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Abstract

In this paper we consider the problem of reflexion and transmission of a high-frequency pulse at a rapidly
oscillating rough interface with general mixing properties. Using an asymptotic analysis based on a separation
of scale technique, corresponding to the paraxial (parabolic) scaling, the specular and speckle (diffusive)
components of the reflected and transmitted signals are precisely characterized. A critically scaled interface
is considered, in the sense that the amplitudes of the interface fluctuations and the central wavelength are
of the same order. If the correlation length of the interface fluctuations and the beam width are of the same
order, random specular components are observed for the reflected and transmitted wave, but no speckle
component. That is, the reflected and transmitted fields are to leading order confined essentially to the
specular cones and these fields exhibit relatively small random intensity fluctuations. The situation with a
correlation length smaller than the beam width leads to a specular homogenization situation so that the rough
interface can be approximated by an effective flat interface providing deterministic specular reflected and
transmitted paraxial wave cones. However, in this situation, there are now relatively broad cones (containing
the specular cones) where the wavefields form speckle patterns whose total energy is leading order and we
give the two-points correlation functions for these speckle patterns. We also present a central limit theorem
type result for the speckle patterns and show that they can be modeled as Gaussian random fields. These
descriptions allow the derivation of generalized Snell’s laws of refraction and transmission depending on an
effective scattering operator at the interface.

Keywords: wave propagation, random surface, wave scattering, generalized Snell’s laws, Gaussian speckle
pattern.

Introduction
Wave scattering by rough surfaces is at the heart of several branches of physics and engineering, and the
understanding of these phenomena is crucial for a wide array of disciplines including optics, solid state physics,
remote sensing, radar technology, environmental monitoring, communications, and non-destructive testing [4,
8, 19, 24, 26]. The interaction between waves and rough surfaces gives rise to a complex interplay of reflection,
transmission, and diffraction. When waves impinge upon a rough surface, they undergo scattering events due to
the irregularities in the surface profile. These scattering events lead to changes in the wave’s direction, amplitude,
and phase. Consequently, the study of wave scattering phenomena by rough surfaces involves unraveling the
intricate details of these interactions to predict and analyze the behavior of waves in practical scenarios. For
radar system for instance, electromagnetic wave scattering theory from rough surface is crucial to describe the
effects of the roughness of the land or the sea surface. In optics a similar theory can be deployed. For acoustic
waves, one can refer to applications in ocean acoustic tomography or thermometry, where the sea bed and sea
surface roughness play a critical role, but also in non-destructive testing using ultrasonic waves.

Despite the huge importance of this problem and the wide range of applications, there is a limited number
of rigorous results that characterize the wavefield either transmitted through or reflected from a rough interface
[1, 3, 18, 25]. A number of works in the physical literature consider a random interface problem in a perturbative
situation when the effect of small interface variations in the medium gives rise to relatively small corrections
in the transmitted and reflected wavefield. In this work we model the interface fluctuations as a random field,
enabling us to describe the transmitted and reflected field even though these are modified to leading order due
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to the presence of the random interface. The case of beam propagation with reflection from or transmission
through a rough boundary requires specialized techniques somewhat different from those associated with bulk
propagation. From the analytic viewpoint we here approach the problem from the point of view of separation
of scales in complex media. The basic configuration we consider is illustrated in Figure 1: a beam like wavefield

Source Incident 
wave

Reflected
wave

Transmitted
wave

Specular 
component

Diffusive
component

Figure 1: Illustration of the basic physical setup. A source illuminates a rough surface producing a reflected (in
red) and transmitted waves (in green). Both of these waves exhibit in general specular and diffusive components.
The diffusive components, the speckle, correspond to scattering of the incident wave by the rough interface.

(under the paraxial/parabolic scaling) illuminates a rough surface with the medium parameters being constant,
but different above and below the interface. The incident wave is then in general decomposed into a reflected wave
and a transmitted wave. We decompose these wavefields into two main components: the specular component
and the speckle, also called incoherent or diffuse component, generated by scattering. Some central questions
are then: i) how is the specular component modified by the presence of the fluctuations in the interface, ii) how
can we describe the speckle component of the wavefield and what governs its relative magnitude and support. It
turns out the the central scaling ratio that distinguishes various canonical scattering situations is the correlation
range or characteristic scale of variations for the interface relative to the beam width. Indeed this is the situation
in the critical scaling scenario considered here with the amplitude of the interface fluctuations being of the order
of the wavelength. In this paper we show in particular that if the interface spatial fluctuations happen on the
scale of the width of the probing cone, then the reflected and transmitted specular cones exhibit random arrival
time properties, but their main wave energy are confined to the specular cones as the interface fluctuations
does not generate strong coupling in between modes with different lateral wave number magnitude (traveling
in relative oblique direction). On the other hand if the interface spatial fluctuations happen on a scale small
relative to the width of the probing cone then such a coupling takes place generating homogenized specular
reflected and transmitted cones with frequency-depend attenuations related the interface elevation statistics.
The missing energy from these effective specular cones have been converted into wide speckle cones that carries
energy of relative order one total magnitude. In our situation the roughness of the interface is not strong enough
to generate the enhanced backscattering effects [20], the scattering operator we obtained is similar as the one
obtained in [28] under the Born (single scattering) approximation.

There is a quite large literature on the important rough surface or interface scattering problem. Most of
the literature deal with physically motivated expansions such as perturbative approaches or a Kirchhoff type
approximations giving strong conditions on the scaling regime that can be considered [2, 8, 22, 14, 24, 11, 32].
There are also much work related to integral equations formulations [10, 23, 31] in particular to describe near
field scattering [27]. Sophisticated numerical methods have been developed [6, 29] to understand wave scattering
from complicated geometries, here we are interested in the case when we only describe such geometries in a
statistical way. Note that homogenization techniques have been used to derive effective interface conditions
[13, 25] for random interfaces, while here our focus is additionally on the statistical description of the diffuse
components of the scattered field with the energy carried by the diffusive or speckle component may be of the
order of the energy carried by the specular component.

In the high frequency situation we consider family of characteristic scaling regimes depending on the magni-
tude of the beam width relative to the correlation radius of the interface fluctuations. A main technical challenge
then is that the standard theory for studying stochastic partial differential equations (SPDEs) [7] may not be
used since we assume stationarity of the interface height fluctuations and then the noise cannot provide an
Hilbert-Schmidt covariance operator. From this point of view the situation is then similar to that considered
in [9] where well-posedness of the white-noise paraxial (Ito-Schrödinger) equation was considered. However, in
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Figure 2: Illustration of the generalized Snell’s laws of refraction and transmission.

our situation the randomness is carried by the interface fluctuations rather than being bulk fluctuations and
we start with a description with finite scales and then take a scaling limit rather than taking as starting point
a white noise type of model. A second technical challenge in our context is that we also want to describe the
reflected wave, in addition to the transmitted wavefield. This is accomplished via an embedding type descrip-
tion parameterizing the wavefield in terms of a family of up- and down-propagating wave components. A third
technical challenge here is that the random interface depends on the ‘lateral’ variable, but not the ‘propagation’
variable so that the classic framework of diffusion approximation does not apply [12].

Our main focus here is to develop a novel framework that allows us to characterize precisely the statistics of
the diffusively scattered wave from rough interfaces in term of a Gaussian random field, both in transmission and
(radar) backscattering. We remark that such analytic frameworks can be used in remote sensing type imaging
problems: (i) imaging of the parameters of the rough (random) interface, (ii) imaging of an object hidden behind
the interface based on computing the empirical spectrum of the reflected speckle [16, 17, 21, 30]. The analysis
can furthermore be generalized to Synthetic Aperture Radar (SAR) probing scenarios where the source cone is
moving and in the typical case mounted on an aircraft. In general imaging contexts one may aim to exploit the
memory effect which means that the speckle pattern illuminating a hidden object is not completely changed,
but rather shifted a specific amount when the source incoming angle is shifted. One may further exploit weak
localization effects which means that the speckle in the direction of the illuminating wave cone is relatively high.
We further remark that in the context of polarimetric imaging schemes it is important to capture the coupling of
different polarization modes at the interface and how this depends on the interface statistics. Generalization to
such imaging configuration, the case with general hyperbolic systems [15] and the strongly fluctuating case with
the spatial scale of the interface fluctuations being large relative to the wavelength will be considered elsewhere.

The proposed analytic frameworks allow to derive from first principle of physics generalized Snell’s laws of
refraction and transmission illustrated in Figure 2. For an impinging wave with frequency ω, 2D slowness vector
k0 and incident angle θinc > 0, the refraction angle θref is given through the relation

tan(θref (p))
tan(θinc)

=

√(
1 + ξ

p · k0

cos2(θinc)

)2
+ ξ2(p · k⊥0 )2, with ξ = λ

lc

c20
π sin2(θinc)

, (1)

k⊥0 = (−k0,2,k0,1)T , and where λ corresponds to the central wavelength of the source and lc to the characteristic
scale of variations for the interface. In this formula, the scattered slowness vector p is distributed according to
the effective scattering operator

A(v, ω,p) :=
∫

E
[
eiωv(V (y)−V (0))]e−iωp·ydy, with v = 2 cos(θinc)

c0
,

involving the stationary random interface elevation V through the characteristic function of the relative elevation
V (y)− V (0). This effective scattering operator has already been derived in [28] to describe the mean intensity
of the diffusive reflected wavefield. Regrading the transmission angle, with θinc smaller than the critical angle,
the Snell’s law reads

sin(θtr(p))
c1

= sin(θinc)
c0

√√√√ Ξ
1 + sin2(θtr)

(
Ξ− 1

) with Ξ =
(

1 + ξ
p · k0

cos2(θtr)

)2
+ ξ2(p · k⊥0 )2, (2)
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where θtr corresponds to the specular transmission angle for a flat interface and given by the standard Snell’s law
sin(θtr)/c1 = sin(θinc)/c0. The scattered slowness vector p is distributed according to the effective scattering
operator A(v, ω,p) but this time for v = cos(θinc)/c0 − cos(θtr)/c1. The key parameter in both relations (1)
and (2) is the ratio λ/lc charactering how rough the surface is for the incident wave and the cone size of the
diffusive component. A surface is considered rough if λ ∼ lc, and for a relatively smooth surface λ/lc � 1, the
Snell’s relations read

θref (p) ' θinc + ξ tan(θinc)p · k0 and θtr(p)) ' θtr + ξ
tan(θtr)
cos2(θtr)

p · k0.

providing small deviations from the specular refraction and transmission angles of order λ/lc. Finally, for a null
incident angle θinc = 0, the above relations simply turn to

θref (p) = arctan
(λc0|p|

πlc

)
and θtr(p) = arctan

(λc1|p|
πlc

)
.

The outline of the paper is as follows. In Section 1 we describe the wave propagation scenario and the scaling
regime that we consider. In this section we moreover discuss mixing aspects in the statistical modeling of the
interface fluctuations. In Section 2 we discuss the basic wavefield decomposition in lateral Fourier (wave number)
modes and in up- and down- propagating components. We introduce this decomposition in the context of a flat
interface. This decomposition allow us moreover to identify refection and transmission conditions at the (flat)
interface which couple up- and down-propagating wave modes for each lateral wave number. In the next Section
3 we generalize this description to the case with a random interface. This then entails the identification of a
(random) scattering operator at the interface which captures the coupling of the up- and down-propagating wave
modes at the interface at different lateral wave numbers that is caused by the random interface fluctuations. In
Section 4 we dicuss the case when the interface fluctuations decorrelate at a scale corresponding to the width
of the probing cone, this is the regime when the specular cones carry essentially all energy. In Sections 5-7
we present the case when the interface fluctuations decorrelate on a scale small relative to the width of the
probing cone, but large relative to the wavelength. In this case the interface generates both specular cones and
additionally wide speckle cones. Finally, in Sections 8 and 9, as well as Appendices A and B, present detailed
proofs.

1 The physical model
The wave equation. In this paper we consider three-dimensional linear wave propagation modeled by the
scalar wave equation:

∆u− 1
c2(x, z)∂

2
ttu = ∇ · F (t,x, z) (t,x, z) ∈ R× R2 × R, (3)

equipped with zero initial conditions

u(t = 0,x, z) = ∂tu(t = 0,x, z) = 0 (x, z) ∈ R2 × R,

and continuity conditions at the interface that will be specified below. The coordinate z represents the main
propagation axis while x represents the transverse directions and F is the source. Here, the Laplacian operator
∆ = ∆⊥ + ∂2

zz acts on all spatial variables x and z. The propagation medium consists of two homogeneous
subdomains delimited by a randomly perturbed interface around z = zint:

D0 := {(x, z) ∈ R2 × R s.t. z < zint + σV (x/lc)} (4)

and
D1 := {(x, z) ∈ R2 × R s.t. z > zint + σV (x/lc)}. (5)

We refer to Figure 3 for an illustration of the physical setup. The term V corresponds to a mean-zero random
field, with second order derivatives, modeling the variations of the interface and characterizing its roughness.
Away from the interface the velocity field is given by:

c(x, z) :=
{
c0 if (x, z) ∈ D0,
c1 if (x, z) ∈ D1.

(6)
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Figure 3: Illustration of the physical setup. The plan z = 0 contains the source location, while z = zint is the
plan around which the rough interface between D0 and D1 takes place. The reflected wave will be observed at
z = 0, while the transmitted wave will be observed at z = ztr.

The forcing term
F (t,x, z) := Ψ

( t− k0 · x
T0

,
x
r0

)
δ(z)ez, (7)

where ez denotes the unit vector pointing in the z-direction, models a source located in the plane z = 0
and emitting a quasi plan wave Ψ in the spatial direction (k0,

√
c−2
0 − |k0|2) towards the random interface

(requirering |k0| < c−1
0 ). The divergence form of the source term in (3) is standard in linear acoustics where

u represents the pressure wave, see [12] for instance. This divergence form is considered here for mathematical
convenience, and other type of source term could be handled in a similar manner. Also, T0 represents the pulse
width and r0 the spatial beam width of the source term.

The wave equation (3) is naturally equipped with the two following continuity relations across the randomly
perturbed interface:

u(z = zint(x)+) = u(z = zint(x)−) and ∂zu(z = zint(x)+) = ∂zu(z = zint(x)−), (8)

where
zint(x) := zint + σV (x/lc).

The derivation of these two relations is provided in Appendix A. Finally, no wave is assumed to come from
above the source location nor below the interface. The only waves propagating into the system are produced by
the source term.

