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Abstract

This manuscript presents certain aspects of high-frequency wave propagation in randomly perturbed
media. First, a particular attention is given to the role played by long-range correlations of the medium
fluctuations. This property find applications in various areas of physics, engineering, and medical
imaging for instance. The interactions between random fluctuations with long-range dependencies and
oscillatory behaviors result in intriguing effects, leading to multiscale phenomena. Such multiscale
properties contrast with scenarios involving random fluctuations with short-range correlations or
mixing properties, where the stochastic effects are observed on a well-defined scale. These multiscale
phenomena are investigated within the context of a stochastically forced nonlinear oscillator, the
Schrödinger equation, the wave equation, and the radiative transfer equation. These properties are
also investigated numerically, using a time-splitting scheme for the Schrödinger equation, and the
design of a Monte-Carlo method in the context of radiative transfer.

Secondly, this manuscript describes the role played by boundaries or interfaces in the propagation
domain. Radiative transfer models are discussed for propagation media with boundaries: a half-space,
a slab, and a rectangle are considered. Each of these scenarios exhibits interference phenomena that
affect the energy propagation at specific locations, and for which the geometry of the propagation
media plays a critical role. The role played by rough boundaries and interfaces is discussed under
two scenarios. First, a waveguide model inspired by underwater acoustics is considered, in which
waves evolve along a randomly perturbed ocean surface and uneven bottom topography. Second, the
standard problem of transmission and reflection at an interface is revisited. This time a wave impinges
upon a random interface, and generalized Snell’s laws for reflection and transmission are derived.

Finally, an aspect of mathematical biology is discussed, focusing on the stochastic and deterministic
modeling of secondary metastatic emission. The relation between these two approaches allow the risk
evaluation of a metastatic disease, even when unobservable at the time of cancer diagnosis.
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Résumé

Ce manuscrit présente certains aspects de propagation d’ondes hautes fréquences dans des milieux
aléatoires. Dans un premier temps, une attention particulière est accordée au rôle joué par les cor-
rélations à longue portée des fluctuations du milieu de propagation. Cette propriété trouve des
applications dans divers domaines en physique, ingénierie et en imagerie médicale par exemple. Les
interactions entre des fluctuations aléatoires ayant des dépendances à longue portée et des comporte-
ments oscillatoires produisent des effets surprenants, conduisant à des phénomènes multi-échelles. Ces
propriétés multi-échelles contrastent avec les comportements effectifs observés pour des fluctuations
aléatoires avec des propriétés de mélange ou de corrélations à courte portée. Dans ce dernier cas les
effets stochastiques sont observés sur une échelle bien définie. Ces phénomènes multi-échelles sont
étudiés dans le contexte d’un oscillateur non linéaire avec un terme source aléatoire, de l’équation
de Schrödinger, de l’équation des ondes et de l’équation de transfert radiatif. Ces propriétés sont
étudiées numériquement à l’aide un schéma time-splitting pour l’équation de Schrödinger et la mise
en place d’une méthode de Monte-Carlo appropriée pour le transfert radiatif.

Dans un deuxième temps, ce manuscrit décrit le rôle joué par les frontières, ou interfaces, du
domaine de la propagation. Les modèles de transfert radiatif sont abordés pour des milieux de propa-
gation avec des frontières : un demi-espace, une couche et un rectangle. Chacun de ces cas présente des
phénomènes d’interférence qui affectent la propagation de l’énergie à des endroits spécifiques, et pour
lesquels la géométrie du milieu de propagation joue un rôle essentiel. Le rôle joué par des frontières,
ou interfaces, rugueuses est présenté dans deux contextes différents. Tout d’abord, nous présentons
un modèle de guide d’ondes inspiré de l’acoustique sous-marine, dans lequel les ondes évoluent le long
de la surface de l’océan et d’un fond marin irrégulier. Ensuite, nous revisitons le problème classique
de transmission et réflexion d’une onde incidente par une interface aléatoire. Des généralisations des
lois de Snell-Descarte pour la réflection et la transmission sont proposées.

Enfin, un aspect de mathbio, concernant la modélisation stochastique et déterministe de l’émission
secondaire de métastases, est présenté. La relation entre ces deux approches permet d’évaluer le risque
métastatique, même lorsque celles-ci ne sont pas observables au moment du diagnostic du cancer.
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Introduction

The present manuscript gathers all my scientific contributions dating back to my Ph.D. defense. The
main topic revolves around the propagation of high-frequency waves in randomly perturbed media un-
der various angles encompassing theoretical and numerical aspects. These researches cover scalar wave
propagation, governs by the standard wave equation, as well as the random Schrödinger equation.
Although the Schrödinger equation is known as the fundamental equation of quantum mechanics,
describing the motion of wave functions at the atomic level, it can also be derived from the standard
wave equation to elucidate wave-front propagation for high-frequency collimated waves at the macro-
scopic level. This latter approximation, known as paraxial (or parabolic) approximation, is widely
used in practice as it strongly simplifies the description of physical phenomena at the macroscopic
scale, along with the corresponding numerical simulations. In practical aspects the fine scales of vari-
ation occurring within the propagation media cannot be described exactly. These fluctuations can
have various origins: impurities within the propagation medium, salinity or temperature variations,
or even geometric perturbations of the medium itself for instance. Therefore, it is natural to treat
some propagation media as inherently random. For a given situation, the fluctuations occurring in
the propagation medium are deterministic, but they can be considered as a realization of a random
process. This manuscript specifically focuses on weak scattering type regimes. Roughly speaking, for
high-frequency waves, this regime corresponds to propagation media characterized by fast fluctuations
occurring at the same rate as the wave frequency, while having low amplitudes. Despite the relatively
small amplitudes of these fluctuations, the high-frequency waves and fast variations of the propagation
media lead to strong interactions, resulting to significant cumulative stochastic effects on the prop-
agating waves. The microscopic description provided by the wave equation at the wavelength scale
(which is small for high-frequency waves), or by the Schrödinger equation, is in many cases too rich or
too complex to be effectively exploited theoretically or numerically at large macroscopic scales. The
derivation of macroscopic models from the microscopic dynamics aims to capture effective features or
behaviors that prove useful for applications or theoretical studies on macroscopic scales. By mean of
considerations on characteristic scales of the problem at hand, interesting macroscopic models that
highlight the main characteristics can be identified. These models offer an effective statistical descrip-
tion of the effects on the propagating waves and can serve as the foundation for imaging techniques
among other applications. Importantly, these derived macroscopic models do not depend on specific
(unknown in practice) realizations of the medium fluctuations, but rather on their statistical proper-
ties through power spectral densities. Various models of power spectra can be found in the physical
literature. Well known examples include the Kolmogorov power spectrum for standard atmospheric
turbulence, the Pierson-Neuman or Pierson-Moscvitz spectra for the modeling of the swell in under-
water acoustics, Gegenbauer scattering kernel in neutronics, and Henyey-Greenstein scattering kernel
for imaging through biological tissues, among others.

It is worth mentioning that both the wave equation and the Schrödinger equation can be related
to radiative transfer models that describe scattering properties and energy propagation through ran-
dom media at the macroscopic scale. The concept of radiative transfer is one of the main aspect
of this manuscript. The origin of this theory trace back to 1871, when the physicist John William
Strutt (lord Rayleigh) conducted pioneering researches on the scattering of light by the atmosphere,
shedding light on the explanation for the color of the sky. The theory of radiative transfer as a well-
defined mathematical framework took shape in the early 20th century mainly due to the efforts of
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Eugen von Lommel (1887), Orest Khvolson (1890), and Arthur Schuster (1905). A. Schuster plays a
pivotal role in this theory when, in 1905, he formulated a radiative transfer problem to elucidate the
origins of absorption and emission lines observed in stellar spectra [185]. In the 1930s, Subrahmanyan
Chandrasekhar made remarkable contributions to the field of radiative transfer by developing a more
comprehensive version of the radiative transfer equation that could be applied to a wide range of
astrophysical problems [48]. Chandrasekhar’s equation incorporates the intricate interplay of scatter-
ing, absorption, and emission of radiation within stellar atmospheres. Consequently, radiative transfer
theory experienced a surge in prominence among the astrophysics community during the first half of
the 20th century. Today, radiative transfer models find applications in many other areas such as
neutronics, optics, geophysics, weather forecasting, and even the illumination of scenes in animated
movies. Despite the stochastic nature of wave propagation problems, the associated radiative transfer
models are deterministic, exhibiting therefore a property called self-averaging. When looking a the
wave energy, this property results from highly-oscillating random phases that average out, leading to
deterministic quantities. Rigorous derivations of the radiative transfer equation from the Schrödinger
equation can be found in [18,66,92] and for the wave equation in [45,180].

A significant part of the results in this manuscript is based on approximation-diffusion theorems
for random ordinary differential equations or partial differential equations. Stochastic diffusion pro-
cesses, defined as solutions to stochastic (partial) differential equations, can serve as a macroscopic
model to describe effective wave scattering properties. The first results related to approximation-
diffusion date back to 1966 with the pioneer works of Rafail Khasminskii [128,129]. These asymptotic
results were further extended to the general context of random fluctuations with mixing properties
by George C. Papanicolaou and Werner Kohler in 1974 [171]. Additionally, martingale techniques
were employed in this context by George C. Papanicolaou, Daniel W. Stroock and S. R. S Varad-
han [173], as martingales and diffusion processes exhibit close connections [197]. This approach has
found a wide range of applications in the field of wave scattering as discussed in [70]. The main
applications of these models are to devised imaging and inverse problem techniques involving waves
in complex media [35–38,80,88]. For instance, imaging functionals characterizing object localizations
buried in strongly scattering propagation media can be designed by incorporating explicit quantities
from macroscopic models accounting for wave scattering. Imaging methodologies have also been pro-
posed by leveraging radiative transfer models [20,21]. The use of macroscopic models to design these
imaging functionals results in efficient inversion methodologies as they accurately represent scattering
phenomena responsible for the degradation of the recorded signals at sensors.

There is an extensive literature describing physical systems perturbed through white-noises, Markov
processes, or processes with mixing properties. These choices are related to the notion of memory-
less perturbations, and under proper assumptions give rise to diffusion phenomena. Despite earlier
findings, the notion of long-range dependence, as a distinct phenomena, started gaining recognition
in the early 1960’s thanks to a series of paper by Benoit Mandelbrot and James Wallis [146, 147].
These works were spurred by empirical observations from Harold E. Hurst [118, 119] in the 1950’s
regarding the water flow in the Nile river. Random fluctuations with long-range dependencies exhibit
memory properties and can lead to anomalous diffusion phenomena as well as interesting macro-
scopic phenomena in physical systems such as for the Schrödinger equation [13, 15, 51, 106], the heat
equation [131], turbulent transport [67, 132–135], or the wave equation [153, 154, 191]. This notion
of long-range correlations plays also a central role in this manuscript, from Chap. 1 to 4, through
the study of nonlinear oscillators, the Schrödinger equation, the wave equation, or radiative trans-
fer models. It unveils interesting properties when studied at various propagation scales, and even
whithin numerical schemes for the random Schrödinger equation. Analyzing the asymptotic behavior
of random ordinary differential equations or partial differential equations involving long-range corre-
lations presents inherent technical challenges. The standard martingale approach, typically applied
for mixing random fluctuations, may not be suitable for situations involving long-range correlations.
In such cases one often resorts to the rough path theory [74, 152] or a moment technique [15, 67] as
an alternative approach. Monte-Carlo methods for radiative transfer models, related to randomly
perturbed propagation media with long-range correlations, are also presented. The fundamental idea
behind this method is to express the solution of the radiative transfer equation as an expectation of
an appropriate Markov process, whose infinitesimal generator corresponds to the scattering properties
(scattering kernel) of this equation. In the context of long-range correlations, the scattering properties
exhibit a singular behavior giving rise to technical challenges. Although energy is scattered in every
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directions, the singularity allocates an infinite weight on infinitely small changes of directions of the
underlying Markov process [96], rendering the standard notion of mean-free path/time invalid.

Scattering of waves by rough surfaces is a fundamental phenomenon with profound implications
across various fields of physics and engineering. Problems related to the role played by boundaries
or interfaces are discussed in Chap. 5 and 6. The understanding of these phenomena is of signif-
icant importance across a wide spectrum of disciplines including optics, solid state physics, remote
sensing, radar technology, environmental monitoring, communications, and non-destructive testing
among others [29, 57, 120, 169]. The interplay between waves and rough surfaces results in complex
phenomena of reflection, transmission, and diffraction, that necessitates the generalization of the
standard Snell’s laws of refraction and transmission. The influence of random boundaries has also
been studied in various physical contexts. For instance, in fluid flows within a medium with random
boundaries [30], water wave propagation with a free surface or a random depth [63, 81], and also in
wave propagation in underwater acoustics with a perturbed sea surface [61,137]. While not randomly
perturbed, boundaries can also lead to technical difficulties in radiative transfer and interesting inter-
ference effects, such as intensity enhancement at boundaries and weak localization effects as described
in [47, 76], for instance. The derivation of radiative transfer models usually takes place in the full
physical space R3 [12, 45, 180], and some adjustments are required to deal with propagation media
involving boundaries. In particular, the main tool to derive radiative transfer equations is the Wigner
transform, which is not directly well-suited to address the presence of boundaries. This is a reason
why such situations have been less studied in the literature [2, 22, 150, 161, 181]. For instance, in the
case of a half-space, the standard radiative transfer equation is equipped with boundary conditions
corresponding to a geometric optic type reflection of the energy. This condition is valid for both
Dirichlet and Neumann boundary conditions. To account for interference effects at boundaries, the
Wigner transform needs to be considered carefully.

One aspect of mathematical biology is also discussed (Chap. 7) while not being entirely discon-
nected from the ideas discussed for wave propagation. Mathematical models are valuable tools to gain
insights into complex biological processes, such as population dynamics, disease dissemination, eco-
logical interactions, and cellular behavior. These models enable quantitative analyses and predictions
for biological systems, thus yielding a deeper understanding of these intricate phenomena. Metastasis
are responsible for most cancer-related deaths and constitutes a pivotal point in course of the cancer
disease [209]. However, knowing that metastases smaller than approximately 107 cells remain unde-
tectable by medical imaging and other diagnostic tools, the clinical absence of visible metastases may
not accurately represent a patient’s true metastatic status. Consequently, the estimation of metastatic
risk in cancer patients without observable metastases holds significant clinical importance [170]. In
this context, probabilistic techniques have the potential to derive risk scores from clinical data. For
instance, probabilistic representation and Monte-Carlo methods can serve as valuable tools to handle
complex PDE models, such as the Iwata model for metastatic emission [122]. After model inference
from clinical data, the Monte-Carlo approach can be used in assessing forecast uncertainty and for
diagnosis purposes.

The remaining of this section is dedicated to providing a chapter by chapter overview of the
contents of this manuscript, along with the corresponding main results.

Chapter 1
The notion of random fluctuations exhibiting long-range correlations plays a central role in this
manuscript (from Chap. 1 to 4). A stationary process v is said to have long-range correlations or
dependencies if its two-point correlation function

R(t) := E[V (t+ s)V (s)],

for (t, s) ∈ R × R, decays slowly enough at infinity,

R(t) ∼
|t|→∞

R0

|t|γ
γ ∈ (0, 1],

to not be integrable: ∫ ∞

0
|R(t)| dt = ∞.
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This is in contrast with the notion of short-range correlations for which the correlation function is
integrable at infinity. As outlined in this manuscript, the mere distinction between long-range and
short-range correlations can result in drastically different behaviors in noisy physical systems. Some
examples of stochastic processes or random fields are provided in this chapter, and one of them
provides a construction that will be used in the following chapters.

The remaining of this chapter describes the long-time behavior of a stochastically forced nonlinear
oscillator with 1 degree of freedom

ẍ(t) + f(x(t)) = εV (t) t ≥ 0.

Here f : R → R is a given smooth function, and V is a stochastic process with long-range correlations
representing the noise. This situation provides a simple framework highlighting the interactions
between random fluctuations with long-range correlations and oscillatory behaviors. The parameter
ε ≪ 1 represents the amplitude of these random fluctuations. It turns out that the noise itself has a
nontrivial behavior over a time scale of order

1
ε1/H with H = 1 − γ

2 ∈ (1/2, 1).

More precisely, the process defined by

vε(t) = ε

∫ t/ε1/H

0
V (s)ds t ≥ 0,

converges in law, in the space of continuous functions, to a fractional Brownian motion with Hurst
index H depending on the decay rate of the correlation function γ. This result is known as non-central
limit theorem [152,202,203]. A one dimensional standard fractional Brownian motion WH with Hurst
index H, on a probability space (Ω, T ,P), is a centered Gaussian process with covariance function

E[WH(t)WH(s)] = 1
2(t2H + s2H − |t− s|2H),

for any t, s ≥ 0. The case H = 1/2 corresponds to a standard Brownian motion.
The non-central limit theorem is in contrast with the standard invariance principle, which relies

on the standard central limit theorem for processes with short-range correlations or mixing properties
[139, 152]. For the latter the appropriate time scale to observe nontrivial stochastic effects is 1/ε2.
Long-range correlations provide nontrivial stochastic effects that become apparent at shorter time
scale compared to situations involving short-range correlations or mixing properties:

1
ε1/H ≪ 1

ε2 for H ∈ (1/2, 1).

A more general non-central limit theorem is discussed in this chapter. One can naturally wonder how
such statistical behavior affects the one of the nonlinear oscillator. It turns out that the energy of
the system exhibits nontrivial diffusive effects only at time scales of order 1/ε2 despite fluctuations
with long-range correlations, and not at shorter time scales. This scale aligns with the one at which
diffusive effects become apparent when considering fluctuations with short-range correlations or mixing
properties within the oscillator system. As a result, even though the random perturbations exhibit
a degenerate behavior at the time scale 1/ε2, the oscillatory behavior of the system prevents the
emergence of pathological behaviors. In the limit ε → 0, the energy of the system can be described
through a standard diffusion process similar (though not identical) to the one of the classical result [71]
for a white-noise perturbation. More precisely, considering a smooth Hamiltonian

H(x, y) = y2

2 +
∫ x

0
f(s)ds x, y ∈ R,

with exactly one non-degenerate critical point at (0, 0), which is also the global minimum, and V be
a stationary Gaussian noise with long-range correlations, we observe the following convergence in law
in C(0,∞),

H(Xε) =⇒
ε→0

X .
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Here, Xε(t) = (x(t/ε2), ẋ(t/ε2))T and X is a diffusion process driven by a standard Brownian motion
(and not a fractional Brownian motion), with infinitesimal generator similar to the one of the standard
Freidlin and Wentzell theory with white-noise perturbations of the oscillator [71–73].

This chapter covers the results obtained in [14] of the publication list on page 6, and was conducted
during Hai Le’s Ph.D. program under the supervision of A. Novikov at Penn State University.

Chapter 2
The first situation we present to describe the influence of long-range correlations on a wave propagation
problem concerns the Schrödinger equation with a time-dependent random potential. More precisely,
we consider the wave function ϕ which satisfies

i∂tϕ+ 1
2∆xϕ− V (t,x)ϕ = 0 t ≥ 0, x ∈ Rd,

where V exhibits long-range correlations w.r.t. the time variable. The long-time behavior of ϕ is
studied under the weak scattering regime that consists of small random fluctuations, of order

√
ε,

with ε ≪ 1, as well as the time and space scaling

ϕε(t,x) = ϕ
( t
εs
,

x
εs

)
.

The parameter s > 0 represents how long and how far the wave function propagates. Under this
scaling the Schrödinger equation now reads

iεs∂tϕε + ε2s

2 ∆xϕε −
√
ε V
( t
εs
,

x
εs

)
ϕε = 0. (1)

To observe non-trivial cumulative stochastic effects on the wave function ϕε in the limit ε → 0, an
appropriate choice of s needs to be made. Considering short-range correlations or mixing properties
for the potential V leads to the unique choice s = 1 [15]. In case of long-range correlations the
situation is much richer. Equipped with appropriate initial conditions, the latter scaled Schrödinger
equation exhibits effective multiscale effects w.r.t. the propagation parameter s. In [15] the authors
show that for an appropriate choice of s = s0, corresponding to the non-central limit theorem scaling,
the wave function exhibits a random phase modulation driven by a unique fractional Brownian motion
for all the wavevectors supported by the wave function.

This chapter describes how the wave function is affected when it propagates over longer scales,
that is when s > s0. Over such scalings the wave function experiences a highly oscillating random
phase modulation that is expected to break the wave function coherence. In this context the main tool
to analyze this loss of coherence is based on a properly scaled Wigner transform of the wave function.
This Wigner transform relates to the Fourier transform of the correlation function of the wave function
at two nearby points. The resulting diffusive behaviors w.r.t. the momentum variable (the Fourier
variable of the Wigner transform) quantifies the effective loss of coherence of the wave function. Three
different regimes can be exhibited as the propagation parameter s increases. As already mentioned,
for s > s0, the wave function produces fast phase modulations that affects significantly the structure
of the wave function. One can show that for some s = s1 > s0 a loss of coherence of the wave field
can be quantified through a stochastic fractional heat equation (SFHE) for the Wigner transform. At
this stage the Wigner transform analyses the correlations of points that are far apart from each other.
In other words, the loss of coherent impacts the large structures of the wave function in a first place.
While the SFHE describes how the Wigner transform is impacted, its energy is conserved. Then,
as the propagation scale increases s > s1, the finer structures of the wave function are increasingly
affected. This time, the random behavior of the SFHE averages out, homogenization phenomena take
place, and the resulting equation governing the loss of coherence is a deterministic fractional heat
equation. Once s = 1 is reached, the loss of coherence is described by a semi-classical limit and a
radiative transfer equation. At this scale, the loss of coherence mechanisms are identical whether the
random fluctuations exhibit long-range correlations or shot-range correlations.

