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Abstract. In this paper we study the recurrence and transience of the Zd-valued branching random
walk in random environment indexed by a critical Bienaymé-Galton-Watson tree, conditioned to
survive. The environment is made either of random conductances or of random traps on each
vertex. We show that when the offspring distribution is non degenerate with a finite third moment
and the environment satisfies some suitable technical assumptions, then the process is recurrent
up to dimension four, and transient otherwise. The proof is based on a truncated second moment
method, which only requires to have good estimates on the quenched Green’s function. Notably,
this provides an alternate proof to the previous argument of Benjamini and Curien in the case of a
deterministic, homogeneous environment.

1. Introduction

In this paper we study the recurrence and transience of the Zd-valued branching random walk in
an environment made of random conductances, indexed by a Bienaymé-Galton-Watson (BGW) tree
conditioned to survive. While general criteria now exist for this question in case of supercritical
offspring distribution, see in particular [13, 17, 22], we focus here on the critical case, which has
received much less attention so far, at the exception of [4]. See also [5, 6] for earlier results on this
question for general tree-indexed random walks.

1.1. Statement of the result. Let q = (qk)k≥0 a critical offspring distribution (that is
∑

k≥0 kqk =

1) such that
∑

k≥0 k
3qk < ∞ and σ2 :=

∑
k≥0 k(k − 1)qk > 0 . In the following, let T∞ denote

Kesten’s tree, i.e. the critical BGW tree with offspring distribution q conditioned to survive
(see [16, 19] or [21, Ch. 12] for details).

For x, y ∈ Zd, we write x ∼ y if |x− y| = 1, where | · | is the usual Euclidean norm in Rd. In the
following, an environment ω := (ωx,y)x,y∈Zd shall denote a family of random, non-negative weights

on (Zd)2. In this paper we restrict ourselves to the following two types of environments.

Definition 1.1. (i) Random conductances: For x, y ∈ Zd, one has ωx,y = ωy,x > 0 if x ∼ y, and
ωx,y = 0 otherwise.

(ii) Random traps: There exists some (random) ρx ∈ [0, 1), x ∈ Zd, such that for x, y ∈ Zd,

(1.1) ωx,y =


ρx/(1− ρx) if x = y,

1/(2d) if x ∼ y,

0 otherwise.
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The names “random conductances” and “random traps” used throughout this paper may be
slightly abusive when compared to the rest of the literature, but we believe that they actually help
the understanding of our results and what they entail. Depending on the nature of ω, we also
define for x ∈ Zd,

(1.2) πω(x) :=

{∑
z∼x ωx,z for random conductances,

(1− ρx)
−1 for random traps.

Then, letting pω = (pωx,y)x,y∈Zd := (ωx,y/πω(x))x,y∈Zd for a fixed realization ω, this defines the

transition probabilities of a Markov chain in Zd, with invariant measure πω.
Therefore, the critical random walk snake ST∞ : T∞ → Zd in random environment ω is defined by

the (branching) random walk on Zd, indexed by Kesten’s tree T∞, and with transition probabilities
pω. We let P denote the law of the environment ω, and P, Pω denote respectively the annealed
and quenched laws of the critical snake (precise definitions are provided below).

First, we provide a 0–1 law for the recurrence of the critical random walk snake on Zd. This is
achieved under the following assumption. In the following, τx, x ∈ Zd, denote the shift operator,
i.e. (τxω)y,z = ωy+x,z+x.

Assumption 1.2. [Stationarity and ergodicity] The law P is stationary and ergodic with respect
to translations τx, x ∈ Zd.

Proposition 1.3. Suppose that the environment is made either of random conductances or random
traps, that Assumption 1.2 holds, and that Eπω(0) < +∞. Then we have either:

(i) The critical random walk snake is recurrent, and P(∀x ∈ Zd, x is visited infinitely often) = 1,
or,

(ii) The critical random walk snake is transient, and P(∃x ∈ Zd, x is visited infinitely often) = 0.

Notice that this 0–1 law under the annealed distribution P implies the quenched 0–1 law: for
any event A, P(A) = 0 implies Pω(A) = 0 for P-a.e. ω ∈ Ω.

We now present our main theorem for random conductances, which is obtained in the wake of [2].
First we reproduce [2, Assumption 1.3], which is pivotal for the following results.

Assumption 1.4. [Core technical assumption] At least one of the following four conditions holds:

(A.1) FKG inequality and polynomial mixing. For any (symmetric) finite set A ⊂ (Zd)2 and
non-decreasing, functions f, g : Ω → R depending only on {ωx,y, (x, y) ∈ A}, one has

Cov(f(ω), g(ω)) ≥ 0 ,

whenever the covariance is well-posed. Additionally, there exists γ > d2 and C1 > 0 such
that, for any non-decreasing function f ∈ L2(P) depending only on {ω0,z, z ∼ 0}, and any

x ∈ Zd \ {0}, one has

Cov(f(ω), f ◦ τx(ω)) ≤ C1∥f∥2L2(P)|x|
−γ .

(A.2) Spectral gap. There exists C2 > 0 such that, for any f ∈ L2(P),

Var(f(ω)) ≤ C2

∑
x,y:x∼y

E
[(
∂{x,y}f

)2]
,

where

∂{x,y}f := lim sup
ε→0

f(ω + εδ{x,y}(·))− f(ω)

ε
,
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and δ{x,y}(·) ∈ Ω is the field taking value 1 on the edge {x, y}, and 0 elsewhere.

(A.3) Finite range dependence. There exists R ∈ N such that for any x ∈ Zd, the families of
random variables (ωx,y : y ∼ x) and (ωz,z′ : |x− z| ≥ R, z ∼ z′) are independent.

(A.4) Negative association For any finite set A ⊂ (Zd)2 and non-decreasing, functions f, g : Ω → R
depending only on {ωx,y, {x, y} ∈ A}, one has

Cov(f(ω), g(ω)) ≤ 0 .

We refer to [2] for some motivations to these assumptions, and several examples of classical
models which are covered by them.

Theorem 1.5. Let ω be a random conductances environment which satisfies Assumption 1.2.
(i) Let d ≥ 5, and assume there exists p, q ∈ (1,+∞] such that 1/p+1/q < 2/d and ω0,z ∈ Lp(P),

ω−1
0,z ∈ Lq(P) for z ∼ 0. Then, the critical random walk snake is transient P-a.s..

(ii) Let d ≤ 4, and suppose additionally that ω satisfies Assumption 1.4. Then there exists
p ∈ [1,+∞) such that the critical random walk snake is recurrent P-a.s. as soon as ω0,z, ω

−1
0,z ∈ Lp(P)

for z ∼ 0.

Notice that ω0,z ∈ Lp(P) for z ∼ 0 with p ≥ 1 implies Eπω(0) < +∞, hence the 0–1 law from
Proposition 1.3 holds under those assumptions.

Let us briefly comment this result: Assumption 1.4 and the integrability of ω, ω−1 are required
in [2] to obtain estimates on the Green’s function of the random walk in random environment,
from which we deduce the theorem. However, we believe that our result holds for the random
conductance environment under much weaker assumptions. To support that idea, we consider a
random traps environment (see e.g. [3, 11]), which is simpler to study than the random conductances
environment, while preserving the “trapping effect” it has on the random walk. We provide an
analogous result to Theorem 1.5 under the following assumption. Recall (1.2).

Assumption 1.6. [Bounded long-range correlations] There exists R0 > 0 such that

(1.3) sup
{
E[πω(x)πω(y)] ; x, y ∈ Zd , |x− y| > R0

}
< +∞ .

Let us point out that (A.1), (A.3) and (A.4) from Assumption 1.4 all imply (1.3).

Theorem 1.7. Let ω be a random traps environment.
(i) Let d ≥ 5, and assume supx∈Zd Eπω(x) < +∞. Then, the critical snake is transient P-a.s..
(ii) Let d ≤ 4, suppose that Assumptions 1.2, 1.6 hold and that Eπω(0) < +∞. Then the critical

snake is recurrent P-a.s..

Remark 1.1. When d ≤ 2, it is well-known that the (non-branching) random walk in random
conductances or traps is almost surely recurrent (supposing additionally that supx∈Zd Eπω(x) < +∞
in the case of conductances). This directly implies that the critical snake is P-a.s. recurrent when
d ≤ 2 under assumptions much weaker than in Theorems 1.5.(ii), 1.7.(ii) and even Proposition 1.3.
This statement is presented more precisely below, see in particular Proposition 4.2.

