GAFA, Geom. funct. anal. © Birkhduser Verlag, Basel 2008
DOT 10.1007/500039-008-
ONLINE FIRST I GAFA Geometric And Functional Analysis

CONTRIBUTIONS TO THE HYPERGEOMETRIC
FUNCTION THEORY OF HECKMAN AND OPDAM:
SHARP ESTIMATES, SCHWARTZ SPACE, HEAT
KERNEL

BRUNO SCHAPIRA

Abstract. Under the assumption of positive multiplicity, we obtain basic
estimates of the hypergeometric functions F)\ and G) of Heckman and
Opdam, and sharp estimates of the particular functions Fy and Go. Next
we prove the Paley—Wiener theorem for the Schwartz class, solve the heat
equation and estimate the heat kernel.

1 Introduction

Harish-Chandra introduced and studied spherical functions for Riemannian
symmetric spaces. These functions are analogues of plane wave functions
and play a major role for harmonic analysis on these spaces. A more general
setting, in the flat case, appeared two or three decades ago, with the theory
of Dunkl operators [Du]. The natural counterpart of the Dunkl theory
in the negatively curved setting is the theory of Heckman and Opdam.
This theory has undergone a profound evolution with the discovery of the
Cherednik operators [C1], the analogues of the Dunkl operators in the flat
case.

Heckman and Opdam [HO], [HS], [O] have developed their theory in
the last two decades. They have first introduced a new family of functions
F, on R", which as in the Dunkl theory are associated to root systems
and a parameter, the multiplicity function. They can be defined essentially
as eigenfunctions of certain differential operators. When the multiplicity
function takes particular values, then these operators coincide with the
radial part of the G-invariant differential operators on the symmetric spaces
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2 B. SCHAPIRA GAFA

of noncompact type G/K. Thus the restrictions to a Cartan subspace a of
the spherical functions are particular functions Fy. In this way the theory
of Heckman and Opdam is also a generalization of harmonic analysis on
the symmetric spaces G/K. However, some of the techniques used by
Harish-Chandra cannot always be transposed (at least not trivially) in this
new theory, because there are no longer underlying Lie groups. The main
tools used in harmonic analysis on the symmetric spaces are in the one
part an integral formula of the spherical functions, and in another part a
development in series of these spherical functions. Heckman and Opdam
have shown that their functions F) have a development in series of Harish-
Chandra type, but there is not (at least not yet) an integral formula, for
general root systems. However this gap has been compensated by two
main discoveries. First the discovery of the differential-difference operators
by Cherednik [C1], and then the discovery by Opdam of a new type of
functions, the functions G [O], for which the calculus and estimates can be
more easily performed. These functions are eigenfunctions of the Cherednik
operators. However until recently the only asymptotic result was essentially
the fact that the functions F and G, were bounded [O]. Delorme has
obtained a much better estimate, even in the more complicated case of a
negative multiplicity [D], but it requires involved materials and techniques.

In this paper we give sharp estimates of the functions F, G and their
derivatives, in an elementary way. Our method is only based on the study of
the system of differential-difference equations satisfied by the functions G,
improving on the way what had been already done by De Jeu [J] and
Opdam [O] for bounding their functions. We also give a global estimate
of the particular functions Fy and Gy. It generalizes some results in the
noncompact symmetric spaces [Al], [ABJ]. Then we deduce from these
estimates and from a general method of Anker [A2] the inversion formula
on the Schwartz space. Finally we solve the heat equation and we give
some estimates of the heat kernel.

Acknowledgments. This work is part of my PhD. It is a great pleasure
to thank my advisors Jean-Philippe Anker and Philippe Bougerol for their
help and advice.

2 Preliminaries

Let a be a Euclidean vector space of dimension n, equipped with an inner
product (-,-). Let h = a ®g C be the complexification of a. The notation
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R and I denote the real and imaginary part respectively, of an element in
h or possibly in C. Let R C a be an integral root system. We choose a
subset of positive roots RT. We denote by RBL the set of positive indivisible
roots, by II the set of simple roots, and by Q™ the positive lattice generated
by RT. Let oV = ﬁga be the coroot associated to a root « and let

ro(r) =z — (0, 2)a,

be the corresponding orthogonal reflection. We denote by W the Weyl
group associated to R, i.e. the group generated by the r,’s. If C is a
subset of a, we call conjugate of C any image of C under the action of W.
Let kK : R — [0,+00) be a multiplicity function, which by definition is
W-invariant. In the sequel we may actually forget about the roots a with
ko = 0 and restrict ourself to the root subsystem where k is strictly positive.
Let
ay = {z|Va e R, (a,z) >0},

be the positive Weyl chamber. We denote by ay its closure, and by da,
its boundary. Also let are; be the subset of regular elements in a, i.e. those
elements which belong to no hyperplane {« = 0}. For I a subset of R, let

o ={z€a|Vael, (a,z) =0}

be the face associated to I. Let R be the set of positive roots which are
orthogonal to a’, and let W; be the subgroup of W generated by the r,
with o € Ry.

For ¢ € a, let T; be the Dunkl-Cherednik operator. It is defined, for
f € Cl(a), and z € areg, by

Tef @) = 0f @) + Y ka2 1) — fra)} ~ (001 (@),

a€ERT

where

p:% Z koo

a€Rt
The Dunkl-Cherednik operators form a commutative family of differential-
difference operators (see [C1] or [O]). The Heckman-Opdam Laplacian £

is defined by
n
L=) 12,
i=1

where {{1,...,&,} is any orthonormal basis of a (£ is independent of the
chosen basis). Here is an explicit expression, which holds for f € C?(a)
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and z € areg (the computation can be found for instance in [Sc2]):

Lf() = Af(@) + Y hacoth @aaﬂxmpﬁf(x)

a€ERT
|of®
- ko——F—1f(z) — f(roz 1
a€z7;+ * 4 sinh? (22) ‘“” { az)}- (1

Let A € h. We denote by F the unique analytic W invariant function on a,
which satisfies the differential equations (cf. [HO], [O])

p(T¢)Fy = p(A\)Fy, for all W-invariant polynomials p,
and which is normalized by F)\(0) = 1 (in particular LF) = (A, A)F)).
We denote by G the unique analytic function on a, which satisfies the
differential-difference equations (cf. [O])

TgG,\ = ()\,f)G)\ forall ¢ € a, (2)
and which is normalized by G, (0) = 1.
The c-function. We define the function c as follows (see [He] or [HO]):
(A aY) + 3k
— ¢ H Va ") a/2)
A aV) + ko + 3kq )’

where ¢ is a positive constant chosen in such a way that ¢(—p) = 1, and
ko2 =0 if a/2 ¢ R. Observe that if

(V)= [] (\eY),

a€R0+

then the function
b(A) = 7(A)e(N),
is analytic in a neighborhood of 0.