At the numerical point of view, a time-splitting scheme for the scaled Schrödinger equation (1)
can be considered. This numerical scheme provides a discretized solution in time (the spatial variable
being handle through a Fourier transformation), which is able to capture, in the statistical sense,
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all the mentioned asymptotic regimes. Surprisingly, in addition to all these regimes, the long-range
correlations allow a time stepsize independent of ε for most of the configurations.

This chapter covers the results obtained in [3, 4, 6] of the publication list on page 6.

Chapter 3
The analysis of the impact of random fluctuations with long-range correlations is extended in this
chapter to the scalar wave equation for 2D and 3D propagation media. In this context the random
fluctuations of the propagation media translate through random fluctuations of the wave-speed profile.
This chapter presents some results that extend the ones obtained for 1D propagation media [84,85,154].

Three scenarios are considered in this chapter. The first situation concerns wave propagation
in a planar waveguide, which constitutes an intermediate situation between 1D propagation media
and propagation in a full space. The type of waveguide considered in this chapter supports a discrete
number of modes, which simplifies in some sense the mathematical analysis. The regime under consid-
eration corresponds to the one of a non-central limit theorem and a result similar to [153] is obtained.
In this situations the effective stochastic effects lead to phase modulations for each of the propagating
modes, but without any coupling between the modes. However, as for the Schrödinger equation, these
modulations are driven by the same fractional Brownian motion. This latter characteristic is in con-
trast to what is observed in [70, Chap. 20] under medium fluctuations with short-range correlations,
where the phase modulations are driven by correlated Brownian motions.

The second scenario considers again a regime similar to the non-central limit theorem but for the
wave equation over the full ambient space R3. More precisely, two asymptotic regimes are simultane-
ously investigated under the same high-frequency limit: the paraxial approximation, where the wave is
collimated and propagates along a privileged direction of propagation, and the fractional white-noise
limit. It results that the frequency content of the asymptotic pulse front can be described through
the fractional Itô-Schrödinger equation

dΨω(z,x) = i

2kω
∆xΨω(z,x) + ikωΨω(z,x)dWH(z,x) = 0,

where ω is a given frequency, z corresponds to the variable of the main propagation axis, and WH

to a fractional random field w.r.t. z. The variable x represents the transverse section w.r.t. the
main propagation axis. The stochastic integral corresponds here to the fractional equivalent of the
Itô-Stratonovich integral. Under short-range correlations a similar result has been obtained in [83]
involving a standard Brownian random field and Itô-Stratonovich integral.

The last scenario corresponds this time to a regime similar to a central limit theorem, but involving
a randomly layered propagation medium with long-range correlations. This scenario extends the result
of [84, 85] for 1D propagation media. In this situation, we observe first a random travel time for the
pulse characterized by a fractional Brownian motion that appears to have a standard deviation larger
than the pulse width. This is in contrast with the standard O’Doherty-Anstey theory for random
propagation media with short-range correlations for which both the standard deviation of the random
travel time and the pulse width are of the same order [70, Chapter 8]. This unstable behavior of
the travel time under long-range correlations may have a dramatic effect for applications in inverse
problems based on travel time estimations, and a deeper understanding of the propagating waves is
required. Second, in the present context, the pulse deformation can be characterized by a deterministic
paraxial wave equation of the form

∂2
tzψ − c0

2 ∆xψ − a0D
2+γ
t ψ = 0 γ ∈ (0, 1),

where the z-variable corresponds again to the main propagation axis, the x-variable to the transverse
section, t to the time variable, c0 to the background wave speed, and a0 > 0 is a constant. Here, D2+γ

t

stands for the Weyl fractional derivative with respect to time, and whose order depends explicitly on
the power decay rate γ ∈ (0, 1) of the correlation function of the medium fluctuations. In the Fourier
domain, this equation can be recast as a Schrödinger equation of the form

i
ω

c0
∂zψ̌ + 1

2∆xψ̌ + ã0ω|ω|1+γψ̌ = 0,
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where ã0 is a constant with positive imaginary part. This equation provides a frequency-dependent
power-law attenuation of the form

|ω|λ with λ = 1 + γ ∈ (1, 2].

Such power law attenuations can be observed in various contexts such as geophysics, laser beam
propagation through the atmosphere, or medical imaging for instance. Values for λ ranging from 2
to 3 are typical of attenuations in biological tissues [117].

This chapter covers the results obtained in [10,12,17] of the publication list on page 6

Chapter 4
Radiative transfer models have been used for more than a century to describe the propagation of
the energy density through random media. When the momentum variable is restricted over the unit
sphere Sd−1, the radiative transfer equation can be written as

∂tu+ k̂ · ∇xu =
∫
Sd−1

Φ(|p̂ − k̂|)(u(p̂) − u(k̂))σ(dp̂) (t,x, k̂) ∈ (0,∞) × Rd × Sd−1,

where σ(dp̂) stands for the surface measure on Sd−1, and Φ for the scattering kernel. Under fluctu-
ations with long-range correlations this model can be derived from the Schrödinger equation under
a semi-classical limit [66]. For the full wave equation such a rigorous derivation has been obtained
in [45] for short-range correlations, but it remains an open problem for long-range correlations. Radia-
tive transfer models can be though considered in this situation by just considering scattering kernels
with appropriate shapes. The scattering kernel being directly related to the power spectral density
of the medium fluctuations, under long-range correlations the associated scattering kernel presents
a nonintegrable singularity Φ(r) ∝ r−(d−1+α) with α ∈ (0, 2). Despite this singularity the radiative
transfer equation remains well-defined.

The first part of this chapter consists in presenting qualitative properties of the radiative transfer
equation with a nonintegrable singular kernel. We present regularizing effects of such equation through
the hypoellipticity property of the transport operator, which implies in particular that the solutions
are infinitely differentiable in all variables. This property is obtained through hypoelliptic estimates
for a kinetic equation of the form

∂tu+ k̂ · ∇xu = (−∆Sd−1)βh (t,x, k̂) ∈ R × Rd × Sd−1,

where d ≥ 2, β ≥ 0, Sd−1 denotes the unit sphere of Rd and ∆Sd−1 the Laplace-Beltrami operator on
Sd−1. Assuming some fractional Sobolev regularity in the momentum variable k̂ ∈ Sd−1, we obtain
estimates for fractional derivatives of u w.r.t the (t,x)-variables whose order depends on β and the
assumed regularity. The smoothness of u is then obtained using a bootstrap argument. The diffusion
limit is proved using probabilistic techniques as in the case of a regular scattering operator. The
diffusion coefficient is therefore non-zero and finite.

The second part of this chapter is devoted to Monte-Carlo methods for radiative transfer equations
with non-integrable singular scattering kernels. As opposed to the case where the scattering cross
section is integrable and leads to a non-zero mean free time, the cross section is no longer integrable in
the long-range situation and yields a vanishing mean free time. This gives rise to numerical difficulties
as standard Monte-Carlo methods based on a naive regularization, by just introducing a cutoff around
the singularity, exhibit large jump intensities and an increased computational cost to reach a proper
accuracy. A particular care is then required when constructing the stochastic processes used in the
Monte-Carlo methods. We propose a method inspired by the finance literature, and introduced by
Asmussen-Rosiński [9] and Cohen-Rosiński [53]. This method is based on a small jumps - large jumps
decomposition allowing us to treat the small jumps efficiently and reduce the computational burden.

This chapter covers the results obtained in [8, 9, 13,15] of the publication list on page 6.

Chapter 5
This chapter concerns as well some aspects of radiative transfer arising from acoustic wave propa-
gation, but from a different perspective as the one discussed in the previous chapter. Rather than
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investigating the effects produced by a singular scattering kernel, we discuss the role played by bound-
aries of the propagation medium. We present three scenarios: a half-space, a slab, and a rectangle.
This chapter covers the results in [16,18] of the publication list on page 6, which are parts of Adel Mes-
saoudi’s Ph.D thesis conducted under the supervision of Régis Cottereau (Laboratory of Mechanics
and Acoustics in Marseille) and myself.

For each scenarios two distinct aspects are discussed. While the standard derivations of radiative
transfer models from the wave equation usually take place in the full physical space R3 [12, 45, 180],
some adjustments are required to deal with medium involving boundaries. In particular, the main tool
to derive radiative transfer equations is the Wigner transform. This tool is not directly well-suited to
address the presence of boundaries. In this chapter, for each scenario, the wave propagation problem
is extended to the full space thanks to the method of images together with a proper periodization
of the medium parameters and the source. Such an extension allows the use of the standard Wigner
transform and enable a standard asymptotic analysis [12,180].

The other aspect discussed in this chapter concerns interference effects resulting front reverbera-
tions at the boundaries. In a first time, we discuss the case of the half-space where boundary effects
can be observed within one wavelength along the boundary. This results in a doubling of the intensity
for Neumann boundary conditions, and a canceling of intensity for Dirichlet boundary conditions.
In a second time, the situation of a slab is discussed. As for the half-space, interference effects are
obtained within one wavelength of the two slab boundaries. However, additional interference effects
are observed within one wavelength along two parallel plans w.r.t to the boundaries, and passing
through the source location and one symmetric point. These extra effects are referred to as weak
localization phenomena in the sens of [47, 76]. These effects result in intensity enhancement or can-
celing (depending on the boundary conditions) of the coherent energy only, not the one carried by
the coda (the multiply scattered signal). The underlying idea of weak localization is the following.
When coherent waves propagate through a medium delimited by boundaries, they follow different
paths and bounce on these boundaries. However, some of these paths are the reciprocal versions of
others, meaning that the waves can traverse a similar path in opposite directions. This symmetry
between paths results in constructive interference effects within the considered structure. Finally, the
case of a rectangle is discussed where radiative transfer models are related to non destructive testing
applications [47, 76]. As for the slab, both types of interference effects can be observed within one
wavelength of the boundaries, and along lines parallel to the rectangle boundaries passing through
the source location and three symmetric points. These lines are fixed over time. In this context,
additional interference effects can be observed. Constructive interferences affecting the whole energy
(coherent and coda) can be observed along lines passing through the corners, and interference ef-
fects, affecting only the coherent part of the energy, appear along oblique lines passing through the
source location and eleven symmetric points inside the rectangle. In both cases, these lines support
interference effects only once over time.

Chapter 6
This chapter discusses two distinct scenarios. First, we discuss the situation where the waves propagate
along a waveguide with rough-boundaries, and second, the case where waves impinge upon a rough
surface. In both scenarios, the waves interact with the interface in different manners, leading to
distinct mathematical approaches.

In underwater acoustic the role of ocean swell or variations of the seabed topography can have a
significant impact on acoustic signals. Wave propagation in waveguides with rough boundaries has
been studied for a long time due to its wide range of applications, but mainly motivated by submarine
detection and telecommunication [126,138]. In this context, a pressure field can be decomposed over
three kinds of mode: the propagating modes, which travel over long distances along the waveguide;
the radiating modes, able to propagate deeply into the ocean bottom; and the evanescent modes,
which decay exponentially w.r.t to the propagation distance along the waveguide. We describe in the
first part of this chapter the effects produced by a randomly perturbed free surface and an uneven
bottom topography on the propagating modes. Using an asymptotic analysis based on a separation
of scales technique and an approximation-diffusion theorem, an asymptotic form of the distribution
for the forward mode amplitudes can be obtained. This distribution allows to characterize effective
attenuations on the propagating-mode amplitudes induced by the surface and bottom fluctuations.
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It appears that both the surface and bottom fluctuations affect the propagating-mode amplitudes
mainly in similar manners. However, this attenuation is stronger for the highest propagating modes,
with losses into the ocean bottom, due to a strong coupling with the radiating modes.

The second scenario discussed in this chapter corresponds to the standard problem of reflexion
and transmission of a high-frequency pulse at a rapidly oscillating rough interface with general mixing
properties. Under the paraxial (parabolic) scaling, the specular and speckle (diffusive) components
of the reflected and transmitted signals are precisely characterized. The specular components corre-
spond to the reflected and transmitted components resulting from the standard laws of reflexion and
transmission for a flat (unperturbed) interface, and producing what we refer to as specular cones. The
speckles correspond to incoherent (random) wave fluctuations resulting from diffraction and mainly
observed away from the specular cones. A critically scaled interface is considered, in the sense that
the amplitudes of the interface fluctuations and the central wavelength are of the same order. In
this context, if the correlation length of the interface fluctuations and the beam width are of the
same order, random specular components are observed, but no speckle component. The reflected and
transmitted fields are confined to the specular cones. The situation with a correlation length smaller
than the beam width leads to homogenization effects providing deterministic specular components
similar to the case of a flat interface, but with effective initial conditions accounting for the scatter-
ing effects. However, in this situation, there are also relatively broad cones (containing the specular
cones) where the wavefields form speckle patterns. The width of these cones is characterized by the
ratio λ/lc, where λ is the central wavelength and lc the correlation length of the interface fluctuations.
The two-point correlation functions for these speckle patterns are presented and exhibit self-averaging
properties. Furthermore, we present a central limit theorem type result for the speckle patterns, show-
ing that they can be modeled as Gaussian random fields. These descriptions allow the derivation of
generalized Snell’s laws of refraction and transmission depending on an effective scattering operator
at the interface.

This chapter covers the results obtained in [7, 19] of the publication list on page 6.

Chapter 7
This chapter presents an aspect of mathematical biology related to metastatic spreading. This work
has been conducted in collaboration with Niklas Hartung during his Ph.D. program, at the Institut
of Mathematics of Marseille, under the supervision of Guillemette Chapuisat and Florence Hubert
(see [11] in the publication list on page 6).

Although the detection of metastases radically influences the prognosis and treatment decisions
for cancer patients, the presence of clinically undetectable micrometastases hampers the consistent
classification of the disease as localized or metastatic. This chapter discusses mathematical mod-
eling efforts that could help to estimate the metastatic risk in such a scenario. We focus on two
approaches both accounting for secondary metastatic emissions, that is the ability for metastases to
emit some metastases themselves. The first one relies on a deterministic framework to describe the
micrometastatic state using a size-structured density function in a partial differential equation model.
The second approach is based on a stochastic framework to describe metastatic emission events oc-
curring at random times formalized through a cascade of Poisson processes. We highlight an inherent
crosslink between the stochastic and deterministic frameworks and discuss its implication for assessing
metastatic risk post-surgery.

The remaining of the manuscript consists in providing more detail presentations of the results
outlined in this introduction.
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Chapter 1
Random perturbations with long-range
correlations and nonlinear oscillators

It is well known that a properly scaled stochastic process with long-range correlations (or dependen-
cies) converges to a fractional Brownian motion (fBm), whose Hurst index is determined by the rate
at which the correlation function decays [152, 202, 203]. This result is known as non-central limit
theorem. When the Hurst parameter is not 1/2, the normalized limit of the noise has memory prop-
erties and is a non-Markovian process. An interesting example to illustrate how oscillatory behaviors
effectively erase memory effects of random fluctuations is a stochastically forced nonlinear oscillator
with 1 degree of freedom:

ẍ(t) + f(x(t)) = εV (t), x0 ∈ R, ẋ0 = y0 ∈ R . (1.1)

Here, f : R → R is a given smooth function, and V is a stochastic process with long-range correlations
as defined precisely below. Our interest is here to study the asymptotic long-time behavior of x. This
chapter is based on the results obtained in [14] of the publication list on page 6.

Although the rescaled noise converges to a fBm, a process that exhibits memory properties, the
oscillatory behavior of the system has the ability to affect the memory properties of the random
fluctuations, resulting in an effective diffusive behavior with no memory. The aim of this chapter is
to provide a precise description of how the oscillatory behavior is able to erase all the memory of
the random fluctuations. A similar question was investigated in [133] for a passive tracer advected
by a periodic shear flow. In this case, it appears that there exists a parameter regime where the
time-rescaled dynamics is Markovian, and the memory effect of the noise is erased. However, there
is also a regime (namely the very long-time behavior when the Hurst index of the driving noise is
larger than 1/2) where the memory effect persists. In contrast, for the oscillator (1.1), the memory
effect never persists, and the effective long-time statistical behavior is always Markovian. The main
reason is that the oscillatory nature of the deterministic dynamics counterbalances the slowly decaying
correlations, and kills the memory effects. To study (1.1) we cannot use directly the limit theorem
for additive functionals of fBm’s used by [133]. Instead, we recast (1.1) as a fast-slow system and use
an approximation-diffusion framework.

To recast (1.1) as a stochastically perturbed Hamiltonian system, we first introduce the Hamilto-
nian

H(x, y) := 1
2y

2 +
∫ x

0
f(s) ds , (1.2)

so that, setting X(t) := (x(t), y(t))T = (x(t), ẋ(t))T , we have

Ẋ(t) = ∇⊥H(X(t)) + ε V (t)e2, X(0) =
(
x0
y0

)
∈ R2, (1.3)

with
∇⊥ :=

(
∂y

−∂x

)
, and e2 :=

(
0
1

)
.
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Here, the Hamiltonian H is assumed to have exactly one non-degenerate critical point. To study the
long-time behavior of this system, we consider the time rescaled process

Xε(t) := X(t/ε2),

satisfying
Ẋε(t) = 1

ε2 ∇⊥H(Xε(t)) + 1
ε
V

(
t

ε2

)
e2 , Xε

0 = X(0) =
(
x0
y0

)
∈ R2. (1.4)

In the absence of noise (meaning that V ≡ 0), the process Xε travels very fast along the level sets of
the Hamiltonian. When V is a white-noise, the asymptotic behavior of Xε is described through the
averaging principle of Freidlin and Wentzell [71–73] by a diffusion process across these level sets. To
capture this limiting behavior, the fast motion is filtered out by projecting Xε onto the Reeb graph of
the Hamiltonian. This has the effect of identifying all closed trajectories of the Hamiltonian system,
where the fast motions take place, into single points. In this context it is convenient to describe
Xε through action-angle coordinates. The angular coordinate of Xε evolves very fast providing no
meaningful limit as ε → 0. On the other hand, the action coordinate of Xε exhibits a non-trivial limit
as ε → 0, which results from the interaction between the noise and the averaged angular coordinate.
To study this behavior, the Hamiltonian itself is used as a proxy for the action coordinate and the
convergence is obtained for (H(Xε))ε.

This chapter is organized as follows. Some examples of stochastic processes with long-range
correlations are provided in Sect. 1.1. One them is used in several chapters of this manuscript. Sect.
1.2 describes how long-range dependencies are related to memory effects through fBm’s and a non-
central limit theorem. Finally, Sect. 1.3 describes how the memory properties of the noise are erased by
the oscillatory behavior of the Hamiltonian system. The case of the quadratic Hamiltonian (f(x) = x)
is presented as it provides explicit formulations and a simple understanding of the phenomena. For
general Hamiltonian (1.2), action-angle coordinates are introduced as well as their corresponding
approximation-diffusion theorem. From this result, the asymptotic diffusive behavior of (H(Xε))ε is
derived.

1.1 Random fluctuations with long-range correlations
A stationary random process V is said to have long-correlations if its two-point correlation function

R(t) := E[V (t+ t′)V (t)] (t, t′) ∈ R × R

decays slowly enough at infinity, for instance

R(t) ∼
|t|→∞

R0

|t|γ
with γ ∈ (0, 1], (1.5)

to not be integrable, in the sense that ∫ ∞

0
|R(t)| dt = ∞.

There exists several basic examples of continuous-time processes with long-range correlations that
can be found in the literature (see [84,154] for instance). Two simple examples are the following: the
fractional white-noise model corresponding to

V (t) = WH(t) −WH(t+ lc),

and the fractional Ornstein-Uhlenbeck model for which

V (t) = WH(t) − 1
lc

∫ z

−∞
e(y−t)/lcWH(y)dy.

In these two examples, WH is a fBm with Hurst index H ∈ (1/2, 1), and the asymptotic behavior at
infinity of their correlation functions is given by (1.5) with

γ = 2 − 2H, and R0 = H(2H − 1)l2c .
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More sophisticated models can also be found in [154]. These two Gaussian models are convenient for
an analysis based on moment techniques [15,66,99] or the rough-path theory [152,154]. When studying
the asymptotic behaviors of certain randomly perturbed physical systems arising from the Schrödinger
equation or the wave equation for instance, it is not always clear how these two approaches can be
effectively applied. While the application of the moment technique may rely on purely technical as-
pects, the rough-path approach has to face the inherent infinite-dimensional nature of the functional
spaces to which the solutions belong. Additionally the absence of a Hilbert-Schmidt structure in
the PDE’s further complicates the process of reducing the original problem to a finite-dimensional
one. This latter aspect needs further investigations. Even for the simple oscillator presented in this
chapter, a nonlinear Hamiltonian gives rise to an oscillatory behavior that needs to be expended
over the infinite basis of Fourier modes. The resulting structure of the system involves a nonlinear
relationship between the noise V with a degenerate term. This nonlinear relationship brings techni-
cal difficulties to apply both the moment technique or the rough-path approach. To address these
technical difficulties, a specific definition of the random fluctuations is considered, exhibiting long-
range correlations, but allowing the use of the perturbed-test-function method and the martingale
approach [139]. These approaches can be applied together to handle non-necessarily Markovian noise,
such as mixing processes. The noise we consider to apply this approach is obtained, as in [15], by
super-imposing Ornstein-Uhlenbeck type processes written in the form

V (t) =
∫ t

−∞

∫
S

e−µ|p|2β(t−u)B(du, dp). (1.6)

Here, S ⊆ R is a bounded symmetric open interval containing 0. Also, µ and β are positive constants,
and B is a Gaussian random measure that is white in time and colored in space:

B(du, dp) =
√

2µ r(p) |p|β1S(p) ξ(du, dp),

where ξ is a 2D Gaussian white noise, and r : S \ {0} → [0,∞) is defined by

r(p) = λ(p)
|p|2α

.

