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TIME-REVERSAL SUPERRESOLUTION IN RANDOM
WAVEGUIDES*

CHRISTOPHE GOMEZ'

Abstract. In this paper we analyze a time-reversal experiment in a random waveguide. We
use asymptotic analysis based on a separation of scales technique. We derive an infinite-dimensional
coupled power equation that we analyze in the high-frequency regime. We use this approximation
to compute the transverse profile of the refocused field and show that randomness enhances spatial
refocusing beyond the diffraction limit; that is, the focal spot is smaller than the carrier wavelength
over two. In this experiment the random heterogeneities, in the near-field region of the source, play
a primary role.
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Introduction. Time-reversal experiments have been intensively analyzed exper-
imentally and theoretically. This experiment is in two steps. In the first step, a
source sends a pulse into a medium. The wave propagates and is recorded by a device
called a time-reversal mirror. A time-reversal mirror is a device that can receive a
signal, record it, and resend it time-reversed into the medium. In the second step,
the wave emitted by the time-reversal mirror has the property of refocusing near the
original source location, and it has been observed that random inhomogeneities en-
hance refocusing [6, 7]. Time-reversal refocusing in one-dimensional media has been
studied in [5, 9]. In three-dimensional randomly layered media [10], in the paraxial
approximation [4, 3, 18], and in random waveguides [11, 9], it has been shown that
the focal spot can be smaller than the Rayleigh resolution formula AL/D (where X is
the carrier wavelength, L is the propagation distance, and D is the mirror diameter).
However, the focal spot is still larger than the diffraction limit A\/2.

Mathias Fink and his group at ESPCI have proposed an approach to obtaining a
superresolution effect, that is to refocus beyond the diffraction limit, with a far-field
time-reversal mirror [15]. This approach consists in adding a random distribution of
scatterers in the vicinity of the source. The proposed physical explanation is as fol-
lows. The small-scale features (position and shape) of the source are carried by high
evanescent modes, and these modes decay exponentially fast with the propagation
distance, so that this information is usually not transmitted up to the time-reversal
mirror, which is located in the far field. The random medium located around the
source location permits the conversion evanescent modes into propagating modes. In
other words, the inhomogeneities of the random slab induce mode coupling, so that the
information on small scales of the source is transferred to the propagating modes and
reaches the time-reversal mirror. During the time-reversal experiment these modes
are regenerated in the vicinity of the source from the backpropagated propagating
modes, and therefore they can participate in the refocusing process. An application
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TIME REVERSAL SUPERRESOLUTION 1349

of this result to wireless communication is presented in [15].

Throughout this paper, even though the work of Fink and his group was on time
reversal of electromagnetic waves, we consider a two-dimensional acoustic waveguide
model. The main goal of this paper is to present a mathematical proof that the focal
spot can indeed be smaller than the diffraction limit. Before the mathematical analy-
sis, we give some physical explanations to describe the important phenomena induced
by the insertion of a section in the vicinity of the source for a long waveguide. First,
the case of a waveguide with homogeneous speed of propagation ¢y (see Figure 1(a))
is well known; see, for instance, [9], where the authors obtain the classical diffraction
limit. Namely, the focal spot has radius equal to the carrier wavelength over two. In
this case, the small-scale features (position and shape) of the source are carried by
high evanescent modes that decay exponentially fast with the propagation distance.
Consequently, these modes do not reach the time-reversal mirror, which is located in
the far field. Only low modes are recorded by the time-reversal mirror. In the second
step of the time-reversal experiment, the mirror sends back the recorded low modes
that carry only the large-scale features of the original source. This loss of information
is responsible for the diffraction-limited transverse profile computed in Proposition 3.
In what follows, we refer to high or low modes relatively to a waveguide with homo-
geneous speed of propagation ¢y. Experiments have shown that the situation changes
dramatically when a section of medium with low speed of propagation ¢; < ¢q is
inserted in the vicinity of the source. In this paper, we will compare the two following
cases with the homogeneous case.

First, we assume that a homogeneous section is inserted in the vicinity of the
source, as illustrated in Figure 1(b), such that some high modes of the previous case
are propagating modes in this first section. However, we assume that the major part
of the waveguide has speed of propagation ¢y so the high modes and the small-scale
features of the source do not reach the time-reversal mirror. Therefore, as in the
homogeneous case, only low modes are recorded by the time-reversal mirror and the
small-scale features of the source are lost. The transverse profile obtain in this case
is described in Proposition 2.

Second, if the additional section is randomly perturbed, then coupling mecha-
nisms, between propagating modes of the first section, allow small-scale features of
the source, which are carried by the high modes, to be transferred to low modes.
Even if the high modes do not propagate over large distances in the second part of
the waveguide and are not recorded by the time-reversal mirror, some of the small-
scale features of the source reach the time-reversal mirror since they are carried by
the low modes which are recorded by the time-reversal mirror. This fact is illustrated
in Figure 1(c). These low modes, time-reversed, will come back to the randomly
perturbed section in the second step of the time-reversal experiment, and by cou-
pling mechanisms they will regenerate high modes with the small-scale features of the
source. This regeneration of small-scale features of the source is responsible for the
superresolution described in Proposition 4.

The organization of this paper is as follows: In the first section, we describe the
waveguide model that we consider for the experiment. In section 2, we reduce the
study of the wave propagation in the random section to the study of a system of differ-
ential equations with random coeflicients by using a modal decomposition. Moreover,
we introduce some assumptions needed for the study of the time-reversal process. In
section 3, we state the asymptotic results that we will use in the following section.
In section 4, we consider the time-reversal experiment in the random waveguide pre-
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F1G. 1. Representation of modes propagation in the time reversal experiment. In (a) we rep-
resent a homogeneous waveguide, in (b) we add a homogeneous section with low speed propagation,
and in (c¢) we add a randomly heterogeneous section with low background speed of propagation.

sented in section 1. We analyze the refocused field to emphasize the superresolution
effect and show the statistical stability. Finally, the appendix is devoted to the proofs
of the theorems stated in section 3.

1. Waveguide model. We consider a two-dimensional linear acoustic wave
model. The conservation equations of mass and linear momentum are given by

Ou

o TVP=E

p*(z, 2)
(1.1) )

where p is the acoustic pressure, u is the acoustic velocity, p¢ is the density of the
medium, K€ is the bulk modulus, and the source is modeled by the forcing term
F°(t,z,2). The third coordinate z represents the propagation axis along the waveg-
uide. The transverse section of the waveguide is a bounded interval denoted by [0, d],
with d > 0 and x € [0, d] representing the transverse coordinate. We assume that the
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medium parameters are given by

. 620(}(% (1 + \/EV ($7 E%)) ifx e (O,d), S [O,L/glfaL
) e2ox L if z € (0,d), z € (—o0,0)
, L if z € (0,d), 2 € (L/e™%, +00),

(2,2) = e2wp ifze(0,d), z€ (—o0,L/e 77,
pAT2) = p if z € (0,d), z € (L/e =%, +0),

where a, and ax are such that a, —ax = o € (0, 1]. In what follows, we will see that
the important parameter is «, because it determines the order of the sound speed of
the first section. This configuration means that the order of the sound speed of the
section (—oo, L/e!~?) is small compared to that of the section (L/e!=% +oco). The
first section can represent a solid with random inhomogeneities, and the second can
represent a homogeneous gas or liquid. The case o = 0 is equivalent to that studied
in [11] and [9, Chapter 20], in which no superresolution effect can be detected. The
parameter « represents a possible configuration of the waveguide model, but we will
see in Theorem 1 that the set of possible configurations to which we will apply an
asymptotic analysis is more restricted.

We consider a source that emits a signal in the z-direction with carrier frequency
wg. The source is localized in the plane z = 0.

(1.2) F(t2,2) = f<(1)U(2)0(2)e., where f(t) — % F(Pt)e= ot with p € (0, 1),

U(x) is the transverse profile of the source, and e, is the unit vector pointing in
the z-direction. The source amplitude is large, of order 1/e*, because transmission
coefficients at the interface z = L/e!~® are small, of order €*/2. We will see that the
transmission fcoefficients can be made of order one by inserting a quarter wavelength
plate. We shall discuss this in section 4.6. Note that the condition p > 0 simplifies the
algebra, and the condition p < 1 corresponds to the broadband case and ensures
the statistical stability property discussed in section 4.5. In the configuration (1.2),
the relative bandwidth is of order €?, and the carrier wavelength is of order €® in the
(=00, L/e!=%) section and of order one in (L/e!=%, +00).

The random process (V(x,z),z € [0,d],z > 0) is a continuous real-valued zero-
mean stationary Gaussian field with a covariance function given by

EV(z,t)V (y, )] = 7(w,y)e ",

where @ > 0 and v : [0,d] x [0,d] — R is a continuous function that is the kernel
of a nonnegative operator. Using standard properties of Gaussian processes, we can
state the following results [1]. Let F, = o(V(x,s),z € [0,d], s < z) be the o-algebra
generated by (V(z,s),z € [0,d],s < z). We have the Markov property

(V(z,z+h),z € [0,d]|F,) = (V(z,z + h),z € [0,d]|lo(V(z,2),z € [0,d])),
where the equality holds in law, and this law is the one of a Gaussian field with mean
E[V(z,z + h)|F.] = e "V (x,2)

and covariance y(z, y) (1 — e2%"). Moreover, we will use the following two properties.
vT >0,

(1.3) Ve sup  sup ’V (a:, E)
2€[0,T] z€[0,d] €

— 0 a.s.
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and Vn € N*|

(1.4) E < +o0.

=E | sup [V(z,0)"
z€[0,d]

s |V (. 2)
z€[0,d] €
We can remark that the process V' is unbounded. This fact implies that the bulk

modulus can take negative values. However, to avoid this situation, we can work on
the event

(V(x,z) € [0,d] x [0,L], 1+ eV (a: eia) > o) ,
since by the property (1.3)

lim P (El(a:,z) €[0,d] x [0,L] : 1+ eV (a: eia) < 0)

1
< hH(lJP (\/e"‘ sup sup ‘V (a:, %)‘ > ) =
€e— ] €

2€[0,L] z€[0,d el

2. Waveguide propagation.

2.1. Propagation in homogeneous waveguides. In this section, we assume
that the medium parameters are given by

p(x,2) = % and K¢(z,2) =
€ P

V(z,z) € (0,d) x R.