In Theorem 1.5.(ii), we do not try to achieve an optimal value for p: indeed, we strongly believe
that p = 1 should be sufficient (similarly to Theorem 1.7), but to our knowledge this cannot be
achieved with our methods at this time.

Our results raise some interesting questions about the decay of the quenched heat kernel of a
simple random walk in random conductance, as well as for the recurrence/transience of a critical
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random snake in random conductance under less restrictive hypotheses. First notice that under
Assumption 1.2, denoting by Pω

2n(0, 0) the probability that a random walk in random conductance
ω starting from the origin returns to the origin in 2n steps, either

(1.4)
∑
n≥1

nPω
2n(0, 0) < +∞,

holds for P-a.e. ω, or the series in (1.4) is infinite for P-a.e. ω. Now we can ask the following natural
questions.

(1) We will show in Lemma 4.1 below, that the critical random snake is transient as soon as (1.4)
is satisfied for P-a.e. ω, in any dimension d ≥ 1. It is known, that this condition cannot be
satisfied in dimensions 1 and 2, at least under the hypothesis that E[πω(0)] < +∞, since in
this case it is known that the simple random walk, and a fortiori the critical random snake,
is recurrent (see below for more details). But the question of whether or not there exists a
distribution of random conductances such that (1.4) holds in dimension 3 or 4 is still open,
to the best of our knowledge.

(2) Likewise, the question of whether or not, in dimension d ≥ 5, (1.4) is always satisfied for
any distribution of random conductances seems to be also open. Note that in [7], it is shown
that for bounded conductances in d ≥ 5, one always has limn→∞ n2Pω

2n(0, 0) = 0, which is
close to show (1.4), but not quite. In the other direction, it is also shown in [7] that for any

κ > 1/d, there exists a law of random conductances for which n2Pω
2n(0, 0) ≥ C(w)e−(logn)κ ,

and furthermore for any sequence (λn)n≥0 converging to zero, there exists a law of random

conductances such that Pω
2n(0, 0) ≥

C(w)
λnn2 , along a subsequence. But none of these bounds

contradicts the validity of (1.4).
(3) Finally one can ask whether the condition

∑
n≥1 nP

ω
2n(0, 0) = +∞, for P-a.e. ω, always

implies recurrence of the critical random snake.

The proofs of both Theorems 1.5 and 1.7 rely on a second moment method, which only requires
to have good estimates on the quenched Green’s function. In the case of constant conductances or
uniformly elliptic environment, these estimates are well known: in particular we obtain an alternate
proof to that of Benjamini and Curien [4], which was based on the notion of unimodularity and
mass transport techniques, together with the result of Kesten [20] on concentration of the snake in
a ball.

Concerning Theorem 1.7 we use an improved second moment method, and we kill the walk when
it reaches deep traps. While we believe that a similar method could be used in the setting of
Theorem 1.5, it would be much more technical and we have refrained to pursue in this direction.

Outline of the paper. In Section 2 we introduce some precise notation and definition for the critical
random walk snake, and we prove the 0–1 law in Proposition 1.3 by rewriting the random process
as an ergodic dynamical system. In Section 3 we provide some Green’s function estimates on
(non-branching) random walks in random environment, many of them coming from [2]. Finally in
Section 4, we prove both Theorems 1.5 and 1.7. First we prove the transience for d ≥ 5 with a
direct first moment computation, then we prove the recurrence for d ≤ 4 with the foretold second
moment method.

For the sake of completeness, we also present a proof of Proposition 4.2 —that is, the recurrence
of the random walk in random conductances for d ≤ 2— in Appendix A.
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Notation. In the remainder of this paper, c denotes a constant that may change from one occurrence
to another, and c1, c2, . . . denote constants that may change from one paragraph to another.

2. Proof of the 0-1 law

In this section we introduce some notation and prove Proposition 1.3. This 0-1 law is analogous
to [13, Propositions 1.2 and 1.3], in the case of a super-critical BRWRE with no death: however,
for the critical snake, the proof is very different. It follows from two observations: first, under our
assumptions, the environment can be seen from the point of view of the particle with an explicit
change of measure Q ∼ P; and second, the critical snake in random environment with law Q can be
seen as an ergodic dynamical system.

2.1. Point of view of the particle. We proceed simultaneously for the random conductances
and random traps environments. Define

(2.1) Ω :=

{
ω ∈ (R+)

(Zd)2 ; ∀x ∈ Zd, πω(x) :=
∑
z∈Zd

ωx,z < +∞
}
,

and let (Ω,FΩ) denote the measurable space of random environment configurations on Zd. Let P
denote a probability distribution on Ω and notice that, in the cases of random conductances and
random traps, πω(·) is given by (1.2). Then for all ω ∈ Ω, the family pωx,y = ωx,y/πω(x), x, y ∈ Zd,
denotes the (quenched) transition probabilities of a random walk in random environment (RWRE).
Let (Xn)n≥0 denote the RWRE, write Pω

x for its quenched law in ω ∈ Ω started from x ∈ Zd, and
let Px := EPω

x be its annealed law (when x = 0, we may omit the subscript).
Recall that τx, x ∈ Zd denotes the shift operators in Zd. Then, starting from some fixed ω ∈ Ω,

the sequence (τXnω)n≥0 under Pω
0 defines a Markov chain on the space of all environments Ω,

which is called the point of view of the particle, and its transition kernel R satisfies for f : Ω → R
bounded measurable and ω ∈ Ω,

(2.2) (Rf)(ω) :=
∑
z∈Zd

ω0,z

πω(0)
f(τzω) .

We have the following standard result.

Proposition 2.1. Let ω be an environment of random conductances or random traps with law P.
Suppose that Assumption 1.2 holds, and that Eπω(0) < +∞. Then the Markov chain (τXnω)n≥0

admits a stationary and reversible probability measure Q, given by

(2.3)
dQ
dP

(ω) :=
πω(0)

E[πω(0)]
.

In particular, Q is equivalent to P. Moreover, (τXnω)n≥0 is ergodic under Q.

Proof. For random conductances, the fact that Q is stationary and reversible is a classical result,
see e.g. [9, Lemma 2.1]. In the case of random traps, recall that πω(x) = (1− ρx)

−1; thus a direct
computation yields for f : Ω → R bounded measurable,

EQ[Rf(ω)− f(ω)] = EP

[
(1− ρ0)

−1

EP[πω(0)]

∑
z : |z|=1

1− ρ0
2d

[f(τzω)− f(ω)]

]
= 0 ,

where we used that EP[f(τzω)] = EP[f(ω)] because P is τz-invariant for z ∈ Zd. Hence, Q is
stationary, and a similar computation also shows that it is reversible (we leave the details to
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the reader). Finally, the ergodicity under Q follows in both cases from the standard result [10,
Theorem 1.2] and the ergodicity of P. □

2.2. Ergodicity of the snake. For P, Q two probability measures on (Ω,FΩ), let E =: EP, resp.
EQ, denote the expectation under P, resp. Q. Let us now define a measure-preserving dynamical
system on critical snakes in random environment. We first introduce some notation for the critical
snake.

Let (T,FT) denote the usual measurable space of planar trees (i.e. rooted, ordered, locally finite
trees). Recall that T∞ denotes Kesten’s tree: more precisely, it is almost surely composed of an
infinite spine, denoted Spine(T∞) ⊂ T∞, of individuals reproducing according to the mass-biased
distribution (kqk)k≥0; and all other individuals reproduce according to q. Also, let T denote an
(almost surely finite) random BGW tree such that all vertices reproduce according to q, except for
the root which reproduces according to ((k + 1)qk+1)k≥0. As a matter of fact, T has the same law
as the finite tree supported by an element u ∈ Spine(T∞) from the spine of Kesten’s tree. Let PT∞
(resp. PT ) denote the law of T∞ (resp. T ).

Let P a probability measure on (Ω,FΩ) satisfying Assumption 1.2. Let ω ∈ Ω a realization of the
environment and x ∈ Zd: then the quenched law Pω

x of the critical random walk snake (ST∞ , T∞)
starting from x is defined as follows. Let T∞ ∼ PT∞ , and denote its root ρ. Then construct
randomly ST∞ : T∞ → Zd conditionally to T∞ by induction, letting ST∞(ρ) = x, and for u, v ∈ T∞
such that v is a child of u, letting

(2.4) Pω
x (ST∞(v) = z | ST∞(u) = y) =

ωy,z

πω(y)
, y, z ∈ Zd .