REMARK 2.1. For the reader’s convenience, let us point out a notational
difference between our setting and symmetric spaces. There 3 denotes the
root system and m : 3 — N* the multiplicity function. Everything fits
together if we set R = 2% and ko, = %ma. Notice in particular that p is
defined in the same way in both settings:

:%E maa:% E koov.

aext aERt

3 Estimates

3.1 Positivity and first estimates. Let us begin with the following
positivity result.
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LEMMA 3.1. Assume that X\ € a. Then the functions F) and G, are real
and strictly positive.

Proof of the lemma. Since

:ﬁZGx(w-x), T €a, (3)

weW

it is enough to prove the lemma for G. First of all, the function G is
real valued, since G and G satisfy the same equations (2), and hence are
equal. Assume next that GG, vanishes. Let x be a zero of G) of minimal
norm r = |z|. Consider first the case where z is a regular point, and take a
vector £ in the same chamber as z. As G, is positive for |z| < r, we have

9eGi(z) <0
Writing down (2), we get
FGa(2) = ) ka5 (Ga(raz) = GA(®) + (p + X, )GAl2) . (4)
a€ERt
Since for all roots «,
(a7 6) Z 0 ,
]_ — e_(aiz)

we deduce that 0;G\(z) = 0, and that G\(rqz) = 0 for every a € R. Hence
G) and V(@) vanish at the point z and furthermore at each conjugate of
xz under W. Differentiating (4), we see that every second-order partial
derivative of G\ vanishes on the W-orbit of . And similarly for all higher-
order derivatives. Since GG, is analytic, we deduce that G, = 0. This
contradicts the fact that G (0) = 1.

Consider next the case where x is singular and let I = {a € R |
(a,x) = 0}. The equations ( ) become now

8§G)\ Z2k 8 G)\( )
acl
+ Y ok ,(M)(Gx(rm—am))+(p+A,£)GA(x). (5)
a€ERTNIT

We may argue as before, taking ¢ € a! in the same face as x. Notice that
the first sum vanishes in the right-hand side of (5), and that

ag(’/‘aG,\)(w) = 8TQ§G)\ (rax) .
with ro€ in the same face as rox. Eventually we obtain that all partial
derivatives of G along directions belonging to a! vanish at . Again since
G is analytic, it must vanish on a’, which contradicts G(0) = 1. This
concludes the proof of the lemma. O
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The next proposition is fundamental in order to have uniform estimates
in the parameter A € §.
ProproOSITION 3.1. (a) For all A € b,
|Gl < Ggy -
(b) For all A € a and for allx € a
G)\(.Q?) < Go(x)emaxw(w)\,m)_
Proof of the proposition. For the first inequality, we study the behavior of

the ratio @) = Gx/Gg(y). We must show that |@Q,|> < 1. We will in fact
prove that, for all £ € areg,

M(€,r) := max |Qx(rw)|”

is a decreasing function of r > 0. Since M(&,0) = 1 for all £, the result
will follow. First of all observe that the function M is continuous and right
differentiable in the second variable r. Then, using (2), we get

ka(a,§) — Gy (Ta®)
2 o ) _ 2
L@ = 3 1 T (@R ra)) — Q) 2 o
a€RT
for all £ and all x regular. Hence if z is a regular element such that
[Qx()[* = max |Qx(wa)|?,
and if £ is a positive multiple of x, we have

OelQxl*(z) < 0.

oM
W(f, lz]) <0,

where we consider right derivatives. So for every ¢ regular, and every r > 0,
oM
—(&,r) 0.
5y (&7) <

In order to conclude, we need the following elementary lemma, whose proof
is left to the reader.

LEMMA 3.2. Let f : Rt — R be a continuous and right differentiable
function. We denote by f) the right derivative of f. If for all z € RT,
fi(xz) <0, then f is decreasing.

According to this lemma, we have M (§,r) < M(£,0) =1, for all £ € aeq
and all » > 0. By continuity, this inequality remains true if ¢ is singular.
This concludes the proof of the first inequality.

The second one is proved similarly, using the ratio

G, (z efmaxw(w)\,w)
R/\(x) = )\( )G()(.’I))

This means that
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Specifically, if x is regular and & € a, then
Go(rqx)

OeR\(z) = Z %(RA(%@ - R,\(ﬂf))m

aERt
+ () — max(w), &) ) Ba(a),
where we consider again right derivatives. So if x is such that
R)(z) = max Ry (wx)
w
and £ is a positive multiple of x, then
O¢ Ry, (z) <0.
Therefore
N = R -
(§,7) := max Ry (rw - £)
is a decreasing function in r > 0, for all { € areg. We conclude as for the
first inequality. O
By averaging over the Weyl group, we deduce the following inequalities
from Proposition 3.1.
COROLLARY 3.1. 1. For all A € b,
|y < Feyy -
2. For all A € a and for all x € qa,
F)\(.T) < F()(.Z‘)emaX“’EW(w)"z).

3.2 Local Harnack principles and sharp global estimates. In this
subsection we first establish two Harnack principles for G5 and F when
A € a, and next deduce sharp global estimates of these functions F and of
the function Gy. Before stating the results we introduce some new notation.
Let I be a subset of R™, and let d < d' be two strictly positive constants.
We denote by V(d,d') the following subset of a:
Vid,d):={z€a|VaeRs, |(0,2) <d and Ya ¢ Ry, |(a,z)] >d'}.
Let 2 € VI(d,d'), with I non-empty. Let p/(x) denote its orthogonal
projection on al. Let u € af be such that for every o ¢ Ry, (o, u)sgn((a, z))
> |a|. Now define the vectors &;(x), and n;(z) as follows:
pl(z) —x pl(z) — 2
&(z) = o1 (2) — 2] +u and m(x) = (@) ]
We will sometimes just write them &; and 7; to simplify the notation.
Notice that everything was done in order that
Va ¢ Rr, (04551 ('T))(O" 'T) >0 and (04,771 (.’IJ))(O&, 'T) <0. (6)
Naturally we have also
VaeRr, (é&(2))(a,z)=(a,m(z))(a,z) <0. (7)
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We denote by p; and ¢; the projections of z on a along the directions &;
and 7); respectively (we suppose that d’ is sufficiently large so that these
projections still lie in the same chamber as x). Then we denote by p? and
¢” the orthogonal projections of p; and ¢ respectively on V? (d,d). We also
define the vectors & and 7, (as before, we forget the dependence on z in
the notation) by
0 0
b= 2T Ly and = L0
p? — p1| l4° - i
Finally, let p2 and g2 be the projections on V‘D(d, d) of p; and ¢q; respectively
along the directions &; and 7, (here again we suppose that d' is sufficiently
large so that these projections lie in the same chamber as ). We summarize
these definitions in the following figure:

—U.

of  VId,d) V(d,d)

We can now state the lemma.