The parameter scaling. The approach considered in this paper is based on a separation of scale technique
for which the scales of interest are the following: the central wavelength λ (related to the pulse width through
the relation λ = c0T0), the spatial radius r0 of the source, the correlation length lc and the amplitude σ of the
fluctuations V , and finally the typical propagation distance that we denote L. We denote the distance from
the source to the interface by zint and the distance from the source to the plane where the transmitted wave is
recorded by ztr. Let L be a typical propagation distance with zint/L and ztr/L of order one and introduce the
dimensionless parameter

ε := λ

L
= c0T0

L
� 1.

We will consider a high-frequency regime with ε� 1 and, moreover, a paraxial (or parabolic) scaling by enforcing

πr2
0
λ
∼ L,

which corresponds to a Rayleigh length of order the typical propagation distance. In the homogeneous case the
Rayleigh length LR = πr2

0/λ corresponds to the distance from the beam waist to the place where the area of its
cross-section is doubled. The interface fluctuations are critically scaled so that the magnitude of the interface
fluctuations and the central wavelength are of the same order

σ ∼ λ.
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Finally, let lc be the correlation radius of the homogeneous and isotropic interface fluctuations, we consider then
situations where this radius ranges from the central wavelength to the beam width so that

λ . lc . r0.

We remark that if r0 � lc the situation is trivial and corresponds essentially to a planar interface. The ratio λ/lc
characterizes how rough the surface is for the incident wave, and will describe the cone radius for the reflected
and transmitted speckle components. A surface is considered rough if λ ∼ lc, and for a relatively smooth surface
λ/lc � 1. The situation with lc � λ gives a homogenization situation with an effective planar interface and
initial conditions, but no leading order random effects.

In what follows, for simplicity, we consider a dimensionless situation and set

L = LR ∼ 1, T0 = ε, r0 =
√
ε, σ = ε, and lc = εγ , (9)

with
γ ∈ [1/2, 1].

In the forthcoming analysis, a distinction will be made for γ = 1/2 (that is lc ∼ r0) and 1/2 < γ ≤ 1
(corresponding to λ . lc � r0). These two cases give different behaviors for the reflected and transmitted
signals. While the former produces only random specular components, the latter, due to fast oscillations of the
interface compared to the beam radius (lc � r0), produces a homogenization effect for the specularly reflected
and the transmitted wave components, as well as random speckles over cones larger than the ones covered by
the specular and transmitted components.

Random fluctuations. In (4) and (5), the random fluctuations of the interface delimiting the two subspaces
are defined by the mean-zero stationary random field V . These random fluctuations are assumed to satisfy
mixing properties describing the loss of statistical dependency for V over the interface. In our context, the basic
idea of mixing is the following. For a given set of locations x1, . . . ,xn ∈ R2, the corresponding values of the
field V (x1), . . . , V (xn) become independent as these locations are far enough from each other:

P(V (x1) ∈ A1, . . . , V (xn) ∈ An)→ P(V (x1) ∈ A1) · · ·P(V (xn) ∈ An), (10)

for any Borel set A1, . . . , An ⊂ R, as
min

j,l∈{1,...,n}
|xj − xl| → ∞.

This property is readily satisfied if V is a Gaussian random field with correlation function

R(x) = E[V (x + y)V (y)],

that decays to 0 as x → ∞. For more general random fields (non-necessarily Gaussian), the property (10) can
be formalized through the notion of α-mixing as follows. Introducing

α(r) := sup
S,S′⊂R2

d(S,S′)>r

sup
A∈σ(V (x),x∈S)
B∈σ(V (x),x∈S′)

|P(A ∩B)− P(A)P(B)|,

where
d(S, S′) = inf

s∈S
s′∈S′

|s− s′|

is the distance between two nonempty subsets S and S′, and σ(V (x), x ∈ S) is the σ-field generated by the
family V|S := (V (x))x∈S . Roughly speaking, the value α(r) quantifies the degree of statistical dependence
for the random field V over the pair of regions at distance at least r. The α-mixing situation corresponds to
assuming

α(r)→ 0 as r →∞, (11)

giving a vanishing of statistical dependency between V|S and V|S′ as the distance between S and S′ tends
to infinity. This notion of mixing is convenient to exhibit the homogenization phenomenon for the specular
components, the self-averaging property of two-point empirical correlation functions of the speckle components,
as well as the Gaussianity of the speckle patterns themselves.
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To articulate quantitatively the effect of mixing for physical quantities and their covariation it will also be
convenient to introduce a related measure, ρ-mixing, capturing coherence, or lack thereof, and which is defined
through

ρ(r) := sup
S,S′⊂R2

d(S,S′)>r

sup
V ∈L2(σ(V (x),x∈S))
W∈L2(σ(V (x),x∈S′))

|Corr(V,W )| with ρ(r)→ 0 as r →∞, (12)

Here, L2(A) stands for the set of A-measurable random variables with a finite second-order moment, and Corr
denotes the correlation coefficient between V and W :

Corr(V,W ) = Cov(V,W )√
V ar(V )V ar(W )

.

According to [5, Theorem 1]1, it turns out that

α(r) ≤ ρ(r) ≤ 2π α(r) r > 0, (13)

so that the notions of α- and ρ-mixing are equivalent. From the ρ-mixing property, the following lemma translates
the idea of (10) in a way that will be used in the forthcoming asymptotic analysis.

Lemma 1.1 Let n ≥ 1 and V be ρ-mixing, we then have:

1. For n bounded functions f1, . . . , fn: R→ C, and distinct x1, · · · ,xn ∈ R2

lim
η→0

E
[ n∏
j=1

fj

(
V
(xj
η

))]
= lim
η→0

n∏
j=1

E
[
fj

(
V
(xj
η

))]
=

n∏
j=1

E
[
fj
(
V (0)

)]
;

2. For n bounded functions g1, . . . , gn: R2 → C, y1, · · · ,yn ∈ R2, and distinct x1, · · · ,xn ∈ R2,

lim
η→0

E
[ n∏
j=1

gj

(
V
(xj
η

+ yj
2

)
, V
(xj
η
− yj

2

))]
= lim
η→0

n∏
j=1

E
[
gj

(
V
(xj
η

+ yj
2

)
, V
(xj
η
− yj

2

))]
=

n∏
j=1

E
[
gj

(
V
(yj

2

)
, V
(
− yj

2

))]
.

The detailed proof of this lemma is presented in Appendix B.

2 Reflection and transmission for an unperturbed interface
Before going into the analysis of the wave scattering at the random interface we describe in this section the
reflection and transmission mechanisms for an unperturbed interface. This serves in particular to introduce
central wave quantities and associated terminology in a simple setting, and then we will see below how this
generalizes in the random setting. This section is split into four parts dealing respectively with the incident
wave at the interface, the transmission and reflection conditions at the unperturbed interface, and then the
descriptions of the reflected and transmitted wave cones.

For the study of the reflection and transmission of the incident wave, we introduce the following specific
Fourier transform,

f̂ε(ω,k) :=
∫∫

f(t,x)eiω(t/ε−k·x/
√
ε)dtdx, and f(t,x) = 1

(2π)3ε2

∫∫
f̂ε(ω,k)e−iω(t/ε−k·x/

√
ε)ω2dωdk,

(14)
which is scaled according to the source profile (see (7) and (9)). In the Fourier domain, the wave equation (3),
with z ∈ (−∞, zint), turns into the following Helmholtz equation

∂2
z û

ε
ω(k, z) + ω2

ε2c20

(
1− εc20|k|2

)
ûεω(k, z) = ε2Ψ̂

(
ω,k− k0√

ε

)
δ(z), (15)

1The functions α and ρ in this present paper correspond to α∗ and ρ∗ in [5]
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where
Ψ̂(ω,k) :=

∫∫
Ψ(t,x)eiω(t−k·x)dtdx

corresponds to the unscaled Fourier transform of the source profile Ψ. In what follows, k-modes satisfying√
ε c0|k| < 1 are referred to propagating modes, and those satisfying

√
ε c0|k| > 1 are referred to evanescent

modes. To avoid unnecessary treatments of the evanescent modes during transmission at the interface, we
assume for convenience that

c1 < c0.

This assumption is only used for sake of simplicity of presentation. After some minor adaptations the results
presented in this paper hold true also for c0 < c1 and any k0 satisfying |k0| < c−1

1 to avoid the critical
transmission angle. Under proper assumptions on the source profile Ψ̂ (compactly supported in both variables
and bounded away from 0 with respect to ω), the source term only generates propagating modes into the medium
for ε small enough. In fact, setting

k = q + k0√
ε
, (16)

so that q lies in the support of Ψ̂, we have
√
ε c0|k| ≤

√
ε c0|q|+ c0|k0| < 1, (17)

for ε small enough and depending only on the support of Ψ̂.
For z ∈ (zint, ztr), the wave equation (3) in the Fourier domain turns into the following Helmholtz equation

∂2
z û

ε
ω(k, z) + ω2

ε2c21

(
1− εc21|k|2

)
ûεω(k, z) = 0. (18)

Throughout this paper, we denote with a slight abuse of notation

λεj(k) := 1
cj

√
1− εc2j |k|2, for

√
ε cj |k| < 1, j = 0, 1, (19)

the vertical lowness associated with (15) and (18). Note that the condition on k in (19) is readily satisfied
thanks to (17) and the assumption c1 < c0. In the forthcoming analysis, the following expansion will be used

1
ε
λεj(q + k0/

√
ε) = λj

ε
− k0 · q√

ε λj
− cjqTAjq +O(

√
ε) j = 0, 1, (20)

where qT stands for the transposition of q, and

Aj := 1
2(1− c2j |k0|2)3/2

(
1− c2jk2

0,2 c2jk0,1k0,2
c2jk0,1k0,2 1− c2jk2

0,1

)
= 1

2c3jλ3
j

(
I2 − c2j k⊥0 (k⊥0 )T

)
. (21)

Here, O holds uniformly with respect to q in the support of Ψ̂, and

λj :=

√
1− c2j |k0|2

cj
j = 0, 1. (22)

Moreover, I2 stands for the 2× 2 identity matrix, and k⊥0 := (−k0,2,k0,1)T .

2.1 The incident wavefield at the interface
Introducing the up- and down-going mode decomposition with respect to the z-direction, and remembering that
no wave is assumed to come from above the source location nor below the rough interface, the wavefield reads

ûεω(k, z) =
b̂ε0,ω(k)√
ωλε0(k)

e−iωλ
ε
0(k)z/ε 1(−∞,0)(z)

+
( âε0,ω(k)√

ωλε0(k)
eiωλ

ε
0(k)(z−zint)/ε + b̂ε,refω (k)√

ωλε0(k)
e−iωλ

ε
0(k)(z−zint)/ε

)
1(0,zint)(z)

+ âε,trω (k)√
ωλε1(k)

eiωλ
ε
1(k)(z−zint)/ε1(zint,∞)(z),
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Figure 4: Illustration of the up- and down-going mode amplitudes.

where b̂ε0,ω(k) corresponds to the amplitude of the up-going modes for z < 0, âε0,ω to the amplitude of the down-
going incident modes toward the interface, b̂ε,refω (k) to the amplitude of the reflected modes at the interface,
and âε,trω (k) to the amplitude to those transmitted at the interface (see Figure 4 for an illustration).

The amplitudes of the incident modes toward the interface are determined through the following jump
conditions across the plane z = 0. These conditions are produced by the source term in (15) and derived from
(82) in Appendix A:

ûεω(k, z = 0+)− ûεω(k, z = 0−) = ε2Ψ̂
(
ω,k− k0√

ε

)
∂zû

ε
ω(k, z = 0+)− ∂zûεω(k, z = 0−) = 0,

yielding

âε0,ω(k) =
ε2
√
ωλε0(k)
2 Ψ̂

(
ω,k− k0√

ε

)
eiωλ

ε
0(k)zint/ε, (23)

and
b̂ε0,ω(k) = −ε

2

2 Ψ̂
(
ω,k− k0√

ε

)
+ b̂ε,refω (k)eiωλ

ε
0(k)zint/ε.

Therefore, the incident wavefield at the interface can be written as

ûε,incω (k, zint) =
âε0,ω(k)√
ωλε0(k)

= ε2

2 Ψ̂
(
ω,k− k0√

ε

)
eiωλ

ε
0(k)zint/ε,

and as expected, the up-going modes b̂ε0,ω(k) are composed of a source component as well as the reflected part
of the wavefield at the interface.

2.2 Reflection and transmission at the interface
Denoting

ûε,refω (k, z) = b̂ε,refω (k)√
ωλε0(k)

e−iωλ
ε
0(k)(z−zint)/ε 0 < z < zint,

the reflected wavefield at the interface and

ûε,trω (x, z) = âε,trω (k)√
ωλε1(k)

eiωλ
ε
1(k)(z−zint)/ε z > zint,

the transmitted wavefield, the following continuity conditions across the interface z = zint are obtained from
(8) for V ≡ 0:

ûε,incω (x, zint) + ûε,refω (x, zint) = ûε,trω (x, zint),
∂zû

ε,inc
ω (x, zint) + ∂zû

ε,ref
ω (x, zint) = ∂zû

ε,tr
ω (x, zint).

9



These two conditions yield the system

âε0,ω(k)√
λε0(k)

+ b̂ε,refω (k)√
λε0(k)

= âε,trω (k)√
λε1(k)

,√
λε0(k)âε0,ω(k)−

√
λε0(k)b̂ε,refω (k) =

√
λε1(k)âε,trω (k),

with solutions
âε,trω (k) = 1

τε+(k) â
ε
0,ω(k) and b̂ε,refω (k) =

τε−(k)
τε+(k) â

ε
0,ω(k),

where

τε±(k) = 1
2

(√
λε0(k)
λε1(k) ±

√
λε1(k)
λε0(k)

)
. (24)

2.3 The reflected wave
From the above analysis, the reflected wave at the plane z = 0 can be expressed as

uε(t,x, z = 0−) = 1
(2π)3ε2

∫∫
ûε,refω (k, z = 0)e−iω(t/ε−x·k/

√
ε)ω2dωdk

= 1
(2π)3ε2

∫∫
e2iωλε0(k)zint/ε τε−(k)âε0,ω(k)

τε+(k)
√
ωλε0(k)

e−iω(t/ε−x·k/
√
ε)ω2dωdk

= 1
2(2π)3

∫∫
e2iωλε0(q+k0/

√
ε)zint/ε τ

ε
−(q + k0/

√
ε)

τε+(q + k0/
√
ε)
e−iω(t/ε−x·k0/ε−x·q/

√
ε)Ψ̂(ω,q)ω2dωdq,

where the last line is obtained after the change of variable k = q + k0/
√
ε, corresponding to the argument of Ψ̂

in (23). Considering the following position and time of observation

x = xobs,ref +
√
εy and t = tεobs,ref (y) := tobs,ref +

√
εk0 · y, (25)

where
xobs,ref := 2k0zint

λ0
and tobs,ref := 2zint

c20λ0
, (26)

with λ0 defined by (22), the asymptotic specular reflected wave is given by

Uref (s,y) := lim
ε→0

uε
(
tεobs,ref (y) + εs,xobs,ref +

√
εy, z = 0

)
= R

2(2π)3

∫
e−iω(s−y·q)Û0(ω,q, 2zint)Ψ̂(ω,q)ω2dωdq. (27)

Here, Uref corresponds to the asymptotic wave front observed in the frame of the source term at position xobs,ref
and time tεobs,ref (y). This travel time is influenced by the offset y since the beam width

√
ε is larger than the

pulse width ε and with the wave front traveling obliquely relative to the vertical direction. Note that xobs,ref is
twice the lateral position

xint := k0zint
λ0

, (28)

where the incident pulse hit the interface. Therefore, the standard reflexion relation reads

θinc = θ0
ref := arctan

( |k0|
λ0

)
, (29)

where the incident and reflected angle are equal. We refer to Figure 5 as an illustration of the geometrical
properties of the reflection.