62(1;(

From the conservation equations (1.1), we can derive the wave equation for the pres-
sure field,

1 &°p ;

where ¢¢ = ¢©

= e%cand A = §2+09?. We consider Dirichlet boundary conditions
p(t,0,2) =p(t,d,z) =0 V(t,z) € Ry xR.

Here, the Fourier transform and the inverse Fourier transform, with respect to
time, are defined by

J?(W) = /f(t)eiwtdt7 flt) = % /f(w)efiwtdw'

In the half-space z > 0 (resp., z < 0), taking the Fourier transform in (1.1), we get
that p(w, z, z) satisfies the time harmonic wave equation without source term

k2 (w) .

831/)\(("’)7 z, Z) + 831/)\(("’)7 z, Z) + eg—ap(wa €T, Z) = Oa
with Dirichlet boundary conditions. Here, k(w) = £. We can decompose this solu-
tion in a spectral basis of L?(0,d), which can be chosen as the set of eigenfunctions

(¢5())j>1 of =07

w
c

d
_026;(x) = Ajj(x) and / 6, (@)dn(@)da = 5, Vil > 1,
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where d;; denotes the Kronecker symbol. This family is given by

2 : 2,2
¢j(z) = \/gsin (%x) with \; = ]d—g for j > 1

and corresponds to the basis of the unperturbed waveguide. Thus, we can write

(2.1) plw,x,z) = Zﬁj(w,z)(bj(x).

i>1
This implies that Vj > 1, p;(w, z) satisfies the differential equation

2 2 w
(22) i)+ (T <) i) =0,

For each frequency w,

620‘)\]\75(“,) < kz(w) < eza)\NE(w)+1

with N (w) = [k(w)d]. There are two cases. First, for j < N.(w), these modes

e

represent the propagating modes, and we define the associated modal wavenumbers
by

k.2
g = oy,

Second, for j > N.(w), these modes represent evanescent modes, and in this case we
define the modal wavenumbers by

k2 (w)

20

Bi(w) = 1/% -

€

Finally, using (2.2) and (2.1), the pressure field can be written as an expansion over
the complete set of modes

(2.3) plw,z,z)
Ne(w) ~€

_ Z aj70(w) eigj(w)z(bj(x) + Z Me—ﬁ;(w)z(bj(x) ]_(07_’_00)(2)

=1 4/B5w) j>No@)+1 /B35 (W)

, < . E;,o(w)
—— j ——

=1 4/B5(w) jeN(@)+1 /55 (W)

where @5 5(w) (resp., 3§’0(w)) is the amplitude of the jth right-going (resp., left-going)
mode propagating in the right half-space z > 0 (resp., left half-space z < 0), and

%2 (2) | 1(—oo0(2),

¢ o(w) (vesp., d5 o (w)) is the amplitude of the jth right-going (resp., left-going) evanes-

cent mode in the right half-space z > 0 (resp., left half-space z < 0). We recall that

the source is located in the plane z = 0 with the transverse profile ¥(z).
Substituting (2.3) into

2(w .
%ﬁ(a},x,z) = f(w)¥(x)d(2),

€

(2.4) 02p(w, @, 2) + O7p(w, x, 2) +
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multiplying by ¢;(z), and integrating over (0,d) permit us to express the mode am-
plitudes

- Biw) -~ fw—w
0(e) = ~Biol) = YT (252 0,

~ n > w—wo
Giofe) = ~drole) = - T (252 ) 05,
where Vj > 1,
d
05 = (B d3) o = | W)y (@)a
2.2. Mode coupling in random waveguides. In this section, we study the

expansion of p(w, x, z) when a random section z € [0, L/e!~¢] is inserted between two
homogeneous waveguides:

) 2K L (144/eV (z, %)) ifze(0,d), z€[0,L/e],
— 20¢K 1 : _
K@) " if x € (0,d), z € ( ool,_()i
' = if x € (0,d), z € (L/e' ™%, +00),

. e 2%p ifz € (0,d), z € (—oo, L/e'=?]
P(’Iaz):{ 7 g if z € (0,d), ZE(L/e1 %, 400).

In this region, the pressure field can be decomposed on the basis of eigenmodes
of the unperturbed waveguide

Ne(w)
pw,x, z) Z Dj(w, 2)p;(z) + Z gj(w, 2)¢; ().

Jj=1 J>Ne(w)

Evanescent modes correspond to j > N, (w), and N.(w) goes to +o0 as € \, 0. There-
fore, we will neglect the modes j > N.(w). Note that it could be possible to in-
corporate the modes j > N(w) using the method described in [9, Chapter 20], but
this would lead to complicated algebra without modifying the overall result. Indeed,
we will check a posteriori that the mode decomposition of the wave is supported by
a number of modes of order one as € \, 0. Consequently, we will consider in what
follows the decomposition

N (w)

pw,z, z) ijz¢J

j=1
where pj(w, z) satisfies

2 Ne(w)

d- € =~ «
(25) @pj(w, Z) + 6] (w)zpj(w7 Z) + 62 -2 k2 Z le ( )pl w Z) 0
with

d
() = (83, 1V (2 2)) 2. = / 6, @i (@)V (@, 2)de V(1) € {1,..., Ne(w)}>.
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Note that V(j,1) € {1,..., Ne(w)}?, the coefficient Cj; represents the coupling between
the jth propagating mode with the /th propagating mode. Next, we introduce the
amphtudes of the generalized right- and left-going modes @;(w, z) and b (w, z) for
je{l,...,N(w)}. They are given by

(321 21 ),
\/ B
pJ w,z) =1,/ (aj w, z)eWi (@)= —gj(w,z)e*iﬁj(“)z) .

In the absence of random perturbation, these amplitudes are constant. In the presence
of random perturbations, we obtain from (2.5) the coupled mode equation

d .. 3—a ik® Y (%) Nz | 7 —i(Br+85)z
45— ehelt ; 1), (q450)= 4 e 61)°)

Vi e{l,...,Ne(w)}.
Let us define the rescaled processes

e s z ~ 7 z
a5(w, 2) = a; (w, E) and b5 (w, z) = b; (w, E) for z € (0, L),

Vi € {1,...,Nc(w)}. These scalings correspond to the size of the random section
(0, L/e'=%). They satisfy the rescaled coupled mode equation

Ne(w)
d/\e kQ C ~¢ i€ T—pB5)2 Te —ie*(Br+85)2
=47 2k Z e /B0 ‘( afete! (A% et Gz )
(2.6)
N(w)
d~, zk2 C’l e i€ (BE4B)E | e —ieo(BE—3C) 2
e N e (e D2 e i)

This system is endowed with the boundary conditions Vj € {1,..., Ne(w)},

@5(w,0) = @ (w) and bS(w, L) = 0.

Note that Vj € {1,..., Ne(w)}, @5 o(w) represents the initial amplitude of the jth
propagating mode generated by the source at z = 0%. The second condition means
that no wave comes from the right. We can rewrite (2.6) in a vector-matrix form as

where
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and V(j,1) € {1,..., N.(w)}2,

9
H(2) = ik*(w) Cii(2) eieo‘(ﬁf(w)—ﬁ;(w))z’

g 2 o [35(w) Bl (w)

HY (2) — ik?(w) Ci(z) i (B @) 465 (@)=

7 2 e [B5(w)Br ()

Now, we introduce the propagator matrix P¢(w, z), that is, the 2N.(w) X 2N, (w)
matrix solution of the differential equation

d . 1 __. /% ¢ . € o
EP (w,z)—ﬁH (Z)P(w,z) with P¢(w,0) =1

This relation implies

F)-reo ]

and the symmetry of H(z) gives a particular form of the propagator:

Pé(w,2) =

P!(w, 2) gwa]
Pg(w, 2) PHw,z)|’

where P%(w, z) and P®(w, z) are N, (w) x N.(w) matrices which represent, respectively,

the coupling between right-going modes and the coupling between right-going and
left-going modes.

2.3. Band-limiting idealization and forward scattering approximation.
In this section, we introduce a band-limiting idealization hypothesis in which the
power spectral density of the random fluctuations is assumed to be limited in both
the transverse and the longitudinal directions. This hypothesis simplifies the study
of the time-reversal process. Note that Vj > 1 and z € [0, +00), we have

d d
M%wﬂaéévmw@wmw@@m@w@
=SU-Lji-D+SG+Li+0)-SG-Li+D)—=SG+1,5-1),

where

S(a,b) = %/d /d*y(a:,y) cos (a%x) cos (bgy) dxdy.
o Jo

We assume that the support of S lies in the square [—%, %] X [—%, %} Our compact
support hypothesis implies

Ciu(z) =0 if[j—1] >1,

which is tantamount to a nearest neighbor coupling. More precisely, this assumption
implies that V(j,1) € {1,..., N.(w)}?, the jth mode amplitude can exchange informa-
tion with the /th amplitude mode if they are direct neighbors, that is, if they satisfy
i—l <L
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The same proof as the one in section 5.1 shows that P¢ converges in law. The
limit processes of P¢ and PZE’, as € — 0, are coupled through the coefficients

+oo
/0 E[C;1(0)Cji(2)] cos(2k(w)z)dz,

because of the factor e**<(8i (“)+55(w)z iy H?f(z) and the fact that Vj > 1,
(2.7) lg% €35 (w) = k(w).