LEMMA 3.3 (Local Harnack principle 1). Let A € a, and let d and d' be

chosen as above. There exist two constants C' > 0 and ¢ > 0 such that, for
allz € VI(d,d'),

e
max G(wz) < O min Gy (wpa(2))

and
i > .
Juin G(wz) > ¢ max Gy (wax(z))
Proof of the lemma. We begin with the first inequality. Let € V1. First
remark that |z — p1(z)| and |z — ¢1(x)| are bounded by a constant, say h,
which depends only on d. We introduce the function M, defined on a by

Mj(x) = max Gy(wz).
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Let y be such that G (y) = M)(y). We have

W) = Y ke ) (@rra) ~ r)
a€ERy
Y kO (Garan) - Gr)
(IER+\R]

+ (p + )"fl)GA(y)
>o S k28 Gy () + (0 + A E)GA).

1-— e_(aay)
a€RT\R;
The lower bound is deduced from our choice of y and from the properties
of &1, (6) and (7). Now when a € RT \ Ry, the ratio % is bounded
by a constant which depends only on d'. Thus we can find a constant K,

which depends only on d’ and X such that, for all y € V!(d,d'),
0, Mx(y) > —K My (y) -

Here like in the proof of Proposition 3.1, we consider the right derivatives.
Again by Lemma 3.2, we get

My (z) < eKhM)\(pl(a:)) . (8)
Now we introduce the function Ny defined on a by
N, = min G .
(@) Jnin A (wz)

Observe already that Ny and M) are equal on a!, and in particular in p; (z).
Moreover, by the same technique as above, we can find a strictly positive
constant K’ such that

Ny (pl(x)) < PN,y (p2($)) .
Together with (8), this proves the first inequality of the lemma. The sec-
ond one can be proved exactly in the same way, this time by using the
intermediate point g (). O

We could deduce from this lemma a local Harnack principle for F)\ too.
We will instead give a simple expression of the gradient of F, which implies
such a principle. Moreover this expression will be needed in the proof of
Theorem 3.3.

LEMMA 3.4 (Local Harnack principle 2). For all z € a3 and for all \ € a,
VE(2) = 5 > wl(p— NGa(wz). (9)
weWw

In particular,
VEA(@)] < (1ol + 1A) Pa(a)
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Proof of the lemma. By differentiating (3) we get as above

0cFy\(z) Z OweGA(wr),
wEW
for all ¢ € a. Now we use the equations (2), which gives
(o, w
OcFy\(z Z Z fwm) {GA (rqwzx) — Gi(wm)}
wEW a€Rt
|W| > (p+ X w)Ga(we)
weW
Ko ! = G
Z 2 ka0 v T s + T gmwn [CAw)
wEW a€RT -

~~

=1

| D (p+ A wE)Gx(we)

|W weW
i o (O pu)Ca ).
weWw
This proves the first claim of the lemma. The second one is an easy conse-
quence, using (3) again and the positivity of G). i

We can now deduce a sharp global estimate of F; which extends the
result of Anker [Al] to any multiplicities £ > 0. Recently Sawyer [S] has
obtained the same result for root systems of type A, using explicit formulas.

Theorem 3.1. Inaj,

Fy(z) < e~ (P?) H 1+ (a,2)) -

aERa'

Proof of the theorem. We resume the proof in [Al], that we sketch. The
local Harnack principle for Fy (which was deduced in [Al] from Harish-
Chandra’s integral formula) allows us to move the estimate away from the
walls in ay. There we expand Fy, using the Harish-Chandra series

Z Z (w)elwA=r=2:2)

weW qgeQ+
that we multiply by 7(\) in order to remove the singularity of the e-function
at the origin. Then we differentiate with respect to m(9/0\)|x=0, in order
to recover Fjp, up to a positive constant. As a result we obtain a converging

series
= Z Fq(w)e_(p—i—qym)’
qeQt
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with polynomial coefficients F;; and leading term

Fye»®) ~ const.w(z)e P2, O
REMARK 3.1. We may estimate in a similar way the function F when A
is real. The result reads as follows: for any \ € ax,

Fy(z) < H (1+ (a,x))e()‘*p’w)
Q€ERT|(a,\)=0
onay.
Let us turn to the function Gy. For z € a, we denote by =T its unique
conjugate in a;.
Theorem 3.2. Ina,
Go(x) =< [ (14 (a,2))elP="). (10)

a€RY |(a,z)>0

Proof of the theorem. Let us first show that G has a series expansion
in each chamber, as was done by Opdam in the negative chamber a_, [O].
We summarize his proof. He first obtained that there exists a polynomial
p such that for all = € areg,

([ TI ") = ka = 2k50 ) Gae) = (A, Te) Fa(a)
aERa'
By expanding F)\ and T' = T in each chamber, we find developments of
the function G,
Gi(z) = Z c(w_lw')\) Z Gf’;”’e(w”\_w”_q"”),
w' eW gewQ+

for all + € way. Moreover Opdam has proved that GT’%’“” is equal to

|W 61,4y 7(X), where wy denotes the longest element in W. Now we apply
the same technique as in Theorem 3.1. First we multiply these develop-
ments by 7(\), and then we differentiate with respect to m(0/0A)| =g We
get developments of the function G in each chamber,

Golw) = Y Gy(x)e (Wrtem), (11)

q€wQ+
for all z € way, where the G are real polynomials. Moreover according to
the above mentioned result of Opdam, we see that G° is a strictly positive
constant. Recall some basic notation. The length [(w) of an element of W
is defined by
l(w) =Ry NwRy|.

Recall that IT denotes the set of simple roots in RT. Each ¢ € QT writes
q = Y gem M, With ng, € N. We denote by |q| := > .1y na the length
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of q. For ¢ € Q", we write ¢’ < q, if ¢—¢' € Q™. Naturally we have similar
definitions on w@™, where we denote by |g|,, the length of any ¢ € wQ™ and
we write ¢’ <, ¢, if ¢ € wQ™ and ¢ — ¢’ € wQ™. Consider the polynomials

Tw(z) = H (@V,z) and 7,(z) = H (1+ (a¥,2)).
aeR$ NWRE a€R$ NwRY
We need the following lemma, which will be used throughout the proof of
Theorem 3.2.
LEMMA 3.5. Letw € W.
1. fa e INwR™, then my,y(rax) = my(z)/(a¥, z), for all T € re,.
2. Ifa € Rg’ N ng', then 7, (rox) < 14??05\5/5,)3;)’ for all z € way.
3. If a € Ry N wRaL, then there exists a constant C' > 0, such that

Frow(rat) < CRp(z)(1 + (¥, )R for all z € wa,.

Proof of the lemma. Let us prove the first claim. Since a € I, r, maps
R$ ~ {a} onto itself, hence Ry Nr,wRy onto (Ry NwRy) ~ {a}. The
first claim follows.

Let us prove the second claim. We define therefore an injective map
i from R NrewRy into (R NwRY) N {a}, such that 748 <, i(B) for
all 8. The second claim will follow. Let 8 € Rg’ N T‘ang—. If ro8 € RS’ ,
then we set i(8) = ro3. Otherwise, we have (o, 8) > 0. Hence 7,8 <y 8.
But 7,8 € wR{, and therefore r,3 >, 0. Thus 8 € R{ NwR{ and we set
i(8) = B. The map 7 defined this way has all required properties.