Regarding the profile of the reflected wave, the reflection coefficient is given by

R := λ0 − λ1

λ0 + λ1
, (30)

and
Û0(ω,q, z) := e−iωzc0qTA0q, (31)

10



Figure 5: Illustration of the reflection and transmission in the context of a flat interface at z = zint. The source
is located at x = 0 in the plan z = 0, and the emitted wave hit the interface at x = xint, in the plan z = zint,
with an incident angle θinc. The reflected wave, with angle θ0

ref , is observed in the plan z = 0 at x = xobs,ref ,
while the transmitted wave, with angle θ0

tr, is observed in the plan z = ztr at x = xobs,tr.

where A0 is defined by (21). The term Û0 leads to the following homogeneous semi-group

Ǔ0(ω,y, z) := ω2

(2π)2

∫
eiωy·qe−iωzc0qTA0qdq, (32)

satisfying the Schrödinger type equation

i∂zǓ0(ω,y, z) + 1
k0,ω
∇y ·

(
A0∇yǓ0

)
(ω,y, z) = 0 z > 0,

where
Ǔ0(ω,y, z = 0) = δ(y) and k0,ω = ω/c0,

which is characteristic of the paraxial approximation. Due to the initial lateral direction k0, we do not have the
standard Schrödinger equation with a Laplacian term. Nevertheless, the standard Laplacian can be recovered
by sending this direction to zero. In the time domain, the function

U0(s,y, z) := 1
2(2π)3

∫
e−iω(s−y·q)Û0(ω,q, z)Ψ̂(ω,q)ω2dωdq, (33)

corresponding to the pulse profile in (27), satisfies the following paraxial wave equation

∂2
szU0 − c0∇y ·

(
A0∇yU0

)
= 0, with U0(s, z = 0,y) = 1

2Ψ(s,y). (34)

As a result, the reflecting wave by a flat (unperturbed) interface can be expressed as

Uref (s,y) = RU0(s,y, 2zint).

Under the paraxial wave model, this formulation corresponds to the travel of the emitted pulse from the source
location to the interface, and back from the interface to the source location (yielding the z = 2zint). The factor
R accounts for the reflection at the interface.

2.4 The transmitted wave
Following the same strategy as for the reflected wave, the transmitted wave observed at z = ztr reads

uε(t,x, z = ztr) = 1
(2π)3ε2

∫∫
ûε,trω (k, z = ztr)e−iω(t/ε−x·k/

√
ε)ω2dωdk

= 1
(2π)3ε2

∫∫
âε0,ω(k)

τε+(k)
√
ωλε1(k)

eiωλ
ε
1(k)(ztr−zint)/εe−iω(t/ε−x·k/

√
ε)ω2dωdk

= 1
2(2π)3

∫∫
eiω(λε0(q+k0/

√
ε)zint+λε1(q+k0/

√
ε)(ztr−zint))/ε

√
λε0(q + k0/

√
ε)

τε+(q + k0/
√
ε)
√
λε1(q + k0/

√
ε)

× e−iω(t/ε−x·k0/ε−x·q/
√
ε)Ψ̂(ω,q)ω2dωdq.

11



Using the expansion (20), we obtain the following asymptotic specular transmitted wave

U tr(s,y) := lim
ε→0

uε
(
tεobs,tr(y) + εs,xobs,tr +

√
εy, z = ztr

)
(35)

= T
2(2π)3

√
λ0

λ1

∫
e−iω(s−y·q)Û1(ω,q, ztr − zint)Û0(ω,q, zint)Ψ̂(ω,q)ω2dωdq,

with
xobs,tr := xint + xtr := xint + k0(ztr − zint)

λ1
, (36)

where xint is given by (28), the λj ’s by (22), and

tεobs,tr(y) := tobs,tr +
√
εy with tobs,tr := zint

c20λ0
+ ztr − zint

c21λ1
. (37)

Here, U tr corresponds to the wave front observed in the frame of the source term at position xobs,tr, and time
tεobs,tr(y). The time tobs,tr for the pulse to reach the plan z = ztr is the sum of the time to reach the interface
and the time to go from the interface to the plan z = ztr. Again, the term

√
εy in tεobs,tr(y) is due to the offset of

the observation position, which is large compared to the pulse width and with the wave front traveling obliquely
relative to the vertical direction. The lateral position xobs,tr, where the pulse hit the plan z = ztr, corresponds
to a sum of vectors, where the first one represents the lateral position where the pulse hit the interface, and
the second one the additional lateral displacement once the pulse goes through the interface and reaches the
plan z = ztr. We refer to Figure 5 as an illustration for the geometrical properties of transmission. From this
formulation, one has the Snell-Descartes law:

sin(θinc)
c0

= sin(θ0
tr)

c1
,

with θinc defined by (29), and

θ0
tr := arctan

( |k0|
λ1

)
. (38)

Regarding the pulse profile, the transmission coefficient is defined as

T := 2
√
λ0λ1

λ0 + λ1
,

so that we have the conservation relation R2 + T 2 = 1, and Û0 is defined by (31). The term Û1 is defined in the
same way:

Û1(ω,q, z) := e−iωzc1qTA1q, (39)
where A1 is defined by (21). Considering U1, defined as (33) with c1 and A1 instead of c0 and A0, and satisfying
the corresponding paraxial wave equation (34), the formulation (35) corresponds to the travel of the emitted
pulse from the source location to the interface, and from the interface to the plane z = ztr under the paraxial
approximation. The factor T accounts for the transmission at the interface.

3 The reflected and transmitted waves for a random interface
In this section, in presence of a random interface, explicit formulations for the reflected and transmitted waves
are derived following the strategies described for a flat interface. Along the interface

z = zεint(x) := zint + ε V
( x
εγ

)
,

the incident, reflected and transmitted waves, evolving in homogeneous spaces, can be written as

uε,inc(t,x, z) = 1
(2π)3ε2

∫∫
e−iω(t/ε−x·k/

√
ε) âε0,ω(k)√

ωλε0(k)
eiωλ

ε
0(k)(z−zint)/εω2dωdk 0 < z < zεint(x)

uε,ref (t,x, z) = 1
(2π)3ε2

∫∫
e−iω(t/ε−x·k/

√
ε) b̂

ε,ref
ω (k)√
ωλε0(k)

e−iωλ
ε
0(k)(z−zint)/εω2dωdk 0 < z < zεint(x),

uε,tr(t,x, z) = 1
(2π)3ε2

∫∫
e−iω(t/ε−x·k/

√
ε) âε,trω (k)√

ωλε1(k)
eiωλ

ε
1(k)(z−zint)/εω2dωdk z > zεint(x),
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yielding from (8) the two continuity relations along the random interface z = zεint(x):

uε,inc(t,x, zεint(x)−) + uε,ref (t,x, zεint(x)−) = uε,tr(t,x, zεint(x)+), (40)
∂zu

ε,inc(t,x, zεint(x)−) + ∂zu
ε,ref (t,x, zεint(x)−) = ∂zu

ε,tr(t,x, zεint(x)+).

Now, we perform some algebra consisting in taking the Fourier transform w.r.t. time, making the change of
variable k→ k0/

√
ε+ q (corresponding to the scaling of the source profile (23)) for all the terms of (40), then

considering the following approximation from (20),

λεj

(
q + k0√

ε

)
= λj +O(

√
ε) for j = 0, 1, (41)

and finally going back to the original variable q → k− k0/
√
ε. All these steps yield the continuity relations at

the leading order in ε:

1√
λ0
ǔε,incω (x, zint)eiωλ0V (x/εγ) + 1√

λ0
ǔε,refω (x, zint)e−iωλ0V (x/εγ) = 1√

λ1
ǔε,trω (x, zint)eiωλ1V (x/εγ),√

λ0ǔ
ε,inc
ω (x, zint)eiωλ0V (x/εγ) −

√
λ0ǔ

ε,ref
ω (x, zint)e−iωλ0V (x/εγ) =

√
λ1ǔ

ε,tr
ω (x, zint)eiωλ1V (x/εγ),

where

ǔε,incω (x, z) := ω2

(2π)2ε

∫
eiωx·k/

√
ε
âε0,ω(k)
√
ω

eiωλ
ε
0(k)(z−zint)/εdk,

ǔε,refω (x, z) := ω2

(2π)2ε

∫
eiωx·k/

√
ε b̂
ε,ref
ω (k)√

ω
e−iωλ

ε
0(k)(z−zint)/εdk,

ǔε,trω (x, z) := ω2

(2π)2ε

∫
eiωx·k/

√
ε â

ε,tr
ω (k)√
ω

eiωλ
ε
1(k)(z−zint)/εdk.

The expansion (41) is critical to identify the mode amplitudes âε,trω (k) and b̂ε,refω (k). In fact, the latter system
can be solved to provide at the leading order

ǔε,refω (x, zint) = R ǔε,incω (x, zint)e2iωλ0V (x/εγ),

ǔε,trω (x, zint) = T ǔε,incω (x, zint)eiω(λ0−λ1)V (x/εγ),

yielding for the reflection and transmission amplitudes in the Fourier domain:

b̂ε,refω (k) = εRω2

2(2π)2

∫∫
e−iωx′·(k−k′)/

√
εeiωλ

ε
0(k′)zint/εe2iωλ0V (x′/εγ)

×
√
ωλε0(k′)Ψ̂

(
ω,k′ − k0√

ε

)
dx′dk′,

âε,trω (k) = εT ω2

2(2π)2

∫∫
e−iωx′·(k−k′)/

√
εeiωλ

ε
0(k′)zint/εeiω(λ0−λ1)V (x′/εγ)

×
√
ωλε0(k′)Ψ̂

(
ω,k′ − k0√

ε

)
dx′dk′.

To get ride of the source profile scaling, we make the change of variables

k→ k0√
ε

+ q and k′ → k0√
ε

+ q′,

so that at the leading order in ε, using (20), the reflected and transmitted wave read

uε,ref (t,x, z = 0) ' R
2(2π)5ε

∫∫∫∫
e−iω(t−2λ0zint−x·k0)/εe2iωλ0V (x′/εγ)

× eiωq·(x−x′−xint)/
√
εeiωq′·(x′−xint)/

√
ε (42)

× Û0(ω,q, zint)Û0(ω,q′, zint)Ψ̂(ω,q′)ω4dωdx′dq′dq,
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Figure 6: Illustration of the reflection and transmission in case of a random interface with γ = 1/2. The travel
times of the reflected and transmitted waves are affected by the fluctuations V .

and

uε,tr(t,x, z = ztr) '
T

2(2π)5ε

√
λ0

λ1

∫∫∫∫
e−iω(t−λ0zint−λ1(ztr−zint))−x·k0)/εeiω(λ0−λ1)V (x′/εγ)

× eiωq·(x−x′−xtr)/
√
εeiωq′·(x′−xint)/

√
ε (43)

× Û1(ω,q, ztr − zint)Û0(ω,q′, zint)Ψ̂(ω,q′)ω4dωdx′dq′dq.

Here, the Ûj ’s are defined by (31) and (39), and xint (resp. xtr), representing the lateral position where the
incident pulse hit the interface (resp. the lateral displacement from xint to the location where the transmitted
wave is observed), by (28) (resp. by (36)).

Let us remark that the scattering operator, resulting from the random interface, is provided through the
following Fourier representation:

Kε(ω,q′,q) =
∫
eiω(q′−q)·(x′−xint)/

√
εeiωτV (x′/εγ)dx′, (44)

for a given frequency ω, and centered around xint with radius corresponding to the beam width
√
ε. This

operator described how an incident plane wave with lateral direction q′, supported by the source term Ψ̂, is
diffracted into a direction q. For both the reflected (42) and transmitted waves (43), the plane wave with
direction q′, propagate according to Û0(q′) under the paraxial approximation. Once it has been diffracted by
the surface, the reflected wave still propagates according to Û0(q), but the transmitted one propagates according
to Û1(q).

The remaining of the paper consists in describing the effective statistical behavior of this operator in the
high-frequency limit ε→ 0. The two cases,

γ = 1/2 and γ > 1/2,

are analyzed separately as they provide two different statistical behaviors for the reflected and transmitted
waves.

4 The case γ = 1/2
The case γ = 1/2 corresponds to a correlation length (of the interface fluctuations) and a beam width of the
same order. Since the wavelength is also assumed to be of order the strength of the fluctuations, it is natural to
expect a random arrival time for the reflected and transmitted waves, but no homogenization effect (see Figure
6 for an illustration). To describe mathematically this phenomenon on the reflected wave, the change of variable

x′ → xint +
√
εy′

is applied to (42), so that at the leading order the observed reflected wave reads

uε,ref (t,x, z = 0) ' R
2(2π)5

∫∫∫∫
e−iω(t−2λ0zint−x·k0)/εeiω(q′−q)·y′e2iωλ0V (xint/

√
ε+y′)

× eiωq·(x−xobs,ref )/
√
εÛ0(ω,q, zint)Û0(ω,q′, zint)

× Ψ̂(ω,q′)ω4dωdy′dq′dq.
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Figure 7: Illustration of the contributions to the reflected and transmitted waves observed at points xobs,ref+
√
εy

and xobs,tr +
√
εy respectively.