We assume that the power spectral density of the process V, i.e., the Fourier transform
of its z-autocorrelation function, possesses a cut-off wavenumber strictly less than
2k(w). In other words, we consider the case where

/ R (0)Ct(2)] cos(2h(w))dz = 0 1> 1.
0

Consequently, the limit coupling between P%(w, z) and P’(w, z) becomes zero. More-
over, the initial condition P’(w,0) = 0 implies that P’ converges to 0. In this
forward scattering approximation, we can neglect the left-going propagating modes in
the asymptotic € — 0. With this assumption, one can consider the simplified coupled
amplitude equation given by

d . 1 ~ . ~ ~
—a(w,2) = %H“’E (g) a(w,z) with @%(w,0) =ap(w).
Finally, we introduce the transfer matrix T(w, z), which is the N (w) x N.(w) matrix
solution of

d 1 z
2.8 —T(w,2) = —=H*¢ (—
28) LT =
From this equation, one can check that the transfer matrix T¢(w, z) is unitary since
H%¢ is skew-Hermitian.

)Tf(w,z) with T(w,0) = L

€

3. The coupled mode process. This section presents the theoretical results
needed in this paper. In [11] and [13], the authors used the theorem stated in [17]
since the number of propagating modes was fixed, but this is not the case in our
configuration. The first result concerns the diffusion-approximation for a solution of
an ordinary differential equation with random coefficients. This result is a version of
that stated in [17], where the dimension of the system is fixed, adapted to the case
where the dimension of the system goes to infinity in the asymptotic € \, 0. The
second result, which follows from Theorem 1, is about the asymptotic behavior of
the expectation of the product of two transfer coefficients. These two results will be
used in the following section to compute the refocused pulse in the asymptotic regime
€ \, 0. The third result concerns the high-frequency approximation to the coupled
power equation obtained in Proposition 1. Using a probabilistic representation of
solutions of this equation, we establish a convergence in law to a continuous diffusion
process. From Theorem 2, we give the high-frequency approximation to the coupled
power equation that will allow us to compute the transverse profile of the refocused
pulse and show that randomness enhances spatial refocusing beyond the diffraction
limit.
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Let H = ? (E,C), with E = (N*)Q, equipped with the inner product be defined
by

YO €EHXH, Ny =Y Njmlm.

jom>1
Let us fix (I,n) € (N*)* and consider

Ui (w, 2) = ijl(w, 2)T5, (w, 2),

which is an H-valued process such that ||[U®(w,z)||% =1 Vz > 0. Note that we have
dropped the indexes [ and n in the previous definition because they do not play any
role in (2.8).

THEOREM 1. For a € (0,1/4), the family of processes (U (w,.)) .¢(o,1) converges
in distribution in C([0,+00), H) to a limit denoted by U(w,.). This limit satisfies the
infinite-dimensional stochastic differential equation

dU(w, z) = J(U(w, 2))dz + ¢1(Ulw, 2))(dB;) + 12(Ulw, 2))(dB2),
where (B?m)nzl,g is a family of independent one-dimensional standard Brownian mo-
jm>1

tions and

J(u)jm = A(uj1154105m — Ujm) + (Uj—15-10jm — Ujm)]

A
1) Njm =\ 5 Wit1mAjjr = jmtmAj-15 + Ujmt1 Amm+1 =~ Ujm—1Am—1m),
A
b2(u)Njm =1/ 5 (=tr1mAjjrt = UitmAj-1j + Ujmt1 Amme+1 + Ujm—1Am—1m)

V(u,\) € H x I?(E,R), with A = %S(l, 1). We use the convention (Yo,m)m>1 =
(yj,0)j>1 =0 fory € H.

This theorem gives the asymptotic behavior of the statistical properties of the
matrix (Uf,,);m in terms is of the diffusion model given by the infinite-dimensional
stochastic differential equation.

The proof of this theorem, given in the appendix, is based on a martingale ap-
proach using the perturbed-test-function method. In a first step we show the tightness
of the process, and in a second step we characterize all the accumulation points by
mean of a well-posed martingale problem in a Hilbert space.

ProPOSITION 1.

. e e e M ifj+mandj=1o0rm=1,
gE,%E [Tjj(w7L)Tmm(wﬂL)} =K [Ujm(va)] = {e—ZAL if j £ m# 1,

lim B [T, LT (w, )| = E [Uss(w, )] = T} (w, L),

lim E [ijl (@, DT,

(w, L)} =E[Ujm(w,L)] =0 in the other cases,
where (’Z}l (w, z))j>1 is the solution of the differential equation, called the coupled power
equation, B
d .
qu‘l(wv Z) = A(w) [7}l+1(wa Z) + 7;!—1((")7 Z) - 21];'1("‘]3 Z)] y J > 17
d

T 2) =AW) [B(w,2) - T (w,2)],
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with ’Z}l(w,()) =0;i.

This equation represents the transfer of energy between propagating modes, and
A is the energy transport coefficient. We are interested in studying this equation in
the high-frequency regime, that is, when w > 1. To this end we take a probabilistic
representation of this equation. We introduce the jump Markov process (X )¢>o whose
state space is N* and whose infinitesimal generator is

Lxp(i) = Mw)(e(G+1)+0( —1) = 2¢0()), =2,
Lxp(1) = Aw)(p(2) — ¢(1)).
We get,

Xp_J

le(w,L)=P(XL=leo=l)=P<N =N

Xo _
N N/’

where N (w) = [ﬁ—g] is the number of propagations in the homogeneous part (L/e!=2,
~+00) of the waveguide model. The interest of the last equality will be justified by the
following theorem and in the following section, when, in the high frequency regime,
we will compute the transverse profile of the refocused pulse.

THEOREM 2. Lett >0 and (I(N))n>1 be a sequence with values in N* such that

limy 400 I(N)/N = y. Denote by P%}é)ﬂ\, the law of X/N starting from [(N)/N.

Then, (]P’l]\(]j\t,)/N)N converges weakly to the law of 0By + y|, where (By)i>o is a real

standard Brownian motion and o? = d”TzS(l, 1).

This theorem is a continuum approximation in the limit of a large number of
propagating modes. From this theorem, we can derive the high-frequency approxi-
mation to the coupled power equation. We can consider (7% (w, L));>1 as a family of
probability measures on R;. Using the previous theorem, we can show that for all
sequences (I(N))y, with values in N*, such that (I(IN)/N)n converges to y € Ry, we
have that (7/V)(w, L))y converges weakly to W(L,y,y')dy’. In another words, V¢
bounded continuous functions

(%)

where, Vt > 0 and (y,v’) € (Ry)?,

X, IUN)

TZ(N) L :E - = 7 / / L / /
D) N =N | N7 R+<P(y V(L y,y')dy',

2 92

0 n_ 0 /
Ew(tvyay ) - Ta—ygw(tvyvy )7

with

0

3,V 0,y') =0 and W(0,y,y") = é(y —y').

Consequently, for all N large enough or in the high-frequency regime, Té (w, L) can be
approximated by fR+ oy )W (L, %, y') dy’ in the sense that the difference converges
to 0.

This approximation gives us, in the high-frequency regime, a diffusion model for
the transfer of energy between propagating modes. In our case, the diffusion model of
the coupled power equation takes a particularly simple form; it is the heat equation
with a reflecting barrier. More details about this approximation and another model
of diffusion in a different model of waveguide can be found in [13].
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4. Time reversal in a waveguide.

4.1. First step of the time-reversal experiment. In the first step of the
experiment, a source sends a pulse into the medium, and the wave propagates and is
recorded by the time-reversal mirror. In this section we obtain the integral represen-
tation of the wave recorded by the time-reversal mirror.

A source is located in the plane z = 0 and emits a pulse f¢(¢) of the form (1.2),

fe@) = %f(ept)e_“ot with p € (0,1).

A time-reversal mirror is located in the plane z = Ljs /€' =2, it occupies the transverse
subdomain Dy; C [0, d], and in the first step of the experiment the time-reversal mirror
plays the role of a receiving array. The transmitted wave is recorded for a time interval
[L, 4] at the time-reversal mirror and is re-emitted time-reversed into the waveguide
toward the source. We have chosen such a time window because it is of the order of
the total travel time of the section. We recall that the distance of propagation is of
order 1/e!~% and the sound speed is of order €* in (—oco, L/el~%).

The Fourier transform of the pressure field at the end of the random section

[0, L/e'=?] is given by

_ NE(W)’\
6 L ae-(w,L) iB% (w) —L_
& (‘” —) =2 S=" T @),
=1 /B5(w)

Jumps of the medium parameters at z = L/e! = imply that the incoming pulse
produces a reflected and a transmitted field. The modal decomposition obtained in
section 2.1 for the first part of the waveguide can be obtained in the same way for the
second part with e = 1. The decomposition over the eigenmodes gives

(4.1)

N(w) ~
i3 (w)(z— <& b —iBi(w)(2——L
P (w,x,2) E iL/JﬁLj— 85 () ela)(bj(%)—l—%e Bi(@)(z=27) g, ()
¢jr(w o) (- == J-L(w) () (s —L
+ Js B]( )( €1_o¢)¢, _'_]77 B]( )( el_a)(b, 1 clmo oo
Jj= ]%)—H\/ ﬁj J(x) \/ﬁj(w)e j(gC) / " )(Z)

N Nf) B @) 5 g () 4 202 a5 (o ke
J
=1 1/B5(w) \/ B (w

)¢j ()| Lo, e1-)(2),

~—

where @; 1, (w) (resp., /l;j7L(U))) is the amplitude of the jth right-going (resp., left-going)

mode propagating, and ¢ (w) (resp., c/l\] 1(w)) is the amplitude of the jth right-

going (resp., left-going) evanescent mode in the homogeneous section (L/e! =%, 4+00).

Moreover, a5 ; (w) (resp., %L(w)) is the amplitude of the jth right-going (resp., left-

going) mode propagating in the section (0,L/e!~%). Note that we have kept the

evanescent modes j > N(w) in the expression (4.1) because N(w) is of order one
From the continuity of the pressure and velocity fields, we get Vj € {1,.

B [ 5] ) e g1 [ DT [FO
bjn(w) Ty 7“§ bs 1 (w)]”’ ﬂew @)
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x
dd Time reversal mirror
1 "“c .
i vin(w)
1 -
1
e .
Source :a'_;r',[}(w)
—— P gl
! a5 p (W) |@)r(w)
; - 2
fel—r _
0 Lfe Las/e! ™"

and Vj € {Nw)+1,...,N(w)}
I e ] R A VE e e
R [ T b)) T T2 Ve Y @)

5 (@) = @5 (w, L)@ a5 b, (W) = 0, and dj, 1 (w) = 0.

