞)× Lip(ε)
(iv) Lip(gε) ≤ CLip2(g)× |ε|∞ + CLip(g)× Lip(ε).

Proof. By using that h(r)R̃ε1(r) = 0 for all r, we get

R̃εh(r) = −
∑

ℓ≥1

εr+ℓ

(
(h(r + ℓ)− h(r))2−ℓ −

∞∑

i=ℓ+1

(h(r + i)− h(r))2−i

)
.

Thus (13) holds with

fε(r) = −
∑

ℓ≥1

εr+ℓ

(
(f(r + l)− f(r))2−ℓ −

∞∑

i=ℓ+1

(f(r + i)− f(r))2−i

)

−
∑

ℓ≥1

εr+ℓ

(
g(r + ℓ)ℓ2−ℓ −

∞∑

i=ℓ+1

g(r + i)i2−i

)
,

and

gε(r) = −
∑

ℓ≥1

εr+ℓ

(
(g(r + ℓ)− g(r))2−ℓ −

∞∑

i=ℓ+1

(g(r + i)− g(r))2−i

)
.

All assertions follow immediately. For instance we can write

|gε|∞ ≤ Lip(g)× |ε|∞ ×
∑

ℓ≥1

(
ℓ2−ℓ +

∞∑

i=ℓ+1

i2−i

)
,

which implies (ii) and one can prove similarly (i), (iii) and (iv). �

Next we have

Lemma 2.6. There exists a constant C > 0 such that for all |ε|∞ ≤ 1/2 and all

h ∈ D, with h(r) = f(r) + rg(r),

Rεh(r)− R̃εh(r) = fε(r) + rgε(r),

where fε and gε satisfy

|fε|∞ ≤ C(Lip(f) + |g|∞)× |ε|2∞,

|gε|∞ ≤ CLip(g)× |ε|2∞.

Proof. Recall that

(Rε − R̃ε)h(r) =
∑

ℓ≥1

h(r + ℓ)2−ℓ(εr,ℓ − ε̃r,ℓ),

where for all r and ℓ,

εr,ℓ := (1 + εr+1) . . . (1 + εr+ℓ−1)(1− εr+ℓ)− 1.
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 10

Since h(r)Rε1(r) = h(r)R̃ε1(r) = 0 for all r, we get

(Rε − R̃ε)h(r) =
∑

ℓ≥1

(h(r + ℓ)− h(r))2−ℓ(εr,ℓ − ε̃r,ℓ)

= fε(r) + rgε(r).

with

fε(r) =
∑

ℓ≥1

(f(r + l)− f(r))2−ℓ(εr,ℓ − ε̃r,ℓ)

+
∑

ℓ≥1

g(r + ℓ)ℓ2−ℓ(εr,ℓ − ε̃r,ℓ),

and

gε(r) =
∑

ℓ≥1

(g(r + ℓ)− g(r))2−ℓ(εr,ℓ − ε̃r,ℓ).

But for any r and any ℓ ≥ 1,

|εr,ℓ − ε̃r,ℓ| ≤ (1 + |ε|∞)ℓ − 1− ℓ|ε|∞
≤ ℓ2(1 + |ε|∞)ℓ−2|ε|2∞(14)

≤ ℓ2(3/2)ℓ−2|ε|2∞.

The lemma follows. �

Lemmas 2.5 and 2.6 imply

Lemma 2.7. There exists a constant C > 0 such that for all |ε|∞ ≤ 1/2 and all

h ∈ D, with h(r) = f(r) + rg(r),

Rεh(r) = fε(r) + rgε(r),

where fε and gε satisfy

|fε|∞ ≤ C(Lip(f) + |g|∞)× |ε|∞,

|gε|∞ ≤ CLip(g)× |ε|∞.

We will need also the following

Lemma 2.8. For all h ∈ D, with h(r) = f(r) + rg(r), and all i ≥ 0,

Qi
0h(r) = fi(r) + rgi(r),

where fi and gi satisfy

(i) |fi|∞ ≤ |f |∞ + 2i|g|∞
(ii) Lip(fi) ≤ Lip(f) + 2iLip(g)
(iii) |gi|∞ ≤ |g|∞
(iv) Lip(gi) ≤ Lip(g).

Moreover, for all r,

|Qi
0h(r) − h(r + 2i)| ≤

√
2i(Lip(f) + |g|∞ + (r + 2i)Lip(g)).

Proof. Just recall that for all i and r, Qi
0h(r) = E[h(r + ξ1 + · · · + ξi)], where

ξ1, . . . , ξi are i.i.d. geometric random variables with parameter 1/2. Thus, Qi
0h(r) =

fi(r) + rgi(r), where

fi(r) = E[f(r + ξ1 + · · ·+ ξi)] + E[(ξ1 + · · ·+ ξi)g(r + ξ1 + · · ·+ ξi)],
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 11

and

gi(r) = E[g(r + ξ1 + · · ·+ ξi)].

Claims (i), (ii), (iii) and (iv) follow immediately frome these expressions (by using
also that E[|ξ1 + · · ·+ ξi|] = 2i). Next write

|Qi
0f(r)− f(r + 2i)| ≤ E[|f(r + ξ1 + · · ·+ ξi)− f(r + 2i)|]

≤ Lip(f)E[|ξ1 + · · ·+ ξi − 2i|]
≤

√
2iLip(f),

by using Cauchy-Schwarz inequality and the fact that E(ξi) = 2 and V(ξi) = 2, for
all i. We also have

|Qi
0(h− f)(r) − (r + 2i)g(r + 2i)| ≤ E[|(ξ1 + · · ·+ ξi − 2i)g(r + ξ1 + · · ·+ ξi)|

+E[|(r + 2i)(g(r + ξ1 + · · ·+ ξi)− g(r + 2i))|]
≤

√
2i (|g|∞ + (r + 2i)Lip(g)) .

�

Lemma 2.9. There exists a constant C > 0 such that for all |ε|∞ ≤ 1/2, all i ≥ 0
and all Lipschitz f ,

|(Qi
ε −Qi

0)f |∞ ≤ CiLip(f)× |ε|∞.

