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Time-Frequency Jigsaw Puzzle: Adaptive
multiwindow and multilayered Gabor expansions

Florent Jaillet and Bruno Torrésani

Abstract— We describe a new adaptive family of multiwindow
Gabor expansions, which adapt dynamically the windows to the
signal’s features in time-frequency space. The adaptation is based
upon local time-frequency sparsity criteria, and also yields as by-
product an expansion of the signal into layers corresponding to
different windows. As an illustration, we show that using simply
two different windows with different sizes leads to decompositions
of audio signals into transient and tonal layers.

Index Terms— Gabor expansion, multiwindow, time-frequency
concentration, adaptivity, sparsity, entropy. EDICS: 2-TIFR
- Non-stationary Signals, Time-Frequency and Frequency-
Frequency Analysis

I. INTRODUCTION

Time-frequency representations [2], [7] provide simple and
efficient ways of representing signals. Among the various
available time-frequency representations, the discrete Gabor
transform (see [6] for a tutorial review of several aspects)
has received considerable attention, from both theoretical and
applied points of view. It essentially provides expansions of
signals as linear combinations of time-frequency atoms, with
fixed time and frequency “concentration” properties.

A classical problem in time-frequency analysis, and partic-
ularly in Gabor analysis, is that of adapting the representation
to the analyzed signal. Using sparsity criteria, we showed
that global adaptations do not make sense, except for very
simple one-component signals [9], [10]. In general, such an
optimization is possible only in limited regions of the time-
frequency plane (where signal components are isolated [9]).

The recently proposed multiwindow Gabor expansion (see
e.g. [16], [5]) offer more flexibility, by using several windows
in the same scheme. The inherent increase of redundancy
of the representation makes the analysis at the same time
more complex and richer, as it allows more flexibility in the
expansion of the signal (i.e. it provides many more different
ways to reconstruct the signal from coefficients). However, it
may be relaxed by a suitable (signal dependent) reduction of
the so-created dictionary of waveforms.

We describe here an adaptive way of reducing this dictio-
nary, by solving a “Time-Frequency Jigsaw Puzzle” problem:
pave the time-frequency plane with “super-tiles”, within which
the “locally optimal” Gabor expansion is retained. This is
performed by exploiting local (in time and frequency) sparsity
criteria, namely entropy-like measures. within a given region
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(super-tile) of the time-frequency plane, the time-frequency
atoms which yield maximally sparse signal representation are
retained. As a result, we obtain adaptive Gabor expansions,
together with a corresponding multilayered signal decompo-
sition, in which different layers are provided by different
windows.

The approach we develop here is in many respects similar to
the recently proposed schemes for nonlinear approximation in
dictionaries of waveforms (including among others matching
pursuit and orthogonal matching pursuit, basis pursuit,...).
However, the main difference here is that one of the goals
of our approach is to produce decompositions of signals into
significantly different layers, which leads us to use dictionaries
made out of unions of frames with significantly different
properties1.

II. MULTIWINDOW GABOR EXPANSIONS

A. Multiwindow and reduced multiwindow expansions

Let us start by briefly sketching the main features of Gabor
expansions that will be of interest for the present discussion.
Let g ∈ L2(R), g 6= 0, and b, ν ∈ R+, and consider the set of
functions

gmn = e2iπnνtg(t − mb) , m, n ∈ Z , (1)

naturally associated with the lattice L = bZ × νZ in the
time-frequency plane. It may be shown (see for example [3])
that for bν small enough, the family of time-frequency atoms
{gmn, m, n ∈ Z} constitute a frame in L2(R): there exist
constants 0 < A ≤ B < ∞ such that for all f ∈ L2(R),

A‖f‖2 ≤
∑

m,n∈Z

|〈f, gmn〉|
2
≤ B‖f‖2 .