Moreover, conditionally on ST∞(u), the random variables ST∞(v), with v a child of u, are taken
independent of each other. We also define the annealed law Px := EPω

x , and for both laws we
may omit the subscript x when x = 0. Notice that we use the same notation for the laws of the
critical snake (ST∞ , T∞) and the RWRE (Xn)n≥0 introduced above, but it will always be clear from
context which one is considered. Furthermore, one can define similarly the (quenched or annealed)
law of the tree-indexed random walk (ST , T ), by letting T ∼ PT and constructing ST by induction
with (2.4); again, we abusively use the same notation for the laws.

We now present an encoding of critical snake realizations for which we have an explicit, ergodic
transformation. For any finite, rooted ordered tree (t , ρ) ∈ T, one can define a bijection between
E(t) the set of edges of t , and {1, . . . ,#E(t)} (e.g. the breadth-first exploration of t); therefore,
if St ,ρ(·) denotes a realization of a Zd-valued random walk indexed by t , it can be rewritten as a

random variable on the measured space ((Zd)#E(t),FS,#E(t)) where FS,#E(t) denotes the product

sigma-algebra on (Zd)#E(t). With these notation at hand, we finally define

A :=
{(

ω, (xi, t i,Sxi
ti,i

)i≥0

) ∣∣∣ω ∈ Ω , x0 = 0 ; ∀ i ≥ 0, xi ∈ Zd , t i ∈ T and Sxi
ti,i

∈ (Zd)#E(ti)
}
,

and we endow A with its product sigma-algebra A.
Let ω ∈ Ω, let (ST∞ , T∞) be a realization of the critical snake in ω started from 0 ∈ Zd. Let

(ui)i≥0 := Spine(T∞), and for i ≥ 0 let Ti be the (largest) sub-tree of T∞ rooted in ui and not
containing ui−1 and ui+1. Consider the (injective) mapping,

(2.5) Φ : (ω,ST∞ , T∞) 7→ (ω, (ST∞(ui), Ti, ST∞ |Ti)i≥0) ∈ A ,

Therefore, the annealed distribution P of the snake (ω,ST∞ , T∞) induces a probability measure
on (A,A), which we also denote P abusively. Additionally, under the mapping above one has
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that (Xi)i≥0 := (ST∞(ui))i≥0 is a RWRE started from 0 with transition probabilities induced by ω,
Ti ∼ PT are i.i.d. and independent from ω, (Xi)i≥0; and for i ≥ 0, Si := ST∞ |Ti are independent
walks indexed by Ti started from Xi ∈ Zd, with transition probabilities (ωx,y/πω(x))x,y∈Zd .

Let R : A → A be defined by,

(2.6) R
(
ω, (xi, t i,Sxi

ti,i
)i≥0

)
:=
(
τx1ω ,

(
xi+1 − x1, t i+1,Sxi+1−x1

ti+1,i+1

)
i≥0

)
.

When applied to (the image by Φ of) a critical snake realization (ST∞ , T∞), R is the transformation
that re-roots it at the next vertex along the spine u1, removes the former root u0 and the finite
tree it supported, and shifts the environment and the trajectories in Zd by X1 := ST∞(u1).

Assume that there exists a probability measure Q ∼ P which is R-invariant and ergodic, as in

Proposition 2.1. We may define P̃ a new annealed probability distribution of the random snake,
where the environment has law Q instead of P and the rest of the definition is unchanged (that

is, the quenched distributions P(·|ω) = Pω(·) = P̃(·|ω) are identical P-a.s., recall (2.4)). Similarly
to P, we may push it forward to A with the mapping (2.5): then, we prove that the dynamical

system (A,A, P̃,R) is ergodic.

Lemma 2.2. Let P such that Assumption 1.2 holds. Suppose that there exists Q a R-invariant,
ergodic measure equivalent to P. Then:

(i) The probability measures P and P̃ on (A,A) are equivalent.

(ii) The probability measure P̃ on (A,A) is R-invariant.

(iii) The dynamical system (A,A, P̃,R) is ergodic.

Remark 2.1. Let us point out that this lemma also holds for non-reversible environments.

Proof. These results follow from quite standard arguments regarding dynamical systems and the
point of view of the particle, see e.g. the proof of [10, Theorem 1.2].

(i). Recall that P and P̃ have the same distributions conditionally to ω, P-a.s. by definition.
Therefore one has,

dP̃

dP
(ω, (Xi, Ti,Si)i≥0) =

dQ
dP

(ω) > 0 , for P-a.e. (ω, (Xi, Ti,Si)i≥0) ∈ A .

(ii). Let f : A → R a bounded measurable function. Conditioning with respect to ω and X1,
one has,

Ẽ
[
(f ◦ R)

(
ω, (Xi, Ti,Si)i≥0

)]
= EQ

∑
z∈Zd

ω0,z

πω(0)
Ẽ
[
(f ◦ R)

(
ω, (Xi, Ti,Si)i≥0

) ∣∣∣ω,X1 = z
]

= EQ

∑
z∈Zd

ω0,z

πω(0)
Ẽ
[
f
(
τzω, (Xi+1 − z, Ti+1,Si+1 − z)i≥0

) ∣∣∣ω,X1 = z
]

= EQ

∑
z∈Zd

ω0,z

πω(0)
Ẽ
[
f
(
ω′, (Xi, Ti,Si)i≥0

) ∣∣∣ω′ = τzω
] ,
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where the last equality is obtained by applying the Markov property. Recalling (2.2) and that Q is
R-invariant, this yields

Ẽ
[
(f ◦ R)

(
ω, (Xi, Ti,Si)i≥0

)]
= EQ

[
Ẽ
[
f
(
ω, (Xi, Ti,Si)i≥0

) ∣∣∣ω]] = Ẽ
[
f
(
ω, (Xi, Ti,Si)i≥0

)]
,

thus P̃ is R-invariant.
(iii). Let Fn := σ(ω, (Xi, Ti,Si)i≤n), n ≥ 0 a filtration of A. Let f : A → R bounded measurable

such that f ◦ R = f P̃-a.e., and define

φ(ω) := Ẽ
[
f
(
ω, (Xi, Ti,Si)i≥0

) ∣∣∣ω] , ω ∈ Ω .

We claim that φ(τXnω), n ≥ 0 is an (Fn)n≥0-martingale. Indeed,

Ẽ
[
f
(
ω, (Xi, Ti,Si)i≥0

) ∣∣∣Fn

]
= Ẽ

[
(f ◦ R◦n)

(
ω, (Xi, Ti,Si)i≥0

) ∣∣∣Fn

]
= Ẽ

[
f
(
ω′, (Xi, T i,Si)i≥0

) ∣∣∣ω′ = τXnω
]
= φ(τXnω) ,

where the second equality follows from the Markov property, with (Xi, T i,Si)i≥0 a copy of

(Xi, Ti,Si)i≥0 in the same environment. Therefore, (φ(τXnω))n≥0 converges P̃-a.e. and in L1(P̃)

towards f
(
ω, (Xi, Ti,Si)i≥0

)
.

In particular for A ∈ A a R-invariant set, let f := 1A and define φ as above: then we claim that
φ(ω) ∈ {0, 1} for Q-a.e ω ∈ Ω. Indeed, otherwise there would exist [a, b] ⊂ R \ {0, 1} such that
Q(φ(ω) ∈ [a, b]) > 0. However, Birkhoff’s ergodic theorem would yield that

1

n

n−1∑
k=0

1{φ(τXnω)∈[a,b]} −→
n→+∞

P̃(φ(ω) ∈ [a, b] | I) , P̃-a.s. and in L1(P̃) ,

where I is the sigma-field of R-invariant events in A. However, taking the expectation above

we see that Ẽ[P̃(φ(ω) ∈ [a, b]|I)] = Q(φ(ω) ∈ [a, b]) > 0, which contradicts that φ(τXnω) → 1A
P̃-a.s.. We conclude that there exists B ∈ FΩ such that φ = 1B Q-a.s.. Since we assumed that A

is R-invariant, then B is R-invariant; and since Q is ergodic, this implies P̃(A) = Q(B) ∈ {0, 1},
which finishes the proof. □

With Lemma 2.2 at hand, we may finally prove the 0–1 law for the recurrence of the critical
snake in Zd.

Proof of Proposition 1.3. In random conductances or random traps, Proposition 2.1 implies that

Lemma 2.2 holds. By Lemma 2.2.(i), it is sufficient to prove the 0–1 law under the distribution P̃;
then it also holds for P.