Here, λ : S → R+ is a smooth bounded even function such that λ(0) ̸= 0. The correlation function of
V is therefore given by

R(t) =
∫
S

r(p)e−µ|p|2β |t| dp, (1.7)

so that the condition ∫
S

r(p) dp ∈ (0,∞),

that is
α <

1
2 ,

is required for this correlation function to be well defined. This construction gives rise to the limit

lim
t→∞

tγR(t) = R0,

where R0 and γ are defined by

γ = 1 − 2α
2β and R0 = λ(0)

∫
e−µ|p|2β

|p|2α
dp.

Long-range correlations for V are therefore obtained by assuming

2(α+ β) ≥ 1.

In Fig. 1.1, we illustrate the difference of statistical behavior between long-range correlations and
short-range correlations, the latter having an integrable two-point correlation function. From these
pictures, one can observe that slowly decaying correlations produce longer excursions of the random
trajectories, due to the persistence of the correlations, than for rapidly decaying correlations. In this
latter case, the trajectories cannot really produce correlation patterns and look almost like the ones
of a white-noise.
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Fig. 1.1: Illustration of three realizations of the random process defined by (1.6) with long-range
correlations for the left-picture, and short-range correlations for the right-picture. Here, µ = 1,
α = 1/4, a(p) = 1(−10,10)(p), β = 1/2 (that is γ = 1/2) for the left-picture illustrating the long-range
correlations, and β = 1/6 (that is γ = 3/2) for the right-picture illustrating short-range correlations.

1.2 A non-central limit theorem
It is known for quite some time that under long-range correlations the normalized integrated noise
converges to a fBm [152,202,203]. A version of this result, known as non-central limit theorem, is the
following.
Proposition 1.2.1 Let V be a stationary Gaussian process with covariance function R given by

R(t) = L(t)
tγ

(1.8)

for some γ ∈ (0, 2), and a slowly varying function L at infinity1. If γ ∈ (1, 2), we additionally suppose∫ ∞

0
R(t) dt = 0 . (1.9)

Let

σ(ε) :=
{

L(ε−2)1/2εγ if γ ̸= 1 ,
L(ε−2)1/2ε| ln(ε)|1/2 if γ = 1 , and uε(t) := 1

σ(ε)

∫ t

0
V
( s
ε2

)
ds .

Then, as ε → 0, the family of processes (uε)ε converges in law in C(0,∞) to σHWH, where WH is a
fractional Brownian motion with Hurst index H = 1 − γ/2, and

σ2
H :=


1

H|2H − 1|
if H ̸= 1

2 ,

1 if H = 1
2 .

Note that despite short-range correlations, the additional assumption (1.9) leads to a negatively
correlated fBm with Hurst index H < 1/2. Note also that (1.9) is not compatible with the definition
(1.6) in view of (1.7). Without this additional assumption, a standard invariance principle would
applied with the scaling σ(ε) = L(ε−2)1/2ε, and a standard Brownian motion as limiting process.

A more refined version of this result can be found in [154]. Under additional assumptions the
limiting process can be a general Hermite process, in particular with non-Gaussian statistics. This
is in contrast to processes with short-range correlations (or mixing properties) and the standard
invariance principle where the limits inherently exhibit Gaussian statistics. As described below, when
introducing oscillatory behaviors, the memory effects of the random fluctuations are lost and standard
diffusion phenomena (memoryless Markov processes) emerge despite the memory effects of the system
perturbations.

Note that the above result, is not exactly what is stated in the introduction. However, both are
connected through the change of variable ε → ε1/(2−γ).

1A function L is said to be slowly varying at infinity if for every s > 0 we have L(st)/t → 1 as t → ∞.
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1.3 A randomly perturbed nonlinear oscillator
The remaining of this chapter discusses two results showing that even though the driving noise has
memory properties, the time correlations are erased by the oscillatory dynamics of (1.4), and (H(Xε))ε
converges to a diffusion driven by standard Brownian motion (without memory). Two scenarios are
discussed below. The first one concerns a quadratic Hamiltonian, for which explicit formulations can
be carried out, highlighting explicitly the role of the oscillations in the loss of memory properties. In
this particular case, the limiting diffusion is a scaled version of a 2D square Bessel process. The second
scenario extends this result to more general smooth Hamiltonian with exactly one non-degenerate
critical point.

1.3.1 Diffusive limit for a quadratic Hamiltonian
For a quadratic Hamiltonian the level sets are simply circles centered at 0 and whose radii depend on
the associated energy. This simple characterization of the level sets provides a simple description of
the role played by the oscillations of the oscillator. The first result is as follows.

Proposition 1.3.1 Let H be the quadratic Hamiltonian,

H(X) = |X|2

2 , (1.10)

for X = (x, y) ∈ R2, and suppose that the noise V is a stationary Gaussian process whose covariance
function is of the form (1.8). For γ ∈ (0, 1], we further assume that L has the slow increase property

lim
t→∞

L′(t)
L(t)/t = 0 .

Then, the family (H(Xε))ε converges in law to H(W ), as ε → 0, where W is a 2D Brownian motion
with W0 = X0 and 2 × 2 covariance matrix

D :=
(

Γc 0
0 Γc

)
, with Γc :=

∫ ∞

0
R(t) cos(t) dt. (1.11)

It is worth noticing that, even for γ ∈ (0, 1], the coefficient Γc in (1.11) is well-defined since the cos
function is periodic and mean zero. This resulting cos function is due to the quadratic shape of the
Hamiltonian (1.10) and the resulting circular level sets. As a result, despite the nonintegrability of
the correlation function and the memory effects, the diffusive (memoryless) limit is valid thanks to
the oscillatory behavior of the system.

The Hamiltonian H being here rotationally invariant, Prop. 1.3.1 is based on a time-dependent
rotation in space that prove convergence of (H(Xε))ε by studying integrals of the form

1
ε

∫ t

0
V
( s
ε2

)
cos
( s
ε2

)
ds and 1

ε

∫ t

0
V
( s
ε2

)
sin
( s
ε2

)
ds.

At the limit these processes provide a 2D standard Brownian motion with diagonal covariance matrix
D. This result has also been obtained in [152] under slightly different assumptions, and generalized
in [155].

To reiterate our main point, note that Prop. 1.3.1 corresponds to

H

(
X0 + 1

ε2

∫ t

0
∇⊥H(Xε(s)) ds+ 1

ε

∫ t

0
V
( s
ε2

)
e2 ds

)
=⇒
ε→0

H(W (t)), (1.12)

in law in C(0,∞). However, from Prop. 1.2.1, the noise term satisfies

1
σ(ε)

∫ t

0
V
( s
ε2

)
ds =⇒

ε→0
σHWH(t) ,

for a fBm WH with Hurst index H. Interestingly, while H(W ) is a Markov process with no memory,
WH is a non-Markovian process with memory. Note further that:
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• When γ ∈ (0, 1], we have ε ≪ σ(ε) and so the term 1
ε

∫ t
0 V (s/ε2) ds appearing in (1.12) diverges

as ε → 0.

• On the other hand, when γ ∈ (1, 2), together with (1.9), we have this time σ(ε) ≪ ε, and so the
term 1

ε

∫ t
0 V (s/ε2) ds vanishes.

In both cases, the oscillatory behavior of the Hamiltonian system contributes non-trivially by pre-
venting from a blow up of the fluctuations when γ ∈ (0, 1], or enhancing the effects of the fluctuations
for γ ∈ (1, 2).

1.3.2 Diffusive limit for the general Hamiltonian with one non-degenerate
critical point

The case where the Hamiltonian (1.2) has exactly one non-degenerate critical point, but is not nec-
essarily quadratic, is now discussed. As the orbits of the Hamiltonian are more complex, a more
involved analysis is required. Using the action-angle coordinates, the role of the oscillatory behavior
can still be highlighted though the angle variable, but in a more complex framework. In this case, for
technical reasons discussed in Sect. 1.1, we need to work with the stationary Gaussian noise given by
(1.6). The asymptotic behavior of (H(Xε))ε can be described as follows.

Theorem 1.3.1 Let H : R2 → R be a smooth Hamiltonian with exactly one non-degenerate critical
point at (0, 0), which satisfies (1.19) and (1.20) under the action-angle coordinates introduced below,
and let V be the stationary Gaussian noise given by (1.6). Then

H(Xε) =⇒
ε→0

X , (1.13)

in law in C(0,∞), where X is a diffusion process driven by a standard Brownian motion, and in-
finitesimal generator

L := 1
2Λ(X )∂X (Σ(X )∂X ) . (1.14)

Here, the coefficients Λ and Σ are defined by

Λ(X ) :=
∮

{H=X }

dl

|∇H|
,

and
Σ(X ) := 2

∫ ∞

0
dsR(s)

∮
{H=X }

∂yH(X̌x,y(s))∂yH(x, y) dl(x, y)
|∇H(x, y)| ,

where X̌x,y is the solution to the unperturbed Hamiltonian system:

∂tX̌
x,y(t) = ∇⊥H(X̌x,y(t)), with X̌x,y(t = 0) = (x, y) .

Thm. 1.3.1 follows immediately from the more general Thm. 1.3.2 below concerning a fast-slow
system.

Let us make some comments on this result before diving into the ideas behind the proof. First of
all, the main difference between Thm. 1.3.1, and the standard Freidlin-Wentzell theory [71] is in the
coefficient Σ. In the present context, Σ involves an average of the term ∂yH(X̌x,y(s))∂yH(x, y) along
the level sets, with a shift of one factor to the point X̌x,y(s), while in [71] the coefficient Σ depends only
on (∂yH(x, y))2. This shifted average term plays the role of the cos function in (1.11) for the quadratic
Hamiltonian, so that the diffusion coefficient is still well defined despite long-range correlations of the
noise term. The reason for this modification, compared to [71], lies in the fact that the oscillations of
the Hamiltonian system and the random fluctuations in (1.4) are strongly coupled in our case, they
are both evolving on the scale 1/ε2, and fully interact with each. This strong interaction produces an
effective diffusion coefficient involving the correlation of pairs of points belonging to the same orbit:
∂yH(X̌x,y(s)) and ∂yH(x, y). If the oscillatory behavior of the Hamiltonian system is slower than the
random fluctuations, then their coupling is weak and the same generator as in [71] would be obtained.
This dichotomy of limiting behaviors between strongly and weakly coupled setups is well-known in
other approximation-diffusion limits of random differential equations with periodic components, (for
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instance Thm. 6.4 and 6.5 in [70] can be compared). However, in the present chapter, the oscillations
of the Hamiltonian system need to behave at the same scale as the random fluctuations, in other
words the oscillations need to be strong enough, for the coefficient Σ to be well-defined.

When H is not quadratic, the convergence of H(Xε) cannot be reduced to Gaussian integrals
as in Prop. 1.3.1, and so the proof of Thm. 1.3.1 is more involved. One way to analyze integrable
Hamiltonian systems is to use a set of action-angle coordinates. These coordinates separate the slow
and fast motion, and preserve the Hamiltonian structure. The Liouville-Arnold theorem [8, Sect. 50
pp. 279] asserts that there exists a symplectic canonical transformation φ : X = (x, y) 7→ (I, θ) ∈ R×T,
where the action variable I and the angle variable θ satisfy

K(I) = H(x, y) and {I, θ} = 1 ,

where K is a smooth enough one variable increasing function such that K(0) = 0, {·, ·} stands for the
standard Poisson bracket and is defined by

{g, h} := ∂xg∂yh− ∂yg∂xh

for our Hamiltonian system with one degree of freedom. In the action-angle coordinates the Hamilto-
nian is a function of the action coordinate alone. Writing φ = (φ1, φ2) the action-angle coordinates
are defined as

I(t) := I(X(t)) = φ1(X(t)) , and θ(t) := θ(X(t)) = φ2(X(t)) .

In the absence of random fluctuations (that is when V ≡ 0), the Hamiltonian system Ẋ(t) =
∇⊥H(X(t)) becomes

İ(t) = 0 and ˙θ(t) = ω(I(t)) , with ω(I) = K ′(I) .

In the presence of random fluctuations, the Hamiltonian system (1.3) now becomes

İ(t) = εV (t)a(I(t), θ(t)) and θ̇(t) = ω(I(t)) + εV (t)b(I(t), θ(t)) , (1.15)

where
a = e2 · ∇φ1 ◦ φ−1 and b = e2 · ∇φ2 ◦ φ−1.

As an example, when the Hamiltonian is quadratic the action-angle coordinates read

x =
√
I

π
cos
(

2πθ − π

2

)
and y =

√
I

π
sin
(

2πθ − π

2

)
.

One can then see that the action variable is a multiple of the Hamiltonian,

K(I) = I

2π and ω(I) = 1
2π ,

while the angle variable corresponds to the angle of a trajectory describing a circle with period 1 in
this case. One can show that the functions a and b are in this case of the form

a(I, θ) = 2
√
πI sin

(
2πθ − π

2

)
and b(I, θ) = 1

2
√
πI

cos
(

2πθ − π

2

)
.

In the general case, to study the long-time behavior of (1.15), we consider

Iε(t) = I(t/ε2) and θε(t) = θ(t/ε2),

satisfying

İε(t) = 1
ε
V
( t
ε2

)
a(Iε(t), θε(t)) and θ̇ε(t) = ω(Iε(t))

ε2 + 1
ε
V
( t
ε2

)
b(Iε(t), θε(t)) , (1.16)

with Iε(0) = I0 and θε(0) = θ0. As illustrated in Prop. 1.3.1 with the cos function in Γc, a key
feature to handle the long-range correlations in the asymptotic analysis is the mean-zero property in
θ for a and b. In fact, if the system possesses a Fourier mode of order zero, that is with no oscillatory

22



behavior, a noise with long-range correlations will charge this component and cause the system to
blow up as ϵ → 0. Due to the symplectic property of the transformation φ,

a(I, θ) = −∂θφ−1
1 (I, θ)

is clearly mean-zero with respect to θ as being the derivative of a periodic function, but regarding b
it is not as clear. Following the approach of [78], the fast and slow component of the angular variable
are separated, and θε is split into two parts,

θε = ψε + τε.

Here, we set
τ̇ε(t) = ω(Iε(t))

ε2 + 1
ε
V
( t
ε2

)〈
b(Iε(t), ·)

〉
(1.17)

with initial condition τε(0) = 0, and

⟨g⟩ :=
∫ 1

0
g(θ) dθ .

Regarding the slow motion variables (Iε, ψε), the system (1.16) becomes

İε(t) = 1
ε
v
( t
ε2

)
A(Iε(t), ψε(t), τε(t)) and ψ̇ε(t) = 1

ε
V
( t
ε2

)
B(Iε(t), ψε(t), τε(t)) (1.18)

with
A(I, ψ, τ) := a(I, ψ + τ) and B(I, ψ, τ) := b(I, ψ + τ) −

〈
b(I, ·)

〉
,

which are both mean-zero with respect to τ . The above equations are coupled with the initial condi-
tions Iε(0) = I0, and ψε(0) = θ0.

Thm. 1.3.2 below obtains the limiting behavior of (1.18) as ϵ → 0 under the following assumptions
on K:

• The function K is smooth, and

inf
I≥0

K ′(I) = inf
I≥0

ω(I) > ω0 > 0, (1.19)

for some strictly positive number ω0;

• There exists r > 0, and positive constants c1,r, c2,r > 0, such that for any I ∈ (0, r)

c1,rI ≤ K(I) ≤ c2,rI and |ω′(I)| ≤ c2,r

I
. (1.20)

These conditions imply that K(0) = 0 and that K is an increasing function in I. These requirements
are not too restrictive as any Hamiltonian satisfies (1.19) and (1.20) near non-degenerate critical
points.

Theorem 1.3.2 Assuming (1.19) and (1.20), the family (Iε, ψε)ε, defined by (1.17)–(1.18), converges
in law in C([0,∞),R2), as ε → 0, to a diffusion process (I(t), ψ(t))t≥0 where (It)t≥0 is the unique
weak solution to the SDE

dI(t) =
∫ 1

0
a(I(t), τ) dW (t, I(t), τ) dτ

+
[ ∫ ∞

0
R(s)

∫ 1

0
∂I
(
a(I, τ + ω(I)s)

)
|I=I(t)a(I(t), τ)

+ a(I(t), τ + ω(I(t))s)∂Ia(I(t), τ) dτ ds
]
dt ,

with initial condition I(0) = I0. Here, W is a real valued Brownian field with covariance function

E[W (t1, y, ϕ1)W (t2, y, ϕ2)] = t1 ∧ t2

∫ ∞

0
R(s)

×
∫ 1

0
ϕ1(τ + ω(y)s)ϕ2(τ) + ϕ1(τ)ϕ2(τ + ω(y)s) dτ ds ,
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for any ϕ1, ϕ2 ∈ L2
0(T) where

L2
0(T) :=

{
ϕ ∈ L2(T) : ⟨ϕ⟩ = 0

}
.

Also, we have

dψ(t) =
∫ 1

0
b(I(t), τ) dW (t, I(t), τ) dτ

+
[ ∫ ∞

0
R(s)

∫ 1

0
∂I
(
b(I, τ + ω(I)s)

)
|I=I(t)a(I(t), τ)

+ b(I(t), τ + ω(I(t))s)∂Ia(I(t), τ) dτ ds
]
dt ,

with ψ(0) = θ0.

Note that the action variable I does not depend on the slow angular motion ψ. However, the dis-
tribution of ψ is completely determined by the motion of the action variable I and the Brownian
field.

The proof of Thm. 1.3.1 follows from a direct application of the Itô formula applied to the limiting
diffusion process I.

For the quadratic Hamiltonian, stochastic differential equations for (I(t))t≥0 and (ψ(t))t≥0 can be
directly derived leading to

dIt = 2
√
mItdB

1
t + 2mdt and dψt = m

2π
√
It
dB2

t ,

with
m = π

∫ ∞

0
R(u) cos(u) du ,

and where B1 and B2 are two independent standard Brownian motions. One can easily remark that
(It/m)t≥0 is a 2D squared Bessel process, so that (It/2π)t≥0 has the same law as (|Wt|2/2)t≥0, for
W being a 2D Brownian motion with covariance matrix (1.11). Then, we recover the result of Prop.
1.3.1, but we also access to the effective behavior of the slow component of the angle variable.

1.4 Perspectives
The present analysis, which leads to diffusion behaviors, relies on the perturbed-test-function tech-
nique together with a martingale approach, limiting the class of noises that can be considered. It can
be expected to extend the class of noise by the use of the more general, but more involved, rough
path framework [74,144]. Further investigations are required in this direction in order to overcome the
technical difficulty of the dimensionality as well as dealing with nonlinear relations involving the noise.
In the present context, these mentioned nonlinear relations can be seen in (1.18) together with (1.17)
where the blowing term V (t/ε2)/ε is involved. The exact same difficulty is observed for the wave
propagation problem discussed in Sect. 3.3 of Chap. 3. At present, we are only able to analyze the
scenario where the Hamiltonian is smooth with exactly one non-degenerate critical point. The Reeb
graph of such Hamiltonian is simply the half line, and the limiting process in Thm. 1.3.1 is a diffusion
on the half line. For general Hamiltonians, Reeb graph may have multiple vertices, and the limiting
process should be a diffusion on this Reeb graph. When the driving noise is a standard Brownian
motion (as in the Freidlin-Wentzell theory), this diffusion is characterized through its generator on
each edge of the Reeb graph, and certain gluing conditions on the vertices. While the proofs in the
Freidlin-Wentzell theory rely heavily on the Markov property, and do not apply to our situation, the
form of the infinitesimal generator (1.14) is similar to that in [71, Eq. (1.8)]. As a result, similar gluing
conditions are expected in our context. Explicitly, for a sufficiently general class of Hamiltonians, we
expect that the process (H(Xε))ε converges in law to a diffusion process on the Reeb graph. The
generator of this diffusion should be

Ljhj(X ) = 1
2Λj(X )∂X (Σj(X )∂Xhj)
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on each edge Ij . Considering Cj(X ) the connected components of the level set {H = X } corresponding
to a point X ∈ Ij , Σj and Λj should be

Σj(X ) = 2
∫ ∞

u=0
duR(u)

∮
Cj(X )

∂yH(X̌x,y
u )∂yH(x, y) dl(x, y)

|∇H(x, y)| ,

and
Λj(X ) =

∮
Cj(X )

dl(x, y)
|∇H(x, y)| .