Proof. First write

Qi
ε −Qi

0 =

i−1∑

j=0

Qi−j+1
ε RεQ

j
0.(15)

Then by using that |Qi−j+1
ε f |∞ ≤ |f |∞, for all j ≤ i− 1, we get (using Lemma 2.7

with g = 0),

|(Qi
ε −Qi

0)f |∞ ≤
i−1∑

j=0

|RεQ
j
0f |∞ ≤ C

i−1∑

j=0

Lip(Qj
0f)|ε|∞.

We conclude the proof of the lemma by using that Lip(Qj
0f) ≤ Lip(f) for all j. �

Lemma 2.10. There exists a constant C > 0 such that for all |ε|∞ ≤ 1/2, all i ≥ 0
and all h ∈ D, with h(r) = f(r) + rg(r),

|Qi
εh(r)| ≤ |f |∞ + (r + Ci)|g|∞.

Proof. We have

|Qi
εh(r)| ≤ |f |∞ + |g|∞|Qi

εu(r)|,
where u is defined by u(r) = r for all r ∈ N. Now, Lemma 2.9 implies that

|Qi
εu(r)−Qi

0u(r)| ≤ Ci|ε|∞.

We conclude by using that Qi
0u(r) = r + 2i. �

Lemma 2.11. There exists a constant C > 0 such that for all |ε|∞ ≤ 1/2, all i ≥ 0
and all h ∈ D, with h(r) = f(r) + rg(r),

|(Qi
ε −Qi

0)h(r)| ≤ Ci (Lip(f) + |g|∞ + (r + i)Lip(g))× |ε|∞.
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 12

Proof. We have Qj
0h(r) = fj(r)+ rgj(r) and RεQ

j
0h(r) = fj,ε(r)+ rgj,ε(r). Lemma

2.10 implies that

|Qi−j+1
ε RεQ

j
0h(r)| ≤ |fj,ε|∞ + (r + C(i− j + 1))|gj,ε|∞.

Lemma 2.7 implies that

|fj,ε|∞ ≤ C(Lip(fj) + |gj|∞)× |ε|∞ and |gj,ε|∞ ≤ CLip(gj)× |ε|∞.

Lemma 2.8 implies that

|fj,ε|∞ ≤ C(Lip(f) + |g|∞ + 2jLip(g))× |ε|∞,

and

|gj,ε|∞ ≤ CLip(g)× |ε|∞.

Now,

i−1∑

j=0

|fj,ε|∞ ≤ Ci(Lip(f) + |g|∞ + iLip(g))× |ε|∞,

and

i−1∑

j=0

(r + C(i − j + 1))|gj,ε|∞ ≤ C(r + i)i× Lip(g)× |ε|∞.

Using then (15), this proves the lemma. �

Our last result in this subsection is the following (recall that u(r) = r for all r ∈ N):

Lemma 2.12. There exists a constant C > 0 such that for all m ≥ 0 and all

|ε|∞ ≤ 1/2,

|Qm
ε u−Qm

0 u−
m∑

i=1

Qm−i
0 R̃εu|∞ ≤ C(m|ε|2∞ +m2|ε|∞Lip(ε)).

Proof. First observe that for all j ≥ 0, Qj
0u = u + 2j. Since R̃ε is linear and

R̃ε1 = 0, we get R̃εQ
i−1
0 u = R̃εu for all i ≥ 1. Thus

m∑

i=1

Qm−i
0 R̃εu =

m∑

i=1

Qm−i
0 R̃εQ

i−1
0 u.

Next we have

Qm
ε u−Qm

0 u−
m∑

i=1

Qm−i
0 R̃εQ

i−1
0 u =

m∑

i=1

Qm−i
0 (Rε − R̃ε)Q

i−1
0 u

+

m∑

i=1

(Qm−i
ε −Qm−i

0 )R̃εQ
i−1
0 u.

By using Lemma 2.6 and the fact that Lip(Qi
0u) ≤ Lip(u) = 1 for all i, we get

m∑

i=1

|Qm−i
0 (Rε − R̃ε)Q

i−1
0 u|∞ ≤ C

m∑

i=1

Lip(Qi−1
0 u)|ε|2∞

≤ Cm|ε|2∞.

ha
l-0

05
21

87
0,

 v
er

si
on

 3
 - 

19
 A

ug
 2

01
1



EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 13

Then by using Lemma 2.9 we obtain

m∑

i=1

|(Qm−i
ε −Qm−i

0 )R̃εQ
i−1
0 u|∞ ≤ C|ε|∞

m∑

i=1

(m− i)Lip(R̃εu).

Using Lemma 2.5 with f(r) = 1 and g(r) = 0, we have gε(r) = 0 and

(16) Lip(R̃εu) = Lip(fε) ≤ CLip(ε).

This proves the lemma. �

2.4. Proof of Proposition 2.1. Recall that εn = (εi(n), i ≥ 1), with εi(n) =
ϕ(i/2n)/(2n). Since ϕ is bounded, we can always assume by taking large enough
n if necessary, that |εn|∞ ≤ 1/2. Note also that Lip(εn) = O(1/n2). Assume now
that m = O(n). Then Lemma 2.12 shows that

Qm
εnu−Qm

0 u =

m−1∑

i=0

Qi
0R̃εnu+O

(
1

n

)
.

Next write
m−1∑

i=0

Qi
0R̃εnu(0) =

m−1∑

i=0

R̃εnu(2i) +

m−1∑

i=0

(Qi
0R̃εnu(0)− R̃εnu(2i)).

By using Lemma 2.8 (applied to f = R̃εnu and g = 0) we get

m−1∑

i=0

|Qi
0R̃εnu(0)− R̃εnu(2i)| ≤

√
2

m−1∑

i=0

Lip(R̃εnu)
√
i

≤ Cm3/2Lip(εn)

≤ C√
n
.

On the other hand, set

aℓ := −ℓ2−ℓ +

∞∑

j=ℓ+1

j2−j = 2−ℓ+1.(17)

Then by using Lemma 2.4 we get

m−1∑

i=0

R̃εnu(2i) =
m−1∑

i=0

∞∑

ℓ=1

aℓ(εn)2i+ℓ

=
∞∑

ℓ=1

2−ℓ+1 × 1

2n

m−1∑

i=0

ϕ

(
2i+ ℓ

2n

)
.

But
∑∞

ℓ=1 2
−ℓ+1 = 2, and since ϕ is Lipschitz and bounded

1

n

m−1∑

i=0

ϕ

(
2i+ ℓ

2n

)
=

∫ m/n

0

ϕ(s) ds+O
(
ℓ

n

)
.