Here, the lateral position xobs,ref , at which the specular reflected wave is observed, is defined by (25), λ0 by
(22), and Û0 by (31). The fast oscillating components suggest to consider

Uε,ref (s,y) := uε,ref
(
tεobs,ref (y) + εs,xobs,ref +

√
εy, z = 0

)
(s,y) ∈ R× R2,

where tεobs,ref (y) is defined by (26) and corresponds to the expected travel time to observe the reflected wave at
the plan z = 0. The wave front Uε,ref is observed at the same lateral position and time frame as the specular
reflected wave for a flat surface, and for which we have the following result.

Proposition 4.1 The family (Uε,ref )ε converges in distribution in L2(R× R2) to

Uref (s,y) := R
2(2π)5

∫∫∫∫
e−iω(s−2λ0V(y′)−q·y)eiω(q′−q)·y′

× Û0(ω,q, zint)Û0(ω,q′, zint)Ψ̂(ω,q′)ω4dωdy′dq′dq,

where V is a random field with the same law as V .

The reflected wave front Uref consists in a superposition of contribution observed at point y. Each of
these contributions result in waves emitted with initial lateral direction q′, propagating according to Û0(q′),
and scattered into direction q at point y′ before propagating back according to Û0(q) (see Figure 7 for an
illustration). Note that the specular reflected component has still a beam width of order

√
ε, and the observation

point is still xobs,ref , meaning there is no significant perturbation of the specular reflected cone and angle θ0
ref

given by (29). Finally, at z = 0, a random time correction 2λ0V(y′) is observed for contributions scattered at
point y′. In Uref , the scattering operator

Kref (ω,q′,q) :=
∫
eiω(q′−q)·y′e2iωλ0V(y′)dy′ (45)

has the same law as εKε given by (44) (for τ = 2λ0) after proper centerings thanks to the stationarity of V :
for any ϕ,ψ ∈ S(R2), where S(R2) stands for the Schwartz class, the two random variables Kref (ω, ϕ, ψ) and
εKε(ω, ϕ, ψ) have the same law.

Proof (of Proposition 4.1) The wave front Uε,ref reads at the leading order in ε as

Uε,ref (s,y) ' R
2(2π)5

∫∫∫∫
e−iω(s−q·y)eiω(q′−q)·y′e2iωλ0V (xint/

√
ε+y′)

× Û0(ω,q, zint)Û0(ω,q′, zint)Ψ̂(ω,q′)ω4dωdy′dq′dq,

for which we have
lim
ε→0
‖Uε,ref‖L2(R×R2) = ‖Uref‖L2(R×R2) = R2 ‖Ψ‖L

2(R×R2). (46)

From this relation, it is enough to prove the convergence in S ′(R×R2) as a tempered distribution. Using (46),
the tightness is readily satisfied since for any ϕ ∈ S(R× R2)

lim sup
ε→0

∣∣〈Uε,ref , ϕ〉L2(R×R2)
∣∣ ≤ R2 ‖Ψ‖L2(R×R2)‖ϕ‖L2(R×R2).
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The convergence of the finite-dimensional distributions is obtained from the stationarity of V to remove the
argument xint/

√
ε, yielding for any n ≥ 1 and ϕ1, . . . , ϕn ∈ S(R× R2):

lim
ε→0

E
[ n∏
j=1

〈
Uε,ref , ϕj〉L2(R×R2)

]
= E

[ n∏
j=1

〈
Uref , ϕj〉L2(R×R2)

]
.

This concludes the proof. �

The transmitted wave, observed at the same lateral position and time frame as the specular transmitted
wave for a flat surface, reads

Uε,tr(s,y) := uε,tr
(
tεobs,tr(y) + εs,xobs,tr +

√
εy, z = ztr

)
, (s,y) ∈ R× R2,

where xobs,tr and tεobs,tr(y) are respectively defined by (36) and (37), and uε,tr by (43) at the leading order.
The asymptotic behavior of this transmitted wave front is provided by the following result, whose proof follows
similar lines as for the reflected wave and is therefore omitted.

Proposition 4.2 The family (Uε,tr)ε converges in distribution in L2(R× R2) to

U tr(s,y) := T
2(2π)5

√
λ0

λ1

∫∫∫∫
e−iω(s−(λ0−λ1)V(y′)−q·y)eiω(q′−q)·y′

× Û1(ω,q, ztr − zint)Û0(ω,q′, zint)Ψ̂(ω,q′)ω4dωdy′dq′dq,

where V is a random field with the same distribution as V .

The transmitted wave front U tr consists as well in a superposition of diffracted contributions observed at point
y. Each of these contribution results in waves emitted with initial lateral direction q′, propagating according
to Û0, scattered into direction q at point y′ when going through the interface, and then propagates according
to Û1 until it reaches z = ztr (see Figure 7 for an illustration). Again, the beam width of the transmitted wave
is still

√
ε, and the observation point is still xobs,tr, meaning there is no significant perturbation of the specular

transmitted cone and angle θ0
tr given by (38). Also, a random time correction (λ0 − λ1)V(y′) is observed for

contributions scattered at point y′. For the transmitted wave, the scattering operator reads

Ktr(ω,q′,q) :=
∫
eiω(q′−q)·y′eiω(λ0−λ1)V(y′)dy′, (47)

which has the same law as εKε given by (44) (for τ = λ0 − λ1) after proper centerings and thanks to the
stationarity of V .

5 The case γ > 1/2: homogenized specular reflected and transmitted
components

The case γ > 1/2 corresponds to a correlation length (of the interface fluctuations) smaller than the beam width.
The incident wave is therefore strongly scattered and homogenization phenomena take place.

In this section, the following reflected wave front is considered

Uε,ref (s,y, ỹ) := uε,ref
(
tεobs,ref (y) + εs,xobs,ref +

√
εy + εγ ỹ, z = 0

)
(s,y, ỹ) ∈ R× R2 × R2,

where uε,ref is given at the lead order by (42), tεobs,ref (y) and xobs,ref are defined respectively by (25) and (26).
The additional variable ỹ accounts here for variations at the scale of the correlation length. The asymptotic
behavior to Uε,ref is described by the following result.

Proposition 5.1 The family (Uε,ref )ε converges in probability in S ′(R× R2 × R2), the set of tempered distri-
butions, to the deterministic pulse profile

Uref (s,y) = R
2(2π)3

∫∫∫∫
e−iω(s−q·y)Û0(ω,q, 2zint)φV (2ωλ0)Ψ̂(ω,q)ω2dωdq

= RŨ0(s,y, 2zint).

16



Here,
φV (u) = E

[
eiuV (0)] (48)

is the characteristic function to V (0), Û0 is defined by (31). The function Ũ0 satisfies (34) with initial condition

Ũ0(s,y, z = 0) = 1
2Φ ∗s Ψ(s,y),

where ∗s is the convolution operator acting on the s-variable, and

Φ(s) := 1
2π

∫
e−iωsφV (2ωλ0)dω

corresponds to a scaled version to the probability density function of V (0).

Let us make some comments on the homogenized specular reflected wave front. First, the asymptotic profile
does not depend on ỹ, so that this homogenized limit does not depend on fluctuations at the scale of the interface
fluctuations. Second, through Ũ0, the impact of the interface fluctuations on the specular reflected wave can be
described as the reflection problem with a flat interface where the homogenized scattering property are captured
by the convolution in the initial condition Φ ∗s Ψ/2. Finally, compared to the case γ = 1/2, the scattering
operator (45) is now homogenized:

E[Kref (ω,q′,q)] =
∫
eiω(q′−q)·y′E

[
e2iωλ0V(y′)

]
dy′ = δ(ω(q′ − q))φV (2ωλ0).

This homogenized scattering operator acts as for a flat surface, it does not modify the incident direction q′,
and the effective contribution of the interface fluctuations produce only a low-pass filter in frequency through
the characteristic function φV . In this situation as well, the specular reflected component has a beam width of
order

√
ε, and the observation point remains xobs,ref . Therefore, there is still no significant perturbation of the

specular reflected cone and angle θ0
ref (29).

Proof (of Proposition 5.1) The proof is in two steps. The first step consists in evaluating the first order
moment of Uε,ref to identify the homogenized limit, and then the second order moment to prove the convergence
in probability thanks to the Chebyshev inequality.

Before evaluating the moment, let us make the change of variable

x′ → xint +
√
εy′ + εγ ỹ,

yielding at the leading order

Uε,ref (s,y, ỹ) ' R
2(2π)5

∫∫∫∫
e−iω(s−q·y)e2iωλ0V (xint/εγ+y′/εγ−1/2+ỹ)

× eiω(q′−q)·y′eiωq′ ·̃yεγ−1/2
Û0(ω,q, zint)Û0(ω,q′, zint)Ψ̂(ω,q′)ω4dωdy′dq′dq.

First order moment. Taking the expectation to Uε,ref and using the stationarity of the fluctuations yield

lim
ε→0

E[Uε,ref (s,y, ỹ)] = R
2(2π)5

∫∫∫∫
e−iω(s−q·y)E

[
e2iωλ0V (0)]eiω(q′−q)·y′

× Û0(ω,q, zint)Û0(ω,q′, zint)Ψ̂(ω,q′)ω4dωdy′dq′dq

= R
2(2π)3

∫∫∫∫
e−iω(s−q·y)E

[
e2iωλ0V (0)]

× Û0(ω,q, 2zint)Ψ̂(ω,q)ω2dωdq

= RŨ0(s,y, 2zint).
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Second order moment. At the leading order, the correlation function to Uε,ref reads

E[Uε,ref (s1,y1, ỹ1)Uε,ref (s2,y2, ỹ2)]

= R2

4(2π)10

∫
· · ·
∫
e−iω1(s1−q1·y1)e−iω2(s2−q2·y2)

× E
[
e2iω1λ0V (xint/εγ+y′1/ε

γ−1/2+ỹ1)e2iω2λ0V (xint/εγ+y′2/ε
γ−1/2+ỹ2)]

× eiω1(q′1−q1)·y′1eiω2(q′2−q2)·y′2

× Û0(ω1,q1, zint)Û0(ω1,q′1, zint)Û0(ω2,q2, zint)Û0(ω2,q′2, zint)

× Ψ̂(ω1,q′1)Ψ̂(ω2,q′2)ω4
1ω

4
2dω1dω2dy′1dy′2dq′1dq′2dq1dq2.

Using the stationary of the fluctuations together with Lemma 1.1 yields

lim
ε→0

E
[
e2iω1λ0V (xint/εγ+y′1/ε

γ−1/2+ỹ1)e2iω2λ0V (xint/εγ+y′2/ε
γ−1/2+ỹ2)]

= lim
ε→0

E
[
e2iω1λ0V (y′1/ε

γ−1/2+ỹ1)e2iω2λ0V (y′2/ε
γ−1/2+ỹ2)]

= lim
ε→0

E
[
e2iω1λ0V (y′1/ε

γ−1/2+ỹ1)]E[e2iω2λ0V (y′2/ε
γ−1/2+ỹ2)]

= E
[
e2iω1λ0V (0)]E[e2iω2λ0V (0)],

so that
lim
ε→0

E
[〈
Uε,ref , ϕ〉2S′,S ] = E

[〈
Uref , ϕ〉S′,S ]2,

which concludes the proof. �

The same strategy applies for the transmitted wave front

Uε,tr(s,y, ỹ) := uε,tr
(
tεobs,tr(y) + εs,xobs,tr +

√
εy + εγ ỹ, z = 0

)
(s,y) ∈ R× R2 × R2,

where uε,tr is given at the leading order by (43), and xobs,tr and tεobs,tr(y) are respectively defined by (36) and
(37). The asymptotic behavior for Uε,tr is described by the following result.

Proposition 5.2 The family (Uε,tr)ε converges in probability in S ′(R × R2 × R2) to the deterministic pulse
profile

U tr(s,y) = T
2(2π)5

√
λ0

λ1

∫∫∫∫
e−iω(s−q·y)Û1(ω,q, ztr − zint)Û0(ω,q, zint)

× φV ((λ0 − λ1)ω)Ψ̂(ω,q)ω2dωdx′dq,

where φV is defined by (48), the Ûj’s by (31) and (39).

The proof of this result is omitted as it is similar to the one of Proposition 5.1. Note that the profile U tr is
similar to the one obtained for a flat surface (35) with a convolved initial condition traducing homogenization
effects of the highly oscillating rough interface. Similarly to the reflected wave the scattering operator (47)
becomes

E[Ktr(ω,q′,q)] =
∫
eiω(q′−q)·y′E

[
eiω(λ0−λ1)V(y′)

]
dy′ = δ(ω(q′ − q))φV ((λ0 − λ1)ω)

as a result of the homogenization. Thus, φV accounts for the homogenized diffraction effects for transmission
by playing the role of a low-pass filter in frequency, while the Dirac mass articulates that the incident direction
q′ is not affected. As for the reflected wave, the specular transmitted component observed at point xobs,tr has
still a beam width of order

√
ε. Therefore, there is no significant perturbation of the specular transmitted cone

and angle θ0
tr (38).

6 The case γ > 1/2: incoherent wave fluctuations for the nonspecular
reflected contributions

From the homogenization phenomena described in the previous section, an effective frequency-dependent atten-
uation is observed on the specular components through φV . This section aims at describing how the scattering
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phenomena produce incoherent wave fluctuations accounting for the missing energy carried by the specular
components.

In this section, the following reflected wavefield, referred to as the speckle profile, is analyzed:

Sε,ref (s̄, ȳ,y, s̃, ỹ) := ε−2(γ−1/2)uε,ref (tεobs,ref (s̄, ȳ,y, ỹ) + εs̃,xεobs,ref (ȳ,y) + εγ ỹ, z = 0), (49)

where
xεobs,ref (ȳ,y) := xobs,ref + ε1−γ ȳ +

√
εy, (50)

and
tεobs,ref (s̄, ȳ,y, ỹ) := tobs,ref + ε1−γk0 · ȳ +

√
εk0 · y + εγk0 · ỹ + ε2(1−γ)s̄. (51)

The proof of Proposition (6.1) below is implemented in a way that justifies the scaling in (49-51). Tracking the
scales of interest throughout this derivation allows to provide physical interpretation of these scalings.