To describe the gluing conditions on the vertices, consider an interior vertex Ok corresponding to the
saddle point (xk,yk) and the level set {H = Xk}, at which the collection of edges {Ij} meet. Now
define

βkj = lim
X →Xk

Cj(X ) ,

where the limit is taken along the edge Ij . The gluing condition at the vertex Ok can then be written
as ∑

j: Ij∼Ok

±βkj h′
j(H(xk,yk)) = 0 ,

where the sign before βkj is positive if X > Xk along the edge Ij , and negative if X < Xk along the
edge Ij .
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Chapter 2
Random Schrödinger equation with
long-range correlations

The Schrödinger equation with a time-dependent random potential has been studied for a long time
[17, 64–66,115, 193], with a particular interest for applications in wave propagation in random media
under the so-called paraxial (or parabolic) approximation [11, 18, 34, 52, 80, 87, 151, 196, 201]. The
paraxial approximation allows a simplified treatment of wave propagation phenomena at both the
theoretical and numerical point of views. The main idea is to provide an approximation of a solution
u to the scalar wave equation

∆u− 1
c2(z,x)∂

2
ttu = 0 (t, z,x) ∈ R × R × R2,

with
1

c2(z,x) = 1
c2

0
(1 + V (z,x)),

where ∆ = ∂2
zz + ∆x is the Laplacian operator, and V is a mean-zero random field describing fluctu-

ations of the wave-speed profile around its background value c0.
Considering the z-axis as the main propagation axis, that is along which the wave is mainly

propagating, the paraxial approximation consists in approximating u by

u(t, z,x) ≃
∫
ϕω(z,x)eiω(z/c0−t)dω.

From this representation, the wave is assumed to propagate in only one direction along the z-axis,
neglecting the backscattering phenomena. This latter aspect is the key point that simplifies theoretical
and numerical treatments of wave propagation in random media. The envelop ϕω therefore satisfies
the following random Schrödinger equation

ikω∂zϕω + 1
2∆xϕω + k2

ωV (z,x)ϕω = 0, (2.1)

with wavenumber kω = ω/c0. In this Schrödinger equation, the time variable is played by the
z-variable of the main propagation axis on which the random fluctuation V depends. A rigorous
treatment of this approximation will be discussed in Sect. 3.2 of Chap. 3.

The random Schrödinger equation involving a time-dependent potential,

i∂tϕ+ 1
2∆xϕ−

√
εV (t,x)ϕ = 0 (t,x) ∈ (0,∞) × Rd, (2.2)

have been considered in [14, 17] to derive a radiative transfer model under short-range correlations,
but also in [15] under both short-range and long-range correlations. In this latter work the asymptotic
behavior of the wave function itself is explored. Under long-range correlations the authors prove a
non-central limit theorem type result (described below) using a moment technique. This chapter
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presents other scaling regimes exhibiting non-trivial effects under long-range correlations. In contrast
with Chap. 1, where no spatial effect can take place, the multiscale properties of the potential w.r.t.
the variable x enable intermediate non-trivial regimes from the non-central type result up to the
radiative transfer regime under the so-called semi-classical limit. This chapter is based on the results
obtained in [3, 4, 6] of the publication list on page 6.

To highlight the effective phenomena produced by long-range correlations over a range of scaling
regimes, we introduce the time and space scaling:

t → t/εs and x → x/εs, s ∈ (0, 1],

where s represents the propagation scale parameter. The wave function associated to this scaling is

ϕε(t,x) := ϕ
( t
εs
,

x
εs

)
,

with corresponding Schrödinger equation

iεs∂tϕε + ε2s

2 ∆xϕε −
√
εV
( t
εs
,

x
εs

)
ϕε = 0, and ϕε(0,x) = ϕ0(x/εs−sc). (2.3)

The parameter sc accounts for low frequency oscillations of the wave function. Such low frequencies
are the key points when describing how the loss of coherence affects the wave function over the
different propagation scales. Note that the standard semi-classical limit holds for s = 1 and sc = 0.
An anisotropy parameter ϱ ∈ [0, 1) can also be added into the fluctuation model,

ε
1−ϱ

2 V
( t

εs+ϱ ,
x
εs

)
.

Recalling that for the paraxial approximation the time variable t plays the role of the main propagation
axis (see (2.1)), ϱ > 0 corresponds to faster fluctuations along this axis than in the transverse direction.
In other words, this condition corresponds to a statistical anisotropy of the medium fluctuations.

The organization of this chapter is as follows. After a brief description of the random potential
under consideration in Sect. 2.1, the different non-trivial regimes describing the loss of coherence
are presented. Sect. 2.2 reviews the result obtained in [15] regarding the onset of the random phase
modulation. In Sect. 2.3 a scaled Wigner transform is introduced. Its scaling enables the description
of the loss of coherence, in Sect. 2.4 and 2.5, over different scaling regimes and how this loss of
coherence propagates from the large scales supported by the wave function to the finer ones. Finally,
Sect. 2.6 introduces a time-splitting scheme that are able to capture statistically all the scaling regimes
we describe under long-range correlations.

2.1 The random potential
Throughout this chapter the random potential is defined following the lines of Chap. 1 (see also [15])
by

V (t,x) :=
∫ t

−∞

∫
S

eip·xe−µ|p|2β(t−u)B(du, dp),

where S ⊆ Rd is a bounded symmetric open set containing 0. Here, µ and β are constants, and B is
a Gaussian random measure which is white in time and colored in space:

B(du, dp) :=
√

2µ r(p) |p|β1S(p) ξ(du, dp),

where ξ is a Rd+1 Gaussian white noise, and r : S \ {0} → [0,∞) is defined again by

r(p) := λ(p)
|p|d−1+2α . (2.4)

Here, λ : S → R+ is a smooth bounded even function such that λ(0) ̸= 0. The correlation function of
V is this time given by

R(t,x) := E[V (t+ s,x + y)V (s,y)] =
∫
S

eip·xr(p)e−µ|p|2β |t| dp.
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Again, the condition
α <

1
2

is required for the process and correlation function to be well defined. In this chapter the condition
β ∈ (0, 1/2] is also required for technical reasons.

One can observe from (2.4) that the random field V (t), for any fixed time t, exhibits long-range
correlations in space. In fact, the function r is singular at p = 0 (therefore unbounded), so that its
inverse Fourier transform is not integrable. However, for any fixed x ∈ Rd,

lim
t→∞

tγR(t,x) = R0,

where

γ = 1 − 2α
2β and R0 = λ(0)

∫
e−µ|p|2β

|p|d−1+2α dp.

Long-range correlations (in time) are therefore considered here by assuming

2(α+ β) > 1,

but short-range correlations (still in time) can also be obtained by assuming 2(α+ β) < 1.
Note that Eq. (2.2) is a time evolution problem, so we have to take care about the statistical

properties of the random potential V w.r.t. the temporal variable. It is worth mentioning that
if V is assumed to have rapidly decaying correlations in time, (V (t1), V (t2)) exhibits now rapidly
decaying cross-spatial correlations, and the evolution problem (2.2) behaves like in the short-range
case addressed in [15]. As a result, even if at each fixed time the spatial correlations are slowly
decaying, the resulting time evolution problem behaves as if the random potential has rapidly decaying
correlations in all variables.

As in Sect. 1.3.2 of Chap. 1, this specific form for V is considered to carry out the asymptotic
analysis.

2.2 Phase modulation
As in Chap. 1, a nontrivial scaling regime, corresponding to the non-central limit theorem, can be
exhibited. In the context of this chapter, it is given by the following result (provided by [15,93]) that
can be proved through a moment technique.

Theorem 2.2.1 Denoting

H := 1 − γ/2 ∈ (1/2, 1) and Hϱ := H

1 − ϱ
(
α+β−1/2

β

) , (2.5)

for ϱ ∈ [0, 1), the process ξ̂Hϱ,ε(t,k) defined by

ξ̂Hϱ,ε(t,k) := 1
εd s

ϕ̂ε

(
t,

k
εs−sc

)
ei|k|2t/(2εs−2sc ), with s = 1/(2Hϱ), (2.6)

converges in law to
ξ̂(t,k) = ϕ̂0(k) exp

(
i
√
D(α, β,k)WH(t)

)
,

for each t ≥ 0 and k ∈ Rd. Here, WH is a standard fractional Brownian motion with Hurst index H,

D(α, β,k) := a(0)
(2π)dH(2H − 1)

∫ ∞

0
dρ

e−µρ

ρ2α−1

∫
Sd−1

dS(u)ei|k|ρu·e1 , (2.7)

if β = 1/2, ϱ = 0, sc = 0, and

D(α, β,k) := D(α, β) = a(0)Ωd
(2π)dH(2H − 1)

∫ ∞

0
dρ
e−µρ2β

ρ2α−1 , (2.8)

otherwise, where Ωd stands for the surface area of the unit sphere in Rd, and e1 ∈ Sd−1.
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In this result, the term ξ̂Hϱ,ε is scaled according to the initial condition ϕε(t = 0,x) = ϕ0(x/εs−sc).
The resulting highly-oscillating behavior of the solution ϕε is filtered out through the term ei|k|2t/(2εs−2sc ).
As a result, ξ̂Hϱ,ε exhibits mainly an effective random behavior through the term exp(i

√
D(α, β,k)WH(t)),

corresponding to a random phase modulation.
As described in Chap. 1, when the system propagates over longer time scales, other effective

phenomena can be observed. Over longer propagation scales s > 1/(2Hϱ) such phase modulations
oscillate fast enough to affect the coherence of the wave function. To understand how these phenomena
take place a properly scaled Wigner transform and initial conditions are considered.

2.3 The Wigner transform
To highlight the loss of coherence effects on the wave function ϕε, we can consider an initial conditions
ϕ0,ε, for (2.3), of the form:

ϕ0,ε(x) = ϕ0(x) exp(iζ · x/εs−sc). (2.9)
This initial condition represents a quasi-plane wave with direction ζ, and slowly varying envelop ϕ0.
The plane wave is slowly varying for sc = s, and highly oscillating when sc < s. In this latter case
self-averaging effects take place and the loss of coherence mechanism will be deterministic. It is worth
mentioning that the spatial frequency of the initial condition (∼ ε−(s−sc)) is low compared to the
one of the random fluctuations (∼ ε−s). For random media with rapidly decaying correlations, such
low spatial frequency sources do not interact with the random medium, and provide trivial limits.
However, they do interact with slowly decorrelating random media and provide nontrivial limits. Due
to technical difficulties in the asymptotic analysis, it is convenient to consider the direction ζ as being
randomly distributed, according to some probability law ν(dζ) over some space U ⊂ Rd, in order to
provide a rigorous derivation of the self-averaging effects.

The loss of coherence phenomena are analyzed through the following scaled Wigner transform

Wε(t,x,k) := 1
(2π)d

∫
Rd×U

dyν(dζ)eik·yϕε

(
t,x − εs−sc

y
2 , ζ

)
ϕε

(
t,x + εs−sc

y
2 , ζ

)
= 1

(2π)d
∫
Rd×U

dyν(dζ)eik·yϕ
( t
εs
,

x
εs

− y
2εsc

, ζ
)
ϕ
( t
εs
,

x
εs

+ y
2εsc

, ζ
)
,

The terminology loss of coherence refers to diffusion phenomena through the momentum variable k.
The Wigner transform can be seen as the Fourier transform of the two-point correlation function of the
wave function, and where sc ∈ [0, s] corresponds to a spatial correlation parameter. This parameter
captures the evolution of the degree of correlation of the wave function. We refer to Fig. 2.1 for some
illustrations. Let us note that the cases sc < s study the local loss of coherence, while the case s = sc
study the nonlocal loss of coherence. As we will see, for a given propagation scale parameter s the
loss of coherence of the wave field ϕε can be observed at a particular spatial correlation parameter
sc. The larger the propagation scale parameter is the shorter the correlation scale parameter sc is. In
other words, depending on the propagation time and distance we adjust the spacial correlation scale
to exhibit the loss of coherence. It appears that as the wave function propagates over longer scales,
the correlation scales affected by the random fluctuations become smaller.

The developments of this chapter are based on the following equation satisfied by the Wigner
transform,

∂tWε(t,x,k) + εsck · ∇xWε(t,x,k) =
ε(1−ϱ)/2−s

(2π)di

∫
Rd

V̂
( t

εs+ϱ , dp
)
eip·x/εs

(
Wε

(
t,x,k − p

2εsc

)
−Wε

(
t,x,k + p

2εsc

))
.

(2.10)

If V ≡ 0, the Wigner transform is simply given by Wε(t,x,k) = Wε(t = 0,x−εsctk,k), the momentum
of Wε is preserved during the propagation, that is there is no loss of coherence. For nonnull random
fluctuations, the radiative transfer equation (2.10) describes the loss of coherence of the function ϕε
through the random integral operator. However, depending on the scaling under consideration, this
operator can be of negligible effect, and no loss of coherence can be observed. For example, when
considering the correlation scale sc = 0, no loss of coherence can be observed before s = 1 (semi-
classical limit). Also, the dispersion term k · ∇x is of order εsc , so that dispersion is only capture for
sc = 0.
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Fig. 2.1: Illustration of the initial condition (2.9). (a) and (b) represent low spatial frequency initial
conditions. (a) represents the case sc = s, and (b) represents the case sc < s. (c) represents the case
sc = 0 and s = 1 corresponding to the radiative transfer regime.
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2.4 Loss of coherence
As described in Thm. 2.4.2, Thm. 2.4.1, and Thm. 2.5.1 below, at a given propagation scale s, the
corresponding spatial correlation parameter is given by

sc = 1 − s

θ
, (2.11)

with
θ = 2(α+ β) − 1 ∈ (0, 1), (2.12)

so that for sc ≤ s we have
1

2Hϱ
≤ 1

1 + θ
≤ s.

As a result, no loss of coherence can be observed before the propagation scale s = 1/(1 + θ), which is
larger than the propagation scale to observe the onset of the phase modulation. This relation holds
true for any spatial correlation parameter sc ≤ s. Furthermore, Eq. (2.11) expresses how the spatial
correlation scale decreases as the propagation scale increases.

The case s = sc = 1/(1+θ) corresponds to the first effects happening after the onset of the random
phase modulation, and they hold on the envelop ϕ0 itself and not at a local level. These effects can
be described as follows.

Theorem 2.4.1 For either ϱ > 0 or β < 1/2, and

sc = s = 1
1 + θ

,

the family (Wε)ε converges in law in C([0,∞), L2(R2d)), as ε → 0, to a limit W defined by

W (t,x,k) = 1
(2π)d

∫
dqŴk

0 (x,q) exp
(
ik · q + i

∫
B(t, dp)eip·x(e−iq·p/2 − eiq·p/2)

)
, (2.13)

where Ŵk
0 stands for the Fourier transform of

W0(x,k) := W (t = 0,x,k) = 1
(2π)d

∫
R2d

dyν(dζ)ei(k−ζ)·yϕ0(x − y/2)ϕ0(x + y/2)

with respect to the k-variable. Here, (Bt)t is a Wiener process on the dual of the Hilbert space

Hθ :=
{
φ : φ(p) = φ(−p) and

∫
dp

|p|d+θ |φ(p)|2 < ∞
}
,

such that B∗(t, dp) = B(t,−dp), and with covariance function

E[Bt(φ)Bs(ψ)] = t ∧ s

∫
dp

|p|d+θφ(p)ψ(p) φ,ψ ∈ Hθ.

Moreover, W is the unique weak solution of the stochastic partial differential equation

dW (t,x,k) = − σ(θ)(−∆k)θ/2W (t,x,k)

+ 2ia(0)
(2π)d

∫
dB(t, dp)eix·p

(
W
(
t,x,k − p

2 ) −W
(
t,x,k + p

2 )
)
,

(2.14)

where
σ(θ) = 2a(0)θΓ(1 − θ)

(2π)d
∫
Sd−1

dS(u)|e1 · u|θ, (2.15)

with e1 ∈ Sd−1, and Γ the standard Gamma function.

31



The representation (2.13) is still random as it exhibits, in the Fourier domain, a random phase
modulation. In this case the wave does not propagate enough to produce self-averaging phenomena
as for the standard semi-classical limit s = 1 [11, 17, 18]. The case ϱ = 0, β = 1/2, and s = sc is
addressed by Thm. 2.2.1, since in this particular case 1/(1 + θ) = 1/(2H), and no loss of coherence
takes place.

As described in the following result, for a longer propagation scale s > 1/(1+θ) the random phase
modulation in the Wigner transform starts to oscillate fast enough to average out and produces a
homogenization phenomenon. It turns out that the deterministic limit corresponds to the expectation
of the limiting Wigner transform obtained for sc = s = 1/(1 + θ). Both Thm. 2.4.1 and the follow-
ing result are proved through approximation-diffusion theorems based on a perturbed-test-function
approach [139].

Theorem 2.4.2 For any s ∈ (1/(1 + θ), 1), and

sc = 1 − s

θ
< s, (2.16)

the family (Wε)ε converges in probability in C([0,+∞), L2
w(R2d)), as ε → 0, to the unique solution of

the fractional diffusion equation
∂tW = −σ(θ)(−∆k)θ/2W, (2.17)

with
W0(x,k) := W (t = 0,x,k) = |ϕ0(x)|2ν(k), (2.18)

and σ(θ) defined by (2.15). Here, L2
w(R2d) stands for L2(R2d) equipped with the weak topology,

(−∆k)θ/2 is the fractional Laplacian with Hurst index θ ∈ (0, 1). Moreover, W is given by

W (t,x,k) = 1
(2π)d

∫
dq exp(ik · q − σ(θ)|q|θt)Ŵk

0 (x,q),

where Ŵk
0 stands for the Fourier transform of W0 with respect to the k-variable.

The observed fractional diffusion exhibits a damping term that obeys to a power law with exponent
θ ∈ (0, 1). This term characterizes how fast the wave function ϕε loses its coherence.

We conclude this section by providing a heuristic explanation for why such loss of coherence
phenomena are observable under long-range correlations but not under short-range correlations. After
homogenization of the stochastic dynamic, the diffusion operator w.r.t. the momentum variable is
approximately given by

ε1−s
∫
dpσ(p)

(
φ
(
k + p

εsc

)
− φ(k)

)
.

In case of rapidly decaying correlations σ(p) ∈ L1(R), unless s = 1, the term ε1−s cannot be compen-
sated, and we cannot observe any significant interaction between the wave function and the random
fluctuations. However, random fluctuations with long-range correlations allow the following asymp-
totic

ε1−s
∫
dp a(p)

|p|d+θ

(
φ
(
k + p

εsc
) − φ(k)

)
∼
ε→0

ε1−s−θsca(0)
∫

dp
|p|d+θ

(
φ(k + p) − φ(k)

)
,

and therefore significant momentum diffusion as soon as sc = (1−s)/θ. In other words, the asymptotic
autosimilarity property of the correlation function enables significant interactions between the low-
frequency structures of the wave function, characterized by sc, with the random fluctuations.

2.5 Radiative transfer regime
The scaling s = 1 and sc = 0 corresponds to the standard semi-classical limit for which the loss
of coherence is described by a radiative transfer equation (RTE). This limiting RTE holds for both
slowly- and rapidly- decaying correlations.
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Theorem 2.5.1 The family (Wε)ε converges in probability in C([0,+∞), L2
w(R2d)), as ε → 0, to a

limit denoted by W , which is the unique, uniformly bounded in L2(R2d), classical solution of the RTE

∂tW + k · ∇xW = LW, (2.19)

with W (t = 0) = W0 ∈ L2(R2d) defined by (2.18). Here, L is defined by

Lφ(k) :=
∫
dpσ

(
p − k, |k|2 − |p|2

2

)(
φ(p) − φ(k)

)
,

for φ ∈ C∞(Rd), where

σ(p, ω) = σ(p) := 2a(p)
(2π)d|p|d+θ for ϱ > 0, (2.20)

and
σ(p, ω) := 2µa(p)

(2π)d|p|d+2α−2β−1(µ2 |p|4β + ω2) for ϱ = 0. (2.21)

Moreover, W ∈ C∞((0,∞) × Rd × Rd) for any initial condition W0 ∈ L2(R2d).

Originally, the case ϱ = 0 was not covered in [92]. In this case the difficulty comes from the
identification of the accumulation points once the tightness of the family (Wε)ε is obtained. Due to
the singular kernel in L, this can be achieved by proving the weak uniqueness of the limiting radiative
transfer equation. To obtain this weak uniqueness, it is enough to prove the smoothness of classical
solutions for this equation. While the regularity can be obtained with relatively straightforward
algebra for ϱ > 0, the case ϱ = 0 requires more efforts as described in Sect. 4.1 of Chap. 4 [97,98].

Interestingly, the radiative transfer model remains well-defined regardless of whether the integral∫
dpσ(p, ω) is finite or not. In other words, the RTE (2.19) is valid under both slowly and rapidly

decaying correlations in time. However, although long-range correlations lead to regularizing effects,
short-range correlations do not yield similar properties. This regularizing properties highlight an
important qualitative distinction between short-range and long-range correlations.

For long-range correlations, although the behavior of the momentum in (2.19) does not exactly
align with the diffusion mechanism obtained in Thm. 2.4.2, they are very closed to each other. The
momentum diffusion provided in Thm. 2.4.2 is characterized by a fractional Laplacian, whereas in the
radiative transfer regime the momentum diffusion is described using a nonlocal operator that is almost
a fractional Laplacian. Nevertheless, both of these diffusion mechanisms fall under the category of
anomalous diffusion, as they result in damping terms obeying to a power law with exponent θ ∈ (0, 1).
From the radiative transfer model, one needs to consider a proper scaling regime to once again observe
a momentum diffusion given by a fractional Laplacian [92].

2.6 Asymptotic preserving time-splitting schemes
Time-splitting schemes for the Schrödinger equation have been widely used for applications that
range from quantum transport to wave propagation in random media [26, 125, 151]. In this section,
we discuss how the aforementioned asymptotic regimes (random phase modulation, loss of coherence,
and radiative transfer regime) can be captured by a time-splitting scheme. It is a natural question
to wonder how can we select sufficiently large stepsizes to reduce computational expenses while still
accurately recovering the desired limiting regimes.