The two last conditions mean that no wave comes from the right. In fact, in the
first part of the experiment the time-reversal mirror records the signal and does not
produce reflected waves. Solving these equations allows us to express the transmitted
and the reflected coefficients. Consequently, Vj € {1,..., N(w)}, we have

<
<

with

€,—

- e ~ T - e
.0 (w) = 757 (@) (w0, D) T and B (w) = ——Lr@ (w, L)e' 5w
r.’
J
where
1
(4.2) 5 (w) = -
J rj’+(w)

is the transmission coefficient of the interface z = L/e! = and Vj € {N+1,..., N.(w)}

; e ~ ot
G0 (W) = ——=@ (w, L)@ a%s and B | (w) = e @as,
Ty Ty
j j
We can remark that Vj € {1,..., N(w)}, the transmission coefficients T;7+(w), which

are defined by (4.2), are of order €*/2. We recall that we have taken a source amplitude
of order 1/e* in (1.2). This fact will allow us to have, after the second step of the
time-reversal experiment, a refocused pulse of order one. However, we recall that we
will see, in section 4.6, that the transmission coefficients can be made of order one by
inserting a quarter wavelength plate.

The reflected wave produced at the interface z = L/e! = does not reach the time-
reversal mirror. Moreover, Ly /€'~ is sufficiently large so that one can assume that
the evanescent modes, that is, the jth right-going modes for j € {N(w)+1,..., Ne(w)}
in the homogeneous section (L/e!~%, 4+00) which decrease exponentially fast, do not
reach the time-reversal mirror either. Therefore, only the transmitted propagating
wave

(4.3)

DPyr 6’ 61 o 27‘( \/ﬂj—

is recorded by the time-reversal mirror.

) b5y dw
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4.2. Second step of the time-reversal experiment. In the second step of
the time-reversal experiment, the time-reversal mirror plays the role of a source array,
and the flipped signal is transmitted back. This source is given by

Fop(t,z,2) = = fip(t,2)d(z — Lar/e'™)e,

with
t L
Ftalts0) =iy (2 =t F22) Gt - )Gl
and

G1(t) = 14, (t) and  Ga(w) = 1p,, ().

In this paper we are interested in the spatial effects of the refocalization, so we will
assume that we record the field for all time at the time reversal mirror, i.e.,

(44) f’le"R(tax) :p;’ <t:1 - t’x’ 611/]\/;) G2( )

We study the propagation from z = Lj;/e! = to z = 0. The decomposition on
the eigenmodes gives

P (e ) = Z I”ﬁéj T g, (0)

in the homogeneous part of the waveguide, with
(4.5) Bm,LM(w) S / fTR W, T)Ppm (x)dx,

where

Ly —L

( )efiﬁj(w)ﬁe*iﬁj(w)( T-a )(bj(x)ein

(4.6)

fTwa Z\/ﬂ—
i (

and Em, Ly(w) =0 for m > N. We are now interested in the refocused pulse near
the source location. The transmission through the interface z = L/e! = and the back
propagation in the random section are treated in the same way as the first step of the
time-reversal experiment. The eigenmode decomposition at the interface z = L/e'~
is given by

L W i) B (@) (2= o)
prg (W, 2) = 2 i) Pm (@)
ﬁg;((‘:)) —ifm () a>¢m(x>] (Lje=2 100 (2)
(4.7) +A5”5;(ZJ))WW“>(Z ) G )1 Lio,n/e1-0)(2)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



TIME REVERSAL SUPERRESOLUTION 1363

Ad Time reversal mirror
1 Te -~
0 o ban(w) bJH.f,l[‘*") -~
' b:l(uj U.) e bm.f,,\,l (‘-"‘)
Source <

i E—— -
" ‘;Jaa.f,(‘-*")
1 =
1 -
. I‘i-
0 L/e® Lag/é®

where @, .(w) (resp., Em, r(w)) is the amplitude of the mth right-going (resp., left-
going) mode propagating in the homogeneous section (L/e!~% +00), and ay, (W)
(resp., an 1 (w)) is the amplitude of the mth right-going (resp., left-going) mode prop-
agating in the section (0, L/e!=%).

From the continuity of the pressure and velocity fields, we get Vm € {1,..., Ne(w)}

(@] _ [rt ] @)

b (W)| i ] b (W)
However, the source emits only N(w) propagating modes; therefore, @, r(w) =
bm,r(w) = 0 for m > N(w) and for m < N(w)

L— LM>

a5, (@) = 0 and By 1 (@) = By e P (%

The first condition means that no wave comes from the left in this forward approx-
imation that we are considering. Solving this equation permits us to express the
transmitted and the reflected coefficients. ¥m € {1,..., N(w)},

R ré&— < . L—Ly —~ —~ . L—Lps
1 (0) = B e O TR B ) = i @ e O ),
m

where 751 (w) = —L— and b6, (w) =0Vm € {N w)+1,...,N(w)}. Thus, we have
it (w) m,L

obtained the expression of the boundary conditions at the plane z = L/e!~®. Now, we
are interested in the back propagation through the random section from z = L/e!=®
to z =0:

Ne(w)
Prp(w,z,0) Z \/_ n ().

Since the transfer matrix T(w, z) is unitary,

b€ (w,0) Z (w,L)ew’e"(w)el%a

) ifin () s

~ . L—L
= Z Tﬁm(waL)Tﬁﬁ(w)bm,LMelﬁm(“)( Ly
m=1
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and using (4.3), (4.4), (4.5), and (4.6) we get

~ 1 B (w) B (w) w — wp
b1y (W) = — i————Mﬁ&f———-T(L)
: 8 S = Bi(w) ’
< _7.;,+(w)Te,Jr(w)efiﬁj(w)ﬁe*iﬁj(w)(Lﬁ/[:aL)eiw%,

where

d
My — / Ga(); (2)1 ().

The matrix (M;;) represents the coupling produced by the time-reversal mirror be-
tween the propagating modes during the two steps of the time-reversal experiment.
We recall that b, 1,,, is the projection over the mth propagating mode for the Fourier
transform of the time-reversed signal recorded by the time-reversal mirror. Therefore,
the refocused pulse is

N(w) Ne(w)

i (£00) = o [ 0 ([ ar 00000

jm=11ln=1

(4.8)

ep

€ € 1 €, € ~( W —Wo
X le(va)Tmn(waL)e_aTj +(w)7—1ri+(w)f < )

LIVI L

o HBm (@)= B3 (@) (FATE) L5, (@) =55 (@) g giw Bt g

Now, we make the change of variable w = wg + €?h. Consequently, (4.8) becomes

N (wo+€Ph) Ne(wo+€Ph)

1 B5 (wo + €Ph) B (wo + €Ph)
") 2 2\ Ber oot o)

l,n=1

1 -
7% (wo 4 €Ph) 75 (wo + €Ph)

x T5(wo + €’h, )Ty, (wo + €”h, L) T

LM—L)

X Mmj91¢n(w)f(h)el(ﬁmwﬁﬁh)*ﬁj(w“eph))( a-a

x B worte )= (worke?h) ok ib( 455 g,

In what follows, we consider the following:
1. A source with transverse profile of the form

Va € [0,d], Y(z 1(z0) i (2

I MJ\

where we assume that ¢ > N(wg). Then, 0 = ¢;(xo) for I € {1,...,(} and
6, =0 for [ > ( + 1. This profile is an approximation of a Dirac distribution
at xg, which models a point source at xg.
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2. A time-reversal mirror of the form Dy = [dy, d2] with
dy = dpr + MM dy and dy = dpy — MM dy,

where dy; € (0,d), (da,dy) € (0,+00)2, and ays € [0,1]. The time-reversal
coupling matrix is given by

8 0 (552 o (552)-
— cos ((j +1) <d22tld1> 7r) sinc <(j +) (d22_dd1) wﬂ .

The parameter aj; represents the order of the magnitude of the size of the
mirror with respect to the wavelength. In fact, we will see that the size of
the mirror plays a role in the homogeneous case only when it is of the order
the carrier wavelength \g = 27me/wy.

Moreover, we will study the spatial profile of the refocused pulse in the continuum
limit N(wp) > 1, that is, in our case, in the high-frequency regime wy /" +oo.
However, we know that the main focal spot must be of order A\g, which tends to 0 in
this continuum limit. Therefore, we will study the spatial profile in a window of size
Ao centered around zg.

4.3. Homogeneous waveguide. Here we examine the homogeneous case, that
is, the case in which the section [0, L/€!~] has homogeneous parameters K /2% and
p/€2¥ . In these conditions we have T5(w,2) = &j1. We recall that the continuum
limit N(wp) > 1 is achieved in the high-frequency regime wy /" 400 and the carrier
wavelength is given by Ao = 27¢/wo.

PROPOSITION 2. The refocused field is given by

ty ot 1 Nwo) B;(wo)
. iw : € _ = J o . _
1111(1)6 P prR <—€ + —ep,x,0> =3 jél (wo) M;j¢(xo)j(z)f(—t)

= B (wo,2) f(~1).

For apy € [0, 1), the transverse profile of the refocused pulse in the continuum limit is
given by

wop—-+o00 d

1—0(]\4 d’v _ CZ 1
(4.10) lim =2 5 Hy M (wo, w0 + AoT) = E— / V1 —wu?cos (2rzu) du.
0

Proof. First, we have Vp € (0,1) and Vo € (0, 1]

B (wo) B (wo)

1l—F/——"—
4.11 lim —7&7 ph)TEF PR — 4
( ) im —75" (wo + €Ph) 75 (wo + €Ph) (o)

e—0 €@ J
Second, we will fix the parameters p and « in order to give, for illustration, a

simpler proof. Let p = 1/2 and a = 1/6. These two values allow us to have a not too
long truncated expansion (4.12); then the refocused field is given by the deterministic

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1366 CHRISTOPHE GOMEZ

expression, for € < 1,

N(wo)

t1 t 1 ﬁm( ) (B (w B (w Ly—-L

pTR< + o) 5 > ) M0, ()P (00) =i o) (“475)
jym=1

¢ 1(Bin (@0) =55 (w0)) 575 , —iwo 3

1 ([e4o ) = B en) B — 1)+ @3~ AT 2] ).

wid? 2¢
since
L L
(Braleo + €720 = Bl +€/2h) ) S = (B (wo) = 55(w0) 37
€ €
(4.12) A 22 L
(m? 1)
+ 5 m* =) g i o
Finally, the transverse profile is given by
d MM [
a2 Hy M (wo, w0 + AoT) = g 1— N_ cos 27ch
Mo - B (wo)
0 j(Wo
— 2
+ 5 ; i (00) cos( d( xo+)\oa:))
d A" o~ Biwo) -
— = = i(o)d;(zo + Ao
dy — dy 2 Z]Wk(WO)¢j( O)ij( 0 0 )
X cos | jm dz + du sin | g7 ds — &y
J d J d
+o(1).