Notice that the event A := {∀x ∈ Zd, x is visited infinitely often} ∈ A is R-invariant: hence, the

ergodicity of (A,A, P̃,R) implies that P̃(A) ∈ {0, 1}. Let us assume that the event B := {∃x ∈
Zd, x is visited infinitely often} has positive P̃-probability, and show that it implies P̃(A) > 0 (and

thus P̃(A) = 1). Writing a direct union bound, one notices that P̃(B) > 0 implies that there exists

x0 ∈ Zd which is visited infinitely often with positive probability, i.e. P̃(#S−1
T∞(x0) = +∞) > 0.

Let us prove that

(2.7) ∀ z ∈ Zd , P̃(#S−1
T∞(z) < +∞ , #S−1

T∞(x0) = +∞) = 0 ;
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then, (2.7) and another union bound imply that P̃(A) = P̃(#S−1
T∞(x0) = +∞) > 0, which concludes

the proof.

Let us prove (2.7) under the quenched distribution Pω(·) = P̃(·|ω) for Q-a.e. ω, then the

result follows naturally for the annealed law P̃ = EQP
ω. Let ω ∈ Ω and (ui)i≥0 := Spine(T∞),

and recall from (2.5) that Ti denotes the finite tree supported by ui. Assume that x0 is visited
infinitely many times, that is the set {(i, v) ; i ≥ 0, v ∈ Ti,ST∞(v) = x0} is infinite; then notice that
it admits an infinite subset {(ik, vk), k ≥ 0} such that ik ̸= iℓ for all k ̸= ℓ. Then, each vertex

vk ∈ Tik is the root of a critical BGW sub-tree T̃vk ⊂ Tik with offspring distribution q (except when
vk = uik ∈ Spine(T∞), in which case vk has offspring distribution ((k + 1)qk+1)k≥0). Moreover, by

the Markov property1, the trees (T̃vk)k and the walks induced by ST∞ on them are independent,

and have positive probability of visiting z ∈ Zd: therefore, conditionally to #S−1
T∞(x0) = +∞, z is

visited infinitely many times with Pω-probability 1. This finishes the proof. □

3. Green’s function estimates

This section gathers, mostly from [2], some quenched estimates on the heat kernel and Green’s
function of the RWRE in conductances or traps, which are the cornerstone of our proofs in Section 4
below.

For a fixed realization of ω, we consider the heat kernel of a RWRE (Xn)n≥0 in Zd, that is for
x, y ∈ Zd, n ≥ 0,

(3.1) Pω
n (x, y) :=

Pω
x (Xn = y)

πω(y)
,

and its associated Green’s function,

(3.2) gω(x, y) :=
∑
n≥0

Pω
n (x, y) ∈ [0,+∞] .

Since the random walk in random conductances or random traps is reversible, one has P-a.s. for
x, y ∈ Zd,

(3.3) gω(x, y) = gω(y, x) .

Estimates on the heat kernel and Green’s function are very standard in the case of the homogeneous
random walk in Zd, which is equivalent to letting ωx,y := 1x∼y P-a.s. for all x, y ∈ Zd in our notation.
Let us denote with P(·)(·, ·), g(·, ·) its heat kernel and Green’s function respectively. It is well-known
that the homogeneous heat kernel satisfies, for some c1, c2, c3, c4 > 0,

(3.4) c1n
−d/2 exp

(
− c2|x− y|2/n

)
≤ Pn(x, y) ≤ c3n

−d/2 exp
(
− c4|x− y|2/n

)
,

for all n ∈ N, x, y ∈ Zd such that |x − y| ≤ n and (x − y), n have the same parity (otherwise
Pn(x, y) = 0). In particular when d ≥ 3, a direct computation shows that this implies for some
c5, c6 > 0 and all x, y ∈ Zd that,

(3.5) c5 (1 + |x− y|2−d) ≤ g(x, y) ≤ c6 (1 + |x− y|2−d) ,

and g(x, y) = +∞ if d ≤ 2.

1To be more precise, this follows from a bit of stopping line theory on Markov branching processes, see e.g.
[8, 12, 18], we do not write the details here.



10 A. LEGRAND, C. SABOT, AND B. SCHAPIRA

Remark 3.1. It follows from [14] that those estimates also hold uniformly P-a.s. for the heat kernel
and Green’s function of a RWRE in a uniformly elliptic environment; that is, if there exists ε > 0
such that P(ωx,y/πω(x) ≥ ε) = 1 for all x ∼ y.

3.1. RWRE with random traps. We have the following.

Proposition 3.1. Let ω a random traps environment. Then, one has P-a.s. for all x, y ∈ Zd,

(3.6) gω(x, y) = g(x, y) .

Proof. Recall from (3.2) that, for P-a.e. ω, πω(y)gω(x, y) is the expected (quenched) local time in
y of a RWRE (Xn)n≥0, with πω(y) = (1− ρy)

−1 by definition (1.2). Define recursively τ0 = 0 and
for n ≥ 0,

τn+1 := inf{k > τn, Xk ̸= Xτn} .
Then, (Yn)n≥0 := (Xτn)n≥0 is exactly a homogeneous, nearest-neighbour random walk in Zd.
Moreover, it is clear that for n ≥ 0, conditionally to Xτn = y ∈ Zd, τn+1− τn is a geometric random
variable with success probability (1− ρy). Therefore, one has for P-a.e. ω,

gω(x, y) =
1

πω(y)
Eω

x

[∑
k≥0

1{Xk=y}

]
=

1

πω(y)
Eω

x

[∑
n≥0

(τn+1 − τn)1{Yn=y}

]
=
∑
n≥0

Pn(x, y) ,

which concludes the proof. □

3.2. RWRE with random conductances. In [2], the authors provide estimates on the heat kernel
and Green’s function (for d ≥ 3) for the RWRE in random conductances, when the environment
ω satisfies Assumptions 1.2 and 1.4. We produce some of their results here, where we mostly
kept the same notation for the sake of clarity. Let us mention that all these were formulated
for the continuous time process called the constant speed random walk (CSRW), but they can
straightforwardly be extended to the discrete time setting, see e.g. [9, Sect. 1.2].

In the following, we always assume ω is made of random conductances. Moreover, we write
abusively ω ∈ Lp(P), ω−1 ∈ Lq(P) if one has ωx,y ∈ Lp(P) and (ωx,y)

−1 ∈ Lq(P) for all x ∼ y.

Theorem 3.2 (Upper bounds from [2]). Suppose that Assumption 1.2 holds. Let p, q ∈ (1,+∞]
such that 1/p+ 1/q < 2/d, and assume ω ∈ Lp(P), ω−1 ∈ Lq(P).

(i) There exists c1, c2 > 0 and a random variable N1(x) = N1(x, ω, p, q) < +∞, x ∈ Zd, such
that for P-a.e. ω and all x ∈ Zd, one has

(3.7) sup
m≥N1(x)

m−d
∑

z:|z−x|≤m

πω(z)
p ≤ c1E[πω(0)p] ,

and, for all n ≥ N1(0)
2 and P-a.e. ω, one has

(3.8) Pω
n (0, 0) ≤ c2 n

−d/2 .

(ii) If d ≥ 3, there exists c3, c
′
3 > 0 such that, for |x− y| ≥ N2(x) := c′3N1(x)

2 and P-a.e. ω, one
has

(3.9) gω(x, y) ≤ c3|x− y|2−d .

(iii) Additionally, suppose that Assumption 1.4 holds. Let ζ ∈ (0, γ/d) under (A1), or ζ > 0
under (A2), (A3) or (A4). Then there exists p0 ∈ (0,+∞) such that, as soon as ω, ω−1 ∈ Lp0(P),
N1(x) satisfies for some c4 > 0,

(3.10) P(N1(x) > n) ≤ c4n
1−dζ , ∀n ∈ N .
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Furthermore, for d ≥ 3 and all x, y ∈ Zd, one has

(3.11) gω(x, y) ∈ Lβ(P) , ∀ 0 ≤ β < (dζ − 1)(p0 − 1)/(2p0) .

Proof. The upper bound (3.7) is due to Assumption 1.2 and the spacial ergodic theorem (see also [2,
(1.1)]), and (3.8) is given by [2, Theorem 1.2]. The claim (3.9) is directly stated in [2, Theorem 1.6].
Regarding the tail estimate on N1, it is a consequence of [2, Proposition 2.2] and [2, Lemma 2.6].
Finally, the integrability of gω(x, y)β is stated in [2, (4.3)]. □

Theorem 3.3 (Lower bounds from [2]). Let d ≥ 3, and suppose that Assumptions 1.2 and 1.4
holds. Let ζ ∈ (0, γ/d) under (A1), or ζ > 0 under (A2), (A3) or (A4). There exists p0 ∈ (0,+∞)
and a random variable N(x) = N(x, ω, p0) ≥ N1(x) such that, as soon as ω, ω−1 ∈ Lp0(P), the
following holds:

(i) There exists c5 > 0 such that, for |x− y| ≥ N(x) and P-a.e. ω,

(3.12) gω(x, y) ≥ c5|x− y|2−d .