Let us prove the third claim. We define this time an injective map %
from I C R(‘)" N rawR0+ into RE)" N ng such that, if 8 € I, then r,8 <,
i(B8) + (", B)|a, and otherwise 748 <4 |(a¥,B)|a. The third claim will
follow. Assume that 8 € R NrawR{. If ro8 € RY, then we set i(8) =
ro3. Otherwise (o, 8) < 0. Next, either 3 € wR{, in which case 1,8 <4
B+ |(a, B)|e, and we set i(8) = B. Or 8 € wR, in which case 148 <y
|(@V, B)|c. The map ¢ defined this way has all required properties. i

By expanding Gy in (4) according to (11) we get
VG () =G¥(@)g+ Y, kaGrl(roz)

aERTNwRT
+ Y ke ) {GEY oy (rar) = Gl (@)}a, (12)
acwRt JEN*
for all w € W, all ¢ € wQ™, and all z € way.
Step 1. Let us first establish the estimate
|Gy (z)| < CFy(z), YweW, Vo€ war.
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It is obvious for w = wy. Let us prove it by induction on I(wg) — I(w). For
g =0, (12) amounts to
0:GY (z) = Z ko(a, §)Gp*" (rox) .
a€ERTNwWRT
Using the induction hypothesis and Lemma 3.5, we get

0GH(z) <C Y kala,O)frauw(raz)

acRTNwRt
(,§) .
<C Z ko—"~——Tw(z)
acRTNwWR+ 1+ (Oé ,33)

for all z € way and & € way, in particular for £ € RTz. Since G¥(0) < C
provided C is large enough, we obtain the upper estimate

Gy (r) < Ciry(z), Vreway.
The same argument yields the lower estimate

Gy (z) > —C7y(z), Vreway.

Step 2. Let us next establish the following estimate: There exist a
constant C > 0 and h € a,, such that for every w € W, ¢ € wQ™ and
z € Cp == wh +way,

|G¥(2)| < Clalw7y(2) (14 q(=)) (13)
The case ¢ = 0 was considered in Step 1. Let ¢ € Q1 ~ {0} and w € W.
Assume that (13) holds for all (¢/,w') € w'Q™ x W such that |¢|, < |g|w
or such that |¢'|, = |g|w and I(w') < I(w). Using (12), the induction
hypothesis and Lemma 3.5, we get
O [C1 7 (14q) R 1= GY] () > (4, &) [IRT|CIe 70y (149) 7171 = GY] Ex))’
14
for all ¢ € way and all x € wh + way, provided C' > 0 is large enough.
Using now (11) at the point wh we can also assume, by taking again larger
C if necessary, that

IR+

GY(wh) < Cl9+,
for all ¢ € wQ™'. Now let u € wh + way be such that (1 + (g,u)) = |R™|.
Equation (14) implies that
(Ol (1 + ) R = GP)(z) > 0, (15)
for all z in the segment [wh,u]. For x = wh + t(u — wh) with t > 1, we
have

8u[C'1 7 (1 + @) %" — G¥) ()

[Clh 7, (1 + ¢) 7T — G2 v 0] (2).
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Thus (15) holds also for = wh + t(u — wh) with ¢ > 1. This proves the
upper estimate et
G () < C11% () (1 + g() ™,

in C}’. The same argument gives the lower estimate
~ R+
G (z) > —C'1 iy (z) (1 +q(x) * .

Step 3. Let us now find a lower bound for Gff. We prove by induction

on [(wg) — I(w) that there exist a constant ¢ > 0 and h € a,, such that
Gy (x) > emu(z),
for all z € C}’. We suppose that it is true for w’ such that /(w’) > [ and
we consider w of length /. By the induction hypothesis there exists some
h € ay and ¢ > 0 such that Gi*"(rax) > cmyow(rax), for all z € C}° and
all o € RT NwR™'. Now let ¢ > 0 be another constant. Assume that, for
some g € C},
[GE — 'm](z0) < [GF — c'my](wh) — 1,
and suppose that g is such an element of minimal norm in C}’. Let
(a*)aewn be the dual basis of wll, i.e. for @ and £ in wII, (a*,8) = 0
if @« # B and = 1 otherwise. Let ag € wIl be such that (ag,z9 — h) =
maxgeyi (3, vo—h). It implies that, for small € > 0 at least, zg —eaj € C}.
Hence
Das[GY — 'my](20) < 0.

On the other hand we know that for z € way,

VIGY - ¢l = X B |nGE (rpe)

BERTNWRT
Now we need the following elementary lemma.

LEMMA 3.6. Let o € wll. Assume that there exists 3 € Rb" NwR™T, such
that o <., 8. Then there exists v € IINwR™, such that o <4 7.

2d ()

1812 (8Y, )

(16)

Proof of the lemma. Let 8 = 27611 n~7y be the decomposition of 3 in II.
Since 8 € wR(‘;, there exists v € 1IN wRS’ such that n, > 0. We see
moreover that 7 := Zyenanj nyy € wRT, and that 8 <, 7, which
concludes the proof of the lemma. O

Now suppose that there does not exist v € INwR™ such that ag <, 7.
Then by Lemma 3.6, no other 3 € RT NwR™ satisfies ag <., 3. Thus from
equation (16) we get that for all y in the segment between z — eafy and z,
003 |Gy — ¢'my](y) = 0, which contradicts the initial hypothesis on . We
conclude that there exists v € Il N wR™ such that ay <, . Again from
(16) we get
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» Tw(To)
(OAB/, xO) ’
where c¢; and ¢, are positive constants. But with the first part of Lemma 3.5
we have 7y (7yT0) = Tw(20)/ (7", ). Moreover, by our choice of g, we
have (v, z0) < |Y|w(ao,xo). Thus if ¢’ is sufficiently small we get
Das[GY — d'my)(x0) > 0
and a contradiction. The induction hypothesis for w follows.

Ouz[GY — ) (o) > c1emy (T To) — coC

Putting the third steps together now, we get the desired estimate of
Gy away from the walls. With Lemma 3.3, this concludes the proof of the
theorem. O

The preceding theorem has a very important consequence for us. Let F
be the Euler operator. It is defined for f regular, and = € a, by Ef(x) =
(z,Vf(z)). The following theorem generalizes the analogue result of [ABJ]
in the setting of symmetric spaces. Our proof is in a certain sense more
elementary than in [ABJ], because we do not make use of the descent
technique of Harish-Chandra.

The first claim of the theorem will be needed in the estimate of the
heat semigroup (Proposition 5.2). It will also be used in the study of the
asymptotic convergence of the Fy-processes (see [ABJ]). It will allow us in
[Scl] to generalize some results of Anker, Bougerol, and Jeulin [ABJ] for
all £k > 0. The second claim is just a technical result needed in the proof
of the estimate of the heat kernel (see Theorem 5.2).