Using the Abel formula, the second and the third sums on the right are @(1). This
completes the proof of the proposition. O

To finish this section, we consider the difference between the previous profile
(obtained in the case where the homogeneous section [0, L/e!~%], with the parameters
K/e*x and p/e*®r, is present) and the one in which this homogeneous section is
missing (that is, the waveguide is homogeneous with parameters K and p). The
second profile is given, in [9, Chapter 20], by

N(wo)
Hiho section(40:1) = 5 >, My65(w0)5(r),
j=1

which we can rewrite in the continuum limit.
PROPOSITION 3. For aps € [0,1), the spatial profile in the continuum limit is
given by

)\1 — QN
QM
xp,no section

(4.13) lim

wo—+00 2

(wo, o + AoT) = Lsine(2n7),

where the sinc function is defined by sinc(v) = sin(v) /v.
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024

08
064
04

02+

i)
(b)

F1G. 2. Renormalized modulus of the transverse profiles in the homogeneous waveguide. Here
d=10,dp =6, d2 =3, d1 =2, Ao =0.01, and zo = 6. The dashed curve is the transverse profile in

the case where the section is missing, and the solid curve is the refocusing profile in the case where
we add a homogeneous section. In (a) we illustrate the case where aps € [0,1) and in (b) apr = 1.

The formula (4.13) corresponds to the classical diffraction limit with a focal spot
of radius A\g/2. In Figure 2, we compare, in the homogeneous case, the spatial profile
(4.10) in the case where the homogeneous section [0, L /¢! =] is present with the profile
(4.13), where this section is missing. We can see that the main focal spot, in the case
where a section is inserted, is larger than the focal spot produced when this section
is missing (see Figure 4). The use of this section does not improve the refocalization
in the homogeneous case. It is necessary to use an inhomogeneous section to induce
mode coupling in order to enhance refocusing, as we will see in the next section.

4.4. Mean refocused field in the random case. Taking the expectation of
(4.9), we obtain the mean refocused pulse

Lty —t t
E[e—zwg 15 p%R <E,m70):|

N(wo+€Ph) Ne(wo+ePh

RIS

jym=1 n=1 =1

)Z B (wo + €h) Bon(wo + €Ph)
Bj(wo + €Ph) 35 (wo + €Ph)
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x E [Tf (wo + €Ph, L)TE,, (wo + €Ph, L)] My bi(20)dn(2) F(R)

1l ——7777—= % wo—+eP wo+eP L L
X —T;Hr(wo + ePh) 7t (wo + Ph)e (B (wote?h) =f; (wot h))< 1= )
€

w B (wote?h) =5 (woterh)) xi Lih(A=5) g,

We will establish the convergence of the mean refocused pulse in the topological dual
&’ equipped with the weak topology, with £ = | w1 Em, and where

5M—{Zﬂj¢p (1i); €R }

&y is equipped with the topology induced by (.,.)r2(0,qy and £ with the inductive
limit topology. It suffices to study < E[ei“’oe%p}R(%—i—e%, 50)], én >12(0,q) for n € N*.

Using Proposition 1, we get
t
_;D’ 9 ):| 7¢n>
L2(0,d)

H(wo, LYM;ju(0) f(—t)61n + O(N2e ™)

(4.14)

e ot (1

SRR N =

f(= )HQM(wo,.),¢n>L2(0,d)+0<N2e—“>,

m|,_.

[\D|’—‘

~

where the transverse profile is given by

N(wo)

Hy " (wo, 2) = Z Z

l>1]1

ﬁg

H(wo, L)M;;¢n ()i (o).

In the continuum limit, the terms which correspond to j # m decay exponentially
because of the damping term e % since A ~ N%52/2.
PROPOSITION 4. For ayps € [0,1], in the continuum limit, we have

lim (H;OM (wo, ) — HEM (wo, .)) =0

wo—+00
i &', where
(4.15)
Ay M dy —d !
lini 5 HO‘M (wo, g + AoZ) = 2" T L —2Lo?n?3? / V1 —wu?cos(2nzu) du
wo——+00 0

From this proposition, in contrast with Proposition 2 which considers a homo-
geneous waveguide, the time-reversal coupling matrix does not play any role in the
transverse profile of the mean refocused pulse. This result is consistent with those of
[9] and [11].

Proof. Let n € N*; we have

N
: a 5.7
CEIJPOO <H10M (wOv ) ¢n>L2(O dy — xO j; k ] ("‘JOa L)
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Using the probabilistic interpretation of 7;" (wo, L) in section 3, we get

N
Biwo) r on _dy—dy _(Xc Xo_n

_Z B wo T (wo, L) cos (jwd2+dl>sin <jﬂ'd2;dl>

=1

]7rk
+ 0(1).

Moreover, using Theorem 2
xr\? Xo n
Ef1-(52)1 0 —
( N ) (el

)N TN

2~

A2
=F 1-— (UBL-FN) 1(0’BL+%E[*1,1]) +o(1),
and we have the following result.
LEMMA 1.
N B;(wo) dy+d dy—d
. i (Wo) n dyFdy\ . . da—di\
NLHEOO; m’]} (wo, L) cos <j71' y > sin (]71’ 7 ) =0.

Proof. 1t suffices to show that

. . do
N—»Jrooz ]7rk 7;" (wo, L) sin (ZJWE) =0.

Let n € (0,1); we have

— | < — e, =
Z]ﬂ'k TJ wo, )sm<2j7rd) }P’(N E{N’ N NN

N
1 .
+——— > P(X[=j|Xo=n).

Therefore,

Z j7Tl€ 7" (wo, L) sin <2j71’g> <P(¢Br €10,n)]),

and we get the result by letting 1 \, 0. This completes the proof of the lemma. a
This lemma shows that the time-reversal coupling matrix does not play a role in
the transverse profile of the mean refocused pulse. Consequently,

wg]igl_oo <Hz0M (UJOa ) - HzoM (wOa ) ¢">L2 0,d) =0,
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where

- dy—d 1>
HmoAf(WO’m): 22d 1ZE \/1— <O’BL+N) 1(0’BL+%E[*1,1]) 1 (xo) i ().

1>1

LEMMA 2. In the continuum limit, we have

ApTOM o dy —d 2 1
(4.16) OTH;)‘OM (wo, T + Ao) = %eiﬁ[ﬂ”%ﬁ / V1 —wu2cos (2nzu) du.
0

Proof. The proof is an application of the Poisson formula,

Z F, (m)e'™ =21 Z F.,(v+2mm),

meZ mEeEZ

. ~ _ (m-Nw)? 55 2702 o2 ) .
with F,,(m) = e 2827 and F,(t) = Y220 Lo N5 LHitNu Thys, we obtain

d -~
e ) o0+ 07
N ~N?22L(Zxoi+2in)’ ! T,
:EZe z #lano \/l—uQCosKE)\Oa:+2l7r) Nu} du
€T 0

N U2 s i~ 1
- e~ N % L(5 (o&+2w0)+20m)’ / V1 —u?cos Kg()\oi + 2x) + 2177) Nu] du.
lez 0

Finally, we take only the term [ = 0 in the first sum on the right because the rest of
the first sum and the second sum are of order O(e~“V 2) uniformly in Z. Moreover,
we have lim,,, Ao/N/(2d) = 1. This completes the proof of the lemma and the proof
of the proposition. a

In Figure 3, we illustrate the differences between the transverse profiles of the
refocused wave in the homogeneous case and when a random section is inserted. To
show that random inhomogeneities enhance refocusing of the time-reversed waves,
we consider two configurations. (a) and (c) illustrate the case where o < 1 (weak
fluctuations). We can see that the focal spot in the case where we add a section can be
larger than in the case where this section is missing. In contrast, (b) and (d) illustrate
the case where o is large enough to have side-lobe suppression and a focal spot which
is narrower than in the case where the random section is missing. In Figure 4, we
illustrate the improvement of resolution compared to ¢ by using the FWHM, that
is the full width at half mazimum, which is a useful tool for studying the width of
peaks. In the case where the random perturbed section is missing, the FWHM of the
transverse profile given in Proposition 3 is of order \g/2. However, when this section
is inserted, the FWHM of the transverse profile given in Proposition 4 is narrower
than in the previous case for o large enough. Consequently, if o is large enough, the
resolution is < A\g/2.