Thus putting the pieces together we get

Qm
εnu(0)−Qm

0 u(0) = h
(m
n

)
+O

(
1√
n

)
.(18)
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 14

Finally we get the equalities in law, for a ≤ x ≤ 0 ∧ τRn ,

B(n)
a,v (x) =

1

n

[2nx]−[2na]∑

k=1

(E[Vεn(k) | Vεn(k − 1)]− Vεn(k − 1))

=
1

n

[2nx]−[2na]∑

k=1

(
1 +Q

Vεn(k−1)
εn u(0)−Q

Vεn (k−1)
0 u(0)

)

=
1

n

[2nx]−[2na]∑

k=1

{
1 + h

(
Λ(n)
a,v

(
a+

k − 1

2n

))}
+O

(
1√
n

)

= 2

∫ x

a

{
1 + h(Λ(n)

a,v(y))
}
dy +O

(
1√
n

)
,

where the second equality follows from (10) and the third one from (18) and the

relation between Λ
(n)
a,v and Vεn given in (1) and at the begining of Subsection 2.1.

This finishes the proof of Proposition 2.1. �

2.5. Proof of Proposition 2.2. We assume throughout this subsection that m =
O(n). Then on the one hand by using Lemma 2.12, we get

Qm
εnu(0) = 2m+

m∑

i=1

Qm−i
0 R̃εnu(0) +O

(
1

n

)
.

Moreover Lemma 2.5 shows that |Qi
0R̃εnu(0)| ≤ |R̃εnu| ≤ C|εn|∞ = O(1/n) uni-

formly in i. Thus

(Qm
εnu(0))

2 = 4m2 + 4m

m∑

i=1

Qm−i
0 R̃εnu(0) +O(1).

On the other hand we have for all ε,

Qm
ε u2 = Qm

0 u2 +

m∑

i=1

Qm−i
ε RεQ

i−1
0 u2.

A variance calculus shows that

Qi−1
0 u2 = u2 + 4(i− 1)u+ 4(i− 1)2 + 2(i− 1),

which implies that for all ε,

RεQ
i−1
0 u2 = Rεu

2 + 4(i− 1)Rεu,

since Rε1 = 0. Thus

Qm
ε u2(0) = 4m2 + 2m+ Eε,m + Fε,m,

where

Eε,m =

m∑

i=1

Qm−i
ε Rεu

2(0),

and

Fε,m = 4

m∑

i=1

(i− 1)Qm−i
ε Rεu(0).

We now prove the following
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 15

Lemma 2.13. We have

Eεn,m =

m∑

i=1

Qm−i
0 R̃εnu

2(0) +O(1),(19)

and

Fεn,m = 4
m∑

i=1

(i− 1)Qm−i
0 R̃εnu(0) +O(1).(20)

Proof. We have

(Rε − R̃ε)u
2(r) =

∑

ℓ≥1

(2rℓ+ ℓ2)2−ℓ(εr,ℓ − ε̃r,ℓ) for all r.

Thus, by using (14), we see that there exists a constant C > 0 such that

|(Rεn − R̃εn)u
2(r)| ≤ C|εn|2∞(r + 1) ≤ C

(r + 1)

n2
for all r.(21)

This implies that

|Eεn,m −
m∑

i=1

Qm−i
εn R̃εnu

2(0)| ≤
m∑

i=1

Qm−i
εn |Rεnu

2 − R̃εnu
2|(0)

≤ C

n2

m∑

i=1

Qm−i
εn f(0)

with f(r) = r+ 1. By using Lemma 2.3, applied to f(r) = r+ 1, we see that there
exists C > 0 such that

|Eεn,m −
m∑

i=1

Qm−i
εn R̃εnu

2(0)| ≤ C

n2

m∑

i=1

(1 +m− i)

≤ C
m2

n2
= O(1).

Recall the formula for aℓ given in (17) and let

bℓ := −ℓ22−ℓ +
∞∑

i=ℓ+1

i22−i.

Then Lemma 2.4 shows that

(22) R̃εnu
2(r) = fn(r) + rgn(r),

where

fn(r) =
∑

ℓ≥1

bℓ(εn)r+ℓ

gn(r) = 2
∑

ℓ≥1

aℓ(εn)r+ℓ.

Next by using Lemma 2.11, we get for all j = m− i and 1 ≤ i ≤ m,

|(Qj
εn −Qj

0)R̃εnu
2(0)| ≤ Cj (Lip(fn) + |gn|∞ + jLip(gn))× |εn|∞

≤ Cj (|εn|∞ + (j + 1)Lip(εn))× |εn|∞

≤ C

(
m

n2
+

m2

n3

)
= O

(
1

n

)
.
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 16

This proves (19).
Now Lemmas 2.6 and 2.9, together with (16), show that (for j = m− i)

|Qj
εnRεnu−Qj

0R̃εnu|∞ ≤ |Qj
εn(Rεn − R̃εn)u|∞ + |(Qj

εn −Qj
0)R̃εnu|∞

= O
(
|εn|2∞ + j|εn|∞Lip(εn)

)
= O

(
1

n2

)
.

This proves (20) and finishes the proof of the lemma. �

We can now write

Qm
εnu

2(0)− (Qm
εnu(0))

2 = 2m+

m−1∑

j=0

Qj
0R̃εnu

2(0)

+4

m−1∑

j=0

(m− j − 1)Qj
0R̃εnu(0)

−4m

m−1∑

j=0

Qj
0R̃εnu(0) +O(1).

By using Lemmas 2.8 and the form of R̃εnu
2 given by (22) (and using that Lip(fn) =

O(n−2), Lip(gn) = O(n−2) and |gn|∞ = O(n−1)) we get for j ≤ m− 1,

Qj
0R̃εnu

2(0) = R̃εnu
2(2j) +O(n−1/2).

By using Lemmas 2.8, the fact that R̃εn is Lipschitz and bounded, and (16), we get

Qj
0R̃εnu(0) = R̃εnu(2j) +O(n−3/2).

Therefore

Qm
εnu

2(0)− (Qm
εnu(0))

2 = 2m+
m−1∑

j=0

R̃εnu
2(2j)

−4

m−1∑

j=0

(j + 1)R̃εnu(2j) +O(n1/2).