Theorem 3.3. 1. There exists a constant K > 0 such that for any x € a,
0 < E[log(e’Fy)](z) < K .
2. We have the two following estimates:

E[log(e”Fo)] () =R+ 0 (1 + min, 1eR+(a w)) ’
1

1+ minaE'R+ (aa 3:) .

(log(epFo))(x) =

a§+ \/1—1- a x

Proof of the theorem. With formulas (3) and (9) we get, for any z € a5,

Go(wz)
E|log(e” Fy)] . 1
[log(e? Fo)] |W| w;y pr) = (pyum)] 2 s (17)
1. Formula (17) already proves the first inequality. For the second in-
equality we show by induction on the length I(w) of w € W that, for
all z € ay,

(p,l') - (pa ’UJ.’II) < Kll(w) max ‘(O&,’LU.’I?)| ’ (18)
aE’Ra'ﬁwR*
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where K’ = max acRE (p,a") is a constant. Suppose that the induc-
tion hypothesis is true for all w of length less or equal to [. Let
v € W be of length I + 1. Let a € IINWR™, and let w = ryv.
We have [(w) = [. Moreover since o € II, r, maps Ry NwRy onto
(R§ NvRy) ~ {a}. But for all z € a,

(P, 'T) - (p7 Ul‘) = (pv 1‘) - (p7 wx) - (a,vm)(p, O‘V) :
Thus (18) follows for v by using the induction hypothesis. Now with
Theorems 3.1 and 3.2, the first claim is proved.

2. These estimates result also from formula (17) and the global estimates
(Theorems 3.1 and 3.2) of Gy and Fy. The fact that |R{| is the limit
of E[log(e” Fy)](z) when (o, z) — oo for all a can be seen exactly like
in [ABJ] by expanding the functions F) in series. This finishes the
proof of the theorem. O

3.3 Estimates of the derivatives. In this subsection we estimate the
derivatives of the hypergeometric function G (z), first in z alone and next
jointly in (X, z).

PROPOSITION 3.2. Let p be a polynomial of degree N. Then there exists
a constant C such that, for any A € b and for any = € qa,

p (2) Ga(@)] < C(1+ N Fo(a)emeee Rwra),

Proof of the proposition. According to Proposition 3.1, we know that this
estimate holds with no derivative.

Step 1: Estimate away from walls. By induction, formula (4) allows us
to express on areg derivatives of GGy in terms of lower-order derivatives and
to estimate them away from walls. More precisely we obtain this way the

€

desired estimate when z stays at distance > Y] from walls.

Step 2: Estimate on faces. Assume that x lies in a face a! (of minimal
dimension), then (4) becomes (5), which can also be written

Oy CGa(x) = > ka&(a\(%x) — Ga(z))

1 — e (@)
aERT\R;
+(p+A,8)GA(z), (19)
where
Au1(€) =€+2 ) for(a,f)a,
a€ERy
Notice that the linear map A, 7 : @ — a is one-to-one, since the expression
(Au,r(€),6) = €7 +2 ) Po(a,6)?

a€ERy
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is strictly positive for all nonzero £. By induction, (19) yields the following
estimate: for every € > 0, there exists a constant C' > 0 such that, for all

multi-indices k, for all A € b and for z € a! such that min e g+ 5, |(, z)| >
T

|(;-%)KGA($)| < |,<;|!C|"~\ (1 + |>\|)|N\F0(x)emaxwew(w8‘b\,w). (20)

Step 3: Estimate near the faces. If z is near a face a!, we use (20)
and the Taylor development of G in the orthogonal projection of = on a!.
More precisely let € > 0 be such that Ce < 1, where C is the constant
appearing in (20). Then there exists a constant C' > 0 such that, for all

multi-indices £, for all A € h and for z € a at distance < +€| by from af,
such that min,cg+ g, [(,z)| > f\ll’
[(2)"Gr(x)| < C'(1 + |\) "™ Fo(a)emaxwew wiho), (21)

Step 4: Conclusion. Now we first use Step 3 near the origin. We get
€0 > 0 and Cy > 0, such that (21) holds (with Cj in place of C') for z € a

at distance < ﬁ from the origin. Then we use Step 3 near the faces of

dimension 1. We get ¢; and C; such that (21) holds for x € a at distance
< 1ﬁ>\| from any face of dimension 1, and at distance > ﬁ from the
origin. And like this we get successively, for each d € N, constants ¢; > 0
and Cj associated to the faces of dimension d. Eventually we conclude with

the first step. O

We can now derive the fundamental estimate:

Theorem 3.4. Let p and q be polynomials of degree M and N. Then
there exists a constant C such that, for all A\ € § and for all x € a,
M N
Ip (3%) 4 (35) Ga(@)] < C(1+[a]) ™ (1+ X)) " Fo(a)emas Rwho),
Proof of the theorem.  The proof is standard. Theorem 3.4 is deduced
from Proposition 3.2 using Cauchy’s formula. More precisely, one integrates
Gx(z) in the variable A over n-tori with radii comparable to ﬁ O

REMARK 3.2. This estimate holds true for F) too.

4 Hypergeometric Fourier Transform and Schwartz Spaces

We first recall the definitions of the hypergeometric Fourier transform and
of its inverse, according to Cherednik [C2]. Let p be the measure on a given
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du(z) = H ‘2sinh(%,w)|2k"dx.

aeRT
N

~

:::Szw)
The hypergeometric Fourier transform # is defined for nice functions f on
a by

~ [ H@6x(-a)duto), VA€, 22)
a
Let v be the asymmetric Plancherel measure on ia defined by

H (N @) + ko + 3kaso)T(— (N aY) + ko + 2kayo +1)

=c
weR (A 0Y) 4 2ka)T(— (A 0Y) + 3ko o + 1)

where c is a normahzlng constant. The inverse transform 7 is given for nice

functions h by

X,

I(h)(z) = / hNGA(@)dv(\), Vi €a. (23)
ia
In the case kK = 0, H and Z reduce to the classical Euclidean Fourier

transform

= /a f(z)e= Ao

FHh)(z) = 2r)™ [ h(N)eP®dx.
ia
We shall consider the following function spaces. The classical Schwartz
space on ia is denoted by S(ia). Its topology is defined by the semi-norms

() = sup (1+ )" [ () B

where p is any polynomial and N € N. As usual C¢°(a) denotes the space
of C* functions on a with compact support and C2°(a) the subspace of
functions with support in a given compact subset I'. Let us denote by C(a)
the space of C*° functions on g, such that for all polynomials p and all
N e N,

and its inverse

sup (1+ [a) “ Fo(z) * |p () £(@)] < +oo,

It is the Schwartz space on a associated to the measure u. Its topology is
defined by the semi-norms

opn(f) = iléla) (1+ |:10|)NF0(:1:)_1 p (2) f(@)].