It then follows from the general frame theory that there exist
inversions formulas for the coefficient map f ∈ L2(R) →
{〈f, gmn〉, m, n ∈ Z} ∈ `2(Z2), of the form

f =
∑

m,n∈Z

〈f, gmn〉hmn , (2)

for some “dual” function h. In general, such an inverse is far
from unique, which raises the question of finding the “optimal”
h for a given g (or conversely the optimal g for a given h.) The
canonical dual window, denoted hereafter by g̃, is obtained by
considering the inverse of the frame operator R, defined by

Rx =
∑

m,n∈Z

〈x, gmn〉gmn , (3)

1Such dictionaries may be used as well in matching pursuits and orthogonal
matching pursuits, but the application to multilayered signal decompositions
does not seem to have been considered in that context.
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in which case one has

g̃ = R−1g . (4)

It is a classical issue that for a given g, all corresponding
“Gaborlets” gmn have the same time-frequency concentration
properties (since they are time and frequency shifted copies
of each other, up to a phase factor), which is not necessarily
convenient for practical purposes. Multiwindow Gabor expan-
sions [16] were proposed as a simple alternative, providing a
way to adapt time-frequency resolution to the signal. We stick
here to a simple version.

Given R Gabor frames Fr = {gr
mn, m, n ∈ Z}, r =

0, . . . R−1 the system F = F0∪F1∪· · ·∪FR−1 is obviously
still a frame of L2(R). Any signal x may thus be reconstructed
from the coefficients

αr
m,n = 〈x, gr

mn〉 ,

such an inverse transform being far from unique (for example,
any weighted average of the individual expansions would
do the job, these being certainly not the most interesting
solutions). We shall rather be interested in (signal dependent)
reduced expansions [5], that involve limited number of (dual)
time-frequency atoms. We shall be concerned here with adap-
tive redundancy reduction algorithms.

Remark 1: simple multiwindow Gabor systems. A simple
way to generate such multiwindow Gabor systems is to start
from a reference Gabor frame F = {gmn, m, n ∈ Z}, with
corresponding time-frequency lattice L = bZ × νZ, generate
various dilated copies of the window g: gr(t) = α−r/2g(α−rt)
and adapt the time-frequency lattice Lr = αrbZ × α−rνZ

accordingly. While we shall stick to the simple case R = 2,
we develop the scheme below in the general case. Notice also
that many other variations are possible.

Remark 2: multilayered signal decomposition. One of the
goals of this work is to provide decompositions of signals
into layers, that are characterized by a few (large) coefficients
in one of the frames of the multi Gabor system. Before going
into the details of the proposed algorithm and the description
of the selection criteria, let us first describe a simple approach
to achieve this goal, in a simple situation. Suppose that,
starting from two Gabor frames for simplicity, some criterion
has selected two corresponding sets of time-frequency atoms
{g0

λ, λ ∈ Λ} and {g1
δ , δ ∈ ∆}, where Λ and ∆ are two subsets

of the index sets associated with g0 and g1. Assume that these
two sets are frames of the subspace of L2(R) they span; then
the corresponding frame operators, denoted by R0,Λ and R1,∆

and defined as follows: for x ∈ L2(R),

R0,Λx =
∑

λ∈Λ

〈x, g0
λ〉 g0

λ , R1,∆x =
∑

δ∈∆

〈x, g1
δ 〉 g1

δ (5)

are invertible on their ranges. Introducing the corresponding
dual time-frequency atoms2

γ0
λ = R−1

0,Λg0
λ , λ ∈ Λ , γ1

δ = R−1
1,∆g1

δ , δ ∈ ∆ , (6)

2In this paper, we shall reserve the “tilde” notation for canonical dual time-
frequency atoms constructed using the “full” frame operator R = R

Z2 , and
use another notation form frames defined in terms of subsets of the index
sets. Notice also that we have removed the explicit dependence on the index
set in the notation, so as to avoid too heavy notations.

we can build the orthogonal projection operators on the
subspaces spanned by the two frames: for all x ∈ L2(R),

P0,Λx =
∑

λ∈Λ

〈x, g0
λ〉 γ0

λ , P1,∆x =
∑

δ∈∆

〈x, g1
δ 〉 γ1

δ . (7)

Then, for all x ∈ L2(R), we can write

x = P0,Λx + P1,∆x + r , (8)

where r is some residual signal, equal (up to a minus
sign) to the orthogonal projection of x onto the intersection
Span({g0

λ, λ ∈ Λ})∩Span({g1
δ , δ ∈ ∆}). The latter equation

indeed provides a decomposition of the signal x into two
layers, plus some residual to be processed further: it may be
dispatched “democratically” into the two layers, or expanded
similarly into the two Gabor frames, starting from new suitably
adapted index sets Λ and ∆.