4.5. Statistical stability. Pulse stabilization is proved by a frequency decoher-
ence argument; see [5] in the context of a one-dimensional medium and [9, Chapter
20] in the context of waveguides. In our case, to prove the self-averaging property,

we study the second order moment of ei“’oe%p}R(% + Ei,,, z,0). As in section 5.1, we
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F1c. 3. Renormalized modulus of the transverse profiles in a random waveguide. Here L =1,
d=10, dpy =6, d2 =3, di =2, Ao =0.01, and o0 = 6. In (a) and (b), we illustrate the case where
an € [0,1) and in (c) and (d) the case where apy = 1. Dashed curves are transverse profiles in the
case where the section is missing, and solid curves are transverse profiles in the case where we add
a random a section, with o = 0.01 in (a) and (c) and o = 1.5 in (b) and (d).

prove a limit theorem for (T9(w + €Ph,.)T<,(w,.)). and show that, ¥p € (0,1) and
we (0.3 n 1)
E {T;l (@ + eh, DTS, (w, L)} —E [ijl (@ + ePh, L)] E[TS,,(w, L)]
o) (6<1/2>A<172a7p>)

VK >1and V(j,1,m,n) € {1,..., K}*. Consequently, we can use the same argument
as in [9, Chapter 20] in the broadband case and

lim F. iwo L € t_1+i 0 ? — 1 E iwo 2y € t_l_i_i 0 ’
ey € Prr\ 0T 5% b € Prr\ 075"

in &

4.6. Quarter wavelength plate. In this section, we explain how the transmis-
sion coefficients through the interface z = L/e!™® can be made of order one. We
have seen that the previous transmission coefficients, defined by (4.2), are particu-
larly small, of order €*/2. This poor transmission can be corrected by inserting a
quarter wavelength plate. A description of this antireflective process can be found in
[9, Chapter 3]. This method is often used in echographic imaging; it consists in adding
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Fic. 4. Ratio between the FWHM of the profile obtained when we add a section and that of
the profile obtained when this section is missing, in terms of the standard deviation o. Here L =1,
d =10, dy; =6, do = 3, di = 2, Ao = 0.01, and xo = 6.The solid curve represents the case where
ap € [0,1), and the dashed curve represents the case where apr = 1.

a thin layer to enhance the transmission through an interface with the minimum loss
of energy. In our situation, we will obtain a transmission of order one when it was of

order €*/2 without this method. Here, we consider a source that emits a pulse of the
form
1 .
fe(t) = §f(6”t)e_“”°t-

Note that we no longer need the factor 1/¢® as in (1.2) in order to get a refocused
signal of order one. The medium parameters of this thin homogeneous layer located
in the region (L/el =% L¢) are given by

0 K
p(z,z) = L and K(z,2) = — V(z,z) €D x (L)' LY)
€

€%
L A
In the section (L/el~% L), the modal wavenumbers are

Blw)  nm j:l,...[k(w)d]

3¢ (w) = 4/ L 20
5J(w) € J dz2’ 604/27.r

From the continuity of the pressure and velocity fields, the transmission coefficients
of the layer become

0, yLoe (i (@) (LE—L)
T ()T (w)e's

T;)Jr(w) = 0. Le 28 (W) (Le—1)
1+ R(w)R; (w)e Ajw)Le=L)
with
() — 21/65(w)Bs(w) L) 21/8;(w) 35 (w)
T B w) + B5(w) T Bi(w) + B (w)
“(w) — B5(w) 35 (w) — B;(w)
R (w) = - L R () = = J,
i () (W) + B5(w) i) (W) + Bj(w)
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where qu,e and R?’E (resp., le’e and le-’e) are the transmission and reflection co-
efficients of the interface between the sections (0,L/e!=%) and (L/e'=, L) (resp.,
(L/et=> LS) and (L, Ly /€t=%)). The refocused pulse is given by

(4.17)

N(wo+€Ph) Ne(wo+€Ph) ¢

. t 1 ﬂl wo + €Ph) B (wo + €Ph)
'ng <
¢ b < v 0) 167 Z Z Z i (wo + ePh) S (wo + €Ph)

x T5(w + erh, LTy, (w + €’h, L)T; & +(w0 +ePh)T8 T (wo + €Ph)

X Mm]d)l (ZEO)QSTL (x)%el(ﬁm (w0+eph)—ﬁj(w0+eph))( 517104 7[/2)

4B (woteh) =05 (woteh')) wE= eih( S:

=) dn’ dh.

Note that the only difference between (4.9) and (4.17) is the expression for the product
of transmission coefficients 7;° T (w)r5H (w). The limit as € — 0 of this product is (4.11)
in the absence of quarter wavelength plate. In the presence of the quarter wavelength

plate, it is given by

Bj(wo)Bm(wo) 1

Heod () (s + 1)

1i1r(13 7_;,+(w0 + ePh) 75T (wo + €Ph) = 4
€E—

From this result, we can analyze the mean refocused pulse and see that the statistical
stability is not affected. The homogeneous spatial profile, with ap; = 1, becomes

Bj(wo) 1

1
2 ; k(wo) ( Bi(wo) 2
( k(woo) + 1)

Mn#j(w0)dj (w0 + AoT),

and in the case where aps € [0,1), we have in the continuum limit
/ V1—wu?

1+ vVI—u?)’

In the random case, the expression of the mean refocused field (4.16) becomes

—2L¢7271-2r2/ \/1—u2
(1+V1—u?)

————— cos (2nu) du.

————— cos (2m3u) du

in the continuum limit.

To summarize, random inhomogeneities in the section (0, L/e!~%) ensure a con-
version between low and high modes, and the quarter wavelength plate (L/e!=%, L¢)
ensures an efficient transmission from the perturbed section (0, L/e! =) to the homo-
geneous medium (L, Lys/e!=2).

Conclusion. In this paper we have analyzed a time-reversal experiment in a
homogeneous waveguide in which a heterogeneous section is inserted in the vicinity of
the source. The role played by these inhomogeneities is quite different from the regime
studied in [11], in which the random fluctuations are weak and distributed throughout
the waveguide. In this case randomness enhances spatial refocusing up to the usual
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diffraction limit. But in our configuration, the random section permits us to refocus
beyond this diffraction limit, and this effect is statistically stable in that it does not
depend on the particular realization of the random section. The role of this random
section is to ensure an strong conversion between low modes (that can propagate over
large distances) and high modes (that carry the information about the small-scale
features of the source). The insertion of a quarter wavelength plate completes the
experimental set-up. It ensures an efficient transmission from the random section to
the homogeneous one. It could be possible to build other experimental configurations
(with a rough surface, for instance) in order to achieve superresolution. The important
ingredient is that a time-reversible mechanism should convert high (evanescent) modes
to low (propagating) modes in the vicinity of the source.

5. Appendix.

5.1. Proof of Theorem 1. The proof of this theorem is based on a martin-
gale approach using the perturbed-test-function method. We will first prove that
(U(w,.))ee(0,1) converges in distribution in C([0,4+00), Hy), and we will conclude
with an application of Ito’s formula. To do this, we will prove the tightness of the
family (U¢(w,.))ee(0,1) in C([0, +00),H,) using the criteria of Mitoma and Fouque
[16, 8] and Theorem 4 in [14] which use the perturbed-test-function method. In a sec-
ond part, we characterize all subsequence limits as solutions of a martingale problem
in a Hilbert space. With the stochastic calculus in infinite-dimensional Hilbert spaces
we will see that this martingale problem is well posed.

For any A € H, we set U§(w,z) = (U(w, 2),));,. According to the tightness
criteria of Mitoma and Fouque [16, 8], the family (U¢(w,.)). is tight in C([0, +00), Ha,)
if and only if the family (U§(w,.)). is tight in C([0, +0),C) VA € H. Furthermore,
|lU(w, 2)||n =1Vz > 0Ve € (0,1), and (U (w,.))e is a family of continuous processes.
Then, it is sufficient to prove that (U§(w,.))e is tight in D([0, +00),C) VA in a dense
subset of H. Let £y be the subspace of sequences with finite support equipped with
the induced inner product. We have chosen £y for two reasons. First, £ is a dense
subset of H. Second, thanks to the band-limiting idealization, it allows one to avoid
in (2.8) the unboundedness of N,(w) and the fact that €/35(w) goes to 0 for j of order
Ne(w) when €\, 0.

It will be convenient to consider the complex case for more convenient manipula-
tions. Letting A € £y, we consider the equation

d € — 1 € € E E
EU)‘(W’LL)_ Fy (U (w,t),C(e), ),

Ve €
where
. Ne(w)
—Zk2(CU) C - o ne €
F'Em (U,O,S) = «@ qu eelé (5j—ﬁq)Squ
J 2 ; €/ 8585
N (w)
ZkQ(u)) qu Zé(g;_gfn)sU

Jq-

—F————€
€

R VN

The proof of this theorem is based on the perturbed-test-function approach. Using
the notion of a pseudogenerator, we prove tightness and characterize all subsequence
limits.
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5.1.1. Pseudogenerator. We recall the techniques developed by Kurtz and
Kushner. Let M€ be the set of all Fe-measurable functions f(¢) for which sup,,
E[|f(t)|] < +oo and where T' > 0 is fixed. The p — lim and the pseudogenerator are
defined as follows. Let f and 7 in M€ V6 > 0. We say that f = p — lims f° if

sug)IEHf‘;(t)H < +oo and %in(l) E[f0(t) — f(t)] =0 Wt
:, =

The domain of A€ is denoted by D (A¢). We say that f € D(A°) and A°f =g if f
and g are in D (A€) and

o i [EELFC+ 0] - 70

50 5 _g(t) = 07

where Ef is the conditional expectation given Ff and Ff = F:. A useful result about
A¢€ is given by the following theorem.
THEOREM 3. Let f € D(A°). Then

(5.1) M (1) = £(1) —/O A f(u)du

is an (Ff)-martingale.

5.1.2. Tightness. We will consider the classical complex derivative with the
following notation: If v = a + i3, then 9, = 3 (0 — i9p) and Oy = 3 (Ja + i03).

PROPOSITION 5. VA € &y, the family (U5 (w, .))66(071) is tight in D ([0, +00), C).

Proof. According to Theorem 4 in Kushner [14], we need to show the following
three lemmas. Let A € &, f be a smooth function, and f§(¢) = f (Us(w,t)). Thus,

AJ5(0) = 2200 (U3 (w1) F (Ue(w’t)’c (i) z)
1

# 200t (U5 5 (U0 (£).).

e

™

Let

fin == [ T [ (0.0 (£) . 2)] 0f (U3 . 0)

) g [FA (Uw.n.0 (%) ,g)] Osf (US(w,1)) du.