Notice that according to Proposition 3.1, we may replace Fy(x) by e~ (pz™)
in the definition of C(a) and its topology. Let us recall that =™ is the only
point in the orbit W - z which lies in ay.
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LEMMA 4.1. 1. C(a) is a Fréchet space.
2. C(a) is a dense subspace of C(a).

Proof of the lemma. These facts are standard. The second one is proved
for example in [D], more precisely in Appendix A by M. Tinfou. O

Eventually, the Paley—Wiener space PW (h) consists of all entire func-
tions h on h which satisfy the following growth condition:

JR>0, YN eN, sup(1+A) e B™Ip()) < oo.
A€ED

Given a W-invariant convex compact subset I' in a, PWr(h) denotes the
subspace of PW (h) defined by the specific condition

VN e N, sup (1+ ]A) Ve " ™n()) < oo.
AED

Here (X) = supger (A, z) is the gauge associated to the polar of T'.

The mapping properties of the hypergeometric Fourier transform were
investigated by Opdam [O] and revisited by Cherednik [C1]. Here are two
main results:

(i) Paley—Wiener theorem: H and Z are (up to positive constants) inverse
isomorphisms between C¢°(a) and PW (h).
(ii) Plancherel type formula:
[ 1@g(-adu(o) = const- [ HFOYHIN)aw(N) .
a a
Opdam [O] eventually proved a more precise Paley—Wiener theorem: # and
Z map C(a) and PWr(h) into each other (and hence are inverse maps,
up to a positive constant), where I' is the convex hull of any W-orbit W -z
in a. The proof works as well for the polar sets
F={zecal(AT,z") <1}

where A is any regular element in a. We shall need this version of the
Paley—Wiener theorem with positive multiples of p.

We are now able to resume Anker’s approach [A2] in order to analyze the
hypergeometric Fourier transform in the Schwartz class. The following type
of result was already obtained by Delorme [D], following Harish-Chandra’s
strategy. On one hand, Delorme considers only W-invariant functions but,
on the other hand, he deals with the more difficult case where k£ < 0.

Theorem 4.1. The hypergeometric Fourier transform H and its inverse
T are topological isomorphisms between C(a) and S(ia).

Sketch of the proof. The proof is divided in two parts which correspond
to the following two lemmas. The first one is elementary.
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LEMMA 4.2. The hypergeometric Fourier transform H maps C(a) continu-
ously into S(ia).

LEMMA 4.3. The inverse transform T : PW (ia) — C¢°(a) is continuous for
the topology inherited from S(ia) and C(a) respectively.

Proof of the lemma. Let h € PW and f = Z(h). Given a semi-norm
0 = op N on C(a), we must find a semi-norm 7 on S(¢a) such that

op,N(f) < 7(h).
We denote by g the image of h by the inverse Euclidean Fourier transform
F 1. According to the Paley-Wiener theorems for the hypergeometric and
the Euclidean Fourier transforms, we have the following support conser-
vation property: supp(f) is contained in I', = {z € a | (p,zT) < r} if
and only if supp(g) C I'y. Let w; € C*°(a) such that w; = 0 inside I';_4,
w; = 1 outside I'j, and w; is uniformly bounded in j € N*, as well as each
derivative. Set g; = wjg, hj = F(g;) and f; = Z(h;). Here is a crucial
observation: we have g; = g outside I';, hence f; = f outside I';, by the
above support property. Let us estimate f = f; on I'j;1 \I';. First of all,
using Proposition 3.2, there exist N’ € N and C > 0 such that

sup (1 + |.’L‘|)NF0(.’L‘)_1 |p (8%) fj(a:)| < CjNTl,N/(hj).
z€lj41\T;

Next, by Euclidean Fourier analysis

N

v () < C Y sup (|z] + 1) [ Vig;(a)] .

=0 rea

Observe that g; and its derivatives vanish in I'; ;. Hence

NI
N7 (hy) < CZ sup (=] + 1)N+"+1|Vlg(x)| .
=0 rzeaxT'j_1

Again, by Euclidean Fourier analysis,
NI
N4n+1
Zsup (Jz| + 1) ‘Vlg(:v)‘ < Ctngnt1,nn(h).
=0 TEa
In summary, there exist N” € N and C > 0 such that, for every j € N*,
N _
sup (L4 |z]) " Fo(2) 7 [p (55) f(2)| < CTnsnsann(h).
el 1\T;
The remaining estimate of f in I'; is elementary. O
In the W-invariant setting, the hypergeometric Fourier transform and
its inverse may be written

H(O) = / F(@)F(—2)du(z)
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and
I0W) = [ MNP ()
where
dv'(X\) = const - H P(()\,QV)+ka+%ka/2)F( - aV)+ka+%ka/2) dA

aERt F((Aa aV) + %ka/Q)P( - ()\,Ozv) + %ka/Q)
= const - ¢(A\) " te(=A) LdA
is the symmetric Plancherel measure or Harish-Chandra measure (see [C2]).
We denote by C(a)" and S(ia)" the spaces of W-invariant functions of C(a)

and S(ia) respectively, which we identify also with their restriction to a;.
From Theorem 4.1 we get

COROLLARY 4.1. These transforms are topological isomorphisms between
C(a)" and S(ia)".
In this way we recover the main result of [D] in the easy case k£ > 0.

5 The Heat Kernel

5.1 Solution to the Cauchy problem. In this section we solve the
heat equation (with Cauchy data) for the Heckman—-Opdam Laplacian. We
follow essentially the presentation of Rosler [R6, §4], and refer to this article
for some proofs, which are identical in our setting. We denote by D the
modified Laplacian defined by

D=3(L- o).
The heat operator H is defined by

H=0,—-D

on C%1(axR). We consider the standard Cauchy problem: Given a contin-
uous bounded function f on @, find u € C*!(ax (0,+00))NC%(ax [0, +00)),
such that

{Hu:(), on a X (0,+00), (24)

u(+,0)=f.
DEFINITION 5.1. The heat kernel py(x,y) is defined for z,y € a and t > 0
by
play) = [ HOPIRG )G (). (25)
i
The heat semigroup (P, t > 0) is defined for f € C(a) and t > 0 by

N fap(my) Fy)dply) ift >0,
Fise) = {f(:v) ift=0.
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Using the hypergeometric Fourier transform and its inverse, we can

express the heat semigroup as follows
Pif =T(A s e s (OPHP21(£)(N)

and deduce its basic properties which are summarized in the following the-
orem (the analogue of Theorem 4.7 in [Rd]).
Theorem 5.1. 1. (P, t > 0) is a strongly continuous semigroup on C(a).