Recalling (9), the wavefield uε,ref is observed around the observation location xobs,ref (the position to observe
the specular reflected component), but now on a neighborhood of order

r2
0

lcL
∼ λ

πlc
∼ ε1−γ

through the ȳ-variable. The radius of the region over which the reflected speckle can be observed is of order the
roughness parameter λ/lc. We will see below that this radius is additionally proportional to the distance from
the source plan to the interface. Note that this neighborhood is larger than the beam width (of order

√
ε) since

γ > 1/2, and can be of order one for γ = 1. The variables y and ỹ account for variations at the scale of the
beam width as well as fluctuations of order the correlation length respectively (see Figure 8 for an illustration).
The time scale under consideration is around the travel time tobs,ref , with three corrections depending on the
observation offsets (ȳ, y, and ỹ), and lying in a time window larger than the pulse duration (of order ε). This
time window, described through the variable s̄, is of order

r2
0λ

l2cL
∼
( λ
lc

)2
∼ ε2(1−γ),

the square of the roughness parameter. The s̃-variable in (49) accounts for fluctuations at the scale of the pulse
width. Finally, the amplitude of the speckle profile is of order

l2c√
λLr0

∼
( lc
r0

)2
∼ ε2(γ−1/2)

leading to the large amplitude factor ε−2(γ−1/2) � 1 in (49). Note that the more we increase γ the wider is
the area around xobs,ref where we can observe the speckle pattern, while its magnitude is reduced. The order
of magnitude of the speckle can be understood as spreading a beam of order r0 over a two dimensional spatial
window of order r2

0/lc. Therefore, it is indeed expected that we observe a speckle of order( r0

r2
0/lc

)2
∼
( lc
r0

)2
∼ ε2(γ−1/2).

This section aims at describing the asymptotic behavior of the two-point statistics and intensity of Sε,ref and
the self-averaging properties that are exhibited by these quantities. The expectation of Sε,ref will be discussed
in Section 6.2, where the asymptotic of the speckle itself is characterized as a mean-zero Gaussian random field.

6.1 Correlation and intensity functions.
The above scalings in ε of the speckle profile Sε,ref can be naturally justified through a careful analysis of its
correlation function. This correlation function is defined as the product of Sε,ref at two nearby points:

Cε,ref (s̄, ȳ,y, s̃1, ỹ1, s̃2, ỹ2) := Sε,ref (s̄, ȳ,y, s̃1, ỹ1)Sε,ref (s̄, ȳ,y, s̃2, ỹ2), (52)

with associated intensity given by

Iε,ref (s̄, ȳ,y, s̃, ỹ) :=
∣∣Sε,ref (s̄, ȳ,y, s̃, ỹ)

∣∣2 = Cε,ref (s̄, ȳ,y, s̃, ỹ, s̃, ỹ).

The following result characterizes the asymptotic mean correlation function.
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Specular
reflection

Location of the 
specular component

Location where
the speckle profile 
is analyzed

Figure 8: The left picture illustrates the zone where the speckle profile can be observed (in light gray) compared
to the specular reflection component (in gray). The right picture illustrates the spatial windows over which the
speckle profile is analyzed.

Proposition 6.1 We have

lim
ε→0

E
[
Cε,ref (s̄, ȳ,y, s̃1, ỹ1, s̃2, ỹ2)

]
= Cref (s̄, ȳ, s̃1 − s̃2, ỹ1 − ỹ2), (53)

in S ′(R× R2 × R2 × R× R2 × R× R2), where

Cref (s̄, ȳ, s̃, ỹ) := R2

4(2π)3

∫∫
e−iω(s̃−p·̃y)A(2λ0, ω,p)|Ψ̂|22(ω)δ(s̄−zintc0pTA0p)δ(ȳ−2zintc0A0p)ω4dωdp, (54)

with
A(v, ω,p) :=

∫
E
[
eiv(V (y′)−V (0))]e−iωp·y′dy′, (55)

and
|Ψ̂|22(ω) := 1

(2π)2

∫
|Ψ̂(ω,q)|2dq. (56)

The proof of Proposition (6.1) is postponed to Section 8.1. In this result Cref (s̄, ȳ, s̃1− s̃2, ỹ1− ỹ2) corresponds
to the mean correlation function at two nearby points in s̃, ỹ, and showing asymptotic stationarity w.r.t. these
variables. This correlation function does not depend on the variable y (corresponding to variation at the beam
width scale), meaning the two point statistics are identical over regions of order the beam width. In a similar
manner, the mean intensity carried by the speckle profile is given by

lim
ε→0

E[Iε,ref (s̄, ȳ,y, s̃, ỹ)] = Cref (s̄, ȳ, 0, 0),

which does not depend on the variable y and the small scale fluctuations in s̃ and ỹ (evolving at respectively
the scale of the pulse width and correlation length). The intensity is therefore uniform over these scales.

In (54), the spatial window is larger than the beam width, and the contribution of the source in (54) is
integrated over the supported lateral directions (see (56)). The term A(·, ω,p) corresponds to the distribution
of scattered directions p produced by the random interface, for components at frequency ω, and are related to
variations at the scale of the correlation length through y′. From the Dirac masses in (54), the resulting speckle
can be observed for a given direction p at position

ȳ = yrefp := 2zintc0A0p,

and corresponding time
s̄ = srefp := p · yrefp /2 = zintc0pTA0p ≥ 0.

This latter time is nonnegative recalling (21). These two quantities depend on the distance zint from the source
term to the interface location. This distance influence therefore the cone size of the reflected speckle and the
time widow to observe its evolution.
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Figure 9: Illustration of the incident angle θ0
inc (dash-dot line) and the reflected angle θref (p) ∈ (0, π/2) for

γ = 1 and p = β1k0 + β2k⊥0 with (β1, β2) = r (cos(ϕ), sin(ϕ)).

Generalized Snell’s law of refraction After some algebra, one can generalize the standard reflection relation
between the incident and reflected angle (29) as follows. For a given frequency ω and nonnull slowness vector
k0, (θinc > 0), we have

tan(θref (p))
tan(θinc)

= |xint + ε1−γyrefp |
|xint|

=

√(
1 + ξε

p · k0

cos2(θinc)

)2
+ ξ2

ε (p · k⊥0 )2, ξε = ε1−γ c20
sin2(θinc)

(57)

for p distributed according to the scattering operatorA(2λ0, ω, ·), which corresponds to (1). The case γ ∈ (1/2, 1)
yields the perturbation formula

θref (p) = θinc + ξε tan(θinc)p · k0 +O(ε2(1−γ)|p|2).

We refer to Figure 9 for an illustration of θref (p) when γ = 1, that is in the context of a rough interface λ ∼ lc.
For null slowness vector k0, (θinc = 0), the refraction formula is simply given by tan(θref (p)) = ε1−γc0|p|, that
is

θref (p) = arctan(ε1−γc0|p|).

The following result describes the statistical stabilization of Cε,ref as ε→ 0. In other words, when correlating
the speckle profile at two nearby points w.r.t. the variables s̃ and ỹ, its limit, in the high-frequency regime
ε→ 0, becomes deterministic and corresponds to the mean correlation function given in Proposition 6.2.

Proposition 6.2 We have

lim
ε→0
Cε,ref (s̄, ȳ,y, s̃1, ỹ1, s̃2, ỹ2) = Cref (s̄, ȳ, s̃1 − s̃2, ỹ1 − ỹ2)

in probability in S ′(R× R2 × R2 × R× R2 × R× R2), where the deterministic limit Cref is defined by (54).

The same result holds for the intensity function, which also converges in probability in S ′(R×R2×R2×R×R2):

lim
ε→0
Iε,ref (s̄, ȳ,y, s̃, ỹ) = Cref (s̄, ȳ, 0, 0).

The proof of Position 6.2 is provided in Section 8.2.

6.2 Statistics of the incoherent wave fluctuations
A precise analysis to the statistics of the reflected speckle profile is provided in the Fourier domain at the scale
of the pulse width and correlation length through

Ŝε,ref (s̄, ȳ,y, ω,p) := ε−2(γ−1/2)
∫∫

eiω(s̃−p·̃y)uε,ref
(
tεobs,ref (s̄, ȳ,y, ỹ) + εs̃,xεobs,ref (ȳ,y) + εγ ỹ

)
ds̃dỹ.
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where xεobs,ref and tεobs,ref are respectively given by (50) and (51). As described by (54), the position and time
where we observe the incoherent wave fluctuations away from the position of the specular component are given
in terms of the scattered directions p:

yrefp = 2zintc0A0p and srefp := zintc0pTA0p. (58)

Due to the singular nature of the correlation function, involving Dirac masses at yrefp and srefp , we do not
directly study Ŝε,ref but rather a smoothed version

Ŝε,refy (s̄, ȳ, ω,p) := Ŝε,ref (s̄, ȳ,y, ω,p) 1
ε3(γ−1/2)ϕ

1/2
(

2 s̄− s
ref
p

ε2(γ−1/2) , 2
ȳ− yrefp

ε2(γ−1/2)

)
, (59)

where we have added the square root of a symmetric mollifier to smooth its correlation function around s = srefp

and y = yrefp . Here y is fixed, and Ŝε,refy is here localized in a small neighborhood of yrefp + ε2(γ−1/2)y of order
the correlation length (recalling that ȳ scales at ε1−γ). In this section, we focus on the speckle pattern seen
as a random field in the scattered direction p, and aim at describing its statistical behavior at the scale of the
correlation length.

At the leading order Ŝε,refy reads

Ŝε,refy (s̄, ȳ, ω,p) ' R
2(2π)2ε7(γ−1/2)+1

∫∫
e−iωs̄/ε

2γ−1
eiωp·ȳ/ε2γ−1

eiωp·y/εγ−1/2
eiω(q′−p/εγ−1/2)·(x′−xint)/

√
ε (60)

× e2iωλ0V (x′/εγ)Û0(ω,p/εγ−1/2, zint)Û0(ω,q′, zint)Ψ̂(ω,q′)

× ω2dx′dq′ϕ1/2
(

2 s̄− sp

ε2(γ−1/2) , 2
ȳ− yp

ε2(γ−1/2)

)
.

Note that taking its expectation leads to

E
[
Ŝε,refy (s̄, ȳ, ω,p)

]
' R

2ε7(γ−1/2) e
−iωs̄/ε2γ−1

eiωp·ȳ/ε2γ−1
eiωp·y/εγ−1/2

E
[
e2iωλ0V (0)]

× Û0(ω,p/εγ−1/2, 2zint)Ψ̂(ω,p/εγ−1/2)ϕ1/2
(

2 s̄− sp

ε2(γ−1/2) , 2
ȳ− yp

ε2(γ−1/2)

)
,

so that applying a test function φ ∈ S(R× R2 × R× R2) gives

E
[〈
Ŝε,refy , φ

〉
S′,S

]
' εγ−1/2R

2

∫∫∫∫
e−iωsqe−iωs̃eiωq·yE

[
e2iωλ0V (0)]Ψ̂(ω,q)ϕ1/2(2s̃, 2ỹ)φ(0, 0, ω, 0)ω2ds̃dỹdωdq,

(61)
after the change of variable s̄ → sp + ε2(γ−1/2)s̃, ȳ → yp + ε2(γ−1/2)ỹ, and p → εγ−1/2q. In other words, we
have

lim
ε→0

E
[
Ŝε,refy (s̄, ȳ, ω,p)

]
= 0.

in S ′(R× R2 × R× R2).

Theorem 6.1 For any fixed y ∈ R2, the family (Ŝε,refy )ε converges in distribution in S ′(R×R2×R×R2,C) to
a complex mean-zero Gaussian random field Ŝref , which does not depend on y, and with covariance functions
given by

E[Ŝref (φ)Ŝref (ψ)] =
∫
· · ·
∫
K̂ref (s̄1, s̄2, ȳ1, ȳ2, ω1,−ω2,p1,p2)

× φ(s̄1, ȳ1, ω1,p1)ψ(s̄2, ȳ2, ω2,p2)ds̄1ds̄2dȳ1dȳ2dω1dω2dp1dp2, (62)

E[Ŝref (φ)Ŝref (ψ)] =
∫
· · ·
∫
K̂ref (s̄1, s̄2, ȳ1, ȳ2, ω1, ω2,p1,p2)

× φ(s̄1, ȳ1, ω1,p1)ψ(s̄2, ȳ2, ω2,p2)ds̄1ds̄2dȳ1dȳ2dω1dω2dp1dp2, (63)

for φ, ψ ∈ S(R× R2 × R× R2,C). The kernel K̂ is given by

K̂ref (s̄1, s̄2, ȳ1, ȳ2, ω1, ω2,p1,p2) = (2π)3R2

4 A(2λ0, ω1,p1)|Ψ̂|22(ω1)ϕ̂(ω1,p1)

× δ(ω1 − ω2)δ(p1 − p2)δ(s̄1 − srefp1
)δ(s̄2 − srefp1

)δ(ȳ1 − yrefp1
)δ(ȳ2 − yrefp1

).
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The proof of Theorem 6.1 is provided in Section 9.
The difference with the correlation function (52), exhibiting a self-averaging property, with the speckle (59)

in the Fourier domain is the following. For the correlation function, the speckle profile is correlated around
given s̄ and ȳ. Hence, looking at the second order moment of the correlation function in S ′ corresponds to look
at the fourth order moment of the speckle, but with two elements around some s̄1, ȳ1 and two others around
some s̄2, ȳ2. These two observation points being far apart from each other the correlated speckles around each
of these points become statistically independent:

E[Cε,ref (s̄1, ȳ1)Cε,ref (s̄2, ȳ2)] ' E[Cε,ref (s̄1, ȳ1)]E[Cε,ref (s̄2, ȳ2)].

In this section, the speckle itself is studied as a random field in the scattered direction p, with, for each p, the
corresponding time srefp and position yrefp of observation. Theorem 6.1 described the statistical interactions
between the diffracted directions p through a Gaussian random field. Nevertheless, Theorem 6.1 holds for a
fixed y. For two differents y, the following result holds as we can prove that

lim
ε→0

E
[〈
Ŝε,refy1

, φ1
〉
S′,S

〈
Ŝε,refy2

, φ2
〉
S′,S

]
= 0,

for any y1, y2 and any test function φ1, φ2 in S ′(R× R2 × R× R2,C).

Corollary 6.1 For n ≥ 1 and any fixed y1, . . . ,yn,∈ R2, the family (Ŝε,refy1 , . . . , Ŝε,refyn )ε converges in distribu-
tion in S ′n (which is n times the Cartesian product of S ′(R×R2 ×R×R2,C)) to a limit (Ŝref1 , . . . , Ŝrefn ) made
of n independent copies of the Gaussian random field Ŝref defined in Theorem 7.1.

The real valued random field

Sε,refȳ (s̄, ȳ, s̃, ỹ) := 1
(2π)3

∫∫
e−iω(s̃−p·̃y)Ŝε,refy (s̄, ȳ, ω,p)dωdp,

corresponds to the speckle signal around time s̄ = srefp and position ȳ = yrefp , for which we have the following
result.