(ii) N(x) satisfies for some c6 > 0,

(3.13) P(N(x) > n) ≤ c6n
−d(ζ−1)+2 , ∀n ∈ N .

Proof. The claim (3.12) is the content of [2, Theorem 1.6]. Regarding the tail estimate on N , it is
obtained from [2, Proposition 2.2] combined with [2, (3.3)] in the proof of [2, Theorem 1.4]. □

3.3. RWRE constrained in a large box. For m ≥ 0, define Λm := Zd ∩ [−m,m]d and ∂Λm :=
Λm+1 \ Λm. Recall (3.1) and (3.2). For ω fixed, x, y ∈ Zd and n,m ≥ 0, we define the heat kernel
of the walk constrained in the box of size m by,

(3.14) Pm
n (x, y) :=

Pω
x (Xn = y ; ∀ s ≤ n,Xs ∈ Λm)

πω(y)
,

(we omit the superscript ω to lighten notation) and gm(x, y) :=
∑

n≥0 P
m
n (x, y) the associated

Green’s function. Notice that gm is symmetric as in (3.3), and that,

Pm
n (x, y) ≤ Pω

n (x, y) , gm(x, y) ≤ gω(x, y) ,

for n,m ≥ 0, x, y ∈ Zd and for P-a.e. ω. We provide a lower bound on gm(x, y) when m ≫ |x− y|
in the following statement, both for random conductances and random traps.

Lemma 3.4. (i) Let ω a random conductances environment. Suppose Assumptions 1.2 and 1.4
hold. For n,m ∈ N, consider the event

(3.15) Ωm
n := {ω ; ∀z ∈ Λm , N2(z) ≤ n} .

Then P(ΩKn
n ) → 1 as n → +∞ for all K > 0. Moreover, under the assumptions of Theorem 3.3,

there exists c,K > 0 such that, for all n ∈ N, ω ∈ ΩKn+1
n and x, y ∈ Λn satisfying |x − y| ≥

N(x) ∨ (n/2), one has

(3.16) gKn(x, y) ≥ c |x− y|2−d .

(ii) Let ω a random traps environment. Then, there exists c,K > 0 such that (3.16) holds P-a.s.
uniformly in n ∈ N and x, y ∈ Λn with |x− y| ≥ n/2.
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Proof. We first prove (i). The first statement is straightforward: for K > 0, one deduces from a
union bound that,

P((ΩKn
n )c) ≤ (2Kn)d P(N2(0) > n) ,

for some c > 0. Assuming ζ is taken sufficiently large in (3.10), this goes to 0 as n → +∞. Then,
let τm := inf{s ≥ 1, Xs ∈ ∂Λm} for m ≥ 0. One has,

gω(x, y) = gKn(x, y) +
1

πω(y)
Eω

x

[ ∑
s≥τKn

1{Xs=y}

]
≤ gKn(x, y) + sup

z∈∂ΛKn

gω(z, y) ,

where we used the Markov property. Taking x, y ∈ Λn with |x−y| ≥ N(x)∨(n/2) and K sufficiently
large, one deduces from (3.9) and (3.12) the desired result for all ω ∈ ΩKn+1

n , finishing the proof
of (3.16).

Regarding (ii), it is deduced immediately from Proposition 3.1, (3.5) and a similar argument
(we leave the details to the reader). □

4. Recurrence and transience of the critical snake

We now present the proofs of recurrence or transience of the critical snake in random environment,
using the Green’s function estimates which we presented in Section 3. In order to lighten upcoming
formulae, we write with an abuse of notation |0|2−d := 1 for 0 ∈ Zd in all the series computations
below.

4.1. Transience. Let d ≥ 5. Define,

(4.1) L∞(0) :=
#S−1

T,ρ({0})
πω(0)

,

the renormalized local time in 0 of the (infinite) critical snake (ST∞ , T∞) defined in Section 2.2.
Let ω ∈ Ω. Let ℓ(x) denote the local time in x ∈ Zd of a RWRE (Xn)n∈N indexed by

Spine(T∞) ≡ N and started from 0 ∈ Zd. Then, let T i
x , i ∈ N, x ∈ Zd be independent, finite BGW

trees with offspring distribution q = (qk)k≥0, except for the root which has offspring distribution
((k + 1)qk+1)k≥0. Let Si

x be independent RWRE in Zd started from x, indexed by T i
x in the

environment ω. Write Li
x,y := #(Si

x)
−1(y), i ∈ N, x, y ∈ Zd the local time in y of the BRWRE

(Si
x, T i

x ) started from x. Then, recalling the mapping (2.5), one notices that, under Pω
0 for P-a.e. ω,

(4.2) L∞(0)
(d)
=

1

πω(0)

∑
x∈Zd

ℓ(x)∑
i=1

Li
x,0 .

Some standard computations give that, for x ∈ Zd and i ∈ N,

Eω[ℓ(x)] =
∑
n≥0

Pω
0 (Xn = x) = πω(x)g

ω(0, x) ,(4.3)

and Eω[Li
x,0] = σ2

∑
n≥0

Pω
x (Xn = 0) = σ2πω(0)g

ω(x, 0) ,(4.4)
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where we recall that σ2 =
∑

k≥0 k(k − 1)qk, with q the critical BGW reproduction law. Recall the

definitions of Pω
n (x, y), g

ω(x, y) from (3.1–3.2): hence, one has P-a.s. that,

(4.5) Eω[L∞(0)] =
σ2

πω(0)

∑
x∈Zd

∑
k,ℓ≥0

Pω
0 (Xk = x)Pω

x (Xℓ = 0) = σ2
∑
n≥0

(n+ 1)Pω
n (0, 0) .

We provide the following statement, which holds for any random, elliptic environment ω ∈ Ω, (in
particular, it reaches beyond the framework of Proposition 1.3 or Theorem 1.5). An environment is
called elliptic if P(ωx,y > 0) = 1 for all x ∼ y.

Lemma 4.1. Consider a random, elliptic environment ω ∈ Ω and let P denote its law. Assume
that

∑
n nP

ω
n (0, 0) < +∞ for P-a.e. ω. Then the critical random walk snake is transient with

P-probability one.

Proof of Lemma 4.1. It follows from (4.5) that, for P-a.e. ω, one has L∞(0) < +∞, Pω-a.s.; hence
0 is visited finitely many times by the critical snake with Pω-probability one for P-a.e. ω. Then,
mimicking the arguments from the proof of Proposition 1.3, if there existed x0 ∈ Zd which is
visited infinitely many times with positive Pω-probability, this would also hold for 0, yielding a
contradiction. □

Proof of Theorem 1.5.(i). Recall (3.8): letting p, q ∈ (1,+∞] such that 1/p + 1/q < 2/d, and
assuming ω ∈ Lp(P), ω−1 ∈ Lq(P), one has for d ≥ 5,∑

n≥0

nPω
n (0, 0) ≤ N1(0)

4 + c
∑

n>N1(0)2

n1−d/2 < +∞ , P-a.s.,

which concludes the proof by Lemma 4.1. □

Proof of Theorem 1.7.(i). Recall (4.4–4.5) and Proposition 3.1. In particular, one has P-a.s.,

Eω[L∞(0)] = σ2
∑
x∈Zd

πω(x)g
ω(0, x)gω(x, 0) ≤ c

∑
x∈Zd

|x|2(2−d)πω(x) ,

where we used the standard estimate (3.5). Since we assumed supx∈Zd Eπω(x) < +∞, this yields,

EEω[L∞(0)] ≤ c
∑
x∈Zd

|x|2(2−d)Eπω(x) = c
∑
x∈Zd

|x|2(2−d) .

For d ≥ 5, the latter series converges. Therefore, one has Eω[L∞(0)] < +∞ P-a.s., which yields the
expected result by Lemma 4.1. □

4.2. Recurrence for conductances. In this section we prove the recurrence of the critical snake
for d ≤ 4. For m ∈ N, we let Λm := Zd ∩ [−m,m]d and ∂Λm := Λm+1 \ Λm throughout this section.