In order to define the splitting scheme for (2.3), consider a fixed stepsize h > 0, n ∈ N∗, and let

Aε = iεs

2 ∆x, and Bεn,h(x) = 1
εs−(1−ϱ)/2

∫ nh

(n−1)h
V
( s

εs+ϱ ,
x
εs

)
ds.

The standard first-order semi-discrete split-step scheme then reads

Ψε
n = ehAεe−iBε

n,hΨε
n−1, for n = 1, 2, . . . , with Ψ0,ε(x) = ϕ0,ε(x). (2.22)

Following the approach of [157, 194] for instance, the order in time of this scheme can be improved
by taking other combinations of exponentials of operators. Note that the spatial variable x is not
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discretized as the semi-group ehAε can be evaluated at low cost with high accuracy using spectral
methods, such as Fast Fourier Transforms (FFT), provided the spatial stepsize ∆x satisfies ∆x ≪ εs.
Absorbing boundary conditions are necessary since the wave function solves the Schrödinger equation
in the entire space, and boundary conditions compatible with FFT can be found in [100].

Splitting techniques are efficient numerical methods for solving Schrödinger equations under the
semi-classical limit. This scheme is always stable since it preserves the L2 norm w.r.t. the variable x.
For short-range correlations, and under the transport scaling (s = 1 and ϱ = 0), it has been shown
in [23] that the scheme accurately captures (in the sense of a convergence in probability) the radiative
transfer regime if the stepsize h is of the form εh′, where h′ ≪ 1 is small but independent of ε. It
worth mentioning that a larger stepsize would still lead to a radiative transfer regime, but with an
incorrect scattering cross-section (the one given by (2.20) for ϱ > 0 in Thm. 2.5.1 instead of (2.21)).
The constraint h = εh′ is already a great improvement on the consistency constraint to capture the
statistical behavior of the wave function. In fact, for a given realization of the random fluctuation
V , the local error estimate between the exact solution and its approximation after one single step is
readily shown to be

∥ϕε(h) − Ψε
1∥L2(Rd) ≤ h2

ε
∥[ε∆x,

√
εV ]e− iε

2 ∆xϕ0,ε∥L2(Rd) + h2

ε
∥ϕ0,ε∥L2(Rd) sup

t,x
|V (t,x)|2,

where [·, ·] denotes the commutator between two operators. Assuming ϕ0,ε and V smooth enough, the
local error is then controlled by Ch2ε−3/2, and the global error by hε−3/2, requiring h ≪ ε3/2 for the
scheme to be consistent in the pathwise sense. This condition is considerably more restrictive than
h = εh′ required to capture the transport regime in probability (in a statistical sense).

In what follows, we discuss the constraints on the stepsize h to capture the three asymptotic
regimes described above. For most of our parameter configurations, all three regimes are captured
for any h > 0, independently of ε. Such a result is a consequence of several factors. First, we only
need to approximate the behavior of the wave function in the statistical sense, not in the pathwise
sense, as the above asymptotic regimes are derived in a statistical sense and not w.r.t a particular
realization of the fluctuations. Second, the random medium fluctuations exhibit multiscale properties
allowing an accurate description of the dynamics at larger scales in the statistical sense.

2.6.1 The phase modulation
To capture the behavior of (2.6), a discretized version of the wave function is considered:

ζεn(k) = 1
εd(s−sc) Ψ̂ε

n

( k
εs−sc

)
einh

|k|2

2εs−2sc ,

where Ψ̂ε
n(k) stands for the Fourier transform of Ψε

n(x) defined by (2.22). We have the following
result for

s = 1/(2Hϱ),

with Hϱ given by (2.5).

Theorem 2.6.1 For any k ∈ Rd, h > 0, n > 0, and sc ∈ [0, s], the family (ζεn(k))ε converges in law,
as ε → 0, to

ζ(nh,k) = ϕ̂0(k) exp
(
i
√
Dn,h(k)WH(nh)

)
.

Here, WH is a standard fractional Brownian motion with Hurst index H, and Dn,h satisfies

lim
h→0

D[T/h],h(k) = D(α, β,k), (2.23)

given by (2.7) in the case β = 1/2, ϱ = 0, and sc = s, and Dn,h is given by (2.8) otherwise.

This result shows that the proposed time-splitting scheme captures the correct behavior as ε → 0
for any stepsize h > 0, independently of ε, when at least one of the three following conditions hold:
β < 1/2, ϱ > 0, sc < s. When β = 1/2, ϱ = 0, and sc = s, the condition h ≪ 1 is required but
independently of ε. As already mentioned, such a result holds only because the statistical behavior
of the wave function is of interest.
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2.6.2 Loss of coherence
Let us recall that after the onset the random phase modulation the loss of coherence phenomena
are described through two different behaviors. When s = sc = 1/(θ + 1) (for β < 1/2, or ϱ > 0)
the Wigner transform converges in law to the solution of a stochastic fractional heat equation (see
Thm. 2.4.1). When 0 < sc < s, with sc given by (2.16), homogenization takes place and the Wigner
transform converges in probability to the solution of a fractional heat equation (see Thm. 2.4.2).

These two behaviors are captured using the following discretized version of the Wigner transform:

W ε
n,h(x,k) = 1

(2π)d
∫
Rd×S

dyν(dζ) eik·yΨε
n

(
x − εs−sc

y
2 , ζ

)
Ψε
n

(
x + εs−sc

y
2 , ζ

)
,

where Ψε
n(x) is defined by (2.22), with initial condition (2.9).

Theorem 2.6.2 For either ϱ > 0 or β < 1/2, and sc = s = 1/(1 + θ), where θ ∈ (0, 1) is defined
by (2.12), and for all n > 0 and h > 0, (W ε

n,h)ε converges in law on L2(R2d), as ε → 0, to a limit
W (nh,x,k) defined by

W (t,x,k) = 1
(2π)d

∫
Rd

dqŴk
0 (x,q) exp

(
ik · q + i

∫
Rd

B(t, dp)eip·x(e−iq·p/2 − eiq·p/2)
)
, (2.24)

which is the unique solution of the stochastic fractional heat equation (2.14). In (2.24), Ŵk
0 stands

for the Fourier transform of W0 defined by (2.18) with respect to the k-variable .

As already explained, the remaining case s = sc, ϱ = 0 and β = 1/2 is included in Thm. 2.6.1.
The splitting scheme captures again the correct asymptotics for any h > 0. In this critical case, the
limiting Wigner transform is random because the wave function does not propagate enough to average
out the stochastic effects. This self-averaging effect is observed for longer propagation scale s and the
splitting scheme is again able to capture this effect.

Theorem 2.6.3 Let sc = (1 − s)/θ < s, where θ is defined by (2.12). Then, for all n > 0, h > 0,
(W ε

n,h)ε converges in probability in L2
w(R2d), as ε → 0, to a limit W (nh,x,k) defined by

W (t,x,k) = 1
(2π)d

∫
Rd

dqeik·q−σ(θ)|q|θtŴk
0 (x,q),

which is the unique solution of (2.17) uniformly bounded in L2(R2d).

In this regime as well, the splitting scheme captures the correct asymptotic behavior for any h > 0.

2.6.3 Radiative transfer regime
In this regime (s = 1 and sc = 0), there is some requirements on the stepsize h. The following result
guarantees that the time-splitting scheme (2.22), for a stepsize h ≪ 1 independent of ε, leads to the
correct limit for ϱ > 0.

Theorem 2.6.4 For any ϱ > 0, n > 0, h > 0, the family (W ε
n,h)ε converges in probability on

L2
w(R2d), as ε → 0, to a limit defined by

Wn,h(x,k) = 1
(2π)2d

∫
Rd

dydqei(x·y+k·q)+ψn,h,θ(y,q)Ŵ0(y,y + tq).

Here,

ψn,h,θ(y,q) = h

n∑
j=1

ψ(y + nh(1 − j/n+ 1/n)q),

with
ψ(q) = 2

µ(2π)d
∫
Rd

dp a(p)
|p|d+θ (eip·q − 1),

so that
lim
h→0

W[T/h],h(x,k) = W (T,x,k),

which is the unique solution to (2.19) uniformly bounded in L2(R2d).
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When ϱ = 0 the situation is different. The transport term and momentum variables interact, which
leads to another expression of the collision operator (see (2.20) versus (2.21)). This situation corre-
sponds to the one considered in [23] under random media with short-range correlations, and for which
one needs h = εh′, with h′ ≪ 1 independent of ε to recover the correct scattering operator. Without
this restriction the scattering kernel (2.20) is obtained instead of (2.21).

2.7 Perspectives
The Schrödinger equation exhibits intriguing effective multiscale properties when coupled with a slowly
decorrelating random potential. Capturing numerically these effects is also an interesting question
as these properties seem to influence the performance of the numerical schemes. The perspectives
in these directions are twofolds. First, these time-splitting schemes have not been implemented so
far. It would be interesting to investigate if all the scaling regimes, described theoretically in this
chapter, can effectively be captured numerically, and evaluate how these schemes are sensitive to the
time stepsize.

In [15] under short-range correlations, or [105] where the authors start directly from a white-
noise model for the random fluctuations, the long-time behavior of the wave function itself, and
not the Wigner transform, is investigated. The asymptotic wavefield can be described through a
Gaussian random field with a correlation function related to the radiative transfer model (2.19). A full
description of the correlation function holds significant importance in the context of wave propagation,
particularly for imaging problems through strongly scattering media relying on incoherent recorded
signals. While the quadratic nature of the Wigner transform does not capture the slow phase of
the wavefield (as it corresponds to the energy density) the direct analysis of the wavefield enables to
extract information about the phase itself, as illustrated in Chap. 1 through the slow angle variable.
It is well known in the imaging community that information carried by the phase is highly relevant for
inversion algorithms. The second perspective consists in describing the loss of coherence phenomena
on the wavefield itself and investigate whether it exhibits Gaussian statistics or not.
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Chapter 3
Wave propagation in random media with
long-range correlations

Analysis of physical measurements reveals that propagation media may exhibit perturbations with
long-range dependencies [49,60,117,172,188]. This has sparked interest in a mathematical understand-
ing of how waves propagate through multiscale media. Multiscale random media with long-range
correlations find applications in modeling the heterogenous earth crust, the turbulent atmosphere,
and also biological tissues for instance. While there exists a large literature on wave propagation
in heterogeneous media which vary on a well-defined microscale [70], the study of wave behavior in
multiscale random media remains an area with many open questions. In order to be efficient, imag-
ing and communication algorithms necessitate a deep understanding on how waves are affected by
the rough medium fluctuations. In view of its potential for applications, mathematical descriptions
of wave propagation in multiscale random media with long-range correlations has attracted a lot of
interest over the last decade [15,84,153,154,191].

The full scalar wave equation is considered in this chapter with a continuous multiscale medium
characterized by a stochastic process with long-range correlations:

∆p− 1
c2(z,x)∂

2
ttp = ∇ · F (t,x, z) (t,x, z) ∈ R × D × R, (3.1)

with null initial conditions, p(t = 0) = ∂tp(t = 0) = 0, so that the system is supposed to be initially
at rest. Here, p represents the acoustic pressure, and c the wave-speed profile. The coordinate z
represents the main propagation axis, and the coordinate x ∈ D represents the transverse variable
(see Fig. 3.1). In this chapter, D = (0, d) is considered in Sect. 3.1 to define a planar waveguide with

Fig. 3.1: Illustration of the wave propagation model. The source F generates a wave with profile f ,
which propagates along the z-axis. The section z ∈ [0, Lz] is randomly heterogeneous with long-range
correlations. Our objective is to characterize the pulse as it emerges at the end of the random section
(z = Lz).
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a bounded cross-section, and D = R2 in Sect. 3.2 and 3.3 to model open propagation media. The
forcing term F(t, z,x) is given by

F (t, z,x) = f(t,x)δ(z − LS)ez,

where ez is the unit vector pointing in the z-direction. This term models a source located in the plan
z = LS , emitting a wave of the form f(t,x). The wave-speed profile is assumed to be of the form

1
c2(z,x) := 1

c2
0

(
1 + ν(z,x)1(0,Lz)(z)

)
,

where ν models the fluctuations of the propagation medium. The aim of this chapter is to present
mathematical descriptions of the wavefield as it exits the random section at z = Lz in three different
scenarios, emphasizing the crucial role of the fluctuations with long-range correlations.

As described in Chap. 2 for the Schrödinger equation, random media with long-range correla-
tions affect the wave propagation in a way that differs greatly from the corruption caused by media
fluctuating on a well-defined microscale (short-range correlations) [70]. Wave propagation in ran-
dom media with long-range correlations has already been considered in one-dimensional propagation
media [84,153], or open media under the paraxial approximation [15,68,69]. These works have demon-
strated that wave propagating in such random media exhibits stochastic effects at various propagation
scales. Unlike for propagation media with short-range correlations, all the stochastic effects do not
appear on the same propagation scale. Perturbations with long-range correlations first induce a ran-
dom phase modulation on the waves driven by a single standard fractional Brownian motion, which
does not depend on the frequency band [15,152]. For larger propagation distances, the random phase
modulation starts to oscillate very fast up to produce diffusion phenomena and affects the energy prop-
agation [84]. This picture follows the ones presented in Chap. 1 and 2, where the phase modulation
is exhibited by a non-central limit theorem, and the diffusion phenomena by approximation-diffusion
theorems.

This chapter is organized as follows. First, we consider in Sect. 3.1 the context of a waveguide
supporting a discrete number of modes. This section considers D = (0, d) as transverse section and
constitutes an intermediate situation between a one-dimensional propagation medium and the full
ambient physical space (obtained for D = R2). In this section, an analysis similar to the non-central
limit theorem is developed to exhibit phase modulations driven by a unique fractional Brownian
motion for each propagating modes in a high-frequency limit. In Sect. 3.2 a similar approach is
developed for D = R2, but this time two phenomena are captured at once in a single high-frequency
limit: a non-central limit type result, as well as the paraxial approximation. This approximation
consists in describing the wave propagation along a privileged axis, and has been extensively studied
and used in applications (see [10, 24, 54, 201] for instance). Under suitable assumptions on physical
parameters, this approximation can greatly simplify the description of propagation phenomena as well
as their numerical simulations [151]. The paraxial approximation together with the fractional white-
noise approximation lead to a model of fractional Itô-Schrödinger equation driven by a fractional
noise, not necessarily Gaussian, to describe the impact of the medium fluctuations on the propagating
waves. The evolution variable of this fractional Itô-Schrödinger equation corresponds to the one of
the main propagation axis. Under the setting of this section, the backscattering effects are shown
to be negligible, and the energy carried by the propagating wave is conserved. Finally, in Sect.
3.3, under the simpler setting of a randomly layered medium (that is ν(z,x) = ν(z)), but still with
D = R2, the waves are allowed to propagate on a larger propagation distance than the one of the
non-central limit theorem exhibiting the phase modulation. Typically, despite considering long-range
correlations, we let the waves propagate over distances leading to diffusion effects under short-range
correlations. At this scale, the random phase modulation oscillates very fast up to produce effective
diffusion phenomena. The backscattering effects become now nonnegligible and the energy is now
affected by the medium fluctuations. In this section as well, the diffusion phenomena and paraxial
approximation are obtained under a single high-frequency limit. These phenomena can be described
through a deterministic fractional paraxial equation, wherein the order of the fractional time derivative
is directly determined by the decay rate of the correlation function of the random fluctuations.

This chapter covers the results obtained in [10,12,17] of the bibliography list on page 6.
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3.1 Random waveguides
Considering D = (0, d), Eq. (3.1) describes scalar wave propagation in a planar waveguide with
propagation axis given by the z-direction (see Fig. 3.1). To simplify the presentation, only Dirichlet
boundary conditions are here considered to complete the system on ∂D. A similar analysis can be
applied to other boundary conditions. The wave equation (3.1) being linear in p, its solution can be
expressed as a superposition of monochromatic waves through the Fourier transform:

p̂(ω,x, z) =
∫
p(t,x, z)eiωtdt and p(t,x, z) = 1

2π

∫
p̂(ω,x, z)e−iωtdω.

The wavefield p̂(ω,x, z) satisfies, in the randomly perturbed section z ∈ (0, Lz), the following Helmholtz
equation (time-harmonic wave equation)

∂2
zz p̂(ω,x, z) + ∂2

xxp̂(ω,x, z) + k2
ω(1 + ε ν(z,x))p̂(ω,x, z) = 0,

where kω = ω/c0 is the wavenumber. Here, the medium fluctuations are assumed to be small, of
order ε ≪ 1 (weak scattering regime). To observe non-trivial cumulative stochastic effects on the
propagating waves a propagation distance of order

Lz ∼ L

εs
≫ 1

is required. The central wavelength is of order one in this problem (λ ∼ 1), that is small compared to
the propagation distance (λ ≪ Lz), to place ourselves in a high-frequency regime. The propagation
scale parameter s represents how long the propagation distance needs to be to observe the onset of
effective random effects on the waves. Assuming

E[ν(z + z′,x)ν(z′,y)] ∼
|z|→∞

R0

|z|γ
R(x,y), (3.2)

describing the long-range correlation property for the medium fluctuations, we need to take

s = 1
H
< 2 with H = 1 − γ

2 ∈ (1/2, 1).

With this choice, L/εs ≪ L/ε2, where the latter corresponds to the standard scaling to observe non-
trivial stochastic effects under fluctuations with short-range correlations. While not being restrictive,
in addition to the boundedness of ν, some technical assumptions need to be set on ν to be compatible
with a moment technique. Basically, ν is a nonlinear function (with Hermite rank 1) of a Gaussian
filed satisfying a relation similar to (3.2). The precise description of these assumptions are omitted
here, and we refer to [99] for the complete assumptions. The requirement on the Hermite rank
could be relaxed to arbitrary rank, as proposed in [154], with an adaptation of the amplitude ε of
the fluctuations. Also, the width of the waveguide d is assumed to be of the order of the central
wavelength λ (of order 1), so that only a discrete number of mode is supported by the waveguide.
The wavefield p̂ can then be expressed as

p̂(ω,x, z) = p̂a(ω,x, z) + p̂e(ω,x, z),

with

p̂a(ω,x, z) :=
N(ω)∑
j=1

âj(ω, z)√
βj(ω)

eiβj(ω)zϕj(x) +
N(ω)∑
j=1

b̂j(ω, z)√
βj(ω)

e−iβj(ω)zϕj(x), (3.3)

and
p̂e(ω,x, z) :=

∑
j≥N(ω)+1

p̂j(ω, z)ϕj(x).

Here, p̂ is expanded according to the spectral decomposition associated to the transverse Laplacian
−∂2

xx equipped with Dirichlet boundary conditions on ∂D. Its spectrum is composed of a countable
number of positive eigenvalues

λj = j2π2

d2 j ≥ 1,
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Fig. 3.2: Illustration of the right-going and left-going propagating mode amplitudes âj(ω, z) and
b̂j(ω, z). The source generates the probing wave â0(ω), the reflected wave is b̂(ω, 0) and the transmitted
wave, which is our interest, is â(ω,L/εs). Note that there is no energy coming from the right-hand-side
of the waveguide z > L/εs.

with eigenvectors

ϕj(x) :=
√

2
d

sin
(jπx
d

)
j ≥ 1,

providing an orthonormal basis of L2(D). The family (βj(ω))j≥1 is defined as

βj(ω) :=
√
k2
ω − λj for j ∈ {1, . . . , N(ω)},

where N(ω) is the integer such that λN(ω) ≤ k2
ω < λN(ω)+1, and represents the number of propagating

modes. For our planar waveguide model, one has

N(ω) =
[ωd
πc

]
,

where [·] stands for the integer part. In (3.3), the terms âj and b̂j represent the amplitudes of the
right- and left-propagating modes respectively, as they corresponds to the oscillatory terms e±iβj(ω)z

w.r.t. the variable of the main propagation axis (see Fig. 3.2 for an illustration). Here, there is
exactly 2N(ω) propagating modes. The terms p̂j in p̂e represent the amplitudes of the evanescent
modes and corresponds to non-oscillatory terms w.r.t. the z-variable. Although the evanescent modes
are negligible after propagating over large propagation distances, their influences can be incorporated
to the mode-coupling mechanism of the propagating modes âj and b̂j following the strategy of [79]:

d

dz

[
â(ω, z)
b̂(ω, z)

]
=
[
εH(ω, z) + ε2G(ω, z)

] [â(ω, z)
b̂(ω, z)

]
, (3.4)

completed with the boundary conditions

âj(ω, 0) = âj,0(ω) and b̂j(ω,L/εs) = 0. (3.5)

The second relation means that no wave is coming from the right-hand side of the random section,
and the âj,0(ω)’s are the propagating mode amplitudes generated by the source term. The coupling
matrices H and G are defined by:

H(ω, z) :=
[

Ha(ω, z) Hb(ω, z)
Hb(ω, z) Ha(ω, z)

]
and G(ω, z) :=

[
Ga(ω, z) Gb(ω, z)
Gb(ω, z) Ga(ω, z)

]
,

with

Ha
jl(z) := ik2

ω

2 Cjl(z)ei(βl−βj)z, Hb
jl(z) := − ik2

ω

2 Cjl(z)ei(βl+βj)z

Ga
jl(z) := ik4

ω

4
∑

l′≥N+1

∫ ∞

−∞
Cjl′(z)Cl′l(z + u)eiβl(z+u)−iβjz−βl′ |u|du,

Gb
jl(z) := − ik4

ω

4
∑

l′≥N+1

∫ ∞

−∞
Cjl′(z)Cl′l(z + u)eiβl(z+u)+iβjz−βl′ |u|du,
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and where the coupling coefficient Cjl(z) are defined by

Cjl(z) := 1√
βjβl

∫
D
ν(z,x)ϕj(x)ϕl(x)dx.