Lemma 2.4 shows that

R̃εnu
2(2j) = 4j

∑

ℓ≥1

aℓ(εn)2j+ℓ +O
(
1

n

)
,

and

R̃εnu(2j) =
∑

ℓ≥1

aℓ(εn)2j+ℓ.

Thus

Qm
εnu

2(0)− (Qm
εnu(0))

2 = 2m+O(n1/2).
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 17

Then (11) shows that for a ≤ x ≤ 0 ∧ τRn ,

A(n)
a,v(x) =

1

n2

[2nx]−[2na]∑

k=1

(
Q

Vεn(k−1)
εn u2(0)− (Q

Vεn (k−1)
εn u(0))2

)

=
2

n

[2nx]−[2na]∑

k=1

Λ(n)
a,v

(
a+

k − 1

2n

)
+O

(
1√
n

)

= 4

∫ x

a

Λ(n)
a,v(y) dy +O

(
1√
n

)
.

This finishes the proof of Proposition 2.2. �

2.6. Proof of the convergence on [0,+∞). The proof of the convergence of

Λ
(n)
a,v on [0,+∞) is essentially the same as the proof on [a, 0]. Namely we can define

M̃
(n)
a,v , B̃

(n)
a,v and Ã

(n)
a,v , respectively as in (5), (6) and (7) with Ṽ everywhere instead

of V . Let also{
w

(n,−)
a,v := 1

2n sup{k ≤ 0 : Sεn,[2na],[nv](k) = 0}
w

(n,+)
a,v := 1

2n inf{k ≥ a : Sεn,[2na],[nv](k) = 0}.
(23)

Then
Λ(n)
a,v(x) = Λ(n)

a,v(0) + M̃ (n)
a,v (x) + B̃(n)

a,v (x) for all x ∈ [0, w(n,+)
a,v ).

Moreover (9) shows that

E[Ṽε(k) | Ṽε(k − 1)]− Ṽε(k − 1) = QṼε(k−1)
ǫ u(0)−Q

Ṽε(k−1)
0 u(0),

and

E[Ṽε(k)
2 | Ṽε(k − 1)]− E[Ṽε(k) | Ṽε(k − 1)]2 = QṼε(k−1)

ε u2(0)− (QṼε(k−1)
ε u(0))2,

for all k ≥ 1. Then by following the proofs given in the previous subsections we get
the analogues of Proposition 2.1 and 2.2:

Proposition 2.14. Let R > 0 and T > 0 be given. Then for 0 ≤ x ≤ T ∧ τRn ∧
w

(n,+)
a,v ,

B̃(n)
a,v (x) = 2

∫ x

0

h(Λ(n)
a,v(y)) dy +O

(
1√
n

)
,

where the O(n−1/2) is deterministic and only depends on a, T and R.

Proposition 2.15. Let R > 0 and T > 0 be given. Then for 0 ≤ x ≤ T ∧ τRn ∧
w

(n,+)
a,v ,

Ã(n)
a,v(x) = 4

∫ x

0

Λ(n)
a,v(y) dy +O

(
1√
n

)
,

where the O(n−1/2) is deterministic and only depends on a, T and R.

So according again to the criterion of Ethier and Kurtz (Theorem 4.1 p.354 in

[EK]), we deduce the convergence in law of Λ
(n)
a,v on [0,+∞).

Actually one can deduce the convergence on [a,+∞) as well. For this we just need
to observe that the criterion of Ethier and Kurtz applies in the same way for non
homogeneous operators. For reader’s convenience let us recall the main steps of its
proof. First Propositions 2.1, 2.2, 2.14 and 2.15 imply the tightness of the sequence

(Λ
(n)
a,v , n ≥ 1) on [a,+∞). Next Itô Formula shows that any limit of a subsequence
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 18

is a solution of the non-homogeneous martingale problem (see the definition in [EK]
p.221) associated with the operator

Gxf(λ) :=

{
2λf ′′(λ) + 2(1 + h(λ))f ′(λ) if x ∈ [a, 0]
2λf ′′(λ) + 2h(λ)f ′(λ) if x ∈ [0,+∞).

Then Theorem 2.3 p.372 in [EK] (with their notation replace t by x, x by λ and
take r0 = 0 and r1 = +∞) shows that this martingale problem is well posed
(in particular it has a unique solution). This proves the desired convergence on
[a,+∞). Since the proof of the convergence on (−∞, a] is the same as on [0,+∞),
this concludes the proof of Theorem 1.1. �

3. Extension to the non homogeneous setting

We give here an extension of Theorem 1.1 when |I| = 1 and ϕ is allowed to be
space dependent. Apart from its own interest, we will use this extension to prove
Theorem 1.1 when |I| ≥ 2, see the next section.

We first define non homogeneous cookies random walks. If

ε = (εi,x, i ≥ 1, x ∈ Z),

is given, we set

pε,i,x :=
1

2
(1 + εi,x),

for all i and x. Then Xε is defined by

P[Xε(n+ 1)−Xε(n) = 1 | Fε,n] = 1− P[Xε(n+ 1)−Xε(n) = −1 | Fε,n] = pε,i,x,

if #{j ≤ n : Xε(j) = Xε(n)} = i and Xε(n) = x. Similarly non homogeneous
excited Brownian motions are defined by

dYt = dBt + ϕ(Yt, L
Yt

t ) dt,

for some bounded and measurable ϕ. Such generalized version of excited BM was
already studied in [NRW2] and [RS]. In particular Ray-Knight results were obtained
in this context and a sufficient condition for recurrence is given in [RS] (see below).
Now let ϕ be some fixed bounded càdlàg function. Assume that for each n ≥ 1, a
function ϕn : Z× [0,∞) → R, càdlàg in the second variable, is given. Consider

∆n(x) := sup
ℓ

|ϕn([2nx], ℓ)− ϕ(x, ℓ)|,

and assume that

∆n → 0 in D(R) when n → ∞.(24)

Assume further that supk,ℓ |ϕn(k, ℓ)| < 2n for n large enough and define εn =
(εi,x(n), i ≥ 1, x ∈ Z) by

εi,x(n) =
1

2n
ϕn

(
x,

i

2n

)
,(25)

for all i ≥ 1 and x ∈ Z. Say that ϕ is uniformly Lipschitz in the second variable if

sup
x∈R

sup
ℓ 6=ℓ′

|ϕ(x, ℓ)− ϕ(x, ℓ′)|
|ℓ− ℓ′| < +∞.(26)

Finally define Λ
(n)
a,v and Λa,v as in the homogeneous setting (see the introduction).