2. Let f € C(a). Then u(z,t) = P,f(z) solves the Cauchy problem (24).

As in the Dunkl setting, we show next that (P, ¢ > 0) can be ex-
tended to a strongly continuous semigroup on Cy(a) (the space of continu-
ous functions f : a — C which vanish at infinity, equipped with the norm
| floo = SUpgeq|f(x)]). Consider D as a densely defined linear operator on
Co(a) with domain C(a).
PROPOSITION 5.1. 1. The operator (D,C(a)) has a closure, which gener-
ates a Feller semigroup (T'(t), t > 0) on Cy(a).

2. T(t) coincides with P, on C(a).
Proof of the proposition. 1. In order to apply the Hille-Yosida theorem
(see [EK, Th.2.2,p.165]) we need to check the following two properties:

(a) Let f € C(a). Assume that zo is a global maximum of f. Then

Df(xo) <0 (this is the positive maximum principle).

(b) (uI — D)(C(a)) is dense in Cy(a) for some p > 0.

(a) follows from the explicit expression (1) of L. For (b) we prove with
Theorem 4.1 that (uI — D) maps C(a) onto itself for every y > 0. In fact
if f € C(a), then

o> + [AI?

1t = D) = (e ) mHw), reim,

2. The equality T'(t) f = P,f results from the uniqueness of the solution
to (24) within the class of all differentiable functions on [0, 0c) with values
in Cy(a) (see [R3]). m
COROLLARY 5.1. The heat kernel py(x,y) is positive on a x a x (0,00),
symmetric in (x,y), and satisfies the following properties:

1. For all z,y € a, for allt > 0 and all w € W, p(wzx, wy) = pi(x,y).
2. For allt > 0 and x € a, pi(z,-) € C(a).

3. Let f € Cy(a). Then
if
w( t) = Pof(x) = Jape(,y) f(y)du(y) ift>0
f(z) ift=0
is still a solution to the Cauchy problem (24).
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4. For allt >0 and all x € a, [ pi(z,y)du(y) = 1.

Proof of the corollary. The positivity property results from the last propo-
sition, which implies that P,f > 0 for any f € C(a) with f > 0. Thus (see
[RO]) pe(z,y) > 0 for all t > 0 and z,y € a, by continuity of p;(z, -). The
invariance of p; under the Weyl group results from the invariance of D when
RT is replaced by wR™T, for any w € W. The symmetry of p; results in the
same way from its invariance by —Id, and from formula (25). The second
and third assumptions are classical and result from basic properties of the
G (see [R9]). The last assumption results from the point 3 and the fact
that T(t)1 = 1 (because D is conservative, see [EK, p.166]). i

The W-invariant heat kernel p}' is defined for all z,y € a and ¢ > 0 by

pl (my) = Y pelw,wy) = i D pe(wz,u'y)

weW waw' €W

- / e 3PP By (2) Fy (—y)dv' (A).
a0

The W-invariant semigroup (P}, ¢ > 0) is defined for f € C(ay), € o}
and t > 0, by

PV i@ = [ p¥ @i widut), ite>0,
at

and P)Y f(x) = f(x). We have the analogue of Theorem 5.1. The generator

of (P, t > 0) is equal on C(a)" to the differential part D of D. The

analogue of Proposition 5.1 for D, is a consequence of Corollary 4.1 and

the following lemma. The second claim of this lemma will be used in [Scl].

LEMMA 5.1. The space C(a)" is dense in Cy(ay). Moreover if f € C°(ay),
there exists a sequence (u;); € C(ay)" which converges uniformly to f,
such that there exists a positive constant C' > 0, independent of j, such that
|Vu;(z)| < C for all x € ay, and if d(x,0a,) > 1/j, then |Auj(z)| < C,
whereas if d(x,0a;) < 1/3j, then |Au;(x)/j] < C.

Proof of the lemma. The density result is a consequence of the Stone—
Weierstrass theorem. However here we need more information, so we need
the usual technique of regularization by convolution with an approximate
unity. Let f € C(ay). We can extend it to a by W-symmetry, and we get
a function f which is symmetric, and Lipschitz. Let u be an approximate of
unity, which is a W-symmetric C* function, with compact support in the
unit ball, and with integral equal to one. Then we consider the sequence
of functions (u;); defined by u;(z) := faf(x —y)j"u(jy)dy for = € a.
It is classical to see that u; is C'°° and converges uniformly to f. Tt is
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also immediate that u; is W-symmetric. To see that it has the required
properties, observe that f is derivable (in the sense of distributions) with
a bounded derivative near the walls, and it is C*° away from the walls. O

We set hy(z) = pi(0,2) = Wl‘pl’V(O,m) for x € ay, and t > 0. We have
the formula

7
We will now prove that the heat kernel is in fact strictly positive. As usually

we will prove this fact by using a strong minimum principle. The result
may be found in [PW], but stated in a slightly different way. Thus we
include a proof.

h(z) = / e~ SN+ By (5)d/ (). (26)

LEMMA 5.2 (Strong minimum principle). Let tp € R. Let u €
C?(ax (tg,+00))NC(ax [tg, +00)). Assume that Hu > 0 on a x (tg, +00),
u > 0 on a x [ty,+00), and u(0,t) > 0, for all t > t;. Then u > 0 on
a x (tg, +00).

Proof of the lemma. Consider the ellipsoid
E: |z +9(t—t)> <.
Assume that © > 0 on E, and that u(z,,t.) = 0 for some (z,,t,) € OF,
with t+ > t9. By hypothesis, (z,t.) cannot be the north pole. Moreover
by reducing F if necessary, we can always suppose that it is the only point
in E N {t > to} where u vanishes. We shall perturb u in a small ball
B:lz—z? + (t —t,)? < €
with 0 < € < min (5|.], 3(t* — t)?). Consider the auxiliary function

w(z,t) =e " — ezl +1(t=t0)’},

Let us compute and estimate

Huw(z,t) = 2r{2r|x|2 —1+~(t—ty) — Z ko (a, ) coth (%, ) }
a€ERT
« o T{z?+7(t—t0)*}

This expression can be made strictly positive on B, by choosing r > 0
sufficiently large. The function v = u + ¢w

e is strictly positive on B\ E, since w > 0 outside of E;

e is equal to u on BN JE, since w vanishes on 0E;

e can be made strictly positive on 9BNE by choosing ¢’ > 0 sufficiently

small.

Thus the minimum v, < 0 of v on B is achieved at an inner point. There
0w =0, Vv =0, and Av > 0. Hence Hv < (0. But on the other side
Hv = Hu+ ¢ Hw > 0, and we have a contradiction. O
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From this lemma we can deduce

COROLLARY 5.2.  The heat kernel py(x,y) is strictly positive on
axax (0,+00).