The matrix H describes the coupling between the propagating modes (Ha describes the coupling
between the forward-going modes and backward-going modes themselves, while Hb describes the cou-
pling between the forward- and backward-going modes). These coupling coefficients involve directly
the medium fluctuations ν. Without these fluctuations, there is no mode coupling and the solution
to (3.4) is straightforward.

To account for the cumulative stochastic effects over the large propagation distance L/εs, the
propagating mode amplitudes are rescaled as

âε(ω, z) = â(ω, z/εs) and b̂ε(ω, z) = b̂(ω, z/εs).

The corresponding two-point boundary value problem (3.4) is not convenient to analyze directly. It
is more convenient to recast this problem into a initial value problem by mean of a propagator matrix
defined as the solution to

d

dz
Pε(ω, z) =

[ 1
εs−1 H

(
ω,

z

εs

)
+ ε2−sG

(
ω,

z

εs

)]
Pε(ω, z), with Pε(ω, 0) = Id2N(ω),

so that for all z ∈ [0, L],[
âε(ω, z)
b̂ε(ω, z)

]
= Pε(ω, z)

[
âε(ω, 0)
b̂ε(ω, 0)

]
and

[
âε(ω,L)

0

]
= Pε(ω,L)

[
â0(ω, 0)
b̂ε(ω, 0)

]
,

according to (3.5). Due to the form of H(ω, z) and G(ω, z), the propagator can be expressed as

Pε(ω, z) =
[
Pa,ε(ω, z) Pb,ε(ω, z)
Pb,ε(ω, z) Pa,ε(ω, z)

]
,

where Pa,ε describes the coupling mechanisms between the right-going modes (resp. left-going modes)
with themselves, while Pb,ε describes the coupling mechanisms between the right-going and left-going
modes.

Due to the form of the propagator Pε, one can restrict the asymptotic analysis to the one of the
two blocks:

Pε(ω, z) =
[
Pa,ε(ω, z)
Pb,ε(ω, z)

]
∈ MN(ω)(C) × MN(ω)(C),

where MN(ω)(C) stands for the set ofN(ω)×N(ω) matrices with complex coefficients. The asymptotic
behavior of the propagator Pε can be described as follows.

Theorem 3.1.1 For all z ∈ [0, L], the family (Pε(ω, z))ε converges in law in MN (C) × MN (C) to[
D(ω, z)

0

]
,

with
D(ω, z) = diag(eiσ1,H(ω)WH(z), . . . , eiσN,H(ω)WH(z)),

where WH is a standard fractional Brownian motion with Hurst index H,

σj,H(ω) = k2
ω

2βj(ω)

√
Rj

H(2H − 1) , (3.6)

and
Rj =

∫∫
D×D

R(x,x′)ϕ2
j (x)ϕ2

j (x′)dxdx′.
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The proof of Thm. 3.1.1 is based on a moment technique following the ideas of [15, 66]. Let us
clarify the meaning of this result. First, Thm. 3.1.1 implies that the first significant stochastic effects
affecting the wave propagation take place for s = 1/H < 2, which is in contrast with the classical
results under short-range correlations with s = 2 (see [70, Chap. 20]). The second one concerns the
convergence of Pb,ε(ω, z) to the null matrix in probability, meaning that the coupling mechanisms
between the right- and left-going modes are negligible in the high-frequency limit ε → 0. In other
words, the backscattering is negligible for ε small, and the backscattered amplitudes b̂εj(ω, z) (and
then the backscattered wavefield) tend to 0. Third, the convergence in distribution of Pa,ε(ω, z)
to a diagonal matrix means that the coupling mechanisms between two different right-going modes
are also negligible in the limit ε → 0. Finally, the propagating modes are only affected by mode-
and frequency-dependent phase modulations, but driven by the same fractional Brownian motion,
which does not depend on the frequency ω. This effect of mode-dependent phase modulations driven
by a single fractional Brownian motion has already been observed in [15, Thm 1.2] for the random
Schrödinger equation with long-range correlations and stated in Thm 2.2.1 of Chap. 2.

A version of Thm. 3.1.1 involving multiple frequencies can be derived following the same strategy,
and allows to describe the role of these stochastic effects in the time domain. Considering now a
narrowband source term,

fε(t,x) = f(εst)e−iω0tΨ(x),

with carrier frequency ω0 (of order 1) and bandwidth of order εs, we have the following result.

Theorem 3.1.2 For all j ∈ {1, . . . , N(ω0)}, let us consider the projection

pεj,pr(t, L) = e−iβj(ω0)(L/εs−LS)eiω0t/ε
s〈
ppr

( t
εs
, ·, L
εs

)
, ϕj
〉
L2(D).

The family (pε1,pr(·, L), . . . , pεN(ω0),pr(·, L))ε converges in law in C([−T, T ],CN(ω0)), as ε → 0, to
(p0
j,pr(·, L))j∈{1,...,N(ω0)}, where

p0
j,pr(t, L) = 1

2e
iσj,H(ω0)WH(L)f(t− β′

j(ω0)L)
〈
ϕj ,Ψ

〉
L2(D).

Here, WH is a standard fractional Brownian motion with Hurst index H ∈ (1/2, 1), and σj,H(ω0) is
defined by (3.6).

In this result the wavefield is projected over the propagating modes. The reason is that the pulsewidth
of the source and the propagation distance are of the same order (∼ 1/εs), so that the propagating
modes overlap, there is no modal dispersion in this situation. By projecting over the propagating
modes, we can compensate the rapid phases eiβj(ω)L/εs and e−iω0t/ε

s (inherent of a high-frequency
problem) mode by mode and pass to the limit in ε. Roughly speaking, the transmitted wave can be
formally described as

ptr

( t
εs
,x, L

εs

)
≃
ε→0

e−iω0t/ε
s

2

N(ω0)∑
j=1

eiσj,H(ω0)WH(L)f(t− β′
j(ω0)L)eiβj(ω0)(L/εs−LS)ϕj(x)

〈
ϕj ,Ψ

〉
L2(D).

This transmitted wave is therefore a superposition of modes, each of them is centered around its
arrival time

tj = β′
j(ω0)L,

β′
j(ω) being the derivative of βj(ω) w.r.t. ω, but also modulated by a mode-dependent and frequency-

dependent random phase. Once again the randomness comes from the same fractional Brownian
motion for all the propagating modes.

3.2 Paraxial approximation and fractional Itô-Schrödinger equa-
tion

In this section, a full ambient physical space is considered, and two particular asymptotic behaviors
are described: the paraxial approximation and the fractional white-noise limit. In contrast with
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Chap. 2, where we initially examine the paraxial approximation formally and then proceed with the
analysis of the stochastic aspects separately, both of the limits are here obtained under the same limit.
Considering both of these aspects under a single limit is much more challenging mathematically than
considering two distinct limits.

The first aspect is the paraxial (parabolic) approximation, which is valid when the wave predom-
inantly propagates in a specific direction (here the z-direction) and is sufficiently collimated around
it. In the frequency domain, the 3D Helmholtz equation is reduced to 2D Schrödinger equation where
the variable along the primary propagation axis takes the role of the evolution variable. This approx-
imation offers a considerable advantage as it transforms a boundary value problem into an evolution
problem with lower spatial dimensions. In homogeneous media, deriving the paraxial wave equation
is relatively straightforward and involves an asymptotic expansion of the principal symbol of the op-
erator describing the propagation (here the one of the scalar wave equation). However, the situation
becomes significantly more complex in heterogeneous media since the interaction with the medium
generates some backscattering and a coupling with the evanescent modes. To justify the paraxial
approximation under such conditions, one must rely on specific features of the medium, for instance
small amplitudes of the fluctuations [24], or oscillatory behaviors [10, 83]. The second limit corre-
sponds to a non-central limit type result arising from the long-range dependencies of the propagation
medium. In case of short-range correlations, the random medium fluctuations are then asymptoti-
cally statistically equivalent to a white-noise w.r.t. the main propagation axis. The resulting limiting
model corresponds to an Itô-Schrödinger equation, as derived in [83], and studied mathematically in
detail in [58].

This section depicts the rigorous simultaneous derivation of the paraxial and the (fractional)
white-noise approximations in the context of random media with long-range correlations w.r.t. the
z-direction. Heuristically, the limiting classical white noise obtained in [83] is replaced by a fractional
white noise, leading to a fractional Itô-Schrödinger equation. From the mathematical viewpoint, this
is a significantly more difficult problem than the ones addressed in [10, 83]. As already discussed
earlier in this manuscript, the martingale techniques used in [10, 83] and standard approximation-
diffusion theorems do not apply, and we make use of moment techniques inspired from [15,66] which
are fairly involved analytically. The proof also involves a fine analysis of the backscattering and the
coupling between the propagating and evanescent modes. Note as well that the existence theory for
the fractional Itô-Schrödinger equation is not trivial, and leads to some additional difficulties in the
asymptotic theory.

3.2.1 Paraxial scaling regime
To introduce an appropriate parameter scaling regime under which the paraxial approximation is
valid, some assumptions are required on the source term and the random medium fluctuations. Going
back to the wave equation (3.1), under a dimensionless setting, the source term is assumed to be of
the form

F (t, z,x) := f
( t
λ
,

x
r0

)
δ(z − LS)ez,

modeling a source located in the plane z = LS < 0, and emitting a pulse in the z-direction with profile
f (see Fig. 3.1), central wavelength λ, and transverse width r0. The wave-speed profile is assumed to
be of the form:

1
c2(z,x) :=


1
c2

0

(
1 + σν

( z
lc
,

x
lc

))
if z ∈ [0, L],

1
c2

0
if z ∈ (−∞, 0) ∪ (L,∞),

for x ∈ R2, and where c0 stands for the background (constant) velocity. The correlation length of
the fluctuations lc can be seen as their typical scale of variation, and σ characterizes the order of
magnitude of these fluctuations. To introduce a high-frequency regime, the central wavelength λ is
assumed to be small compared to the propagation distance Lz:

ε2 := λ

Lz
≪ 1.
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Strong interactions between the wave and the medium fluctuations are obtained by assuming

r0 ∼ lc, and λ

lc
∼ ε.

We also assume
r2

0
λ

∼ Lz,

so that the Rayleigh length is of order the propagation distance, which is crucial to derive the paraxial
approximation. In fact, the Rayleigh length is defined as the distance from the beam waist to the
place where its cross-section is doubled, and in homogeneous media it is of order r2

0/λ. For simplicity
in the presentation, we set

Lz = L ∼ 1, λ = ε2, lc = ε, and r0 = ε. (3.7)

Both the paraxial approximation and the non-central limit type result (fractional white-noise approx-
imation) are obtained by sending ε to 0.

Finally, the strength of the fluctuations is assumed to be small (weak scattering regime)

σ = εs, with s = 2 − γ

2 . (3.8)

Note that this approach is equivalent to the ones introduced in the previous section and Chap. 2
where the parameter s was related to the propagation distance [15]. The parameter γ ∈ (0, 1) still
describes the decay rate of the correlation function

E[ν(z + z′,x)ν(z′,y)] ∼
|z|→∞

R0

|z|γ
R(x − y).

As for the previous section, while not being restrictive, similar technical assumptions need to be set
on ν to be compatible with a moment technique. The precise assumptions are omitted here, and we
refer to [95] for their complete descriptions.

3.2.2 Main result and properties
Under the scaling (3.7) and (3.8), the original wave problem (3.1) becomes

∆pε − 1
c2

0

(
1 + εsV

(z
ε
,

x
ε

)
1(0,L)(z)

)
∂2
ttpε = f

( t
ε2 ,

x
ε

)
δ′(z − LS).

The main result of this section concerns the asymptotic description of the pulse front exiting from
the random section at z = L. It is defined by

pεL(t,x) = p
(
λt+ L− LS

c0
, L, r0x

)
= p
(
ε2t+ L− LS

c0
, L, εx

)
,

and it corresponds to the wave observed on a time window of order the pulse width centered around
the expected arrival time, and at the transverse scale of the source profile.
Theorem 3.2.1 The family (pεL)ε converges in law in the space C0((−∞,+∞), L2(R2))∩L2((−∞,+∞)×
R2), as ε → 0, to a limit given by

p0
L(t,x) = 1

2π

∫
e−iωtΨω(L,x)dω,

where Ψω is the unique pathwise solution to the fractional Itô-Schrödinger equation

dΨω(z,x) = i

2kω
∆xΨω(z,x) + ikωΨω(z,x)dWH(z,x) = 0. (3.9)

Here, kω = ω/c0, WH is a random mixture of fractional Brownian fields with Hurst index H and
covariance operator given by

E[WH(z1,x)WH(z2,y)] = R0(x − y)
2H(2H − 1)

(
z2H

1 + z2H
2 − |z1 − z2|2H

)
,

for all z1, z2 ∈ [0,+∞) and x,y ∈ R2.

44



The notion of solution for this fractional Itô-Schrödinger equation is made precise in the next section.
As for the waveguide, due to a negligible backscattering the energy carried by the pulse is conserved
at the end of the random section, that is

∥p0
L∥L2((−∞,+∞)×R2) = 1

2∥f∥L2((−∞,+∞)×R2).

Moreover, all the moments

E
[〈 M1∏

j1=1
Ψω1,j1

(z)
M2∏
j2=1

Ψω2,j2
(z), φ

〉
L2(R2(M1+M2))

]
,

for all (M1,M2) ∈ N2, distinct frequencies (ωi,ji
)(i,ji)∈{1,2}×{1,...,Mi}, and test function φ ∈ L2(R2(M1+M2)),

can be explicitly computed through classical Born series (see [120, Sect. 17.2]). These moments are
important in imaging applications where they help to quantify the stability of reconstructions with
respect to changes in the random medium [19,20,39,86].

3.2.3 Stochastic integral and fractional Itô-Schrödinger equation
The stochastic integral w.r.t. a fractional noise WH in the limiting fractional Itô-Schrödinger equation
(3.9) is of pathwise type. It is defined here according to the work of Zähle [211] and the approach
of [156,168]. To defined this integral we introduce the Banach space

Wα(0, L,B) :=
{
ψ ∈ C0([0, L], B) such that ∥ψ∥α,B < +∞

}
,

with
∥ϕ∥α,B := sup

z∈[0,L]

[
∥ϕ(z)∥B +

∫ z

0

∥ϕ(z) − ϕ(u)∥B
(z − u)α+1 du

]
,

and where B is a given Banach space. For β ∈ (0, 1), we denote by Cβ([0, L], B) the Banach space of
β-Hölder functions on [0, L] with values in B, and equipped with

∥ϕ∥β,C,B := sup
z∈[0,L]

∥ϕ(z)∥B + sup
0≤v<u≤L

∥ϕ(u) − ϕ(v)∥B
(u− v)β .

Note that for α ∈ (0, 1/2), we have

∥ϕ∥α,B ≤
(

1 + L1−2α

1 − 2α

)
∥ϕ∥1−α,C,B so that C1−α([0, L], B) ⊂ Wα(0, L,B). (3.10)

Now, for α ∈ (0, 1) and z ∈ (0, L), we introduce, for a real-valued function f , the so-called Weyl’s
derivative:

Dα
0+ϕ(z) := 1

Γ(1 − α)

[ϕ(z)
zα

+ α

∫ z

0

ϕ(z) − ϕ(u)
(z − u)α+1 du

]
,

Dα
L−ϕ(z) := (−1)α

Γ(1 − α)

[ ϕ(z)
(L− z)α + α

∫ L

z

ϕ(z) − ϕ(u)
(u− z)α+1 du

]
,

whenever these quantities are well-defined, and where Γ is the standard Gamma function. Following
the idea of [211], the generalized Stieljes integral of a function ϕ ∈ Cν([0, L],R) with respect to
ψ ∈ Cµ([0, L],R), with ν + µ > 1, ν > α, and µ > 1 − α is defined by∫ L

0
ϕdψ := (−1)α

∫ L

0
Dα

0+ϕ(u)D1−α
L− ψL−(u)du, (3.11)

where
ψL−(u) := ψ(u) − ψ(L−).

This definition does not depend on α, and we have∫ z

0
ϕdψ =

∫ L

0
ϕ1(0,z)dψ.
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Moreover, according to [168], this integral can be extended to more general classes of function thanks
to the inequality ∣∣∣ ∫ L

0
ϕdψ

∣∣∣ ≤ ∥ϕ∥α,1Λα(ψ),

where
∥ϕ∥α,1 :=

∫ L

0

( |ϕ(u)|
uα

+
∫ u

0

|ϕ(u) − ϕ(v)|
(u− v)α+1 dv

)
du,

and
Λα(ψ) := 1

Γ(1 − α)Γ(α) sup
0<u<z<L

|D1−α
z− ψz−(u)|.

Consequently, this integral is well-defined as soon as ϕ ∈ Wα(0, L,R) and Λα(ψ) < ∞.
As a result, for a random function F ∈ Wα(0, L, L2(R2)), the stochastic integral with respect to

the fractional field WH, ∫ z

0
F (u,x)dWH(u,x),

is defined by (3.11) almost everywhere in x and P-almost surely. In fact, for all α ∈ (1 − H, 1/2) and
z ∈ [0, L], we have∥∥∥ ∫ z

0
F (u)dWH(u)

∥∥∥
L2(R2)

≤ C∥F∥Wα(0,L,L2(R2)) sup
x∈R2

Λα(WH(x)),

knowing that
E
[

sup
x∈R2

Λα(WH(x))
]
< ∞.

The fractional Itô-Schrödinger equation. The definition of a solution for the fractional Itô-
Schrödinger equation (3.9) is made precise in the definition below, but first let us introduce some
additional notations. Let k ∈ N∗, and Hk(R2) be the k-th Sobolev space on R2. Consider also
Wα
k (0, L) := Wα(0, L,Hk(R2)), equipped with the norm ∥ · ∥α,Hk(R2), and the complete metric space

Wα
∞(0, L) :=

⋂
k∈N∗

Wα
k (0, L),

equipped with
dα,∞(ϕ, ψ) :=

∑
k≥1

1
2k
(
1 ∧ ∥ϕ− ψ∥α,Hk(R2)

)
.

Definition 3.2.1 Let H ∈ (1/2, 1) and α ∈ (1 − H, 1/2). We say that Ψω ∈ Wα
∞(0, L) is a pathwise

solution of (3.9) if, with probability one, for all (z,x) ∈ [0, L] × R2, we have

Ψω(z,x) = Ψω(0,x) + i

2kω

∫ z

0
∆xΨω(u,x)du+ ikω

∫ z

0
Ψω(u,x)dWH(u,x).

In other words, a solution to (3.9) is a pointwise solution of this equation for almost all realizations.
It is worth mentioning that a solution to (3.9) has automatically Hölder regularity

Ψω ∈ CH−θ
∞ (0, L) :=

⋂
k∈N∗

CH−θ([0, L], Hk(R2)) with θ = H + α− 1.

Here, CH−θ
∞ (0, L) is a complete metric space equipped with

dH−θ,C,∞(ϕ, ψ) :=
∑
k≥1

1
2k
(
1 ∧ ∥ϕ− ψ∥H−θ,C,Hk(R2)

)
,

so that CH−θ
∞ (0, L) ⊂ Wα

∞(0, L) according to (3.10). In the proof of Thm. 3.2.1, Ψω(z = 0) is assumed
to belong to all the Hk(R2)’s in order to apply a fixed point type argument. This is the reason why
intersections with all the Hk(R2)’s are involved in Def. 3.2.1.

Finally, note that the stochastic integral is here the fractional equivalent to the Itô-Stratonovich
integral for a standard Brownian motion, and as such satisfies the classical integration by parts
formula. This formally yields the conservation relation: for all z ∈ [0, L],

∥Ψω(z)∥L2(R2) = ∥Ψω(0)∥L2(R2).
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3.3 Effective fractional paraxial wave equation
In various contexts such as geophysics, laser beam propagation through the atmosphere, or medical
imaging for instance, frequency-dependent attenuations have been observed at rates proportional to

|ω|λ λ ∈ (0, 2), (3.12)

for a given angular frequency ω [62,77,90,101,116,130,166,190]. Depending on the field of application,
this type of power-law attenuation can be referred to as anomalous diffusion, nonexponential relax-
ation, inelastic damping, hysteric damping, singular hereditary, or singular memory media [49]. The
development of accurate wave propagation models exhibiting power-law attenuations is therefore of
great importance for applications in imaging and inverse problems (see [162] for a survey focusing on
medical applications and references therein). To capture such power-law decays, several models have
been proposed involving fractional derivatives (see [46,89,110,116,162,177,198,199] for instance). A
particular attention has been paid to space-time models as they enable numerical simulations of a
wide range of boundary value problems [109] and can be more straightforward to implement and less
costly [210] compared to frequency-domain models.