We can state now the following natural extension of Theorem 1.1:
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 19

Theorem 3.1. Let ϕ be some bounded càdlàg function satisfying (26). Assume

that for n large enough, Xεn is recurrent and that Y is recurrent. Assume further

that (24) holds. Then for any a ∈ R and v ≥ 0,

(Λ(n)
a,v(x), x ∈ R)

L
=⇒
n→∞

(Λa,v(x), x ∈ R) .

The proof of this result is exactly the same as the proof of Theorem 1.1. Note that
as at the end of the previous subsection, we need to use here a non homogeneous
version of Ethier–Kurtz’s result (Theorem 4.1 p.354 in [EK]). This time we just
have to verify that the martingale problem associated with the operator

Gxf(λ) :=

{
2λf ′′(λ) + 2(1 + h(x, λ))f ′(λ) if x ∈ [a, 0]
2λf ′′(λ) + 2h(x, λ)f ′(λ) if x ∈ [0,+∞),

is well posed, where h(x, λ) =
∫ λ

0 ϕ(x, µ) dµ, for any x and λ. But again this follows
from Theorem 2.3 p.372 in [EK].

In particular the above theorem applies to the following situation, which we will
use in the proof of Theorem 4.1. Assume that ϕ : R × [0,∞) → R satisfies the
hypotheses of Theorem 3.1 and that a sequence (ϕn, n ≥ 1) converges to ϕ as in
(24). Assume in addition that for each n ≥ 1, a function (λ(n, x), x ∈ Z) is given.
Set λn := λ(n, [2n·]) and assume further that there exists λ ∈ D(R) such that

λn → λ in D(R) when n → ∞.(27)

Set
ϕλ(x, ℓ) := ϕ(x, λ(x) + ℓ) for all x ∈ R and ℓ ≥ 0,

and
ϕ′
n(x, ℓ) := ϕn(x, λ(n, x) + ℓ) for all x ∈ Z and ℓ ≥ 0.

Note that if (27) holds, then ϕ′
n([2n·], ·) converges to ϕλ as in (24). Let now

εn,λn
= (εi,x(n, λn), i ≥ 1, x ∈ Z) be defined by

εi,x(n, λn) :=
1

2n
ϕ′
n

(
x,

i

2n

)
.

Let Λ(n,λn) and Λ(λ) be the processes associated to εn,λn
and ϕλ as in the intro-

duction. The following is an immediate application of Theorem 3.1:

Corollary 3.2. Assume that the hypotheses of Theorem 3.1 and (27) hold true.

Then with the above notation, for any a and v,
(
Λ(n,λn)
a,v (x), x ∈ R

)
L

=⇒
n→∞

(
Λ(λ)
a,v(x), x ∈ R

)
.

Remark 3.3. Actaully the result of this corollary holds as well in the slightly
more general setting where v is not fixed. More precisely, if vn converges to v when

n → ∞, then Λ
(n,λn)
a,vn also converges in law toward Λ

(λ)
a,v. The proof is exactly the

same, since this setting is covered by Ethier-Kurtz’s result.

To finish this section, we recall some sufficient condition for recurrence of Xε and
Y proved respectively in [Z, Corollary 7] and [RS, Corollary 5.6] in the non homo-
geneous case. We notice that it applies only when for all i and x, εi,x, respectively
ϕ, is nonnegative. We only state the result in the continuous setting, the result for
Xε being analogous. So if for x ∈ R,

δx(ϕ) :=

∫ ∞

0

ϕ(x, ℓ) dℓ,
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 20

then Y is recurrent as soon as

lim inf
z→+∞

1

z

∫ z

0

δx(ϕ) dx < 1.

4. Proof of Theorem 1.1 in the general case

We actually prove the result in the non homogeneous setting.

Theorem 4.1. Under the hypotheses of Theorem 3.1, for any finite set I, any

ai ∈ R and vi ≥ 0, i ∈ I,
(
Λ(n)
ai,vi(x), x ∈ R

)
i∈I

L
=⇒
n→∞

(Λai,vi(x), x ∈ R)i∈I .

Proof. When |I| = 1, the result is given by Theorem 3.1. The general case can
then be proved by induction on the cardinality of I. To simplify the notation we
only make the proof of the induction step when the cardinality of I equals 2, but
it would work similarly in general. So let a, a′, v and v′ be given. All we have to

prove is that for any continuous and bounded functions H and H̃,

E

[
H
(
Λ
(n)
a′,v′

)
H̃
(
Λ(n)
a,v

)]
→ E

[
H (Λa′,v′) H̃ (Λa,v)

]
,(28)

when n → ∞. Consider the events

An :=
{
Λ(n)
a,v(a

′) < v′
}
,

for n ≥ 1, and

A := {Λa,v(a
′) < v′} .

Observe that conditionally to Λ
(n)
a,v and on the set An we have the equality in law:

Λ
(n)
a′,v′ − Λ(n)

a,v = Λ
(n,Λ(n)

a,v(a+ ·))

a′−a,v′−Λ
(n)
a,v(a′)

,(29)

with the notation of Corollary 3.2. This identity is straightforward. Maybe less
immediate is the analogous equality in the continuous setting, so we state it as a
lemma:

Lemma 4.2. Let a, a′, v and v′ be given. Conditionally to Λa,v and on A, we

have the equality in law:

Λa′,v′ − Λa,v = Λ
(Λa,v(a+ ·))

a′−a,v′−Λa,v(a′).(30)

Proof. One just has to observe (see also (2) in [RS]) that conditionally to Λa,v and
on A, the law of (Yt+τa(v), t ≥ 0) is equal to the law of an excited BM starting from
a and associated to the non homogeneous function ϕ̃ defined by

ϕ̃(x, ℓ) = ϕ(x,Λa,v(x) + ℓ).