LEMMA 3. VT > 0, lim, supg<,<7|ff(t)| = 0 almost surely, and sup,~, E[| f{ ()] =

0 (Ve).
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Proof of Lemma 3. By the Markov property of the Gaussian field, we get

ik? a(ge_geyt
i(t) = Vo, f (U5 (1) Lm LuSS w eie” (555!

lg— J|<1

) a+ i€ (B5 = 5) ~——
XU m (W, t) 2+€2a(55 ﬂg)Q)\jm

“f2 3 i< =t e (4 2T = On) =
aSmi<t W M et e (g = )

ik’ j (é) pie(Bg—55) L
+ Vedsf (UL (w,t)) Z > o ah;

Jm lg— J|<1
— a+ie*(Bg — B5)
€ )\m
X qu(wa ) a2 +€20¢(6; e)
2 3 arge _geyt + q
Zk Z g el =BT (w. 1) (Wat) C; Z; ( 5) /\jm .
WE sl t) G (B, = 2

lg— m|<1

Using (1.4), we obtain

E[lfi(0)] < VeK(f,N).

For the first part, we get

Ifi(t)] < K\, f,T)Ve sup sup

0<t<T x€[0,d]

t
(=)
€
and we conclude with (1.3). O
LEMMA 4. {A°(f§+ f5) (t),e € (0,1),0 <t < T} is uniformly integrable.

Proof of Lemma 4. After a computation, we get
t t t
A S5+ 1) (8) = (U%w 0. (e (t) om (1)) )
€ €) ) jimn €

where

F{(U,C,s) = 3, f(U)FY (U, C, 8) + 8 f(U)Fy (U, C, 5)
+OZf(U)FPE(U,C,s) + 02f(U)FY*(U, C, s)
+ 050y f(U)EP (U, C, ) 4 0,05 f(U)F (U, C, 5),
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with
Fy(U,C, 5)
Ne e’ € €
— k_42 _ Cigaq’ i€ (B5 =By )SU a+ 1€ (ﬁ 5q)
ol e BB a2t 2a(Bs - By)?
b Gome ey sy, 0T 7 By
€ Qe Qe € 2+ 2a
B5 BB By as +€ (5 B5)?
4 CGigmg eiea<ﬁ;—ﬁg,+ﬁg—ﬁ;)quq a+16“(5§ ﬁ )
€ Q€ Ne Re 200 ( e
BB 85,3 + €285 — Br,)?
B Crngaq’ i€ (B —B)sr a+ie*(8s — Br,) SV
B3, Be B35, a2 + e (B — B,)? |
F (U, C, s)
N, . € €
:E Z Z _ Cigjrq o (85 —Be+55— B )SU Uy a+ ie” (5 ﬁq)
Lo Lt e /858585 0 a? + (85 — Bg)°
jl,ml
Ciam'a __ i (85 ~B48y =65y, U, a + ie* (55 — Bg)
/ﬁeﬁe ﬁe a2+62a(ﬁj§_ ;)2
Cjrg'mq e (B =By BB 1T, a+ie*(B5 — Br,)
Ja~q

'm/ 2+620‘(ﬂ€— fn)2

2
€2, /ﬂjlﬂ;/ﬂfnﬂé
Congm’q’ Be—B5,+B5 65, a+ie*(Bg — Br,)
e ( m By, )SquUJ’q’

€2o¢ /ﬂfnﬁgﬁfn/ﬂ; 2+62a(ﬂ;_ ren)2

F(U,C,s)

AanAj’Tn’a

N

k* Cigira' acge_pge_pge 4 ge — a+ie*(05 — 55
_ Z Z Jjai'q o€ (B5—0q ﬁj/+ﬁq/)ququm ( J ﬁq)

- Lo ! 3 3 — 3
4 jm | ¢.q'=1 62&\/ 56455 By a® + (85 — 53)
-/ ’

J.,m

qum’q’ -Ea(ﬁj_gg_gé,_,’_ginl)sU T a+ iea(ﬁ; _ 5;)

p— e Y
ﬁeﬂf ﬂf amIa 2 + 62(1(5;' — 52)2
Citgma__ gie® =544y, s 2105 = )
m
135,35, 35, 85 HTIT a2 4 e (Ge — B, )?

qum/q/ (B~ B — B +B5 ’)SU U/ CL—FZ'ea(ﬂ;_ﬁ?en)

XjmAjrm -
ﬁfnﬁ;ﬂfn,ﬂe Jj'a 2+62a(ﬁ§_ﬁfn)2 J J

From this expression, using (1.4), we can check that sup, , E[|A° (f5+ ff) (t)]*] <
+00. O
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LEMMA 5.

lim ImP( sup |U{(w,t)|>K | =0.
Glim TP (s (V5G] > K )

Proof of Lemma 5. We have

US@, D= | D U (@, ) Ajm | < [ Al

jm>1

5.1.3. Martingale problem. In this section, using a well-posed martingale
problem, we characterize all subsequence limits. Let a converging subsequence of
(U(w,.)ee(o,1) to Ulw,.) in C ([0, +00), Hy) that we also denote by (U(w,.)) .(,1)-

PROPOSITION 6 (convergence result). VA € &y and Vf smooth test functions,

f(Ux(w, 2)) = / Oy f (Ux(w, 8)) (J(Ulw, 8)), A}y + 5 f (Ur(w, 5)) (J(U(w, 5)), Ay

+05f (Un(w, 9)) (K (Uw, ) (), A)y,
+03f (Un(w, ) (K (Uw, 5)) (\), A)4,

+ 050, f (Ur(w, 5)) (L (U(w, 5)) (A), A) 3
+ 0005 f (Un(w, 8)) (L (Uw, 5)) (A), )y, ds

is a martingale, where
J(@)jm = A(@j41j+10jm — Tjm) + (Tj—1j-10jm — Tjm)],
K(z)(A)jm = % [j-1m ((2j-1, Aj)y = (25, Xj-1),)
+ Zjim (@541, Ay — (55 Aj1)y)]

A
xjmfl (<xm71a /\m>1 - <xma A1’nfl>2)

+5 1

+ Tjm41 (<$m+17)\m>1 - <xm7)‘m+1>2)] )

L(x)(X)jm = % [xjflm ((xj—la Ajdy = (x5, /\j71>2)

+ Zjt1im ((:vj+1, Aidy — (=5, /\j+1>2)}
o ()

+ X jm+1 (<$m+1,/\m>2 - <$mv)\m+l>1)} )

with

jJ/’I’j Z )\Jm//fjma ma/ffm Z)\Jmﬂjm

m>1 j>1

Vi,m > 1, and for (x, A\, p) € H X Ep X Exy.
Proof of Proposition 6. Let

0= [ e [ (0. (0 (£ omn (2),,,., 2]

— F% (Uﬁ(w,t)a (E[C}1(0)Crnn (0)]) E) o

Glmon g

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



TIME REVERSAL SUPERRESOLUTION 1379

LEMMA 6.

sup E[| f5(2)[] = O (e)

t>0

and
A+ 55+ 050 = B (00,86 — = 10), 0,0 ) + A1),

where sup;sq E [|A(e, t)|] = O(Ve).
Proof of Lemma 6. A change of variable gives

+oo t t t
fs(t) = e/ E{ | FX <U5(w,t), <le <u+ —) Crn <u+ —)) U+ —)
0 € €/ / jimmn ¢

—FfOwa%@KhWK%M®M¢WWu+E>M

= eBl(e, t).

By a computation, we can check that sup, ;~oE[|B(e,t)|] < +00. The second part of
this lemma follows a long but straightforward computation. d
We note that G5 (U(w,t), L) = F5(U (w,t),(S(j — l,m — )i 1mn s L) and let

ﬁ@=—£t

LEMMA 7. We have

- 1 [T .
G5 (Ue(w,t),%) — lim T/o G (U%(w, 1), s) ds] du.

T—+4o00

sup E[| f5(t)]] = O(e' 7).

t>0

Then, we need to have o € (0,1/2).
Proof of Lemma 7. After a change of variable, we get

t

< - T
fst) = —6/0 [Gj (U%(w,t),u) — lim %/0 GS (U (w,1),s) ds} du,

T—+oc0
A ] Ky
0 — 620‘

Let fe(t) = f§(t) + fi(t) + f5(t) + f5(t). With the boundness condition (1.4), a
computation gives

and

T—+oc0 T

GS (US(w,t),u) — lim / Gs ( )ds] du

sup E l

t,e

AFE(H) = lim / G ( 5)ds + Cle, b).

T—+oco T

We assume that the following nondegeneracy condition holds. Ve € (0, 1), the wavenum-
bers f5(w) = Bj(w/e”) are distinct along with their sums and differences. Consequently,
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we get
ATfE(t) = 0uf (U (w, 1)) (J(U(w, 1)), Ny + Ouf (U (w, 1)) (J (U (w, 1)), A)yy
+ 03 (US(w, 1)) (K (U(w, 1) (A), \) 5
(5.2) +02f (US(w, 1) (K (U(w, 1)) (N), \) 5
+ 050, f (Ui (w, 1)) (L (U (w, 1)) (A), A)
+ 0u05f (Us(w, 1)) (L (U (w, 1)) (A), A
+ C(e, t),

where sup,~oE[|C(e,?)|]] = O(e272®). Then, we need to have a € (0,1/4). By
Theorem 3, (M§.(t))t>0 is an (Fy)-martingale; this implies that for every bounded
continuous function h and every sequence 0 < 51 < -+ < s, < 5 < t we have

e [hUses 1 <5 <0 (50 - 116 - [ s | <o

Finally, using (5.2) and (2.7) with Lemmas 3, 6, and 7, we get the announced result.
d

Uniqueness. To show uniqueness, we will decompose U(w, .) into real and imagi-
nary parts and consider the new process

Y(w,t) = Bﬁ;gi:iﬂ , where Y'(w,t) = Re (U(w,t)) and Y?(w,t) = Im (U(w, 1)) .