This approach is not the approach we follow below, mainly
for the following reason: it involves the computation of re-
stricted dual frames {γ0

λλ ∈ Λ} and {γ1
λδ ∈ ∆}, which is not

necessarily easy (nor numerically stable, see [5]) for arbitrary
index sets Λ and ∆. In addition, the explicit dependence of the
dual time-frequency atoms on the index sets makes it necessary
to recompute them at eact step if an iterative scheme is used to
process the residual, which yields high computational burden.

B. Adaptive redundancy reduction: TFJP1

Let us now state the reduction problem in terms of sparsity
requirements. We first introduce the sparsity criterion we shall
be using. For the sake of simplicity, we limit ourselves to a
finite version of a Rényi entropy, but let us point out that other
criteria (other Rényi entropies, or the Shannon entropy) may
be used as well (see [9], [14] for a discussion of this point).
We first choose α ∈ (0, 1). Given a finite vector u ∈ CN , with

norm ‖u‖ =
√

∑N−1
0 |un|2, we set

Rα(u) =
1

1 − α
log2

[

N−1
∑

n=0

(

|un|
2

‖u‖2

)α
]

. (9)

It is very easy to see that Rα is indeed a measure of sparsity,
as it is maximal for constant vectors (up to a phase factor),
and minimal for “Kronecker-like” vectors un = Cδn,n0 .

Let us start from a multiwindow Gabor expansion as before,
with windows g1, . . . gR, time-frequency lattices L0, . . .LR−1,
and corresponding canonical dual windows3 g̃1, . . . g̃R, we fix
A, B ∈ R+ large enough, and consider a reference tiling of
the time-frequency plane into rectangular “super-tiles”

R
2 =

⋃

s

�(s) (10)

where the super-tiles are defined by

�(s) = �k,n = [kA, (k + 1)A) × [nB, (n + 1)B) . (11)

We are interested into different pavings of these by time-
frequency atoms. For each time-frequency lattice Lr, let

3Notice that we use here the canonical dual windows, associated with the
full time-frequency lattices Z

2, thus avoiding the problems mentioned in the
previous section.
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Fig. 1. Two different lattices within a super-tile; the rectangular region is the
super-tile, the ellipses represent the “numerical” support of the time-frequency
atoms (say, the domain within which their spectrogram exceeds some fixed
threshold), and the dots represent their center, i.e. the time-frequency sampling
points.

Lr,s = Lr∩�(s) denote the subset of Lr included in the super-
tile �(s). An illustration of a super-tile and corresponding
pavings and sub-lattices may be found in Figure 1.

To any x ∈ L2(R), any window gr and any super-tile s,
associate the set of coefficients 〈x, gr

mn〉 corresponding to the
paving of super-tile s with atoms of type r: α(x, r, s) =
{〈x, gr

mn〉, m, n ∈ Lr,s}. Then, for each super-tile s, the
optimal window gr(x,s) and the corresponding entropy are
defined by

{

r(x, s) = arg minr=0,...R−1 H(α(x, r, s)) ,

H(x, s) = H(α(x, r(x, s), s)) .
(12)

Given x ∈ L2(R), let the first approximation be defined as

x(1) =
∑

s

∑

λ∈Lr(x,s),s

〈x, g
r(x,s)
λ 〉 g̃

r(x,s)
λ (13)

and the corresponding residual

R1(x) = x − x(1) . (14)

The procedure may then be iterated:

x(k) =
∑

s

∑

λ∈L(x,k,s)

〈Rk−1(x), g
r(x,k,s)
λ 〉 g̃

r(x,k,s)
λ , (15)

Rk(x) = Rk−1(x) − x(k) . (16)

where r(x, k, s) = r(Rk−1(x), s) corresponds to the window
selected at step k within the supertile s, and L(x, k, s) =
Lr(x,k,s),s denotes the corresponding time-frequency sampling
points.