An alternative approach, which has gained more attention recently, involves randomly perturbed
propagation media with fractal correlation structures or long-range dependencies (see [84, 85, 191]
and [116, Chap. 9]). This section aims at describing a mathematical derivation, from first principles of
physics, of a paraxial wave equation exhibiting a power-law attenuation (3.12) with exponent λ ∈ (1, 2],
in the context of random propagation media with long-range correlations. Both aspects, paraxial
approximation and random medium fluctuations with long-range correlations, are again considered
under the same limit. The case of mixing random fluctuations is also discussed for comparison. The
two previous sections, based on non-central limit type results and corresponding to [153, 154] for 1D
propagation media, do not provide any power-law attenuation in frequency. To obtain such a property,
we rather consider a central limit theorem scaling within the context of long-range correlations, which
presents mathematical challenges. This approach has been explored for 1D propagation media [84,85],
but the method used to exhibit a power-law attenuation of the form (3.12) does not seem to apply
in a 3D setting. For technical reasons similar to those of Chap. 1, the random fluctuations of
the propagation medium are here driven by (1.6). Despite this restrictive assumption, compared
to [84,85], the approach we propose can also be applied to more general 3D settings with non-layered
fluctuations, at the cost of additional technical difficulties. Nevertheless, more general fluctuation
models with long-range correlations should not change the overall results as the asymptotic equation
and scattering coefficients depend only on the correlation function of the fluctuation model, and not
its precise definition.

As already pointed out, the scaling associated to the central limit theorem can be seen as prop-
agating the non-central limit scaling over longer propagation distances. This latter scaling, which
already leads to an effective phase modulation driven by a fractional Brownian motion, results in
waves undergoing very fast oscillations over extended propagation distances, and then have to be
treated appropriately to still exhibit effective nontrivial effects. In Chap. 1, we look at the energy of
the Hamiltonian system (1.13) to exhibit the diffusion effects. For the random Schrödinger equation
the Wigner transform is used to study the energy density propagation by analyzing the correlations of
the wave function. The quadratic nature of the Wigner transform w.r.t. the wave function naturally
cancels out some rapid phases, and provides an effective description of the energy propagation [92,93].
For classical wave propagation problems, a similar approach consists in looking at the wave-front along
a proper random characteristic time-frame. The rapid phases still produce some effects by averaging
the stochasticity to obtain a deterministic spreading for the wave-front [84,85].

3.3.1 The random fluctuations
As for Sect. 3.1 and 3.2, the scalar wave model (3.1) is considered, but here with D = R2. The main
difference w.r.t. the two previous sections lies in the wave-speed profile, which has here the form

1
c2(z) := 1

c2
0

(
1 + ν

( z
lc

)
1(0,L)(z)

)
, (3.13)
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representing a randomly layered propagation medium. For this section, the random fluctuations are
assumed to be of the form

ν(z) := Θ(σV (z)).

Here, Θ is an odd smooth bounded function with

θ′
0 := Θ′(0) ̸= 0 and sup |Θ| < 1,

and V is the mean-zero stationary Gaussian random process given by (1.6) satisfying

E[V (z + z′)V (z′)] ∼
|z|→+∞

R0

|z|γ
. (3.14)

The function Θ plays no significant role here. Gaussian random processes being not bounded, this
function just guarantees, for a modelization purpose, that c2(z) is actually always positive (see (3.13)).
For σ small enough, the Taylor expansion

Θ(σV (z)) = σV (z)θ′
0 + O(σ3)

(Θ′′(0) = 0 since Θ is odd) indicates that the medium fluctuations are driven by V .
As in Sect. 1.3.2 of Chap. 1, for the sake of mathematical tractability, a specific form for V is

considered. More general fluctuation models have been considered in [153, 154], but the proposed
method, based on the rough-path theory, does not seem to apply in the scaling regime described in
the next section.

3.3.2 Scaling regime
The scaling regime considered in this section corresponds to the one proposed in [84], and is slightly
different from the one of Sect. 3.1 and 3.2. The high-frequency regime is here described by

ε2 := λ

L
≪ 1,

and both the correlation length and the central wavelength are of the same order

lc ∼ λ,

providing a full interaction between the random fluctuations and the propagating waves. For the
paraxial approximation to be valid, we assume that the Rayleigh length is of order the propagation
distance,

r2
0
λ

∼ L.

Finally, the strength of the fluctuations is assumed to be small to place ourselves in a weak scattering
regime,

σ ≪ 1.

To fix the ideas, we set

L ∼ 1, λ = lc = ε2, and r0 = σ = ε,

where the choice of σ = ε corresponds to the scaling of the central-limit theorem. This choice allows
us to derive a nontrivial limit for both short-range and long-range correlations.

Under this scaling the wave equation (3.1) reads now

∆pε − 1
c2
ε(z)

∂2
ttpε = f

( t
ε2 ,

x
ε

)
δ(z) (t,x, z) ∈ R × R2 × R,

with
1

c2
ε(z)

= 1
c2

0

(
1 + νε

( z
ε2

)
1(0,L)(z)

)
, and νε(z) := Θ

(
εV (z)

)
.
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3.3.3 Main results
The main result of this section is obtained following the strategy of [84,85]. We introduce the random
travel time

Tε(L) := L

c0
+ 1

2c0

∫ L

0
νε(z/ε2)dz,

which corresponds to the expected travel time L/c0 with a random correction, and the wave-front

pLtr,ε(s,y) := pε
(
Tε(L) + ε2 s, εy, L

)
(s,y) ∈ R × R2. (3.15)

This wave-front corresponds to the wave observed at the end of the random section (z = L), on a
time window corresponding to the pulse width ε2, and centered at the random travel time Tε(L).

Before stating the main result, we introduce some notations. First, the Fourier convention consid-
ered in this section is the following:

f̂(ω, κ) :=
∫∫

f(s,y)eiω(s−κ·y)ds dy,

and
f(s,y) := 1

(2π)3

∫∫
f̂(ω, κ)e−iω(s−κ·y)ω2dω dκ,

which is convenient to study space-time problems. Second, we introduce

S0(R × R2) =
{
ψ ∈ S(R × R2) :

∫
ψ(s,y)ds = 0, ∀y ∈ R2

}
,

where S(R × R2) stands for the Schwartz class, and S ′
0,s,y(R × R2) the set of tempered distributions

restricted to S0(R×R2) w.r.t. the variables s and y. This restriction to S0(R×R2) is required for the
paraxial wave equation (3.18) to be well-posed. One can remark that the source term f belongs to
S0(R × R2) as soon as its Fourier transform does not support the frequency ω = 0. Below, C0

z (reps.
C1
z ) stands for the set of C0-functions (resp. C1-functions) w.r.t. the z-variable.

Theorem 3.3.1 The family (pLtr,ε)ε converges in probability in C(R × R2), as ε → 0, to

pLtr(s,y) = 1
2K(·, ·, L) ∗ f(s,y) (s,y) ∈ R × R2, (3.16)

where, in the Fourier domain,

K̂(ω, κ, z) := e−θ′2
0 ω

2(Γc(ω)+iΓs(ω))z/(8c2
0)e−iωc0|κ|2z/2, (3.17)

with
Γc(ω) := 2

∫ ∞

0
R(s) cos

(2ωs
c0

)
ds and Γs(ω) := 2

∫ ∞

0
R(s) sin

(2ωs
c0

)
ds.

Here, R is the correlation function of the medium fluctuations (1.7). The convolution kernel K is the
unique solution in C0

z ([0,∞),S ′
0,s,y(R×R2)) ∩ C1

z ((0,∞),S ′
0,s,y(R×R2)) of the paraxial wave equation

∂2
szK − c0

2 ∆yK − I(K) = 0, (3.18)

with K(s,y, z = 0) = δ(s)δ(y), and

I(ϕ)(s) := θ′2
0

8c2
0

∫ s

−∞
R
(c0(s− τ)

2

)
∂3
sssϕ(τ)dτ s ∈ R. (3.19)

The asymptotic transmitted wave-front pLtr, at the end of the random section (z = L), can be written
in term of a convolution where K represents the pulse deformation. From the explicit formulation of
K in the Fourier domain, the pulse shape is affected in a way which is consistent with the standard
ODA theory [70, Chap. 8], even if we are not considering fluctuations with short-range correlations.
Typically, according to this theory, the transmitted pulse exhibits a deterministic spreading charac-
terized by a frequency-dependent attenuation and phase modulation. Here, these effects are given
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Fig. 3.3: Illustrations of the profile pLtr(s, y1, y2 = 0) in the homogeneous case (blue lines) and for
two values of β (β = 1/2 for the orange curves and β = 1/6 for the green curves). We take α = 1/4,
µ = 2, a(p) = 1(−10,10)(p), L = 5, c0 = θ′

0 = 1 and a source profile given by f̂(ω, κ) = 2ω2e−ω2(1+κ2)

centered at s = 0 in the time domain for simplicity.

through ω2Γc(ω) (which is positive thanks to the Bochner theorem) and ω2Γs(ω) respectively. These
two terms are well defined even for slowly decaying correlations due to the oscillatory functions. We
refer to Fig. 3.3 for illustrations regarding the influence of the kernel K on the pulse spreading.

The standard ODA theory also provides a random time-shift driven by a standard Brownian
motion, meaning that the transmitted pulse exhibits a random arrival time at z = L of order the pulse
width. In the context of long-range correlations the situation is more delicate. The aforementioned
random time-shift is already compensated in Thm. 3.3.1 by considering the random travel time Tε(L)
in (3.15). Due to the asymptotic behavior of Tε(L), which is described in the following result, this
time-shift allows to remove pathological behaviors when studying the asymptotic of the transmitted
wave front.

Proposition 3.3.1 Let us defined

Wε(L) := 1
σε

(
Tε(L) − L

c0

)
,

where

σε :=


ε1+γ if γ ∈ (0, 1),

ε2| ln(ε)|1/2 if γ = 1,

ε2 if γ > 1.
The family (Wε(L))ε converges in law to a limit W0(L), as ε → 0, where:

• for γ ∈ (0, 1), W0 is a fractional Brownian motion with Hurst index

H = 1 − γ

2 ∈ (1/2, 1),

and
E[W0(L)2] = L2H θ′2

0 R0

H(2H − 1) ;
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• for γ ≥ 1, W0 is a Brownian motion such that

E[W0(L)2] = Lθ′2
0 Γ0, with Γ0 :=


2a(0)
µβ

if γ = 1,

Γc(0) if γ > 1.

For rapidly decaying correlations (γ > 1), Tε(L) can be approximated by a Gaussian variable with
mean L/c0 and a standard deviation of order the pulse width, which is consistent with the standard
ODA theory. In the case of long-range correlations, Tε(L) can also be approximated by a Gaussian
variable but with a standard deviation very large w.r.t. the pulse width. This is the reason why
we compensate this term in (3.15), as it leads to blowing up terms in the derivation of the pulse
spreading.

Regarding the backscattered signal at z = 0, it can be shown that

pbk,ε(s,y) := pε
(
ε2s, εy, 0

)
converges in probability to 0, in C(R × R2), as ε → 0. This is consistent with [70, Chap. 9], in which
the authors show that the backscatter wave is made of a small amplitude incoherent signal that can
be described through a random field.

In case of long-range correlations, the operator I can be approximated by a Weyl fractional
derivative whose order depends directly on the decay rate γ of the correlation function R at infinity.
The Weyl fractional derivative is given for γ ∈ (0, 1) by

Dγϕ(s) := γ

Γ(1 − γ)

∫ s

−∞

ϕ(s) − ϕ(τ)
(s− τ)1+γ dτ s ∈ R,

whenever this quantity is well-defined, and Γ stands for the Gamma function. For instance, ϕ can be
a bounded γ′-Hölder function with γ < γ′. However, for C1-functions with fast enough decay at −∞,
the Weyl derivative can be rewritten as

Dγϕ(s) = 1
Γ(1 − γ)

∫ s

−∞

ϕ′(τ)
(s− τ)γ dτ.

To define higher order derivatives, one can just set

Dj+γϕ(s) := Dγϕ(j)(s) = 1
Γ(1 − γ)

∫ s

−∞

ϕ(j+1)(τ)
(s− τ)γ dτ j ∈ N,

assuming ϕ smooth enough, with enough decay at −∞ of its derivatives ϕ(j). These latter requirements
hold true for the kernel K as soon as z > 0 thanks to the damping term ω2Γc(ω) in (3.17). Therefore,
(3.14) and (3.19) suggests that the integro-differential operator I in (3.18) can be approximated as
follows,

I(K) ∝ D2+γ
s K.

Below, we emphasis that the fractional derivative D2+γ acts on the s-variable with the notation D2+γ
s .

This observation can be derived by considering the scaled correlation function

σ(l0)R(z/l0),

where l0 will be sent to 0, and

σ(l0) :=



1
lγ0

if γ ∈ (0, 1),

1
l0| ln(l0)| if γ = 1,

1
l0

if γ > 1.

In other words, the correlation length l0 is assumed to be small compared to the pulse duration, and
we can defined the transmitted wave-front pLtr,l0 from (3.16) accordingly.
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Theorem 3.3.2 The family (pLtr,l0)l0 converges in C(R × R2), as l0 → 0, to

pLtr,0(s,y) := 1
2K0(·, ·, L) ∗ Ψ(s,y) (s,y) ∈ R × R2.

Here, K0 is defined in the Fourier domain by

K̂0(ω, κ, z) :=


e−θ′2

0 ω
2Γ0z/(8c2

0)e−iωc0|κ|2z/2 if γ ≥ 1,

e−θ′2
0 R0|ω|1+γ (Γc,0(ω)+iΓs,0(ω))z/(8c2

0)e−iωc0|κ|2z/2 if γ ∈ (0, 1),

(3.20)

with

Γc,0(ω) = Γ(1 − γ) cos
( (1 − γ)π

2

)( 2
c0

)γ−1
,

Γs,0(ω) = Γ(1 − γ) sin
( (1 − γ)π

2

)( 2
c0

)γ−1
sign(ω),

and

Γ0 :=


2a(0)
µβ

if γ = 1,

Γc(0) if γ > 1.

Moreover, K0 is the unique solution in C0
z ([0,∞),S ′

0,s,y(R × R2)) ∩ C1
z ((0,∞),S ′

0,s,y(R × R2)) of the
paraxial wave equation

∂2
szK0 − c0

2 ∆yK0 − I0(K0) = 0,

with K0(s,y, z = 0) = δ(s)δ(y), and

I0(ϕ) :=



θ′2
0 R0

8c2
0
∂3
sssϕ if γ ≥ 1,

θ′2
0 R0Γ(1 − γ)

23−γc1+γ
0

D2+γ
s ϕ if γ ∈ (0, 1).

The difference between the case γ ≥ 1 and γ ∈ (0, 1) can easily be highlighted from this result.
In the former case, I0 is a classical third order differential operator, while for γ ∈ (0, 1), it is a
fractional derivative of order 2 + γ ∈ (2, 3). Moreover, even if the case γ = 1 corresponds to slowly
decaying correlations, the kernel K0 behaves as for short-range correlations γ > 1. The case γ = 1
plays somehow the role of a continuity point w.r.t. the order of derivation in I0. For long-range
correlations, one can observe in (3.20) the frequency-dependent attenuation given by the power law

|ω|1+γ γ ∈ (0, 1],

with exponent depending directly on the decay rate of the correlation function of the medium fluctu-
ations (3.14).

3.4 Perspectives
Wave propagation in randomly perturbed media with long-range correlations exhibits interesting
multiscale phenomena that differs from the standard ODA theory. While being mathematically chal-
lenging, the main perspective in this direction concerns the derivation of effective diffusion effects
with random fluctuations involving the lateral variable. Although the context of a waveguide does
not bring much more difficulty compared to the last section of this chapter, extending this type of
result in the context of Sect. 3.2 appears to be a challenging problem. A second aspect that needs to
be investigated, as in Chap. 1 and 2, concerns the restriction over the noise model. For instance, in

52



the context of Sect. 3.3, we are not able to capture power-law attenuations with exponent between 0
and 1. Such a case can be captured under short-range correlations with the additional anti-persistence
assumption [84], ∫ ∞

−∞
R(z)dz = 0,

but our noise model (1.6) is not compatible with this assumption.
A deeper analysis of the fractional Itô-Schrödinger equation could be of interest for practical uses.

In fact, due to the nature of the stochastic integral, it is not straightforward to provide a simple
formulation for basic quantities such as the coherent wave (the expectation of the solution of the
fractional Itô-Schrödinger equation). Even if our approach provides an explicit expression for all
the order moments, the resulting formulas are quite complex. This is in contrast with the standard
Itô-Schrödinger equation involving a classical Itô-Stratonovich integral, and the resulting martingale
property, for which the coherent wave can easily be evaluated. As a perspective, our fractional Itô-
Schrödinger equation could be investigated under the so-called scintillation or spot dancing regimes
[58,86]. These asymptotics could lead to simplified expression of the resulting moments and quantities
of interest.
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Chapter 4
Radiative transfer with nonintegrable
singular scattering kernels

Radiative transfer models have been used for more than a century to describe wave energy propagation
through complex/random media [48, 124], as well as neutron transport [142, 143, 192], heat transfer
[207], and are still active research subjects in astrophysics, geophysics, and optical tomography for
instance [150,167,175,176].

This chapter discusses interesting effects and numerical difficulties for radiative transfer models
involving a singular scattering kernel:{

∂tu+ k̂ · ∇xu = Qu

u(t = 0,x, k̂) = u0(x, k̂)
(t,x, k̂) ∈ (0,∞) × Rd × Sd−1, (4.1)

where Sd−1 denotes the unit sphere in Rd, and u is the wave energy density in the context of wave
propagation or the particle distribution function in the context of neutronics. The scattering operator
Q has the standard form

(Qu)(k̂) =
∫
Sd−1

Φ(|p̂ − k̂|)(u(p̂) − u(k̂))σ(dp̂),

where σ(dp̂) stands for the surface measure on Sd−1. Here, the scattering kernel Φ is assumed to be
of the form

Φ(|p̂ − k̂|) := a(|p̂ − k̂|)
|p̂ − k̂|d−1+α

= F (k̂ · p̂),

with

F (s) :=
a
(√

2(1 − s)
)

(2(1 − s))(d−1+α)/2 , s ∈ [−1, 1), α ∈ (0, 2),

and a is a nonnegative function. The difficulty in this situation resides in the vanishing of the mean
free time t0 associated with Q:

1
t0

=
∫
Sd−1

Φ(|k̂ − p̂|)σ(dp̂) = ∞. (4.2)

In the context of gas dynamics and the Boltzmann equation, a singular collision operator refers to
the so-called non cut-off case [3,206], where the particle interactions have long-range properties. Such
a scenario also arises in the context of highly peaked-forward light scattering in biological tissues, in
turbulent atmosphere, or more generally in the context of wave propagation in random media with
long-range correlations.

Here are some examples for d = 3. When the momentum variable is restricted to the unit sphere,
radiative transfer equations (RTEs) can be derived from high-frequency wave propagation in random
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Fig. 4.1: Realizations of Gaussian random fields (for d = 2) with correlation function (4.3). The left
picture represents a field with short-range correlations, while the right picture depicts a field with
long-range correlations with α = 0.999.

media to describe the energy density propagation [12, 45, 180]. In such a context, the velocity field
c(x) has the form

c2(x) = c2
0

(
1 +

√
ε V
(x
ε

))
x ∈ R3,

where V is a mean-zero random field modeling fluctuations around the background velocity c0. A
singular scattering kernel can then be obtained by considering a correlation function of the form

E[V (x)V (y)] = R(x − y) =
∫

a(|p|)
|p|2+α e

ip·(x−y)dp. (4.3)

However, such a formula holds only for α < 1. The Fourier transform of R being singular at
p = 0 (unbounded), the correlation function R cannot be integrable, and more precisely we have
R(x) ∼ 1/|x|1−α. This situation corresponds to a random media with long-range correlations where a
realization is provided in Fig. 4.1. Because of the long-range correlations one can observe significantly
larger statistical patterns than for short-range correlations. In the context of neutronics and light
scattering by biological tissues, the following Gegenbauer scattering kernel ρG and Henyey-Greenstein
(HG) kernel ρHG are commonly used in the peaked-forward regime [114,123,178]:

FG(s) := α g (1 + g2 − 2g s)−1−α/2

2π((1 − g)−α − (1 + g)−α) , FHG(s) := 1
4π

1 − g2

(1 + g2 − 2g s)3/2 . (4.4)

The parameter g ∈ (−1, 1) is called the anisotropy factor. The case g = 0 corresponds to isotropic
energy transfer over the unit sphere, g < 0 to dominant transfer in the backward direction, and g > 0
to forward energy transfer. The peaked forward regime is obtained in the limit g → 1, for which

1
(1 − g)αFG(k̂ · p̂) ∼

g→1

α

2π(2 − 2k̂ · p̂)1+α/2
= α

2π|k̂ − p̂|2+α
. (4.5)

A typical realization of the corresponding random field in 2D, as g → 1, is depicted in Fig. 4.1.
Another example is provided by the so-called Kolmogorov power spectrum for standard atmospheric
turbulence:

Φ(|k|) ∝ a(|k|)
|k|11/3 ,

for |k| in the inertial range of turbulence, which corresponds to the case α = 5/3.
In this chapter, the particular role played by the singularity of the scattering operator Q is discussed

at both the theoretical and numerical levels. The first part of this chapter presents regularization
effects in all variables produced by such a singular kernel, and the diffusion limit of the RTE. The
second part presents Monte-Carlo (MC) methods allowing to handle efficiently the singularity of the
scattering operator.