The lemma follows. �

It follows from (29) that for any continuous and bounded H ,

E

[
H
(
Λ(n)
a,v + (Λ

(n)
a′,v′ − Λ(n)

a,v)
) ∣∣∣ Λ(n)

a,v

]
1An

= Hn

(
Λ(n)
a,v

)
1An

,

where

Hn (λ) := E

[
H
(
λ+ Λ

(n,λ(a+·))
a′−a,v′−λ(a′)

)]
,

ha
l-0

05
21

87
0,

 v
er

si
on

 3
 - 

19
 A

ug
 2

01
1



EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 21

for any λ in the Skorokhod space D(R) such that λ(a′) ≤ v′. Define similarly H by

H(λ) := E

[
H
(
λ+ Λ

(λ(a+·))
a′−a,v′−λ(a′)

)]
,

for any λ ∈ D(R) such that λ(a′) ≤ v′. Now Corollary 3.2 (see also the remark
following it) shows that for any sequence of functions λn, satisfying λn(a

′) ≤ v′,
and converging to some λ in D(R), Hn(λn) converges toward H(λ). Moreover, by
using the Skorokhod’s representation theorem (see Theorem 6.7 in [Bil]), we can

assume that Λ
(n)
a,v converges almost surely toward Λa,v. We claim that 1An

also
converges a.s. to 1A. To see this it suffices to prove that P[Λa,v(a

′) = v′] = 0. But
the set {Λa,v(a

′) = v′} is included in the set {ea′(v′) 6= 0}, where ea′(v′) denotes
the excursion of Y out of level a′ starting from τa′(v′−), and this last event has
probability 0 (this is well known to be the case for the Brownian motion, and can
be deduced for Y by an absolute continuity argument, see also [RS]).

So if H and H̃ are two continuous and bounded functions, we deduce from the
dominated convergence theorem that

E

[
H
(
Λ
(n)
a′,v′

)
H̃
(
Λ(n)
a,v

)
1An

]
→ E

[
H (Λa′,v′) H̃ (Λa,v) 1A

]
,(31)

when n → ∞. By using the same argument we see that the convergence in (31)
also holds if we replace An and A respectively by Ac

n and Ac. Then (28) follows
and this concludes the proof of Theorem 4.1. �

5. Proof of Corollary 1.2

Note that for any a ∈ R and v ≥ 0,

τεn,[2na]([nv]) = [2na] + 2
∑

k∈Z

Sεn,[2na],[nv](k).

Thus

τεn,[2na]([nv])

4n2
=

∫

R

Λ(n)
a,v(y) dy + o(1).

On the other hand, the occupation times formula ([RY] p.224) gives

τa(v) =

∫

R

Λa,v(y) dy.

Now Theorem 1.1 shows that for any ai, vi, i ∈ I, and any fixed A > 0, the following
convergence in law holds:

(∫ A

−A

Λ(n)
ai,vi(y) dy

)

i∈I

L
=⇒
n→∞

(∫ A

−A

Λai,vi(y) dy

)

i∈I

.

So Corollary 1.2 follows from the following lemma (recall that w
(n,±)
a,v is defined in

(23)):

Lemma 5.1. Let ǫ > 0, a ∈ R and v ≥ 0 be given. Then there exists A > 0, such
that

P

[
|w(n,±)

a,v | ≥ A
]
≤ ǫ,

for all n large enough.
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 22

Proof. We prove the result for w
(n,+)
a,v . The proof for w

(n,−)
a,v is the same. First

observe that w+
a,v is nonnegative and a.s. finite: it is equal to sup{Yt : t ≤ τa(v)}

and τa(v) is a.s. finite since Y is recurrent. So for any ǫ > 0, there exists A > a
such that

P[w+
a,v ≥ A] ≤ ǫ.

Moreover by using Theorem 1.1 and Skorokhod’s representation Theorem, it is

possible to define Λ
(n)
a,v and Λa,v on the same probability space, such that for any

η > 0,

P

[
sup

0≤x≤A
|Λ(n)

a,v(x) − Λa,v(x)| ≥ η

]
≤ ǫ,

for n large enough. Thus

P[Tn(η) ≥ A] ≤ 2ǫ,(32)

where

Tn(η) = inf{x > 0 : Λ(n)
a,v(x) ≤ η}.

Recall now that on [0,+∞), Λ
(n)
a,v(·) is equal in law to Ṽεn([2n·])/n (see the begin-

ning of Section 2.1). But since |εn|∞ = O(1/n), (Ṽεn(k), k ≥ 0) is stochastically
dominated by a Galton-Watson process (Wn(k), k ≥ 0) with offspring distribution
a geometrical law with parameter 1 − pn = 1/2 − c/n, for some constant c > 0
(with the convention that if G is a random variable with such geometrical law, then
P(G = k) = pn(1 − pn)

k for all k ≥ 0, in particular E(G) = (1 − pn)/pn < 1).
Moreover, when Wn(0) = 1, the probability for Wn to extinct before time [nA] can

be computed explicitly. If f
(n)
k (·) is the generating function of Wn(k), then this

probability is equal to f
(n)
[nA](0). An expression for f

(n)
k (0) is given for instance in

[AN] p.6-7:

f
(n)
k (0) = 1−mk

n

1− sn
mk

n − sn
for all k ≥ 1,

where

mn =
pn

1− pn
= 1 +

4c

n
+O

(
1

n2

)
,

and

sn = {1−mn(1− pn)}/pn = 1− 4c

n
+O

(
1

n2

)
.

It follows that f
(n)
[nA](0) = 1 − c′/n+ O(1/n2), with c′ = 4c/(1− e−4cA) > 0. Now

the law of Wn starting from [ηn] is equal to the law of the sum of [ηn] independent
copies of Wn starting from 1. Thus if Wn(0) = [ηn], the probability for Wn to

extinct before time [nA] is f
(n)
[nA](0)

[ηn]. If η is small enough and n large enough,

this probability is larger than (1 − ǫ). By using now that Ṽεn is stochastically
dominated by Wn, (32) and the strong Markov property, we get

P

[
w(n,+)

a,v ≥ 2A
]

≤ P

[
w(n,+)

a,v ≥ 2A and Tn(η) ≤ A
]
+ P [Tn(η) ≥ A]

≤ P [Wn([nA]) > 0 | Wn(0) = [ηn]] + 2ǫ ≤ 3ǫ.

This concludes the proof of the lemma. �
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 23

6. Proof of Corollary 1.3

To simplify notation we only prove the result when |I| = 1 but the general case
works the same. First note that for any λ, the law of Yγλ

has for density the
function a 7→ λE[La

γλ
]. Indeed, for any bounded and measurable function φ,

E[φ(Y (γλ))] = E

[∫ ∞

0

φ(Y (s))λe−λs ds

]

= E

[∫

0<s<t

λ2φ(Y (s))e−λt ds dt

]

= E

[∫

R

∫ ∞

0

λ2φ(a)La
t e

−λt dt da

]

=

∫

R

E[φ(a)λLa
γλ
] da,

where in the third equality we have used the occupation times formula (see Corollary
(1.6) p.224 in [RY]).