At step K, we then obtain a telescopic expansion of the
signal into K approximation levels and a residual

x =

K
∑

k=1

x(k) + RK(x) , (17)

and the iteration stops when the residual is small enough.
Remark 3: convergence issues. The theoretical study of

the convergence of such a scheme turns out to be more
complex than that of matching pursuit type algorithms (see
e.g. [8]), the decision criterion being more complex itself.
Nevertheless, numerical illustrations shown below seem to
indicate exponential convergence for suitable choices of the
parameters (windows, sampling grids,...).

III. MULTILAYERED TIME-FREQUENCY DECOMPOSITION

We now change our point of view, and propose a different
way of analyzing the result of the method. For the sake
of simplicity, we limit the discussion to the case R = 2,
i.e. the case of multigabor systems with two windows only.
The extension to more than 2 windows is straightforward.
The iterative algorithm described above also yields directly
multilayered signal decompositions, as described below. In nu-
merical experiments, we shall limit ourselves to the particular
case of two identical windows, at two different scales: a wide
version and a narrow version. This choice is motivated by the
desire of decomposing audionumeric signals into “tonal” and
“transient” layers. In this spirit, the tonal layer of a signal is
defined as the “component” which admits a sparse expansion
with respect to a Gabor frame with high frequency resolution
(i.e. with a wide window), and the transient layer as the
“component” which admits a sparse expansion with respect
to a Gabor frame with high time resolution (i.e. a narrow
window).

A. Multilayered decomposition in the context of TFJP1

Given an expansion of the type (17), each approximation
level is itself expressed as a linear combination of Gabor
atoms with different window functions: setting, for ρ = 0, 1,
S(x, k, ρ) = {s : r(x, k, s) = ρ}, we may write

Rk(x) =

1
∑

ρ=0

∑

s∈S(x,k,ρ)

∑

λ∈L(x,k,s)

〈Rk−1(x), gρ
λ〉 g̃

ρ
λ , (18)

which rewrites as

x = `0(x) + `1(x) + RK(x) , (19)

where the remainder RK(x) is as before, and

`ρ(x) =

K
∑

k=1

∑

s∈S(x,k,ρ)

∑

λ∈L(x,k,s)

〈Rk−1(x), gρ
λ〉 g̃

ρ
λ . (20)

The layer `0(x) (resp. `1(x)) basically represents the “compo-
nent” of the signal x which is “well represented” (i.e. sparsely
represented) by the Gabor frame F0 (resp. F1). Actually, if
the two windows have sufficiently different characteristics (in
particular, time-frequency localization properties), the different
layers do indeed represent very significantly different compo-
nents of the signal. Numerical applications on audio signals
are shown below.

In the particular case of two windows, the flow chart of the
algorithm is given in Figure 2. Even though the description of
the algorithm may appear a bit “tricky”, we wish to point out
that its structure is in fact quite simple.

B. A simple variant: TFJP2

The approach described above treats all layers equally, in
the sense that at each iteration, the construction of the time-
frequency puzzle is followed directly by the simultaneous esti-
mation of corresponding contributions to all layers. However it
turns out that in such a scheme, the estimate of the tonal layer
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Fig. 2. Diagram of the proposed algorithm in the case of two windows. G0

and G1 represent the analysis maps for the two Gabor frames, and G̃0
p

and G̃1
p

represent the partial synthesis maps from the selected time-frequency atoms.
H represents the calculation of the entropy and the corresponding decision.

may be affected by the presence of the transient one, and vice-
versa. To avoid such shortcomings, it is possible to modify
slightly the algorithm, and only estimate a single layer at each
iteration. More precisely, assume for the sake of simplicity that
two windows are given. Given a signal x, the first step is still
given in the same way as (12)

{

r(x, s) = arg minr=0,1 H(α(x, r, s)) ,

H(x, s) = H(α(x, r(x, s), s)) ,
(21)

but the first estimate only takes into account the first window

x(1;0) =
∑

s:r(x,s)=0

∑

λ∈L0,s

〈x, g0
λ〉 g̃0

λ (22)

which also defined the corresponding residual

R
1
2 (x) = x − x(1;0) . (23)

The second window is then used to estimate the contribution to
the second layer: Equation (21) is used again, and the second
estimate reads

x(1;1) =
∑

s:r(R
1
2 ,s)=1

∑

λ∈L1,s

〈R
1
2 (x), g1

λ〉 g̃1
λ . (24)