Let G =% (E,R). G x G is endowed with the inner product defined by

1 1 2 2
<$ay>gxg = Z x]myjm +x]myjm
jym>1

V(x,y) € G x G. We also use the notation Y (w,t) = (Y(w,t),\) with A € G x G. We
introduce the operator ¢ on G x G given by

p:GxG—Gxg,
$1 332
)

Let f be a smooth function on R. By Proposition 6, we get the following.
PROPOSITION 7. VA € Egxg,

f(Ya(w 1)) = /0 (J(Y(w, ) Ngug [ (Ya(w,5))

+ 2 {A(Y(w,5) (N, Ngyg f (Yalw,s))ds

1
2
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is a martingale, where

A(@)(A)jm = A [jaim [0, A5)1 = (@, A )o + (@501, Aj)y — (25, Ajy), ]

2
+ xjoim [(25-1,07); — (25, Nj—1)g + (2521, 05) — (25, Xj-1)4 ]
+ Zjmt1 [(Tmt1, Am) 1 — (Tms Amt1)g + (Tma1, Am)g — (Tmy Amt1)1]
+ Tjm—1 [(@m—1, )‘m>1 — (Zm, )\m—1>2 + (-1, )\m>2 —{Zm, )\m71>1]
+ (@) jr1m [(0(2) 1341, 27)1 — (0(2) 5, A1),
—{(o(@) 415 Aj)g + (2(2) 45 Aj1), ]
+0(2)j-1m [(p(@)j-1,25); = {p(@)j, Aj-1),
—(p(x) -1, A)y + ((2) 5, Aj—1),]
+ 0(@) jm+1 [(P(@)mt15 Am)y — (L(T)ms Amt1),
= {(@)mt1; Am) 1 + (D(2)m; Am1)o]
+ Sp(x)jmfl [<50(x)m717 )\m>2 - <50(x)m7 )\m71>1
—{p(T)m-1, /\m>1 —{p(T)m, >‘m—1>2]]

for (z,)) € (G x G)°.
Proof of Proposition 7. By Proposition 6,

t
f(Ya(w, 1)) — /0 (J(Y(w,5)), Ngyg I' (Ya(w,s))
1 "
+5Re (L + K) (U(w, 5)) (), A)g) [ (Yalw, s)) ds
is a martingale, where we have also denoted by X the sequence A\! +iA2. In addition,

Re ((U(w, 1), A5)) = (Y(w, 1), A;) and Im ((U(w, ), A;)) = (@ (Y(w, 1)), A5),

and we get Re (((L + K) (U(w, 5)) (V) >H)=< (Y(w,8)) (A);A)gug- D
From this last proposition, for f(z) = x and f(x) = 22, we get that

M) = (Yert) - | t I (o 9)ds )

gxg

is a martingale with quadratic variation given by
t
()(0) = | (A )N Vg .
PROPOSITION 8. Vf € C2(G x G),

(5.3) f(Y(w,t))—/O Lf(Y(w,s))ds

is a martingale, where Vxr € G X G

Lf () = gtrace (Ar)Df(@)) + (T(@), DF(2)) g

Moreover, the associated martingale problem is well posed.
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Proof of Proposition 8. We begin with the following lemma.
LEMMA 8.

A:GxG— LT (G xG),
J:GxG—GxG,

where L} (G x G) is a set of nonnegative operators with finite trace. We have, Y €

G xG, Alx) =0*(z) oo(x) with
0:GxG— Ly(G xG),

where La(G x G) is the set of Hilbert—Schmidt operators on G x G, o* is the adjoint
operator of o, and

A
o (2)(N)jm = \/; (@415 A1+ (@ja1, Aj)y — (T, Aj1); — (5, Ajs1) o) Gt ims

o () (N)jm = \/g ((e(@)j41, 501 — (@(@) 541, Ag)s + (0(2) 5, Aj41),
- <(¢0(x)j7 )‘j+1>2) 6j+1m'

Proof. ¥(z,\, 1) € (G x G)3, we have

(A@)(N) ) gxg = %Z ({241, A7)y F (@11, Ag)g — (25, g )y — (25, Xje1) )
X (<$j_+1aﬂg> (@1, )y — (T4 )y — (T4, 111),)
+ ((p(@) 11, M)y — (o(@) 515 Aj)s + (@(2)5, Ajra ), — (o(@) J+1>2)
X (<90(x)J+17MJ> < ( )j+1vuj>2 + <90($)ja/‘j+1> <90(x) >2)

1
= (o (@)(A), o (2) (1)) g g -

Let (e Jl)n:Lg be the family of elements in G X G defined by

g1
J; 0
1 _ l 2 _
ej = {(J)] and e} = [(%J :

= > llo@)(€})llgxg < 16]z]gxg. O

From this lemma and Theorem 4.1.4 in [20], (5.3) is a martingale. By Theorems
3.2.2 and 4.4.1 in [20], the martingale problem is well posed since ¢ is linear in # and
VreGxg

lo@)] = llo*(@)[| < 4[|z[lgxg. O

Using the representation theorem, Theorem 4.3.5, in [20], there exists a cylindrical
Brownian motion (B)¢>o defined on G x G such that

Y (w,t) / J(Y (w, s) ds+/ (Y (w, s))dBs.
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By the definition of the last integral, we have

(e [ oot 3>>st>ng = [ (ot¢@nep.an.),

= Z /Ot <O’(Y(w,S))(e;-]l),€£5>g><gdBS(egs)'

6=1,2
r,s>1

By Theorem 3.2.2 in [12], (By)¢>0 can be decomposed as follows:

Bi(h) =Y <e;7l,h>gng?l(t) Vhe g x g,
n
J

,2
1

with (B?z)n:m a family of independent one-dimensional Brownian motions. Finally,
Jl=1
a computation gives

dU(w,t) = dY' (w,t) + i dY?(w,1)
(U(w,1))(dB}) + 12(U(w, t))(dB7).

I
g
&
=
E
+
&

Using the Ito formula given by Theorem 3.1.3 in [20], we have
U, )|l =1 Vvt=>D0.

This result shows that the process belongs to C([0,+00),H), and consequently the
convergence also holds in C([0, +00), H).

5.2. Proof of Theorem 2. The proof of this theorem follows ideas developed in
[19, Chapter 11]. In a first step, we introduce a new process; it is an adapted version
of the first which has a symmetric state space about 0 and which is more convenient
for manipulations. In a second step we will show the tightness using Theorem 3 in
[14]. Moreover, the size of the jumps are equal to 1/N. Then, all accumulated points
are supported by the set of continuous functions. Consequently, the last step consists
of adapting Lemmas 11.1.1 and 11.1.3 in [19] to the Skorokhod topology.

We begin by introducing a new process. Let (Y;):>0 be a jump Markov process
on Z with generator L given by

£oli) = A@)GU +1) + 60 ~ 1) ~26G)). 0,
260) = 2 (601) + 6(-1) - 2000)). 5 =0.

One can check that, starting from the same point and V¢ > 0, X; and 1+ |Y;| have
the same law. In what follows, we will denote by Qé\i N) the law of the renormalized
process (Y;/N),s, starting from d(N) = (I(N) — 1)/N. According to Theorem 3
in [14], we will not directly prove the tightness of the renormalized process, but of
truncations of this process, and we will be able to conclude thanks to an adapted
version of Lemma 11.1.1 in [19] to the Skorokhod topology on D([0, +00),R). We also
introduce some notation. Let M = o(x(u),u > 0), M; = o(x(u),u < t), and

M () = f(a(u)) — f(2(0)) - /O LN f(a(s))ds,
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which is an (M;)-martingale under QJy  and where

o) = a0 [o (L) +o (L7) ~20 (%)) 20
£V 9(0) = M[( >+¢( )—2¢(0)}, j=0.

5.2.1. Tightness of (in\;%)N. Let M > 1, large enough to have sup d(N) <

M, and 7y = inf (u > 0, |z(u)| > M). We denote by Qz% the law of (Yiar,, /N)i>o0

starting from d(N). We remark that Qgg% = Qé\i Ny on Mz, It becomes easy to see
that

lim (@92% (21;13|3:(U)| > K) =0.

K—+4oco
Moreover, (M} (tATar))e>o is an (M;)-martingale under QJ . Consequently, V 0 <
s < t,

N,M

B [(a(t) — 2(6))7] =B [0 — M)
= ES [(),,., - ), ]
A
S 2m(t - 8)7

N, M
where E;*® is the conditional expectation under @(]i\z% given M,. Thus, by Theo-

rem 3 in [14], ((@d(N )~ is tight in D([0, +00), R).

5.2.2. Convergence. We consider f a smooth function and (QZ\E/]{%)N/ a con-

verging subsequence to (@S/[ . Let 0 < s <t and ® be a bounded continuous M-
measurable function. We have

(5.4) B My (t/\TM)CP} E [MN (s ATM)@}
However, A(w) = % 2 N2"—227
SN e O B A R
wd T £V5(0) = 27 7(0)

To correct the problem in 0, we have the following lemma.

LEMMA 9.
e [ (11 odu| =0 L
(z(u)=0)0U| = N2 )

Proof. EQd(N) fo 1(y(u)=0)du] is the mean time spent by ( t)e>0 in the state 0.
We denote by (X;);>0 the traffic of the M/M/1 queue with traffic rate p = 1. In
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addition to the Markov property,

N t t t
EQa) l:/o 1(z(u)_o)du:| ZEd(N) L/O l(Xu_o)d“] < Eg l:/o 1(Xu_0)du:|
t
g/ Po(X, = 0)du.
0

However, explicit expressions of the transition probabilities for this queue can be found
in [2, Theorem 8.5]. In our case, Po(X; = 0) = e~ 2M (I5(2At) + I, (2At)), where I, is

the modified Bessel function of order n, given by I,,(t) = > 450 3= Htkn;z: T Then,

we get

t B 2A 2k-+1 (2A)2k+2 1
IED X’LL < 72At < -
/0 o 0)du < ];J 2+ 1) T 2k +2) ~ 2A

Consequently, letting N’ — 400 in (5.4), we obtain that under Q{/w ,

a

flatenma) = o) -G [ f (a(w)au

is an (M;)-martingale. If we denote by W7 the law of the process (¢B; + y)i>o0,
we have @é‘/[ = W on M,,,. Finally, we conclude that @111\2 n) converges to W7

thanks to an adapted version of Lemma 11.1.1 in [19] to the Skorokhod topology on
D([0,+00),R). 0
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