Proof of the corollary. First we apply the preceding lemma, for the function
u(z,t) = he(z). We have simply to prove that h:(0) is strictly positive for
all ¢ > 0. This comes from formula (26). Moreover since the preceding
lemma may be applied for any ¢y > 0, we get that p;(x,0) > 0 for any ¢ > 0
and z € a. Suppose now that p;(z,y) = 0 for some z,y € a— {0} and ¢t > 0.
We have
pia) = [ pala, 2o 0)dn(a)
a

But as p is positive and continuous, this implies that p;/2(z,0)ps/2(0,y) = 0,
and we get a contradiction. O

REMARK 5.1. Since the space C(a) is dense in all the LP(a,u) spaces, for
p € [1,00), the Hille-Yosida theorem (cf. [EK]) assures that D is closable on
LP(a, 1) and generates a heat semigroup (T)(¢), ¢t > 0), which is strongly
continuous. Moreover, still by an argument of uniqueness in the Cauchy
problem, we see that T(") coincides with the preceding operator P on C(a).
And by continuity we see that T) is just the natural extension of P on
LP(a,p). It is equal for f € LP(a,u), z € a, and t > 0, to

T () = Pof (z) = / P, y) () duly) -

Obviously the same discussion applies in the radial situation (with D and
PW in place of D and P respectively).

5.2 Estimates and asymptotic of the heat kernel. In this subsec-
tion we establish a sharp global estimate of h; (Theorem 5.2) and an asymp-
totic of pr(z, \/Ty) when T — oo (Proposition 5.3). Let v := >acry kas
and as usual for z € a, we denote by 7 its conjugate in @;. A problem in
order to get global estimate of p; is that it is not a convolution operator.
Thus p;(-,-) cannot be simply expressed in terms of the function h(-).
Therefore the next theorem is only a partial result. A better one could be
obtained if we had a global estimate of the Dunkl kernel.

Theorem 5.2.  The following global estimate holds, for all t > 0 and
T Ea:

me) =75 [T (U @) (L4 4+ (o)) ")

aeRj o2
2t z
X 6_‘p| 5—(p,l‘+)— 2t
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Proof of the theorem. Thanks to Theorem 3.3, and the known expression of
the heat kernel associated to the Dunkl Laplacian [R6], we can use exactly
the same proof as in [AO]. In this proof use was made of the heat kernel
in balls of radius R > 0 with boundary conditions. This may be avoided
by using weak parabolic minimum (or maximum) principles for unbounded
domains, which hold also because the heat kernel vanishes at infinity. O

Our next result gives an equivalent of pr (a;,\/Ty) when T tends to
oo. This result will be needed in [Scl] for the proof of the convergence
of the normalized Fy-process. However since the proof is easier in the W-
invariant case, we begin by the analogous result for piV’ (a:, \/Ty) Then we
will simply explain what has to be modified in the non-invariant setting.
PROPOSITION 5.2.  There exists a constant K > 0, such that for any

x €0y and any y € a4,
‘2

ly n lp|2
Y (:c, \/Ty) ~ Ke*TT*§_|R0+|e_pTTF0(—x)FO (\/Ty) ,
when T — +o00.

Proof of the proposition. We resume the “analysis away from walls” carried
out in [AJ]. It consists in expanding F) in the heat kernel expression

P (@, VTy) = [ e FOPIDR (o) Py (V) (1) (27)
using the Harish—Chaner; series [HO]
Fa(y) = ) c(wX)e® =2 Y Ty (w)e™@v),
weWw qgeQ+
Recall that this expression holds for y € a;. Now we replace F) (\/Ty)
by its development in series in the integral (27). The properties of the

coefficients ¢, allow us to invert the integral term and the series (see [AJ]
for more details). Therefore we get

le|”
Pl (@, VTy) = 3° Byla,y)e = 0oV (28)
q€eQ™
where (using the W-invariance of v/ in \), for =,y € a,
Ey(z,y) =K | =2 WHOVTI By (—a)e (A, () ().
ia
Here K is a constant whose value may change in the sequel. We denote by
b’ the function defined by
A)
b’(\ Ld "(\) =d.
2G5 )

It is holomorphic in zero. Observe now that

198 ~TIA%_ — T2
W(Ta)e 2T = (= N)e 2,
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This formula comes from the fact that there are no skew symmetric poly-
nomials of strictly lower degree than |R§|. Thus the function Ey may be
rewritten as
By(e,) = K | e 50 (32) {OVTIR (o () .
ia

Then we make the change of variables v = ¥4 and we get

=
EO(%?/) 7PT (p’fy) NKF()( ) 7%|,0| (P,fy) Iy\ _gﬂ-(ﬁy)

X/ e%'UPF(v_y)/\/T(_:L‘)bI 1( )dU
in Fo(~x) vT

The preceding integral has a finite limit, independent of z and y, when T
tends to infinity. Thus using the known asymptotic behavior of Fj (Theo-
rem 3.1), we conclude that the first term of the series in (28) has the desired
asymptotic behavior. A similar study would show that the leading terms
are negligible. This concludes the proof of the proposition. O

PROPOSITION 5.3.  There exists a constant K > 0, such that for any
x € a, and any y € areg, if wy € a4, then

2
pr(a,VTy) ~ Ke 5 15 R 1e 5T Gy wa) By (VT)

when T — +00.

Proof of the proposition. The proof is similar to the preceding proposi-
tion. First we have pr (a:, \/Ty) = pr (ww,wﬁy). Then in the integral
expression of pp (wa:, w\/Ty), we replace G )\( — w\/Ty) by its development
in series. Since —wy € a_, we already know the dominant term of the
development. Indeed they were computed by Opdam in [O]: they are all
zero except one which is equal to m(\), up to a constant. But 7w(\)dv())
behaves like dv'()) in zero, i.e. like |m(X\)|?. Thus we can follow the rest of
the proof of the preceding proposition, and we get the result. O

5.3 The Poisson equation for D. Our sharp estimates of Theorem 3.4
allows us to prove

PROPOSITION 5.4. Let f € L'(a,u). Then the function Gf : =
I Pif (x)dt is finite p-a.e. If moreover F(f) € L'(ia,v), then Gf is
bounded, belongs to C%(a), and satisfies the Poisson equation DGf = —f.

Proof of the proposition. Let f € L'(a,u). For all z, and all € > 0, we
have

\Gf(w)|=‘ [ [ [ a0 a6Er nam e
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1 [e's} . ‘
/ Ptf(iv)dt‘ -l-C‘f‘l/ e slol? / 6_2)‘|2du(>\)‘dt,
0 1 ia

where C is a constant. But since for any ¢t > 0, P; is a contraction on L?,
we have therefore |P;f|1 < |f|1. Thus |f01 P, fdt|; < |fl1 < co. And then
p-a.e., |f01 Ptfdt‘ < o0o. Finally we get that p a.e. Gf < oo. This proves
the first claim of the proposition. Now let f € L!(a,u), be such that
F(f) € L'(ia,v). Then we have

Gf ()| < / F(HN /0 7 SO+ gy ()

<o [ ZHW 4y

ia [AI? + 1pf?

This shows that Gf is bounded. Moreover using a theorem of differ-
entiation under the integral, and our precise estimate of the derivatives of
the functions G, we see that Gf € C?(a) and satisfies DGf = —f. This
finishes the proof of the proposition. O

<
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