The residual is then

R1(x) = R
1
2 (x) − x(1;1) = x − x(1,0) − x(1;1) . (25)

Again, the procedure may be iterated, taking the residuals Rk

as inputs: replacing x with Rk in Equations (21) to (24) yields
similarly

x(k;0) =
∑

s:r(Rk−1(x),s)=0

∑

λ∈L0,s

〈Rk−1(x), g0
λ〉 g̃0

λ (26)

x(k;1) =
∑

s:r(Rk−

1
2 (x),s)=1

∑

λ∈L1,s

〈Rk− 1
2 (x), g1

λ〉 g̃1
λ , (27)

and residuals

Rk− 1
2 (x) = Rk−1(x) − x(k,0) , (28)

Rk(x) = Rk− 1
2 (x) − x(k;1) . (29)

As a result, one obtains a telescopic series

x =

K
∑

k=1

(

x(k,0) + x(k,1)
)

+ RK(x) (30)

as well as two layers

`0(x) =

K
∑

k=1

x(k,0) (31)

`1(x) =

K
∑

k=1

x(k,1) , (32)

with the same interpretation as before.
As we shall see in Section IV, this variant has the advantage

of better avoiding boundary effects between adjacent super-
tiles in which different windows are chosen. It also yields
slightly better convergence.

C. Introducing significance test for sparsity: TFJP1b

The main idea of the above algorithms is to choose, within
each super-tile s, the window such that the resulting entropy
is minimal. However, the minimal entropy for a given super-
tile may happen to be quite large, meaning that for that
particular super-tile, even the “best” window was unable to
yield a sufficiently sparse description. In such situations, it
does not necessarily make sense to include the contribution
of the considered super-tile in one of the layers, an alternative
being to keep it inside the residual. We describe below this new
approach (TFJP1b) in the framework of the TFJP1 algorithm
(the modifications needed to adapt it to the TFJP2 algorithm
are straightforward).

For a given super-tile s, and corresponding values of en-
tropies H(α(x, r, s)), one has to decide whether or not those
values are significant (i.e. correspond to actual significant
signal component.) To avoid possible non-significant values,
we decide that the optimal window defined in (12) is accepted
only when the corresponding entropy is below some threshold
value. Given such a threshold τ ∈ R+, we simply replace (13)
and (14) with

x(1)
τ =

∑

s:H(x,s)≤τ

∑

λ∈Lr(x,s),s

〈x, g
r(x,s)
λ 〉 g̃

r(x,s)
λ (33)

R1
τ (x) = x − x(1) , (34)

and similarly for the rest of the algorithm. The multilayered
Gabor expansion may also be adapted accordingly, within the
scheme depicted in Figure 2. This now produces a decompo-
sition of the signal into three layers: the two previous ones,
and a residual.

Remark 4: choice of the threshold. In some specific ap-
plications, the threshold τ may of course be chosen by the
user. In a more general context, it may be desirable to choose
the value(s) of the threshold on statistical grounds, which
is however difficult, as it would require characterizing the
distribution of Shannon’s entropies computed from restrictions
of Gabor transforms to super-tiles.

In our numerical experiments to be discussed below, we
used the following procedure. The distribution of the entropies
was estimated (numerically) from Gabor coefficients of a
white noise reference signal. τ was then adjusted to a given
significance level (for example, 5%). In other words, at each
step of the iterative algorithm, super tiles were rejected (and
kept in the residual signal) when the corresponding value of
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Fig. 3. Glockenspiel test signal

entropy was too likely to have been produced by a Gaussian
white noise (considered the worst case signal, as far as spartity
is concerned). In such situations, the residual has no reason
to converge to zero, and may even contain interesting signal
which simply cannot be sparsely represented by the considered
systems of time-frequency atoms.

IV. NUMERICAL RESULTS

We present below a number of numerical experiments that
illustrate the behavior of the proposed algorithms from various
points of view: the speed of convergence of the iterative
algorithm, the speed of convergence of the approximations ob-
tained by retaining the largest coefficients, and an application
of the multilayered decomposition to speech processing.