We now follow the argument given by Tóth in [T2]. First observe that if

τ̃ε,a(v) := inf {j : #{i ≤ j : Xε(i) = a and Xε(i+ 1) = a+ 1} = v + 1} ,

then exactly as we proved Corollary 1.2, we can show that τ̃εn,[2na]([nv])/(4n
2)

converges in law toward τa(v) for any a ∈ R and v ≥ 0. Next observe that for any
a ∈ Z and k ∈ N,

P[Xεn(k) = a] =
∑

v∈N

{P[τεn,a(v) = k] + P[τ̃εn,a(v) = k]} .

Thus for any a ∈ R,

2nP
(
Xεn(θλ/(4n2)) = [2na]

)
= 2n(1− e−λ/(4n2))

∑

k≥0

e−kλ/(4n2)

×
∑

v∈N

{
P[τεn,[2na](v) = k] + P[τ̃εn,[2na](v) = k]

}

∼ λ

2n

∑

v∈N

{
E

[
e−λ

τεn,[2na](v)

4n2

]
+ E

[
e−λ

τ̃εn,[2na](v)

4n2

]}
,

since 2n(1− e−λ/(4n2)) ∼ λ/(2n). Note now that

1

n

∑

v∈N

E

[
e−λ

τεn,[2na](v)

4n2

]
=

∫ ∞

0

E

[
e−λ

τεn,[2na]([nv])

4n2

]
dv,

and that for any v ∈ R
+, Corollary 1.2 implies

E

[
e−λ

τεn,[2na]([nv])

4n2

]
→ E

[
e−λτa(v)

]
,

when n → ∞. The same remark applies with τ̃ instead of τ . Thus by application
of Fatou’s lemma, for every a ∈ R,

lim inf
n→∞

(2n)P
(
Xεn(θλ/(4n2)) = [2na]

)
≥ λ

∫ ∞

0

E

[
e−λτa(v)

]
dv.(33)
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 24

But notice that for every a ∈ R and v ≥ 0,

E

[
e−λτa(v)

]
= λ

∫ ∞

0

e−λs
P[τa(v) ≤ s] ds

= λ

∫ ∞

0

e−λs
P[La

s ≥ v] ds

= P[La
γλ

≥ v].

Therefore

λ

∫

R

∫ ∞

0

E

[
e−λτa(v)

]
dv da = λ

∫

R

E[La
γλ
] da = λE[γλ] = 1.(34)

On the other hand for any n,∫

R

(2n)P
(
Xεn(θλ/(4n2)) = [2na]

)
da = 1.(35)

It follows now from (33) (34) and (35) that for almost every a ∈ R,

lim
n→∞

(2n)P
(
Xεn(θλ/(4n2)) = [2na]

)
= λE[La

γλ
].

The corollary is then a consequence of Sheffé’s lemma. �

7. Proof of Theorem 1.4

We actually prove the following extension of Theorem 1.4 in the non homoge-
neous setting:

Theorem 7.1. Let ϕ be some bounded càdlàg function satisfying (26). Let also

(ϕn)n≥1 be a sequence of bounded càdlàg functions converging to ϕ as in (24). Let

εn be defined by (25) and for t ≥ 0, set X(n)(t) := Xεn([4n
2t])/(2n). Then

(X(n)(t), t ≥ 0)
L

=⇒
n→∞

(Y (t), t ≥ 0).

Proof. We first assume that Y is recurrent and that Xεn is recurrent as well at least
for n large enough. We will see below how one can then remove this hypothesis by
using a truncation argument. In this proof we will use Corollaries 1.2 and 1.3, and
their extension to the non homogeneous setting (these being straightforwards).

Tightness: We first need to show that the sequence (X(n)(·), n ≥ 1) is tight. All we
have to prove (see e.g. Lemma (1.7) p.516 in [RY]) is that for each T > 0, α > 0
and η > 0, there are n0 and κ > 0, such that for n ≥ n0,

P

[
sup

t≤s≤t+κ
|X(n)(s)−X(n)(t)| ≥ η

]
≤ ακ for all t ≤ T.(36)

We first prove the above inequality for t = 0. For this it suffices to find κ > 0 such
that

P
[
τεn,[2nη](0) ∧ τ̃εn,[2nη](0) ≤ 4n2κ

]
≤ ακ,

for n large enough (η > 0 and α being arbitrary and fixed), since the analogous
result for η < 0 is similar (use the same proof with the process −X(n) instead of
X(n)). In fact it suffices to prove that

P
[
τεn,[2nη](0) ≤ 4n2κ

]
≤ ακ/2,(37)

since the result with τ̃εn,[2nη](0) in place of τεn,[2nη](0) is similar. A basic coupling
shows that if supϕ ≤ C, for some constant C > 0, then the probability on the left
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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 25

hand side of (37) is bounded by the analogous probability we would get by taking
ϕ constant equal to C. But it is well known (this follows also from Corollary 1.2)
that as n tends to ∞, the left hand side in (37) converges toward P[τη(0) ≤ κ]
and that this last term is a o(κ) for Brownian motion with constant drift (see for
instance Proposition (3.7) p.105 in [RY]). This proves (37). To obtain (36) it
suffices to observe that after time t, X(n) is equal in law to a renormalized non-
homogeneous cookie random walk starting from X(n)(t) and evolving in a shifted
cookie environment (see also (29)). So we can apply the same proof and we obtain
the same result with the same constants everywhere. This finishes to prove the
tightness of (X(n)(·), n ≥ 0). It remains to prove the convergence of the finite-
dimensional distributions:

Convergence of finite-dimensional distributions: To simplify notation we prove the
result for one-dimensional distributions, but it works the same in general. So let
(Wt, t ≥ 0) be some limit in law of (X(nk)(t), t ≥ 0), for a subsequence (nk, k ≥ 0).
Then for any bounded and measurable function φ,

E

[
φ

(
Xεnk

(θλ/(4nk
2))

2nk

)]
∼k→∞ λ

∫ ∞

0

e−λt
E

[
φ(X(nk)(t))

]
dt

→k→∞ λ

∫ ∞

0

e−λt
E[φ(Wt)] dt

= E[φ(Wγλ
)].