Corollary 6.2 For n ≥ 1 and any fixed y1, . . . ,yn ∈ R2, the family (Sε,refy1 , . . . ,Sε,refyn )ε converges in distri-
bution in S ′n to (Sref1 , . . . ,Srefn ) made of n independent copies of a real-valued mean-zero stationary Gaussian
random field Sref with covariance function given by

E[Sref (φ)Sref (ψ)] =
∫
· · ·
∫
Kref (s̄1, s̄2, ȳ1, ȳ2, s̃1 − s̃2, ỹ1 − ỹ2)

× φ(s̄1, ȳ1, s̃1, ỹ1)ψ(s̄2, ȳ2, s̃2, ỹ2)ds̄1ds̄2dȳ1dȳ2ds̃1ds̃2dỹ1dỹ2 (64)

for φ, ψ ∈ S(R× R2 × R× R2). The kernel K is given by

Kref (s̄1, s̄2, ȳ1, ȳ2, s̃, ỹ) = R2

4(2π)3

∫∫
e−iω(s̃−p·̃y)A(2λ0, ω,p)|Ψ̂|22(ω)ϕ̂(ω,p)

× δ(s̄1 − srefp )δ(s̄2 − srefp )δ(ȳ1 − yrefp )δ(y2 − yrefp )ω4dωdp.

7 The case γ > 1/2: incoherent wave fluctuations for the nonspecular
transmitted contributions

The transmitted speckle profile is given by

Sε,tr(s̄, ȳ,y, s̃, ỹ) := ε−2(γ−1/2)uε,tr(tεobs,tr(s̄, ȳ,y, ỹ) + εs̃,xεobs,tr(ȳ,y) + εγ ỹ, z = ztr), (65)

where uε,tr is given by (43) at the leading order,

xεobs,tr(y, ȳ) := xobs,tr + ε1−γ ȳ +
√
εy,

and
tεobs,tr(s̄, ȳ,y, ỹ) := tobs,tr + ε1−γk0 · ȳ +

√
εk0 · y + εγk0 · ỹ + ε2(1−γ)s̄.

As for the reflected wavefield, the transmitted wavefield uε,tr is therefore observed in a neighborhood, of order
the roughness parameter λ/lc which is larger than the beam width (since γ > 1/2), around the location xobs,tr
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Specular
transmission

Reflected
components

Figure 10: Illustration to the zone where the transmitted speckle profile can be observed (in light gray) compared
to the specular reflection component (in gray).

to observe the specular transmitted component. We also look for variations at the beam width scale as well as
fluctuations of order the correlation length through respectively y and ỹ (see the right picture of Figure 8 for
an illustration). The speckle profile Sε,tr is observed in a time scale around the travel time tobs,ref with three
corrections depending on the observation locations (ȳ, y, and ỹ). The overall time window is larger than the pulse
width (given by ε2(1−γ)s̄), of order the square of the roughness parameter, and we also look for fluctuations at
the scale of the pulse width through the variable s̃. Finally, the factor ε2(γ−1/2) � 1 characterizes the amplitude
of the speckle component. Recall that as the parameter γ increases (that is the roughness increases) the area
where the speckle pattern is observed around xobs,tr increases, as does the speckle signal duration, however the
magnitude of the speckle decreases.

As for the reflected speckle, the first order moment of Sε,tr goes to zero in the high-frequency limit and we
only focus on its two-point statistics and on the intensity.

7.1 Correlation function and intensity.
This correlation function at two nearby points to Sε,tr is defined as:

Cε,tr(s̄, ȳ,y, s̃1, ỹ1, s̃2, ỹ2) := Sε,tr(s̄, ȳ,y, s̃1, ỹ1)Sε,tr(s̄, ȳ,y, s̃2, ỹ2),

and the associated intensity is given by

Iε,tr(s̄, ȳ,y, s̃, ỹ) :=
∣∣Sε,tr(s̄, ȳ,y, s̃, ỹ)

∣∣2 = Cε,tr(s̄, ȳ,y, s̃, ỹ, s̃, ỹ).

The following result characterizes the asymptotic mean correlation function.

Proposition 7.1 We have

lim
ε→0
Cε,tr(s̄, ȳ,y, s̃1, ỹ1, s̃2, ỹ2) = Ctr(s̄, ȳ, s̃1 − s̃2, ỹ1 − ỹ2),

in probability in S ′(R× R2 × R2 × R× R2 × R× R2), where

Ctr(s̄, ȳ,y, s̃, ỹ) := T 2λ0

4λ1(2π)3

∫∫
e−iω(s̃−p·̃y)A(λ0 − λ1, ω,p)|Ψ̂|22(ω)δ(s̄− strp )δ(ȳ− ytrp )ω4dωdp. (66)

with A defined by (55), |Ψ̂|22 by (56), and

strp = (ztr − zint)c1pTA1p ≥ 0, and ytrp = 2(ztr − zint)c1A1p.

The stationarity property is also observed for Ctr w.r.t. its variables s̃ and ỹ, and does not depend on the
variable y corresponding to variation at the scale of the beam width. In the same way, the mean intensity
carried by the speckle profile is given by

lim
ε→0
Iε,tr(s̄, ȳ,y, s̃, ỹ) = Ctr(s̄, ȳ, 0, 0),

in probability, which does not depend on the variable y and the small scale fluctuations in s̃ and ỹ. The intensity
is therefore uniform over these scales.
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Figure 11: Illustration of the specular transmission angle θ0
tr (dash-dot line) and the transmission angle θref (p) ∈

(0, π/2) for γ = 1, c0 = 1.5, c1 = 1, and p = β1k0 + β2k⊥0 with (β1, β2) = r(cos(ϕ), sin(ϕ)).

As already mentioned, in (54), the spatial window is now larger than the beam width. For a given direction
p, the resulting speckle at position

ȳ = ytrp
is observed at the corresponding time

s̄ = strp ≥ 0,

which is nonnegative recalling (21) and that |k0| < 1/c0 < 1/c1. Note that for γ = 1, corresponding to a
correlation length of order the wavelength, the speckle can be observed at distance of order one from xobs,tr.

Generalized Snell’s law of transmission In term of reflection angle, for a given frequency ω and nonnull
slowness vector k0 (θinc > 0), we have, after some algebra, the following relation between the transmission angle
and the specular transmission angle θ0

tr

tan(θtr(p))
tan(θ0

tr)
=
|xobs,tr − xint + ε1−γytrp |

|xobs,tr − xint|

=

√(
1 + ξ

p · k0

cos2(θtr)

)2
+ ξ2(p · k⊥0 )2, ξε = ε1−γ c20

sin2(θinc)
,

for p distributed according to the scattering operator A(λ0 − λ1, ω, ·). From this relation, the standard Snell’s
relation of transmission can be generalized as follow

sin(θtr(p))
c1

= sin(θinc)
c0

√√√√ Ξ
1 + sin2(θ0

tr)
(

Ξ− 1
) , Ξ =

(
1 + ξ

p · k0

cos2(θtr)

)2
+ ξ2(p · k⊥0 )2,

corresponding to (2), and leading for γ ∈ (1/2, 1) to the perturbed relation

sin(θtr(p))
c1

= sin(θinc)
c0

(
1 + ξε

p · k0

cos2(θ0
tr)

+O(ε2(1−γ)|p|2)
)
.

This latter relation provides the approximation

θtr(p) = θ0
tr + ξε

tan(θtr)
cos2(θtr)

p · k0 +O(ε2(1−γ)|p|2).

Finally, for a null slowness vector k0 = 0 (θinc = 0), the transmission angle satisfies tan(θtr(p)) = ε1−γc1|p|, so
that

θtr(p) = arctan(ε1−γc1|p|).
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7.2 Statistics of the incoherent wave fluctuations
The transmitted speckle in the Fourier domain is given by

Ŝε,tr(s̄, ȳ,y, ω,p) := ε−2(γ−1/2)
∫∫

eiω(s̃−p·̃y)uε,tr
(
tεobs,tr(s̄, ȳ,y, ỹ) + εs̃,xεobs,tr(ȳ,y) + εγ ỹ

)
ds̃dỹ.

As described by (66), the position and time where we observe the incoherent wave fluctuations away from the
position of the specular component are given in terms of the scattered directions p:

ytrp := 2zintc0A0p and strp := p · ytrp /2 = zintc1pTA1p. (67)

As for the reflected speckle profile, due to the singular nature of the correlation function, involving Dirac masses
at the observation time and position, we rather study a smoothed version of Ŝε,tr:

Ŝε,try (s̄, ȳ, ω,p) := Ŝε,tr(s̄, ȳ,y, ω,p) 1
ε3(γ−1/2)ϕ

1/2
(

2
s̄− strp
ε2(γ−1/2) , 2

ȳ− ytrp
ε2(γ−1/2)

)
,

for a fixed y, and where a square root of a symmetric mollifier is added to smooth its correlation function around
s̄ = strp and ȳ = ytrp .

Theorem 7.1 For n ≥ 1 and any fixed y1, . . . ,yn ∈ R2, the family (Ŝε,try1 , . . . , Ŝε,tryn )ε converges in distribution
in S ′n to (Ŝtry1

, . . . , Ŝtryn)ε made of n independent copies of a complex mean-zero Gaussian random field Ŝref with
covariance functions similar to (62) and (63) but with kernel

K̂tr(s̄1, s̄2, ȳ1, ȳ2, ω1, ω2,p1,p2) = (2π)3T 2λ0

4λ1
A(λ0 − λ1, ω1,p1)|Ψ̂|22(ω1)ϕ̂(ω1,p1)

× δ(ω1 − ω2)δ(p1 − p2)δ(s̄1 − sp1)δ(s̄2 − sp1)δ(ȳ1 − yp1)δ(ȳ2 − yp1).

The real valued random field

Sε,try (s̄, ȳ, s̃, ỹ) := 1
(2π)3

∫∫
e−iω(s̃−p·̃y)Ŝε,try (s̄, ȳ, ω,p)dωdp,

corresponds to the speckle signal around time s̄ = strp and position ȳ = ytrp , for which we have the following
result. The proof of Theorem 7.1 is omitted as it follows the same lines as the one of Theorem 6.1 provided in
Section 9 together with

lim
ε→0

E
[〈
Ŝε,try1

, φ1
〉
S′,S

〈
Ŝε,try2

, φ2
〉
S′,S

]
= 0,

for any y1, y2 and any test function φ1, φ2 in S ′(R×R2 ×R×R2,C), to obtain the convergence of the vector.

Corollary 7.1 For n ≥ 1 and any fixed y1, . . . ,yn ∈ R2, the family (Sε,try1 , . . . ,Sε,tryn )ε converges in distribution
in S ′n to (Str1 , . . . ,Strn ) made of n independent copies of a real valued mean-zero Gaussian random field Sref
with a covariance function similar to (64), but with kernel

Ktr(s̄1, s̄2, ȳ1, ȳ2, s̃, ỹ) = T 2λ0

4λ1(2π)3

∫∫
e−iω(s̃−p·̃y)A(λ0 − λ1, ω,p)|Ψ̂|22(ω)ϕ̂(ω,p)

× δ(s̄1 − sp)δ(s̄2 − sp)δ(ȳ1 − yp)δ(ȳ2 − yp)ω4dωdp.

8 Proof of Propositions 6.1 and 6.2
This section is dedicated to the proof of the convergence of the expected correlation function, as well as its
statistical stability. The following proof is presented in a way that naturally justifies the scaling considered in
(49,50, 51)
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8.1 Proof of Proposition 6.1
Recalling (42), the expected correlation function for the reflected wavefield reads at the leading order

Cε := E[uε,ref (t1,x1, z = 0)uε,ref (t2,x2, z = 0)]

' R2

4(2π)10ε2

∫
· · ·
∫
e−iω1(t1−2λ0zint−x1·k0)/εeiω2(t2−2λ0−x2·k0)/ε

× E
[
e2iω1λ0V (x′1/ε

γ)e−2iω2λ0V (x′2/ε
γ)]

× eiω1q1·(x1−x′1−xint)/
√
εeiω1q′1·(x′1−xint)/

√
ε

× e−iω2q2·(x2−x′2−xint)/
√
εe−iω2q′2·(x′2−xint)/

√
ε

× Û0(ω1,q1, zint)Û0(ω1,q′1, zint)Û0(ω2,q2, zint)Û0(ω2,q′2, zint)

× Ψ̂(ω1,q′1)Ψ̂(ω2,q′2)ω4
1ω

4
2dω1dω2dx′1dx′2dq′1dq′2dq1dq2

' R2

4(2π)10ε2

∫
· · ·
∫
L1 × L2 × L3 × L4 × L5 × L6 ω

4
1ω

4
2dω1dω2dx′1dx′2dq′1dq′2dq1dq2,

where each Lj corresponds to one line in Cε. In order to obtain a nontrivial limit for L2, we consider the changes
of variables

x′1 → xint + r′ + εγy′/2 and x′2 → xint + r′ − εγy′/2, (68)

so that by stationarity

L2 = ε2γE
[
e2iω1λ0V ((xint+r′)/εγ+y′/2)e−2iω2λ0V ((xint+r′)/εγ−y′/2)

]
= ε2γE

[
e2iω1λ0V (y′/2)e−2iω2λ0V (−y′/2)

]
, (69)

where the term ε2γ comes from the changes of variables. With this changes of variables, L3 × L4 now reads

L3 × L4 = eir
′·(ω1(q′1−q1)−ω2(q′2−q2))/

√
ε

× eiε
γ−1/2y′·(ω1(q′1−q1)+ω2(q′2−q2))/2

× eiω1q1·(x1−xint)/
√
εe−iω1q′1·xint/

√
εe−iω2q2·(x2−xint)/

√
εeiω2q′2·xint/

√
ε.

The term eir
′·(ω1(q′1−q1)−ω2(q′2−q2))/

√
ε, being the only one involving the variable r′ in Cε, provides a Dirac mass

once integrated in r′:
(2π)2εδ(ω1(q′1 − q1)− ω2(q′2 − q2)).

To keep the y′-variable that integrates L2, we make the changes of variables

qj → q′j − pj/εγ−1/2 j = 1, 2, (70)

yielding ∫
L3 × L4 dr′ = (2π)2ε−2γ+2δ(ω1p1 − ω2p2) eiy

′·(ω1p1+ω2p2)/2e−i(ω1p1·x1−ω2p2·x2)/εγ

× eiω1q′1·(x1−xobs,ref )/
√
εe−iω2q′2·(x2−xobs,ref )/

√
ε,

where we have used the presence of the Dirac mass to write

e−iω1p1·(x1−xint)/εγeiω2p2·(x2−xint)/εγ = e−iω1p1·x1/ε
γ

eiω2p2·x2/ε
γ

.