We first consider the case d ≤ 2, and reproduce the following classical result. Since the critical
snake ST∞ restricted to Spine(T∞) is exactly a RWRE, notice that it directly implies the recurrence
of the critical snake for d ≤ 2.

Proposition 4.2. Let d ≤ 2, and assume ω is a random conductance environment on Zd such that
supx∼y Eωx,y < +∞. Then the RWRE is recurrent P-a.s..

This result is standard, however for the sake of completeness we provide a proof in Appendix A.

We now assume that d ∈ {3, 4}. We use the Green’s function estimates from Section 3 to prove
the recurrence in that case. Throughout this section, we let p0 > 1 large and assume ω, ω−1 ∈ Lp0(P)
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so that all results from Section 3 hold, with ζ taken quite large in (3.10) and (3.13) (ζ > d is
enough). Let us recall that we are not trying to obtain an optimal value for p0 in this proof.
Recall (4.1–4.5). To prove Theorem 1.5.(ii), it is enough to show that

(4.6) P(L∞(0) = +∞) > 0 ,

then the result follows from the 0–1 law, see Proposition 1.3.
Let us prove (4.6) with a second moment method. Let us consider the BRWRE indexed by T∞

which is constrained to a box Λm, m ∈ N —that is, particles from the critical snake (ST∞ , T∞) that
leave Λm are removed from the process (even the particles from the spine). Let ℓm(x) denote the

local time in x ∈ Zd of the RWRE indexed by Spine(T∞) constrained to Λm; and let Li,m
x,y , i ∈ N,

x, y ∈ Zd the local time in y of (Si
x, T i

x ) constrained to Λm. Then, letting

(4.7) Lm :=
1

πω(0)

∑
x∈Λm

ℓm(x)∑
i=1

Li,m
x,0 ,

one has that Lm has same law as the renormalized local time in 0 of the critical snake constrained
to Λm. Moreover, one has Pω-a.s. that Lm is non-decreasing in m and converges to L∞(0) as
m → +∞, for P-a.e. ω (recall (4.2)). We have the following moment estimates on Lm.

Lemma 4.3. Let d ∈ {3, 4}. As m → +∞, one has,

E[Lm] ≍
∑
x∈Λm

|x|2(2−d) ≍

{
m if d = 3,

logm if d = 4.

Lemma 4.4. Let d ∈ {3, 4}. There exists c2 > c1 > 1 such that, for all m ∈ N, one has,

E[L2
m] ≤ c1 E

[
Eω[Lm]2

]
≤ c2E[Lm]2 .

These two lemmas immediately imply (4.6). Indeed, one deduces from the Paley-Zygmund
inequality that, for all m ∈ N,

P
(
L∞(0) ≥ 1

2E[Lm]
)
≥ P

(
Lm ≥ 1

2E[Lm]
)
≥ c ,

for some uniform c > 0. Since one has E[Lm] → +∞ as m → +∞ by Lemma 4.3, this yields (4.6),
and therefore Theorem 1.5.(ii) by the 0–1 law.

We turn to the proofs of the lemmas. Recall the definition of gm(·, ·) from (3.14).

Proof of Lemma 4.3. Similarly to (4.3–4.5), one has

(4.8) Eω[ℓm(x)] = πω(x)g
m(0, x) , and Eω[Li,m

x,0 ] = σ2πω(0)g
m(x, 0) ,

and thus,

(4.9) Eω[Lm] =
1

πω(0)

∑
x∈Λm

Eω[ℓm(x)]Eω[L1,m
x,0 ] = σ2

∑
x∈Λm

πω(x)g
m(0, x)2 ,

where we also used that gm(·, ·) and gω(·, ·) are symmetric (recall (3.3)).
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Lower bound. Let K > 0 and ΩKn+1
n ⊂ Ω as in Lemma 3.4, N(0) as in Theorem 3.3, and let us

compute a lower bound on E[LKn]. Applying Lemma 3.4, there exists c > 0 such that,

E[LKn] ≥ E

[
1ΩKn+1

n
(ω)

∑
x∈Λn

(
gKn(0, x)

)2
πω(x)

]
≥ c

∑
n
2
≤|x|≤n

|x|2(2−d)E
[
πω(x)1{|x|≥N(0)}1ΩKn+1

n
(ω)
]
.(4.10)

It remains to show that the latter expectation is bounded from below uniformly in n
2 ≤ |x| ≤ n

for n sufficiently large; then the result follows from standard estimations of the series
∑

x |x|2(2−d).
One deduces from the Cauchy-Schwarz inequality and the assumption that P is stationary that, for
n
2 ≤ |x| ≤ n,

E
[
πω(x)1{|x|<N(0)}

]
≤ E

[
πω(0)

2
]1/2P(N(0) > n/2

)1/2
,

and E
[
πω(x)1Ω\ΩKn+1

n
(ω)
]

≤ E
[
πω(0)

2
]1/2P(Ω \ ΩKn+1

n

)1/2
.

Provided that p0 ≥ 2, the two terms above go to zero as n → +∞ uniformly in n
2 ≤ |x| ≤ n.

Moreover, by assumption E[πω(x)] is a positive constant uniform in x ∈ Zd, therefore a union bound
yields immediately that the expectation in (4.10) is bounded from below uniformly in n

2 ≤ |x| ≤ n
for n sufficiently large, finishing the proof of the lower bound.

Upper bound. Since gm(0, x) ≤ gω(0, x), one deduces from (4.9), (3.3) and (3.9),

(4.11) E[Lm] ≤ cE

 ∑
|x|≤N2(0)

gω(x, 0)2πω(x)

+ cE

 ∑
N2(0)≤|x|≤2m

|x|2(2−d)πω(x)

 .

Since Eπω(0) < +∞ and P is stationary, the second term is lower than c
∑

|x|≤2m |x|2(2−d) for some

constant c > 0 and all m ∈ N; hence it suffices to prove that the first term is bounded. Noticing
that gω(x, 0) ≤ gω(0, 0) for all x ∈ Zd and P-a.e. ω, one deduces from Hölder’s inequality for some
p ∈ (1, p0) that,

(4.12) E

 ∑
|x|≤N2(0)

gω(x, 0)2πω(x)

 ≤ E
[
gω(0, 0)2p/(p−1)

](p−1)/p
E

[( ∑
|x|≤N2(0)

πω(x)

)p
]1/p

.

Recalling (3.11) and assuming that ζ, p, p0 are taken sufficiently large, the first factor is a finite
constant. Moreover, we have the following.

Claim 4.5. Let p, r ≥ 1 and assume pr ≤ p0. Then there exists c > 0 such that,

(4.13)

∥∥∥∥∥ ∑
|x|≤N2(0)

πω(x)
r

∥∥∥∥∥
Lp(P)

≤ c
∥∥πω(0)r∥∥Lp(P)∥N2(0)

d∥Lp(P) .

In particular, this implies that the second factor in (4.12) is finite (assuming again that ζ is large
enough in (3.10)), which finishes the proof of the upper bound and Lemma 4.3. □



16 A. LEGRAND, C. SABOT, AND B. SCHAPIRA

Proof of Claim 4.5. By Hölder’s inequality, one has

(4.14)

( ∑
|x|≤N2(0)

πω(x)
r

)p

≤ cN2(0)
d(p−1)

∑
|x|≤N2(0)

πω(x)
rp

for some c > 0. Recalling (3.7) and taking the expectation, this finishes the proof of the claim. □

We now turn to the proof of the second moment estimates in Lemma 4.4.

Proof of Lemma 4.4. We start by proving the second inequality. Recollecting (4.9), recalling that
gm(·, ·) is symmetric, that gm(x, y) ≤ gω(x, y), and that gω(x, 0) ≤ gω(0, 0) for all x, y,m and P-a.e.
ω, one deduces from (3.9) that,

Eω[Lm]2 = σ4
∑

x,y∈Λm

gm(0, x)2gm(0, y)2πω(x)πω(y)(4.15)

≤ c gω(0, 0)4
∑

|x|,|y|≤N2(0)

πω(x)πω(y) + c
∑

x,y∈Λm

|x|2(2−d)|y|2(2−d)πω(x)πω(y)

+ 2 c

 ∑
|x|≤N2(0)

πω(x)

∑
y∈Λm

|y|2(2−d)gω(0, 0)2πω(y)

 .

Let us take the expectation E of the upper bound. Assuming p0, ζ are large enough, one deduces
from Claim 4.5 that the term

∑
|x|≤N2(0)

πω(x) is bounded in Lp(P) for p ∈ (2, p0). Assuming also

that p is large, this and (3.11) imply by Hölder’s inequality that,

E

gω(0, 0)4 ∑
|x|,|y|≤N2(0)

πω(x)πω(y)

 < +∞ .