On the other hand Corollary 1.3 shows that the term on the left hand side converges
toward E[φ(Y (γλ))]. Since this holds for any λ and any φ, we deduce that Wt and
Y (t) have the same law for every t ≥ 0 (see [F, Theorem 1a p.432]). This proves
the convergence of one-dimensional distributions.

This finishes the proof under the additional hypothesis of recurrence and it just
remains to explain how one can remove this hypothesis. For this we use a truncation
argument. For any R > 0 and n ≥ 1, let ϕR(x, ℓ), resp. ϕn,R(x, ℓ), be the functions
equal to ϕ(x, ℓ), resp. ϕn(x, ℓ), when x ∈ [−R,R), resp. when |x| ≤ 2nR, and
equal to zero otherwise. It is immediate that ϕn,R still converges to ϕR as in (24).

Denote now by X
(n)
R and YR the processes associated respectively to ϕn,R and ϕR.

Since ϕ and the ϕn’s are bounded, and since they are equal to zero outside of

[−R,R), these processes are recurrent. So we just have proved that X
(n)
R converges

in law toward YR. Note now that up to the time (τ̃εn,[2nR](0)∧τεn,[−2nR](0))/(4n
2),

(with the notation from section 6), X
(n)
R and X(n) are equal in law. Similarly up

to the time τR(0) ∧ τ−R(0), YR and Y are equal in law. But Corollary 1.2 shows
that τ̃εn,[2nR](0)/(4n

2) and τεn,[−2nR](0)/(4n
2), converge in law respectively toward

τR(0) and τ−R(0). By using also the monotonicity in R of these random times, we
deduce that for any T > 0,

P
(
τ̃εn,[2nR](0) ∧ τεn,[−2nR](0) ≤ 4n2T

)
→ 0,

when R → ∞, uniformly in n. It follows immediately that for any T > 0, X(n)

converges in law to Y on the time interval [0, T ]. Since this is true for any T > 0,
this concludes the proof of Theorem 7.1. �
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Remark 7.2. The notation Λa,v(x) is taken from Tóth and Werner [TW]. We
notice by the way that here also the set

Λ = {(Λa,v(x), x ≥ a)}(a,v)∈R×[0,∞) ,

forms a family of reflected/absorbed coalescing processes. In [TW] the Λa,v’s were
moreover independent Brownian motions (reflected or absorbed in 0 depending on
the time interval) and therefore Λ was called (in their Section 2.1) a FICRAB
(for family of independent coalescing reflected and absorbed Brownian motions).
Such family of coalescing Brownian motions seems to have been first studied by
Arratia [Arr] and is now better known under the name of Brownian web (see for
instance [FINR]). Here the situation is slightly different: first each Λa,v is some
diffusion which is not a Brownian motion and before they coalesce two Λa,v’s are
not independent. For instance if v < v′, then (Λa,v,Λa,v′) satisfies the following
system of stochastic differential equations:





dΛa,v(x) = 2
√
Λa,v(x) dBx + 2(1{a≤x≤0} + h(Λa,v(x))) dx

dΛa,v′(x) = 2
√
Λa,v(x) dBx + 2

√
Λa,v′(x)− Λa,v(x) dB̃x

+2(1{a≤x≤0} + h(Λa,v′(x))) dx,

(38)

for all x ∈ [a,+∞), where B and B̃ are two independent Brownian motions. This
result follows from (30) and the Ray-Knight theorem (see for instance [RS, The-
orem 6.1]). Note that we could describe similarly the law of (Λai,vi , i ∈ I), for
any finite set I, and any (ai, vi), i ∈ I. In [TW], the family Λ was called a se-
quence of forward lines and the dual sequence, the sequence of backward lines
Λ∗ =

{
Λ∗
a,v(·) : (a, v) ∈ R× [0,∞)

}
, was defined by

Λ∗
a,v(x) = sup {w : Λ−x,w(−a) < v},(39)

for all x ≥ a and v ≥ 0. As in [TW] we can define Λ∗ here and we have also

(Λ∗
a,v(x), x ≥ a) = (Λ−a,v(−x), x ≥ a),

in law (see Theorem 2.3 in [TW]). It is important to observe that

(40) (Λa,v(x), x ∈ R) is a function of ((Λa,v(x), x ≥ a), (Λ∗
−a,v(x)), x ≥ −a)).

We notice now some other notable differences with the situation in [TW]. First
if we denote by Qh the law of Λ, then the law of Λ∗ is Q−h. In particular Λ
and Λ∗ do not have the same law (in other words Λ is not self-dual), except if
h = 0. Moreover, for any a (say a < 0) and v ≥ 0, the process Λa,v will almost
surely not hit 0 in the time interval [a, 0]. The reason is that in the time interval
[0, τa(v)] the excited BM will cross each level x ∈ [a, 0] and strictly increase its
local time on these levels (by using the absolute continuity between the laws of a
standard BM and the excited BM). Similarly given any a < a′, v and v′, we have
Λa,v(x) 6= Λ∗

−a′,v′(−x) = Λa′,v′(x) for all x ∈ [a, a′] almost surely. Let us also notice

that couples of processes such as (Λa,v(x), a ≤ x ≤ 0) and (Λ∗
0,v′(x), 0 ≤ x ≤ −a), if

a < 0, are conjugate diffusions (see [T3] for a definition). Similarly (Λ0,v(x), x ≥ 0)
and (Λ∗

a,v′(x), x ≥ −a), if a < 0, are also conjugate.
Now we can sketch another proof of Theorem 4.1 which bypass the use of Corollary
3.2 and uses instead these notions of forward and backward lines. The idea is to
first prove that

{
(Λ(n)

ai,vi(x), x ≥ ai), i ∈ I
}

L
=⇒
n→∞

{(Λai,vi(x), x ≥ ai), i ∈ I} .(41)
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This can be done by using Ethier-Kurtz’s result (Theorem 4.1 p.354 in [EK]), (29)
and (38). One can next define analogues Λ(n) and Λ(n),∗ respectively of Λ and Λ∗,
in the discrete setting and it then suffices to use (39) (and its discrete counterpart),
(40) and (41) to deduce the desired convergence. Since we already gave another
proof, we omit the details here.
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