Hence, making the changes of variables ωjpj → pj , turning ω4
1ω

4
2 in Cε into ω2

1ω
2
2 , gives∫

L3 × L4 dr′ = (2π)2ε−2γ+2δ(p1 − p2) eiy
′·p1e−ip1·(x1−x2)/εγ

× eiω1q′1·(x1−xobs,ref )/
√
εe−iω2q′2·(x2−xobs,ref )/

√
ε.

The rapid phase e−ip1·(x1−x2)/εγ yields the choice

xj = x + εγ ỹj and then tj = t+ εγk0 · ỹj + εs̃j j = 1, 2, (71)
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to compensate in L1. Here, t and x will be specified later on. With this choice,∫
L3 × L4 dr′ = (2π)2ε−2γ+2δ(p1 − p2) eip1·y′e−ip1·(ỹ1−ỹ2)

× ei(x−xobs,ref )·(ω1q′1−ω2q′2)/
√
εeiε

γ−1/2(ω1q′1 ·̃y1−ω2q′2 ·̃y2),

and L1 becomes
L1 = e−i(ω1−ω2)(t−2λ0zint−x·k0)/εe−i(ω1s̃1−ω2s̃2).

Regarding L5, after all the changes of variables, we have

L5 = Û0

(
ω1,q′1 −

p1

ω1εγ−1/2 , zint

)
Û0(ω1,q′1, zint)

× Û0

(
ω2,q′2 −

p1

ω2εγ−1/2 , zint

)
Û0(ω2,q′2, zint)

= e−izintc0pT1 A0p1(1/ω1−1/ω2)/ε2γ−1
e2izintc0(q′1/ω1−q′2/ω2)TA0p1/ε

γ−1/2
Û0(ω1,q′1, 2zint)Û0(ω2,q′2, 2zint).

The two rapid phases in the last line suggests the changes of variables

ω1 = ω + ε2γ−1h/2, ω2 = ω − ε2γ−1h/2, (72)

and
q′1 = q + εγ−1/2r/2, q′2 = q − εγ−1/2r/2, (73)

so that at the leading order in ε:

L5 × L6 ' ε4γ−2eihzintc0pT1 A0p1/ω
2
e2izintc0rTA0p1/ω|Ψ̂(ω,q)|2ω4,

L2 ' ε2γE
[
e2iωλ0(V (y′)−V (0))],∫

L3 × L4 dr′ ' (2π)2ε−2γ+2δ(p1 − p2) eip1·y′e−ip1·(ỹ1−ỹ2)eiω(x−xobs,ref )·r/ε1−γ
eihε

2γ−3/2(x−xobs,ref )·q,

L1 ' e−ih(t−2λ0zint−x·k0)/ε2(1−γ)
e−iω(s̃1−s̃2),

using the stationarity of V in (69) for L2. The two latter relations naturally lead to the choice

x = xobs,ref + ε1−γ ȳ +
√
εy and t = tobs,ref + ε1−γk0 · ȳ +

√
εk0 · y + ε2(1−γ)s̄, (74)

so that gathering all this term yields

Cε '
ε4(γ−1/2)R2

4(2π)8

∫
· · ·
∫
e−iω(s̃1−s̃2−p·(ỹ1−ỹ2))eiωr·ȳe−ihs̄e−iωp·y′E

[
e2iωλ0(V (y′)−V (0))]

× e−2iωzintc0rTA0peihzintc0pTA0p|Ψ̂(ω,q)|2 ω6dhdωdqdy′drdp,

after the change of variable p → −ωp. As a result, the limit does not depend on the y-variable, and for any
test function ϕ,ψ, φ, we obtain

lim
ε→0

∫∫
E
[〈
Sε,ref (s̄, ȳ,y), ϕ

〉
S′,S

〈
Sε,ref (s̄, ȳ,y), ψ

〉
S′,S

]
φ(s̄, ȳ,y)ds̄dȳdy

=
∫
· · ·
∫

Cref (s̄, ȳ, s̃1 − s̃2, ỹ1 − ỹ2)ϕ(s̃1, ỹ1)ψ(s̃2, ỹ2)φ(s̄, ȳ,y)ds̄dȳdyds̃1ds̃2dỹ1dỹ2,

where Cref is defined by (54). This concludes the proof of Proposition 6.1.

8.2 Proof of Proposition 6.2
This section consists in proving

lim
ε→0

E
[
Cε,ref (φ, ϕ, ψ)2] = Cref (φ, ϕ, ψ)2,

with Cref (s̄, ȳ,y, s̃1, ỹ1, s̃2, ỹ2) = Cref (s̄, ȳ, s̃1 − s̃2, ỹ1 − ỹ2), yielding for any η > 0

lim
ε→0

P
(∣∣Cε,ref (φ, ϕ, ψ)− Cref (φ, ϕ, ψ)

∣∣ > η
)

= 0,
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that is the convergence in probability, thanks to the Chebyshev inequality. The proof of the convergence of the
second order moment follows closely the one of Proposition 6.1, so that only the key arguments are discussed.

At the leading order in ε, the speckle profile reads

Sε,ref (s̄, ȳ,y, s̃, ỹ) ' R
2(2π)5ε2γ

∫∫∫∫
e−iωs̄/ε

2γ−1
e−iωs̃eiωq·ȳ/εγ−1/2

eiωq·yeiε
γ−1/2ωq·̃y (75)

× eiω(q′−q)·(x′−xint)/
√
εe2iωλ0V (x′/εγ)

× Û0(ω,q, zint)Û0(ω,q′, zint)Ψ̂(ω,q′)ω4dωdx′dq′dq,

so that

Cε,ref (φ, ϕ, ψ) := R2

4(2π)10ε4γ

∫
· · ·
∫
e−i(ω1−ω2)s̄/ε2γ−1

e−i(ω1s̃1−ω2s̃2)

× ei(ω1q1−ω2q2)·ȳ/εγ−1/2
ei(ω1q1−ω2q2)·yeiε

γ−1/2(ω1q1 ·̃y1−ω2q2 ·̃y2)

× eiω1(q′1−q1)·(x′1−xint)/
√
εe−iω2(q′2−q2)·(x′2−xint)/

√
ε

× e2iλ0(ω1V (x′1/ε
γ)−ω2V (x′2/ε

γ))

× Û0(ω1,q1, zint)Û0(ω1,q′1, zint)Û0(ω2,q2, zint)Û0(ω2,q′2, zint)

× Ψ̂(ω1,q′1)Ψ̂(ω2,q′2)φ(s̄, ȳ,y)ϕ(s̃1, ỹ1)ψ(s̃2, ỹ2)
× ω4

1ω
4
2dω1dω2ds̄ds̃1ds̃2dx′1dq′1dq1dx′2dq′2dq2dȳdydỹ1dỹ2.

Taking the expectation of Cε,ref (φ, ϕ, ψ)2 yields the term

Eε := E
[
e

2iλ0
∑2

j=1
ω1,jV (x′1,j/ε

γ)−ω2,jV (x′2,j/ε
γ)
]
.

Making the changes of variables

x′1,j → xint + r′j + εγy′j/2 and x′2,j → xint + r′j − εγy′j/2, j = 1, 2,

the term Eε can be recast as

Eε = E
[
e

2iλ0
∑2

j=1
ω1,jV ((xint+r′j)/ε

γ+y′j/2)−ω2,jV ((xint+r′j)/ε
γ−y′j/2)

]
= E

[
e2iλ0(ω1,1V (r′1/ε

γ+y′1/2)−ω2,1V (r′1/ε
γ−y′1/2))e2iλ0(ω1,2V (r′2/ε

γ+y′2/2)−ω2,2V (r′2/ε
γ−y′2/2))

]
'
ε→0

E
[
e2iλ0(ω1,1V (r′1/ε

γ+y′1/2)−ω2,1V (r′1/ε
γ−y′1/2))

]
E
[
e2iλ0(ω1,2V (r′2/ε

γ+y′2/2)−ω2,2V (r′2/ε
γ−y′2/2))

]
using the stationarity of V as well as Lemma 1.1. With the latter relation, using the same changes of variable
as in the proof of Proposition 6.1, for each j, yields

lim
ε→0

E
[
Cε,ref (φ, ϕ, ψ)2] = Cref (φ, ϕ, ψ)2,

which concludes the proof of Proposition 6.2.

9 Proof of Theorem 6.1
The proof we propose follows the ideas of [12, Sect. 9.3.4]. Applying a test function φ ∈ S(R×R2 ×R×R2,C)
to (60) gives

Jε(φ) :=
〈
Ŝε,refy , φ

〉
S′,S

' R
2(2π)2ε7(γ−1/2)+1

∫
· · ·
∫
e−iωs̄/ε

2γ−1
eiωp·ȳ/ε2γ−1

eiωp·y/εγ−1/2
eiω(q′−p/εγ−1/2)·(x′−xint)/

√
εe2iωλ0V (x′/εγ)

× Û0(ω,p/εγ−1/2, zint)Û0(ω,q′, zint)Ψ̂(ω,q′)ϕ1/2
(

2 s̄− s
ref
p

ε2(γ−1/2) , 2
ȳ− yrefp
ε2(γ−1/2)

)
φ(s̄, ȳ, ω,p)

× ω2dωds̄dx′dq′dȳdp.
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Using the stationarity of V , without loss of generality, one can assume for simplicity

xint = 0.

The following proof is based on evaluating the limit of moments of Jε(φ). This approach allows to characterize
the limiting distribution with a bounded second order moment providing the tightness. The key point, when
evaluating the moment is to pair two different x′’s to cancel the rapid phase in x′, and use the mixing property
of Lemma 1.1. In what follows, the x′’s are paired after ordering their associated ω’s. To this end, we denote

Jε± :=
∫ ∞

0
J ε(±ω)dω,

with

J ε(ω) := R
2(2π)2ε7(γ−1/2)+1

∫
· · ·
∫
e−iωs̄/ε

2γ−1
eiωp·ȳ/ε2γ−1

eiωp·y/εγ−1/2
eiω(q′−p/εγ−1/2)·x′/

√
εe2iωλ0V (x′/εγ)

× Û0(ω,p/εγ−1/2, zint)Û0(ω,q′, zint)Ψ̂(ω,q′)ϕ1/2
(

2 s̄− s
ref
p

ε2(γ−1/2) , 2
ȳ− yrefp
ε2(γ−1/2)

)
× φ(s̄, ȳ, ω,p)ω2ds̄dx′dq′dpdȳ. (76)

Even moments. Considering the even moments in a first time, and decomposing the integral w.r.t. ω in
Jε(φ) over (0,∞) and (−∞, 0) yields

E
[
Jε(φ)2n] =

2n∑
l=0

(
2n
l

)
Mε(l, 2n− l),

where
Mε(l, 2n− l) := E

[
(Jε+)l(Jε−)2n−l], (77)

after making the change of variable ω → −ω for the part corresponding to the integral over (−∞, 0) in ω.

The case l = n. The moment Mε(n, n), representing the only nontrivial contribution at the limit ε→ 0, can
be expressed as

Mε(n, n) =
∫ ∞

0
· · ·
∫ ∞

0
E
[ n∏
j=1
J ε(ω1,j)J ε(−ω2,j)

]
dω1,jdω2,j

= n!2
∫
{0<ω1,1<···<ω1,n}

∫
{0<ω2,1<···<ω2,n}

E
[ n∏
j=1
J ε(ω1,j)J ε(−ω2,j)

]
dω1,jdω2,j ,

where the second line is obtained by symmetry w.r.t. the ω-variables. The ω’s are then paired through the
ordering by making the change of variables

ω1,j → ωj + ε2γ−1hj/2 and ω2,j → ωj − ε2γ−1hj/2,

which yields

Mε(n, n) = εn(2γ−1)n!2
∫
{0<ω1<···<ωn}

∫
Hεn

E
[ n∏
j=1
J ε(ωj + ε2γ−1hj/2)J ε(−ωj + ε2γ−1hj/2)

]
dωjdhj

= n!2R2n

4n(2π)4nεn(12(γ−1/2)+2)

×
∫
{0<ω1<···<ωn}

∫
Hεn

∫
· · ·
∫

E
[ n∏
j=1

M j
ε

] n∏
j=1

∏
l=1,2

dωjdhjds̄l,jdx′l,jdq′l,jdpl,jdȳl,j . (78)

30



Here, we have

M j
ε := e−iωj(s̄1,j−s̄2,j)/ε2γ−1

e−ihj(s̄1,j+s̄2,j)/2

× ei((ωj+ε
2γ−1hj/2)p1,j ·(ȳ1,j+εγ−1/2y)−(ωj−ε2γ−1hj/2)p2,j ·(ȳ2,j+εγ−1/2y)/ε2γ−1

× ei((ωj+ε
2γ−1hj/2)q′1,j ·(ȳ1,j+εγ−1/2y)−(ωj−ε2γ−1hj/2)q′2,j ·(ȳ2,j+εγ−1/2y)/εγ−1/2

× e−i((ωj+ε
2γ−1hj/2)p1,j ·x′1,j−(ωj−ε2γ−1hj/2)p2,j ·x′2,j)/ε

γ

× e2iλ0((ωj+ε2γ−1hj/2)V (x′1,j/ε
γ)−(ωj−ε2γ−1hj/2)V (x′2,j/ε

γ))

× Û0(ωj + ε2γ−1hj/2,p1,j/ε
γ−1/2 + q′1,j , zint)Û0(ωj − ε2γ−1hj/2,p2,j/εγ−1/2 + q′2,j , zint)

× Û0(ωj + ε2γ−1hj/2,q′1,j , zint)Û0(ωj − ε2γ−1hj/2,q′2,j , zint)

× Ψ̂(ωj + ε2γ−1hj/2,q′1,j)Ψ̂(ωj − ε2γ−1hj/2,q′2,j)

× ϕ1/2
(

2
s̄1,j − srefp1,j

ε2(γ−1/2) , 2
ȳ1,j − yrefp1,j

ε2(γ−1/2)

)
ϕ1/2

(
2
s̄2,j − srefp2,j

ε2(γ−1/2) , 2
ȳ2,j − yrefp2,j

ε2(γ−1/2)

)
× φ(s̄1,j , ȳ1,j ,y, ωj + ε2γ−1hj/2,p1,j + εγ−1/2q′1,j)

× φ(s̄2,j , ȳ2,j ,y,−ωj + ε2γ−1hj/2,p2,j + εγ−1/2q′2,j)
× (ωj + ε2γ−1hj/2)2(ωj − ε2γ−1hj/2)2

after the change of variables

p1,j → εγ−1/2q′1,j + p1,j and p2,j → εγ−1/2q′2,j + p2,j ,

and where the integration domain for the hj ’s is given by

Hε
n =

{
(h1, . . . , hn) : hj ∈

(
2ωj − ωj+1

ε2γ−1 + hj+1, 2
ωj − ωj−1

ε2γ−1 + hj−1

)
, j ∈ {1, . . . , n}

}
.