Regarding the second term, it is dominated by cE[Lm]2, since one deduces from the Cauchy-Schwarz
inequality that E[πω(x)πω(y)] is bounded uniformly in x, y ∈ Zd. Furthermore, for p ∈ (2, p0) and
q := p

p−1 < 2, one has by Jensen’s inequality,

E

( ∑
y∈Λm

|y|2(2−d)gω(0, 0)2πω(y)

)q
1/q

≤ E

( ∑
y∈Λm

|y|2(2−d)gω(0, 0)2πω(y)

)2
1/2

≤

 ∑
x,y∈Λm

|x|2(2−d)|y|2(2−d)E
[
gω(0, 0)4πω(x)πω(y)

]1/2

.

Again, E
[
gω(0, 0)4πω(x)πω(y)

]
is bounded uniformly in x, y ∈ Zd, provided that p0 and ζ are large

enough in Theorem 3.2. Hence the term above is bounded by c
∑

y∈Λm
|y|2(2−d). Thus, taking the

expectation of the third term in the upper bound (4.15) and applying Hölder’s inequality, it is
lower than cE[Lm] for some c > 0. Finally, recalling Lemma 4.3, this yields that

(4.16) E[Eω[Lm]2] ≤ cE[Lm]2 ,

for some c > 0 and all m ∈ N, which is the expected result.
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We now prove the first inequality in Lemma 4.4. Let us write Varω[Lm] := Eω[L2
m]−Eω[Lm]2.

Using the conditional variance decomposition with respect (ℓm(x))x∈Zd , one obtains,

Varω(Lm) =
1

πω(0)2

∑
x∈Λm

Eω[ℓm(x)]Varω(L1,m
x,0 ) +

1

πω(0)2
Varω

( ∑
x∈Λm

ℓm(x)Eω
[
L1,m
x,0

])
(4.17)

=: Ym + Zm.

Recall (4.8). Moreover, we claim the following.

Lemma 4.6. There exists c > 0 such that, for x ∈ Zd, m ∈ N, and P-a.e. ω,

Eω
[
(L1,m

x,0 )
2
]
≤ c

∑
y∈Bn

gm(x, y)gm(y, 0)2πω(y)πω(0)
2 .

This lemma comes from a Many-to-two formula: we postpone its proof for now. Hence, one has,
(4.18)

Ym ≤ 1

πω(0)2

∑
x∈Λm

Eω[ℓm(x)]Eω
[
(L1,m

x,0 )
2
]
≤ c

∑
x,y∈Λm

gm(0, x)gm(x, y)gm(y, 0)2πω(x)πω(y) ,

and,

Zm ≤ 1

πω(0)2
Eω

[( ∑
x∈Λm

ℓm(x)Eω
[
L1,m
x,0

])2
]

≤ 2

πω(0)2

∑
x,y∈Λm

Eω

 ∑
u,v∈Spine(T ),
u≺v or u=v

1{ST (u)=x}1{ST (v)=y}

Eω
[
L1,m
x,0

]
Eω
[
L1,m
y,0

]
≤ c

∑
x,y∈Λm

gm(0, x)2gm(x, y)gm(y, 0)πω(x)πω(y) .(4.19)

Exchanging the notation x and y above, Zm and Ym have the same upper bound. Recall Eω[Lm]2

from (4.15): it suffices to show that the r.h.s. of (4.19) is dominated by cE[Eω[Lm]2] for some
c > 0, then we conclude the proof of Lemma 4.4 with (4.17).

Applying (3.3) and the Cauchy-Schwarz inequality twice, the r.h.s. of (4.19) is bounded from
above by,

cE
[
Eω[Lm]2

]1/2E[ ∑
x,y∈Λm

gm(x, y)2gm(x, 0)2πω(x)πω(y)

]1/2
.(4.20)
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Moreover, P is invariant by the translation τ−x for all x ∈ Zd, so one deduces that,

E

 ∑
x,y∈Λm

gm(x, y)2gm(x, 0)2πω(x)πω(y)

 ≤ E

 ∑
u,v∈Λ2m

gm(0, u)2gm(0, v)2πω(0)πω(u)


= cE

Eω[L2m]πω(0)
∑

v∈Λ2m

gm(0, v)2


≤ cE[L2m]E

πω(0)2
 ∑

v∈Λ2m

gm(0, v)2

21/2

,(4.21)

where we used (4.9), the Cauchy-Schwarz inequality and (4.16). Moreover, one deduces from (3.9)
and the inequalities gm(0, v) ≤ gω(0, v) ≤ gω(0, 0) that, for P-a.e. ω,

(4.22) 0 ≤
∑

v∈Λ2m

gm(0, v)2 ≤ c gω(0, 0)2N2(0)
d + c

∑
v∈Λ2m

|v|2(2−d) .

Therefore, one deduces again from Lemma 4.3, the Cauchy-Schwarz inequality and (4.16) that (4.21)
is dominated by E[L2m]2 (we do not write the details again). Recollecting (4.20), this finally yields

that the r.h.s. of (4.19) is bounded from above by cE
[
Eω[Lm]2

]1/2
E[L2m] ≤ cE[Eω[Lm]2] for all

m ∈ N (where we used Lemma 4.3 and Jensen’s inequality), finishing the proof of Lemma 4.4. □

Proof of Lemma 4.6. For a realization of the critical BRWRE (S1
x, T 1

x ), define U ⊂ T 1
x the set of

vertices u ∈ T 1
x such that, for all w ≺ u, one has S1

x(w) ∈ Λm. Then,

Eω
[
(L1,m

x,0 )
2
]
= Eω

[(∑
u∈U

1{S1
x(u)=0}

)2
]

= Eω[L1,m
x,0 ] +Eω

[ ∑
u,v∈U, u̸=v

1{S1
x(u)=0}1{S1

x(v)=0}

]
.

For u, v ∈ T 1
x , write u ≺ v if u ̸= v and v is a descendant of u. On the one hand, one deduces from

Markov’s property that,

Eω

[ ∑
u,v∈U, u≺v

1{S1
x(u)=0}1{S1

x(v)=0}

]
= Eω

[∑
u∈U

1{S1
x(u)=0} · L̃

1,m
0,0

]
= Eω

[
L1,m
x,0

]
Eω
[
L1,m
0,0

]
,

where L̃1,m
0,0 is a copy of L1,m

0,0 , i.e. the local time in 0 of some critical BRWRE (S̃1
0 , T̃ 1

0 ) started

from 0 and constrained in Λm; and is taken independent from (S1
x, T 1

x ). On the other hand, for u, v
which are not on the same genealogical line, letting w := u ∧ v denote their most recent common
ancestor, one has,

Eω

[∑
w∈U

∑
u,v∈U,

u≻w,v≻w,
u∧v=w

1{S1
x(u)=0}1{S1

x(v)=0}

]
= Eω

[ ∑
y∈Λm

∑
w∈U

1{S1
x(w)=y}

∑
u,v∈U,

u≻w,v≻w,
u∧v=w

1{S1
x(u)=0}1{S1

x(v)=0}

]

≤ σ2Eω

[ ∑
y∈Λm

∑
w∈U

1{S1
x(w)=y} · L̃

1,m
y,0 · L̃2,m

y,0

]
,



RECURRENCE OF THE CRITICAL SNAKE IN RANDOM CONDUCTANCE 19

with L̃i,m
y,0 , i ∈ {1, 2}, is the local time in 0 of some independent BRWRE started from y and

constrained to Λm. Recalling (4.8), one finally has,

Eω
[
(L1,m

x,0 )
2
]
≤ c πω(0)g

m(x, 0) + 2c πω(0)
2gm(x, 0)gm(0, 0) + c

∑
y∈Λm

πω(y)πω(0)
2gm(x, y)gm(y, 0)2

≤ c
∑
y∈Λm

gm(x, y)gm(y, 0)2πω(y)πω(0)
2,

where we used that πω(0)g
m(0, 0) = Eω[L1,m

0,0 ] ≥ 1. □

4.3. Recurrence for traps. When d ≤ 2, the RWRE (Xn)n≥0 in random traps is P-a.s. recurrent.
Indeed, recall from the proof of Proposition 3.1 that there exists a sequence (τn)n≥0 of (random)
jump times such that Xk = Yn for all k ∈ [τn, τn+1 − 1], n ≥ 0, where (Yn)n≥0 is exactly a
homogeneous random walk on Zd and is independent from ω under P. Then, it is well-known
that Y is almost surely recurrent, hence so is the RWRE X. Furthermore the BRWRE (ST∞ , T∞)
restricted to Spine(T∞) has the same law as X, so the critical snake is P-a.s. recurrent as well.