In all the numerical experiments, we have limited ourselves
to one decision criterion: the Renyi entropy Rα, with α = 0.5
(see 9). Similar results are obtained with different criteria.

A. Convergence issues

In order to study the convergence of the proposed al-
gorithms, we tested them on three sample signals, which
represent different levels of difficulty for the algorithm:

• “SinDir”: a sum of a sine wave and a “Dirac” pulse
• “Noise”: realization of zero-mean, white noise (with

uniform pdf).
• “Glock”: real audio signal, namely a Glockenspiel signal,

displayed in Fig. (3).
These sample signals were tested in the following configura-
tions: two Gaussian windows of different size (and bandwidth)
were used:

• Experiment A, window sizes of 128 and 128× 5 = 640
samples.

• Experiment B, window sizes of 128 and 128×33 = 4224
samples.

In both experiments, the three supertile configurations were
tested:

• Configuration 11: the time-frequency super-tiles corre-
spond to 1 time sampling point with the wide window,
and 1 frequency sampling point with the narrow window.

• Configuration 33: the time-frequency super-tiles corre-
spond to 3 time sampling points with the wide window,
and 3 frequency sampling points with the narrow window
(as in Fig. 1).
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Fig. 4. Convergence of the TFJP1 algorithm in a few situations in experiment
A (window sizes of 128 and 640 samples respectively), for the three sample
signals (Noise, SinDir and Glock) in the three considered configurations (11,
33 and 55); Signal to Noise Ratio as a function of the number of iterations.
◦: Noise11; ×: SinDir11; +: Glock11; ∗: Noise33; �: SinDir33; �: Glock33;
∆: Noise55; B: SinDir55; ?: Glock55.

• Configuration 55: the time-frequency super-tiles corre-
spond to 5 time sampling points with the wide window,
and 5 frequency sampling points with the narrow window.

We first describe numerical results obtained with TFJP1.
As may be seen from Fig. 4 and Fig. 5, the convergence
is very satisfactory in all situations, a signal to noise ratio
larger than 100dB being obtained in less than 20 iterations.
The 11 configuration appears to yield slower convergence,
presumably because it is the one that produces the most
important boundary effects between supertiles (configurations
33 and 55 correspond to larger super-tiles, and therefore
produce less boundaries). Also, faster convergence is observed
in experiments B, i.e. when the two windows are more
significantly different (except in configuration 11). As may be
expected also, the “Noise” signal yields slower convergence,
because one does not expect it to have any sparse expansion
in the considered dictionary; similarly, faster convergence is
observed for the SinDir signal, which is specially taylored
for this algorithm. Notice that in Experiment B (larger “wide
window”), the numerical precision of the calculations (about
320 dB) is reached in less than 15 iterations (except for the 11
configuration, which seem less favourable, as stressed above).

Similar results for two versions of TFJP2 are displayed in
Figures 6 and 7. These two versions differ in the choice of
the window g0 which is used first. In Figure 6, g0 is the wide
window, and in Figure 7, g0 is the narrow window.

The main result is that the very first iterations provide better
accuracy in this situation. This is specially neat for the SinDir
and the Glock signal, less spectacular for the noise signal.
This effect is more pronounced in Figure 6 (wide window
used first). This is a consequence of the nature of the signals
(SinDir and Glock), in which the harmonic components have
larger energy than the transient ones.

We also compared the performances of TFJP1 and TFJP2
in terms of convergence of the approximation, again using a
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Fig. 5. Convergence of the TFJP1 algorithm in a few situations in experiment
B. Same legend as Fig 4.
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Fig. 6. Convergence of the TFJP2 algorithm in a few situations in experiment
B, with g0 the wide window. Same legend as Fig 4.
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Fig. 7. Convergence of the TFJP2 algorithm in a few situations in experiment
B, with g0 the narrow window. Same legend as Fig 4.
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Fig. 8. Comparison of TFJP1, TFJP2 and a “standard” Gabor representation
in terms of convergence of N -term approximations: SNR as a function of the
number of retained coefficients. Full black line: standard Gabor expansion;
dashed line: TFJP1; full gray line: TFJP2.

wide and a narrow Gaussian window. In addition to TFJP1,
two occurences of TFJP2 are considered: in the first one, g0

is the wide window and g1 the narrow one, and vice versa
in the second one. A first element of comparison is obtained
by looking at the time-frequency representations of the so-
obtained tonal and transient layers (not shown here). As may
be expected, the tonal components are better resolved in the
first case, while the transients are better resolved in the other
case. TFJP1 provides intermediate results.