In Hε
n, the convention ωn+1 =∞, hn+1 = ω0 = h0 = 0 has been used. Note that in the limit ε→ 0, the domain

Hε
n becomes Rn. Making the changes of variables

x′1,j → r′j + εγy′j/2 and x′2,j → r′j − εγy′j/2,

and taking the expectation to M j
ε provides the term

E
[ n∏
j=1

e2iλ0((ωj+εγhj/2)V (rj/εγ+y′j/2)−(ωj−εγhj/2)V (rj/εγ−y′j/2))
]
'

n∏
j=1

E
[
e2iωjλ0(V (rj/εγ+y′j/2)−V (rj/εγ−y′j/2))]

'
n∏
j=1

E
[
e2iωjλ0(V (y′j/2)−V (−y′j/2))]

'
n∏
j=1

E
[
e2iωjλ0(V (y′j)−V (0))]

as ε → 0, where the stationarity of V is used at the second and last relations, as well as Lemma 1.1 to obtain
the first relation. One can observe that the latter relation does not depend on the rj ’s, so that the resulting
terms ei((ωj+ε

2γ−1hj/2)p1,j−(ωj−ε2γ−1hj/2)p2,j)·r′j/e
γ

provide

(2π)2nε2nγ
n∏
j=1

δ((ωj + ε2γ−1hj/2)p1,j − (ωj − ε2γ−1hj/2)p2,j),
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and leading to variables pj for simplification. At the leading order, we then have

E
[ n∏
j=1

M j
ε

]
'

n∏
j=1

e−iωj(s̄1,j−s̄2,j)/ε2γ−1
e
−ihj((s̄1,j+s̄2,j)/2−srefpj

)
eihjpj ·(ȳ1,j−ȳ2,j)/2eiωjpj ·(ȳ1,j−ȳ2,j)/ε2γ−1

× eiωj(q′1,j ·(ȳ1,j−yrefpj
)−q′2,j ·(ȳ2,j−yrefpj

))/εγ−1/2

eiωj(q′1,j−q′2,j)·y

× E
[
e2iωjλ0(V (y′j)−V (0))]e−iωjy′j ·pj

× Û0(ωj ,q′1,j , 2zint)Û0(ωj ,q′2,j , 2zint)Ψ̂(ωj ,q′1,j)Ψ̂(ωj ,q′2,j)

× ϕ1/2
(

2
s̄1,j − srefpj
ε2γ−1 , 2

ȳ1,j − yrefpj

ε2(γ−1/2)

)
ϕ1/2

(
2
s̄2,j − srefpj
ε2γ−1 , 2

ȳ2,j − yrefpj

ε2(γ−1/2)

)
× φ(s̄1,j , ȳ1,j , ωj ,pj)φ(s̄2,j , ȳ2,j ,−ωj ,pj)ω2

j .

Making now the changes of variables

s̄1,j → srefpj + s̄j + ε2γ−1s̃j/2 s̄2,j → srefpj + s̄j − ε2γ−1s̃j/2,

the resulting term e
−ihj(s̄j−srefpj

) yields
2πδ(s̄j),

and with the changes of variables

ȳ1,j → yrefpj + ȳj + ε2(γ−1/2)ỹj/2, ȳ2,j → yrefpj + ȳj − ε2(γ−1/2)ỹj/2

together with
q′1,j → qj + εγ−1/2rj/2, q′2,j → qj − εγ−1/2rj/2,

the resulting term eiωjrj ·ȳj yields
(2π)2δ(ȳj)/ω2

j .

As a result, we obtain

lim
ε→0

Mε(n, n) = (2π)nn!2R2n

4n

∫
{0<ω1<···<ωn}

∫
· · ·
∫ n∏

j=1
e−iωj s̃jeiωjpj ·̃yj

× E
[
e2iωjλ0(V (y′j)−V (0))]e−iωjy′j ·pj

× |Ψ̂(ωj ,qj)|2ϕ1/2(s̃j , ỹj)ϕ1/2(−s̃j ,−ỹj)

× φ(srefpj ,y
ref
pj , ωj ,pj)φ(srefpj ,y

ref
pj ,−ωj ,pj)

× dωjds̃jdỹjdqjdy′jdpj ,

and by symmetry of the ωj ’s

lim
ε→0

Mε(n, n) = n!
2n
(R2

2

∫ ∞
0
J 0(ω)dω

)n
.

Finally, using the stationarity of V , but also that ϕ is an odd function, we have

σ2
ref := R

2

2

∫ ∞
0
J 0(ω)dω = R

2

4

∫
J 0(ω)dω = (2π)3R2

4

∫
ϕ̂(ω,p)A(2λ0, ω,p)|Ψ̂|22(ω)

× φ(srefp ,yrefp , ω,p)φ(srefp ,yrefp ,−ω,p)dωdp,
(79)

where |Ψ̂|22 is given by (56), and A by (55).

The case l 6= n. In this situation, we necessarily have

lim
ε→0

Mε(l, 2n− l) = 0,

for any l 6= n, where Mε(l, 2n− l) is defined by (77) and

Mε(l, 2n− l) =
∫ ∞

0
· · ·
∫ ∞

0
E
[ l∏
j=1
J ε(ω1,j)dω1,j

2n−l∏
j′=1
J ε(−ω2,j′)dω2,j′

]
.
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The reason lies in the unbalanced number of Jε+ and Jε−, from which not all the rapid phases e−iωjs
ref
pj

/ε2γ−1

can
be canceled as for l = n. In fact, these remaining terms that have not been paired correspond have all positive
frequency ωj which cannot compensate with each other. These remaining rapid phases lead to null limits, and
we finally obtain

lim
ε→0

E
[
Jε(φ)2n] = n!

2nσ
2n
ref = E[

〈
Ŝrefy , φ

〉n
S′,S ]. (80)

Odd moments. For any odd moments there is necessarily an unbalance number of Jε+ and Jε− in Mε(l, 2n+
1 − l) for any l ∈ {0, . . . , 2n + 1}. As for the case of even moment with l 6= n, not all the rapid phases can be
compensated leading to

lim
ε→0

E
[
Jε(φ)2n+1] = 0.

The case of the expectation (moment of order 1) is given by (61).

Tightness. The tightness is obtain from the ones of the real and imaginary part of Ŝε,refy applied to a test
function φ ∈ S(R×R2×R×R2) that takes real values. These tightness properties are obtain from the converging
second order moment of Jε with test functions

φr(s,y, ω,p) = 1
2(φ(s,y, ω,p) + φ(s,y,−ω,p)) and φi(s,y, ω,p) = 1

2i (φ(s,y, ω,p)− φ(s,y,−ω,p))

In fact, for these two test functions we have

Jε(φr) =
〈
Re(Ŝrefy ), φ

〉
S′,S and Jε(φi) =

〈
Im(Ŝrefy ), φ

〉
S′,S .

Covariance formulas (62) and (63). These formulas follows from (79) and (80) for n = 2, together with the
standard polarization formulas

Jε(φ)Jε(ψ) = 1
4

(
(Jε(φ+ ψ))2 − (Jε(φ− ψ))2

)
,

and
Jε(φ)Jε(ψ) = 1

4i

(
(Jε(φ+ iψ−))2 − (Jε(φ− iψ−))2

)
,

where ψ−(ω) = ψ(−ω). This concludes the proof of Theorem 6.1.

A Proof of the jump conditions and continuity relations
This section is devoted to the justification of the jump condition across the plan z = 0 produced by the source
term, and the continuity relation of the wave field across the randomly perturbed interface.

To exhibit these relations the solution u to the wave equation (3) is decomposed as

u(t,x, z) = u−(t,x, z)1(−∞,0)(z) + u+(t,x, z)1(0,∞)(z), (81)

where u+ satisfies
∆u+ − 1

c2(x, z)∂
2
ttu

+ = 0 (t,x, z) ∈ R× R2 × R,

and u− satisfies
∆u− − 1

c20
∂2
ttu
− = 0 (t,x, z) ∈ R× R2 × R.

A.1 Jump conditions across the plan z = 0 of the source location
Injecting the decomposition (81) into (3) gives

Ψ
( t− k0 · x

T0
,

x
r0

)
δ′(z) = ∆u− 1

c2(x, z)∂
2
ttu =

(
∂zu

+(t,x, z = 0)− ∂zu−(t,x, z = 0)
)
δ(z)

+
(
u+(t,x, z = 0)− u−(t,x, z = 0)

)
δ′(z).

Hence, we obtain the jump conditions

u(t,x, z = 0+)− u(t,x, z = 0−) = Ψ
( t− k0 · x

T0
,

x
r0

)
, (82)

∂zu(t,x, z = 0+)− ∂zu(t,x, z = 0−) = 0.
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A.2 Continuity relation across the randomly perturbed interface
The continuity relation at the randomly perturbed interface is obtained for u+, and then for u, in a similar
fashion as in the previous section. The term u+ is decomposed as

u+(t,x, z) = u+
0 (t,x, z)1(−∞,0)(z − zint(x)) + u+

1 (t,x, z)1(0,∞)(z − zint(x)), (83)

where
zint(x) := zint + σV (x/lc),

and
∆u+

0 −
1
c20
∂2
ttu

+
0 = 0 (t,x) ∈ R× R2 for z < zint(x),

and u+
1 satisfies

∆u+
1 −

1
c21
∂2
ttu

+
1 = 0 (t,x) ∈ R× R2 for z > zint(x).

The shifted solution
U(t,x, Z) = u+(t,x, Z + zint(x))

satisfies

∆⊥U+
(

1+σ2

l2c
|∇⊥V (x/lc)|2

)
∂2
ZZU−

1
c2(x, Z + zint(x))∂

2
ttU−

σ

l2c
(∆⊥V (x/lc))∂ZU−

σ

lc
∇⊥V (x/lc)·∇⊥∂ZU = 0.

(84)
The shifted decomposition (83) then reads

U(t,x, Z) = U0(t,x, Z)1(−∞,0)(Z) + U1(t,x, Z)1(0,∞)(Z), (85)

with U0 and U1 satisfying

∆⊥Uj +
(

1 + σ2

l2c
|∇⊥V (x/lc)|2

)
∂2
ZZUj −

1
c2j
∂2
ttUj −

σ

l2c
(∆⊥V (x/lc))∂ZUj −

σ

lc
∇⊥V (x/lc) · ∇⊥∂ZUj = 0,

for j = 0, 1. Injecting the decomposition (85) into (84) provides

0 = δ(Z)
((

1 + σ2

l2c
|∇⊥V (x/lc)|2

)(
∂ZU1(Z = 0)− ∂ZU0(Z = 0)

)
− σ

l2c
(∆⊥V (x/lc))(U1(Z = 0)− U0(Z = 0))

− σ

lc
∇⊥V (x/lc) · (∇⊥U1(Z = 0)−∇⊥U0(Z = 0))

)
+ δ′(Z)

(
1 + σ2

l2c
|∇⊥V (x/lc)|2

)(
U1(Z = 0)− U0(Z = 0)

)
The term in δ′ provides U1(Z = 0) = U0(Z = 0) and then ∇⊥U1(Z = 0) = ∇⊥U0(Z = 0), so that the term in δ
provide only ∂ZU1(Z = 0) = ∂ZU0(Z = 0). Going back to the original variables, we obtain the relations

u+
0 (z = zint(x)) = u+

1 (z = zint(x)) and ∂zu
+
0 (z = zint(x)) = ∂zu

+
1 (z = zint(x)),

leading to the continuity relations for u

u(z = zint(x)+) = u(z = zint(x)−) and ∂zu(z = zint(x)+) = ∂zu(z = zint(x)−).

B Proof of Lemma 1.1
The proof of this lemma is obtained by induction on n, but we only focus on the second point. The first one can
be obtained following the same lines by considering the functions gj with only one argument and set yj = 0.

Writing

E[Xη
1X

η
2 ] = E[Xη

1X
η
2 ]− E[Xη

1 ]E[Xη
2 ] + E[Xη

1 ]E[Xη
2 ]

= Corr(Xη
1 , X

η
2 )
√
V ar(Xη

1 )V ar(Xη
2 ) + E[Xη

1 ]E[Xη
2 ],
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with

Xη
1 := gn+1

(
V
(xn+1

η
+ yn+1

2

)
, V
(xn+1

η
− yn+1

2

))
and Xη

2 :=
n∏
j=1

gj

(
V
(xj
η

+ yj
2

)
, V
(xj
η
− yj

2

))
,

and assuming the desired property holds true for Xη
2 involving n terms, we only have to prove that

lim
η→0

Corr(Xη
1 , X

η
2 ) = 0,

since V ar(Xη
1 )V ar(Xη

2 ) ≤ supj,v1,v2 |gj(v1, v2)|2(n+1) <∞. Now, using (12), we have

Corr(Xη
1 , X

η
2 ) ≤ ρ

(
min

j=1,...,n
ν1,ν2=±

∣∣∣xn+1 − xj
η

+ ν1
yn+1

2 + ν2
yj
2

∣∣∣),
with

min
j=1,...,n
ν1,ν2=±

∣∣∣xn+1 − xj
η

+ ν1
yn+1

2 + ν2
yj
2

∣∣∣ ≥ min
j=1,...,n

|xn+1 − xj |
η

− |yn+1|
2 − max

j=1,...,n

|yj |
2 −→

η→0
∞,

as all the xj ’s are distinct. Finally, using (11) and (13), we obtain

lim
η→0

Corr(Xη
1 , X

η
2 ) = 0,

so that

lim
η→0

E
[ n+1∏
j=1

gj

(
V
(xj
η

+ yj
2

)
, V
(xj
η
− yj

2

))]
= lim
η→0

n+1∏
j=1

E
[
gj

(
V
(xj
η

+ yj
2

)
, V
(xj
η
− yj

2

))]

=
n+1∏
j=1

E
[
gj

(
V
(yj

2

)
, V
(
− yj

2

))]
,

where the last line is obtained through the stationarity of V .
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[8] M. Darmon, V. Dorval and F. Baqué,Acoustic scattering models from rough surfaces: a brief review
and recent advances, Appl. Sci., 10 (2020), 8305.

[9] D. A. Dawson and G. C. Papanicolaou, A random wave process, Appl. Math. Optim., 12 (1984), pp.
97–114.

35



[10] J. A. DeSanto, Scattering from a rough interface, Radio Sci., 16 (1981), pp. 1021–1024.
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