We now assume d ∈ {3, 4}, that Eπω(0) < +∞, and that Assumptions 1.2, 1.6 hold. Similarly to
the random conductances environment, we proceed with a second moment method, however the
truncation we use here is twofold: we kill particles when they leave the box Λm for some m ∈ N, or
when they fall in a “large trap”. Let R > 0 and define, for P-a.e. ω,

(4.23) Aω := {x ∈ Zd ; πω(x) ≥ R |x|2} .

Let us consider the BRWRE indexed by T∞ which is killed when it reaches either ∂Λm or Aω. Let
Zm denote its renormalized local time in 0: we shall prove that Zm satisfies the same annealed
moment estimates than Lm in Lemmata 4.3 and 4.4, then Theorem 1.7.(ii) follows from the same
arguments as in the conductances case (i.e. the Paley-Zygmund inequality and Proposition 1.3, we
do not reproduce them).

Lemma 4.7. Let d ∈ {3, 4}. One has for some c > 0 uniform in m ∈ N,

E[Zm] ≥

{
cm if d = 3,

c logm if d = 4.

Lemma 4.8. Let d ∈ {3, 4}. One has for some c > 0 uniform in m ∈ N,

E[Z2
m] ≤

{
cm2 if d = 3,

c (logm)2 if d = 4.

Recall the definitions of ℓm(x), Li,m
x,y for the BRWRE killed outside at ∂Λm, and that (4.8) is

unchanged in a random traps environment. We define similarly ℓ̃m(x), L̃i,m
x,y for the BRWRE killed

at ∂Λm ∪Aω: in particular one has for m ∈ N,

(4.24) Zm :=
1

πω(0)

∑
x∈Λm

ℓ̃m(x)∑
i=1

L̃i,m
x,0 .

Recall also from Proposition 3.1 that Green’s function for the (non-killed) RWRE satisfies gω(·, ·) =
g(·, ·) P-a.s.; and let g̃m denote Green’s function of the (quenched) RWRE killed at ∂Λm ∪Aω.
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Proof of Lemma 4.7. Let K > 0, n ∈ N. Since one has πω(x) ≥ 1 P-a.s. for all x ∈ Zd in the
random traps environment, one deduces from Jensen’s inequality that,

E[ZKn] = σ2E

 ∑
x∈ΛKn

g̃Kn(0, x)2πω(x)

 ≥ σ2
∑

n/2≤|x|≤n

E
[
g̃Kn(0, x)

]2
.

Let us show that E[g̃Kn(0, x)] ≥ c|x|2−d uniformly in n/2 ≤ |x| ≤ n. Recalling Lemma 3.4, there
exists c1 > 0 such that for n/2 ≤ |x| ≤ n, one has P-a.s.,

c1 |x|2−d ≤ gKn(0, x) ≤ g̃Kn(0, x) +
∑

y∈ΛKn

gω(0, y)gω(y, x)1{y∈Aω} ,

Moreover, the stationarity of ω yields P(y ∈ Aω) = P(πω(0) ≥ R |y|2). Taking the expectation E
above, and using Proposition 3.1 and (3.5), we claim that it is enough to show that

(4.25)
∑

y∈BKn

|y|2−d|x− y|2−d P(πω(0) ≥ R |y|2) ≤ c1
2
|x|2−d ,

and the result follows. On the one hand we have by Markov’s inequality,∑
y:|x−y|≤n/4

|y|2−d|x− y|2−d P
(
πω(0) ≥ R|y|2

)
≤ c

R
n−d

∑
y:|x−y|≤n/4

|x− y|2−d ≤ c

R
n2−d ,

for some c > 0 that does not depend on R. On the other hand,∑
y:|x−y|≥n/4

|y|2−d|x− y|2−d P
(
πω(0) ≥ R|y|2

)
≤ c n2−d

∑
y:|x−y|≥n/4

|y|2−dP
(
πω(0) ≥ R|y|2

)
,

and ∑
y:|x−y|≥n/4

|y|2−dP
(
πω(0) ≥ R|y|2

)
≤ c

∫ +∞

0
r P
(
πω(0) ≥ Rr2

)
dr ≤ c

R
,

where we used that E[πω(0)] < +∞. Assuming R is large enough, this finally yields (4.25). □

Proof of Lemma 4.8. Recall (4.17–4.19): reproducing this computation with Zm and using Propo-
sition 3.1, this yields P-a.s.,

Varω(Zm) = Eω[Z2
m]−Eω[Zm]2

≤ c
∑

x,y∈Λm

g(0, x)2g(x, y)g(0, y)πω(x)πω(y)1{πω(x)≤R|x|2,πω(y)≤R|y|2},

and Eω[Zm]2 ≤ c
∑

x,y∈Λm

g(0, x)2g(0, y)2πω(x)πω(y)1{πω(x)≤R|x|2,πω(y)≤R|y|2}.

Recall that, under Assumption 1.6, there exists R0,K > 0 such that for x, y with |x− y| ≥ R0, one
has E[πω(x)πω(y)] ≤ K. Moreover, one has for x, y ∈ Zd,

E[πω(x)πω(y)1{πω(x)≤R|x|2,πω(y)≤R|y|2}] ≤ R|x|2E[πω(y)] ≤ c|x|2 .
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Thus,

E
[
Eω[Zm]2

]
≤ c

∑
x,y∈Λm

g(0, x)2g(0, y)2
[
K1|x−y|≥R0

+ c|x|21|x−y|<R0

]
≤ c

∑
x,y∈Λm

|x|2(2−d)|y|2(2−d) + c
∑
x∈Λm

|x|4(2−d)+2 .

Using standard series estimates, this yields the upper bound expected in Lemma 4.8. Similarly, one
obtains

EVarω(Zm) ≤ c
∑

x,y∈Λm

|x|2(2−d)|x− y|2−d|y|2−d + c
∑
x∈Λm

|x|3(2−d)+2 .

Using the Cauchy-Schwarz inequality and a shift-invariance argument similarly to (4.20-4.21),
this yields the same upper bound (we leave the details to the reader). Recalling that E[Z2

m] =
EVarω(Zm) + E[Eω[Zm]2], this completes the proof. □
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Appendix A. Proof of Proposition 4.2

This is a standard argument, which follows from the well-known Dirichlet principle. We present
the main ideas of the proof here, and refer to [1, Proposition 3.38] (or [15, 21] among other
references) for more details. For m ∈ N and f : Λm+1 → R such that f(y) = 0 for all y ∈ ∂Λm, its
associated Dirichlet energy in ω ∈ Ω is defined by,

(A.1) Eω
m(f) :=

1

2

∑
x,y∈Λm

ωx,y[f(y)− f(x)]2 ,

and we write E1
m for the Dirichlet energy in homogeneous environment, i.e. ωx,y := 1x∼y almost

surely for x, y ∈ Zd. Then the effective conductance Cω(0, ∂Λm) between 0 and ∂Λm is defined by,

(A.2) Cω(0, ∂Λm) := inf {Eω
m(f) ; f : Λm+1 → R, f(0) = 1, f(y) = 0 ∀ y ∈ ∂Λm} ,

and, letting τA := inf{n ≥ 0, Xn ∈ A} the hitting time of any set A ⊂ Λm+1, one has,

(A.3) Cω(0, ∂Λm) = πω(0)P
ω(τ{0} > τ∂Λm) .

Moreover, the infimum (A.2) for Eω
m (resp. E1

m) is achieved by some harmonic function hω (resp. h).
It follows from the Dirichlet principle that, for P-a.e. ω, one has

πω(0)P
ω(τ{0} > τ∂Λm) = Eω

m(hω) ≤ Eω
m(h) =

1

2

∑
x,y∈Λm

ωx,y[h(y)− h(x)]2 .

Taking the expectation above, this yields,

E
[
πω(0)P

ω(τ{0} > τ∂Λm)
]
≤ sup

x∼y
E[ωx,y]× E1

m(h) ≤ c P̃(τ{0} > τ∂Λm) ,

where P̃ denotes the law of the homogeneous random walk in Zd. When d ≤ 2 the latter goes to 0 as
m → +∞ (since the homogeneous random walk is recurrent), so this yields that Pω(τ{0} = +∞) = 0
for P-a.e. ω, finishing the proof. □
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