To compare these versions, we also considered N -term
approximations, i.e. truncated sums

xN =
N−1
∑

n=0

αngin

n

where the considered atoms are chosen in such a way that
the corresponding coefficients are the N largest ones in
magnitude. We considered the Glockenspiel signal in Fig. 3,
and tested TFJP1 and TFJP2. We display in Fig. 8 the
corresponding values of the SNR as a function of the number
of coefficients used for the reconstruction. For the sake of
comparison, we also display the same quantity for a “standard”
Gabor representation, using a window of intermediate size.

As may be seen, for the same number of retained coef-
ficients, the SNR is larger by a few dBs for TFJP2. Both
TFJP1 and TFJP2 outperform the classical Gabor approach,
as long as the number of retained coefficients is not too
large. For larger number of coefficients, the result is different,
presumably because the TFJP methods involve twice more
atoms than the classical Gabor one.

B. Transient-Tonal decomposition

A natural field of application of the algorithm we just
described is provided by audiophonic signals, and the simulta-
neous estimation of transient and tonal layers (also considered
in [4], [13].) As explained above, the starting point is to
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define the tonal layer of a signal as the “component” which
admits a sparse expansion with respect to a Gabor frame
with high frequency resolution (i.e. with a wide window),
and the transient layer as the “component” which admits a
sparse expansion with respect to a Gabor frame with high time
resolution (i.e. a narrow window). As before, we considered
two windows: a wide window g0 and a narrow window g1 (in
fact two copies of a Gaussian window at different scales), and
considered the multilayered expansions of (19) and (20) for
various examples of audio signals.

We display in Figure 9 the time-frequency representations
of the two layers (transient and tonal) obtained by TFJP2 on
the Glockenspiel signal, and the time-frequency representation
of the complete signal. As may be seen on the three images,
the separation of the two components is extremely neat.
The corresponding waveforms are available on the web site
attached to this paper (see the conclusion).

To illustrate the decomposition into three layers (tonal,
transient and residual), we display in Figure 10 the results of
the decomposition obtained using TFJP1b on a speech signal:
the word /test/. Remarkably enough, the algorithm was
able to separate the different letters of the signal: the t are
captured by the transient layer, the e by the tonal layer, and
the s remain in the residual. However, such results turn out
to be quite sensitive to shifts of the super tiles. Therefore, a
systematic exploration of such approaches for speech signal
processing will require extra tuning effort, which we plan to
study in the future.

V. CONCLUSIONS, PERSPECTIVES

We have presented in this paper a new approach for
automatic selection of adapted Gabor signal representations,
starting for several “standard” Gabor expansions with different
window functions. This approach is quite general, and may be
adapted in various ways. We have also presented some of these
variations.

As a by-product, this approach also yields “multilayered”
representations for the signal under study, a layer being defined
as the “component” of the signal that is well represented by
a given type of Gabor functions.

Even though we have focused here on a few illustrations
on general audio and speech signals and transient/tonal sepa-
ration, we believe that such approaches possess a much wider
application range. To quote only a few of these, applications
to blind source separation or automatic speech segmentations
are examples of applications which we plan to address in the
near future.

Additional material, including additional figures, and sound
files, may be found on a companion web site:
http://www.cmi.univ-mrs.fr/˜torresan/papers/TFJP
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Fig. 9. Multilayered decomposition of the ”Glockenspiel” signal, obtained
using TFJP2. From top to bottom: time-frequency representations (spectro-
grams) of the original signal (with a “medium size” window), the estimated
transient layer (with the narrow window) and the estimated tonal layer (with
the wide window).
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Fig. 10. Multilayered decomposition of a short piece of speech signal:
/test/, obtained using TFJP1b. From top to bottom: waveforms of the
original signal, the transient layer, the tonal layer and the residual signal.
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