This chapter covers the results of [8, 9, 13,15] of the bibliography list on page 6.
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4.1 Regularizing effects
In the spirit of [3,40,141] for the Boltzmann equation, our main motivation was to derive hypoelliptic
type estimates that characterize the transfer of regularity from the momentum variable k̂ to the
spatial variable x for solutions of (4.1). Similar problems are considered in the Euclidean case where
k ∈ Rd [4,40,92,141] using various approaches. These results have been extended to RTEs where the
momentum is confined to the unit sphere. In the case of the Boltzmann equation, the non-linearity in
the collision operator makes the problem much harder than in the present linear situation [5,6,102,103],
but the non-integrability of the scattering kernel leads to comparable phenomena. The operator L
roughly acts as a fractional Laplace-Beltrami operator on the unit sphere. A standard energy estimate
then yields some Sobolev regularity in k̂, and the main question is to figure how this regularity is
propagated to the spatial variable x. Bootstrapping the estimates, the solution to (4.1) turns to be
C∞ in all its variables for any time t > 0, which is equivalent to the hypoellipticity of the operator
∂t+ k̂ · ∇x − Q. Compared to the Euclidean case, where k ∈ Rd, the fact that k̂ ∈ Sd−1 brings serious
additional technical difficulties. To prove proper hypoelliptic estimates we follow the approach of [40]
and build the estimates by regularization of the momentum variable using averaging lemmas on the
sphere. These latter lemmas were established in [41–44] in various configurations, and needed to
be extended to the case where the scattering operator in the transport equation involves fractional
derivatives on the unit sphere. The hypoelliptic estimate we use to prove the global regularity for
(4.1) is the following.

Theorem 4.1.1 Assume g, h ∈ L2(R × Rd × Sd−1), and let u ∈ L2(R × Rd × Sd−1) satisfies the
transport equation

∂tu+ k̂ · ∇xu = (−∆Sd−1)βh+ g (4.6)

in the distribution sense, where ∆Sd−1 is the Laplace-Beltrami operator on Sd−1, and β ≥ 0. For some
θ > 0, suppose in addition that

(−∆Sd−1)θ/2u ∈ L2(R × Rd × Sd−1).

Then, for
Υ := θ

2(1 + 2β) + θ
,

we have ∂Υ
t,xu ∈ L2(R × Rd × Sd−1) with the estimate

∥∂Υ
t,xu∥L2 ≤ C

(
∥(−∆Sd−1)θ/2u∥L2 + ∥u∥L2 + ∥g∥L2 + ∥h∥L2

)
,

for some constant C > 0, and where the L2 norm holds on all the variables.

The above fractional derivatives are defined in the Fourier domain using the following convention:

f̂(ξ) = Ff(ξ) =
∫
e−ix·ξf(x)dx, F−1f(x) = 1

(2π)d
∫
eix·ξ f̂(ξ)dξ,

and introduce the fractional derivative as,

∂Υ
xj
f(x) = F−1[(iξj)Υf̂(ξ)](x) for Υ ∈ (0, 1),

with a similar definition for the fractional derivative involving the time variable and both variables.
We denote by ∂Υ

t,xf any of the fractional derivatives w.r.t. t and xj , and ∂Υ
t,xf = ∂

Υ−[Υ]
t,x ∂

[Υ]
t,x f when

Υ ≥ 1, where [Υ] is the integer part of Υ.
From this result, replacing formally (−∆Sd−1)βh in (4.6) by Qu, and using bootstrap arguments,

we obtain that u has derivatives of any order in all variables. The regularity result is the following.

Theorem 4.1.2 The operator ∂t + k̂ · ∇x − Q is hypoelliptic. Namely, for any u0 ∈ L2(Rd × Sd−1),
(4.1) admits a unique classical solution u that satisfies

u ∈ C∞((0,∞) × Rd × Sd−1).
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4.2 Diffusion limit
The diffusion limit described in this section is obtained through a probabilistic interpretation of the
solution to (4.1). This probabilistic representation is also the basis of the numerical Monte-Carlo
method proposed in the following section. According to [75, Thm. 7.2.1 pp. 302], after a proper
extension of the operator Q, there exists a Markov process K on Sd−1 with infinitesimal generator Q.
Setting

D := (X,K), with Xt := X0 −
∫ t

0
K(s)ds t ≥ 0,

defines a Markov process with infinitesimal generator

Lf(x, k̂) = −k̂ · ∇xf(x, k̂) + Qf(x, k̂),

from which we can write

u(t,x, k̂) = Ex,̂k

[
u0(D(t))

]
:= E

[
u0(D(t)) |D(0) = (x, k̂)

]
.

The diffusion regime takes place in the presence of strong scattering effects, which can be represented
using the following changes of variables:

t → t

ε2 and x → x
ε
,

and considering
uε(t,x, k̂) = u

( t
ε2 ,

x
ε
, k̂
)
,

with uε(t = 0,x,k) = u0(x,k). This scaling corresponds to a long-time and space scaling providing
at the macroscopic scale strong scattering effects. The transport equation (4.1) then becomes

ε2∂tu
ε + ε k̂ · ∇xu

ε = Quε, (4.7)

and the associated probabilistic representation is obtained by considering the rescaled Markov process

Dε(t) :=
(
Xε(0) − ε

∫ t/ε2

0
K(s)ds,K(t/ε2)

)
,

with generator
Lεf = −1

ε
k̂ · ∇xf + 1

ε2 Qf.

The solution to (4.7) then reads

uε(t,x, k̂) = Ex,̂k[u0(Dε(t))],

and its asymptotic behavior in ε is given by the following result.

Theorem 4.2.1 Suppose there exists η > 0 such that a ≥ η almost everywhere, and let

Y εy (t) = y − ε

∫ t/ε2

0
K(s)ds.

Then, the process Y εy converges in law in C0([0,∞),Rd), as ε → 0, to a diffusion process Yy, starting
at y, with generator

L0 = ∇x ·A∇x.

The positive-definite diffusion matrix A is given by

Ajl = 1
C

∫
Sd−1

σ̃(dk̂)k̂j k̂l with C = σ(Sd−2)
∫ 1

−1
F (s)(1 − s2)(d−3)/2(1 − s)ds.
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Above, σ̃ is the uniform measure on Sd−1 (i.e. σ̃ = σ/σ(Sd−1)). Moreover, for any u0 ∈ L2(Rd×Sd−1)
and t > 0, uε(t) converges weakly in L2(Rd × Sd−1), as ε → 0, to the unique solution to

∂tũ = ∇x ·
(
A∇xũ

)
, with ũ(t = 0,x) =

∫
Sd−1

u0(x,p)dσ̃(p),

and where the function ũ reads
ũ(t,x) = E[ũ(t = 0, Yx(t))].

The main ingredient of the proof is a spectral gap estimate showing that the Markov process Y εy is
ergodic, and allows the use of standard approximation-diffusion theorems to obtain the convergence.
The hypothesis that a is strictly positive is crucial to obtain this spectral gap. Moreover, the constant
C is non-zero and finite, and so does A, despite the long-range correlations and the singular behavior
of F .

4.3 A Monte-Carlo methods for radiative transfer with sin-
gular kernels in 2D propagation media

MC methods have been used for a long time to solve numerically (4.1) (see [140,192]). These methods
have several advantages compared to classical finite element or finite volume methods. They can
handle the high-dimensionality in a simple manner, since no mesh is required and the quantities
of interest only need be discretized at a detector where measurements take place. They are very
flexible in terms of geometry, translate boundary conditions onto the underlying stochastic process,
and are easily applicable even when the coefficients in the equation depend on the variables (x, k̂).
MC methods are also very easy to implement and can be parallelized in a straightforward manner,
which is a strong feature with today’s technology. Note that discretization-based methods would have
to handle carefully the singularity of the cross-section. Without singular scattering operators, the
standard MC methods rely on the mean free time between two scattering events. However, as shown
by (4.2), when considering a singular scattering operator this mean free time is zero. This section
illustrates how to overcome efficiently this difficulty.

With a singular scattering operator Q, the underlying Markov process K of the MC method no
longer relies on a Poisson process to describe its jump times as in the case of a nonnull mean free
time. In our context, K corresponds to a general jump process with infinite jump intensity on S1.
The simulation of such Lévy processes in the context of transport equations seems much less studied
than its compound Poisson process counterpart. We focus in this section on the two-dimensional case
with momentum on the circle S1, and will address the three-dimensional case in the next section.
Note that the choice of S1 is arbitrary, any circle of given radius would be handle similarly.

The key for efficient MC methods resides in an appropriate simulation method of the process K
representing the scattering mechanism w.r.t. the momentum variable. To this end, we adapt a method
of the probabilistic literature developed by Asmussen-Rosiński [9], and Cohen-Rosiński [53], that we
refer to as the ACR method. The first ingredient is to introduce a cut-off in the scattering operator
to remove the singularity. The resulting operator is then the one of a compound Poisson process with
finite (but large) intensity. The main issue with this cut-off approach is that a small value of the
cut-off parameter is required for good accuracy, leading to a high intensity and therefore to many
scattering events increasing the computational time. This issue is fixed by the second ingredient of
this method, which consists in adding a correction term describing asymptotically the behavior of
the operator around the singularity. This term models frequent jumps of small amplitude, while the
regularized generator describes more rare jumps with larger amplitudes. In the work of Asmussen-
Rosiński, and Cohen-Rosiński, the correction takes the form of a Brownian motion on the real line,
while in the present context it corresponds to a Brownian motion on the circle (the unit sphere in the
3D case).

For comparison, and to illustrate the efficiency of the ACR method for the simulation of RTEs,
an alternative MC method that does not involve a regularization of the generator is also introduced.
This alternative method is based on the so-called Alpha-Stable processes, and is referred to as the AS
method.
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4.3.1 The ACR method
To introduce the ACR method, the operator Q needs to be appropriately parametrized. The natural
choice on S1 are the polar coordinates and we introduce the surjective map

P : ϕ ∈ R 7−→ (cos(ϕ), sin(ϕ)) ∈ S1.

Setting k̂ = (cos(θ), sin(θ)) and p̂ = (cos(θ′), sin(θ′)), so that k̂ · p̂ = cos(θ′ − θ), the scattering kernel
Q can be recast as

Q(f)(k) = 1
2(1+α)/2

∫ π

−π

a(θ′ − θ)(f̃(θ′) − f̃(θ))
(1 − cos(θ′ − θ))(1+α)/2 dθ

′

= 1
2(1+α)/2

∫ π

−π

a(θ′)(f̃(θ′ + θ) − f̃(θ))
(1 − cos(θ′))(1+α)/2 dθ′

= Q̃(f̃)(θ), θ ∈ [−π, π],

where f̃ = f ◦ P is a 2π-periodic function. Note that the 2π-periodic function a is symmetric with
respect to 0 and is nonnegative. The operator Q̃ can be seen as the generator of a Lévy process on R
starting from 0, that we denote by (Θ(t))t≥0. According to our parametrization,

K = P (Θ + θ)

in law, when K(0) = k̂. For ε ∈ (0, 1), the ACR method consists in splitting Q̃ into

Q̃(g)(θ) = Qε
<(g)(θ) + Qε

>(g)(θ)

:= 1
2(1+α)/2

∫
IC

ε

a(θ′)(g(θ′ + θ) − g(θ))
(1 − cos(θ′))(1+α)/2 dθ′ + 1

2(1+α)/2

∫
Iε

a(θ′)(g(θ′ + θ) − g(θ))
(1 − cos(θ′))(1+α)/2 dθ′

where Iε is defined by
Iε := {θ′ ∈ [−π, π], | tan(θ′/4)| > ε/4} ,

and ICε its complementary in [−π, π]. Because of the regularization, the second part of the generator,
namely Qε

>(g), is now the generator of a classical compound Poisson process θε with jump intensity

µε = Π0
ε

2(1+α)/2 , where Π0
ε =

∫
Iε

a(θ)dθ
(1 − cos(θ))(1+α)/2 ,

and jump distribution
Πε(dθ) = 1Iε

(θ)a(θ)
Π0
ε(1 − cos(θ))(1+α)/2 dθ.

The expected number of jumps for the compound Poisson process in any time interval [0, T ] is given
by µεT , but the term µε blows up as ε → 0,

µε ∝ 1
αεα

.

In other words the process jumps more and more as ε becomes small, this rate blows up even more
rapidly when α gets close to 2, and hence increases the simulation cost. An efficient simulation tech-
nique for the jump distribution is therefore required. Good performances to approximately simulate
numerically the jump distribution is achieved using the stochastic collocation method [104].

The first term of the generator Qε< models frequent jumps of small amplitude and can be asymp-
totically reduced to the generator of a Brownian motion on the circle. The following lemma describes
the relation between Qε

< and the Laplace operator.
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Lemma 4.3.1 Suppose that a ∈ C2([−π, π]) and that g is a smooth 2π-periodic bounded function
with bounded derivatives. Then, for any ϕ ∈ [−π, π],

Qε
<(g)(ϕ) = σε

2
∂2g(ϕ)
∂ϕ2 + Rε[g](ϕ),

where
σε = 2a(0)ε2−α

2 − α
and ∥Rε[g]∥∞ ≤ ε4−α

4 − α
∥a∥C2([−π,π])∥g∥C4([−π,π]).

The leading term in Qε
< is the generator of ϕε = (σεWt mod 2π)t, where W is a Brownian motion.

Brownian trajectories can easily be generated, but note that σε is proportional to ε2−α/(2 − α),
which becomes larger as α increases. We therefore expect the inclusion of the Brownian term in the
simulation to be critical in order to obtain good accuracy and computational cost.

Error analysis

The main idea of the ACR method is that the Lévy process K on S1, starting at k̂ with generator Q,
is approximated by the process

Kε =
(

cos(ϕε + θε + θ), sin(ϕε + θε + θ)
)
,

which is the one simulated numerically in practice. Here θε accounts for the regularized compound
Poisson process and ϕε for the Brownian correction. Note that these two processes are independent.
Introducing

Xε
x(t) = x −

∫ t

0
Kε(s)ds,

the function
uε(t,x, k̂) = E[u0(Xε

x(t),Kε(t)) |Kε(0) = k̂] (4.8)

is then the solution of the following transport equation, with the parametrization k̂ = (cos(θ), sin(θ)):

∂tuε + k̂ · ∇xuε = Qε
>(uε) + Dε

2 ∂2
θuε, uε(t = 0) = u0.

The following proposition quantifies the approximation error, in term of the cut-off parameter, when
using this model to approximate the original RTE.

Proposition 4.3.1 Suppose that a ∈ C2([−π, π]). Then, for all t ∈ (0, T ),

∥uε(t, ·, ·) − u(t, ·, ·)∥L2(R2×S1) ≤ ε4−α

4 − α
∥a∥C2([−π,π])

∫ t

0
∥u(s)∥L2(R2,C4(S1))ds.

Recall that u satisfies the regularity requirement thanks to the hypoelliptic property of the RTE.

4.3.2 The AS method
This section introduces an alternative method to compare against the ACR method. The main idea
is to exactly simulate the process K, without using the small jumps - larger jumps approximation of
the generator. The method is applicable provided an additional assumption on the function a. In
this section a(θ) is assumed to admit a global minimizer at θ = 0, or equivalently A(s) = a(θ) (for
s = k̂ · p̂ = cos(θ)) admits a global minimizer at s = 1. This assumption allows us to decompose Q
in terms of two infinitesimal generators

Q(f)(k̂) = A(1)
2(1+α)/2

∫
S1

f(p̂) − f(k̂)
(1 − cos(k̂ · p̂))(1+α)/2

σ(dp̂)

+ 1
2(1+α)/2

∫
S1

A(k̂ · p̂) −A(1)
(1 − cos(k̂ · p̂))(1+α)/2

(
f(p̂) − f(k̂)

)
σ(dp̂)

=: Q1(f)(k̂) + Q2(f)(k̂).
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The second term Q2 is the generator of a compound Poisson process on S1 with a finite jump intensity,
which does not pose any computational issue since now the average length of the jumps is large
compared to those generated by Qε

>. The main difficulty is to simulate numerically random trajectories
for a Lévy process K1 with self-adjoint generator Q1. Such trajectories are simulated numerically
through piecewise constant trajectories on a fine time grid, and each transitions are simulated using
the transition density function

p(h, k̂, q̂) = P
(
K1(h) = k̂

∣∣K1(0) = q̂
)
,

where h corresponds to the time stepsize. This function can be derived explicitly by solving the
forward Kolmogorov equation

∂tp(k̂) = Q1(p)(k̂), with p(t = 0, k̂, q̂) = δ(k̂ − q̂),

for k̂, q̂ ∈ S1, and where δ is the Dirac measure. With the parametrization k̂ · q̂ = cos(θ), the operator
Q can be diagonalized using Fourier series, and we obtain the following exact expression for p (written
as a function of θ),

p(t, θ) = 1
2π + 1

π

∞∑
ℓ=1

etλℓ cos(ℓθ),

where (with a0 = a(0) = A(1))

λℓ =
a0π

1
2 Γ(−α

2 )
2αΓ( 1+α

2 )

(Γ(ℓ+ 1+α
2 )

Γ(ℓ+ 1−α
2 )

−
Γ( 1+α

2 )
Γ( 1−α

2 )

)
,

according to [182] with a slight adjustment of the constant prefactors, and Γ the usual Gamma
function. It does not seem possible to directly simulate the increments using p. To address this issue,
we should use an approximation of it that enables fast simulations. Once we have this approximation,
we can once again apply the stochastic collocation method [104] to provide accurate simulations to p.
The operator Q1 should not be far from a fractional Laplace-Beltrami operator on S1. Therefore, we
introduce

p0(h, θ) := 1
2π + 1

π

∞∑
ℓ=1

e−hDαℓ
α

cos(ℓθ)

as a rough approximation to p(h, ·), which corresponds to the distribution to (hDα)1/αX mod 2π,
where X stands for a random variable with an α-stable distribution, which has characteristic function

E[eivX ] = e−|v|α

.

Following the strategy of [208], the α-stable distribution can be easily exactly simulated numerically
from the uniform distribution over (0, 1).

It is worth mentioning that the density p0 is already an excellent approximation of p, as shown in
Fig. 4.2. For both cases illustrated in this figure, the L2 relative error is about 0.3%. Even though
these small errors translate into small errors in the simulation of the RTE, it is not possible to obtain
an arbitrary precision by using p0 instead of p. For arbitrary accuracy, a random variable drawn
according to p0 needs to be corrected to be seen as distributed according to p. This can be achieved
with the use of the efficient stochastic collocation method [104].

4.3.3 Numerical Illustrations
To perform relevant numerical simulations, we need first to define a typical time scale. When the
scattering kernel is integrable this time scale is given by the mean free time (4.2). In our non-integrable
case, this mean free time is zero and we need a different quantity. A natural one is the inverse of −λ1,
that is the inverse of the first non zero eigenvalue of −Q. When t ≫ tS := (−λ1)−1, the distribution
of the angles is almost uniform over S1. Fig. 4.3 represents the characteristic time tS as a function of
α for a ≡ a0 = 0.1.
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Fig. 4.2: Comparison between p (blue) and p0 (green), a0 = 0.1 and h = 0.03, for α = 0.8 (left) and
α = 1.6 (right).

Fig. 4.3: Characteristic time tS as a function of α for a(s) = a0 = 0.1.
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Fig. 4.4: Comparison between the reference solution and the numerical solutions including or not the
Brownian correction. The non corrected solution is completely off when α = 1.9, while there is a good
accuracy when the Brownian part is included. Here, h = 0.03 for the time stepsize, ε = a0 = 0.1,
t = 3, NB = 80, z1 = 2.7, z2 = 3, and 107 trajectories have been used for the MC method.

Impact of the Brownian correction in the ACR method

In view of Lem. 4.3.1 this correction is expected to play a crucial role for large α. To highlight the
role of this correction, we compare the numerical simulations against a reference solution. In our
context no explicit analytical formula for the solution of the RTE is available, so that we only rely on
a semi-analytical expression corresponding to

Ji(t) =
∫ z2

z1

dx1

∫
R
dx2

∫ θi+1

θi

dθ u(t, x1, x2, θ)

with x = (x1, x2), and k̂ = (cos(θ), sin(θ)). Here, u is the solution to the RTE with a particular initial
condition

u0(x, θ) = 1√
2πc2

e− |x|2

2c2
1

2π (1 + cos(θ)),

with c = 0.1 for the numerical evaluation. The time is here fixed at t = 3, which is roughly the
characteristic time tS depicted in Fig. 4.3. When α = 1.9, the observation time is about 3tS . The
solution u is integrated over several bins [θi, θi+1], i = 1, . . . , NB , θi+1 = θi + ∆θ. In Fig. 4.4, we
represent the reference solution (Ji(t))i=1,...,NB

and the numerical solution to the RTE uε,h, including
or not the Brownian correction. When α = 1.9 the solution is completely off when the correction is
not included, while the relative error is about 3% when it is included. When α = 1.1, the relative
errors are 6% without the Brownian correction, and 0.3% with it, and 1.4% and 0.4% respectively for
α = 0.3. In all cases, this shows that the Brownian correction is crucial in order to obtain a good
accuracy in the simulations.

Comparison ACR/AS methods

The ACR and AS methods are compared to each other in terms of accuracy versus computational cost
for α = 0.7, 1.3, 1.8. For the evaluation of the accuracy, the outcomes of both methods are compared
to our reference solution (Ji(t))i=1,...,NB

with NB = 20. All the other parameters remain as before.
The errors are averaged over 20 simulations of the MC methods to obtain more stable estimates. The
results are depicted in Fig. 4.5. The cost is expressed in units of 0.17s, which is the computational
time to achieve an error of about 10% for a code written in the Julia language, and ran in parallel on
a 32 cores Intel Xeon E5-2697A at 2.60GHz.

In the case α = 0.7, the cost to achieve an error of 0.2% is about 10 times higher for the AS method
than for the ACR method. This difference is reduced for lower accuracies. Similar observations hold
for α = 1.3 and α = 1.8, with the gap shrinking as α increases. This can be explained on the one hand
by the fact that the ACR method is more sensitive to the parameter α than the AS method. In fact,
there are more and more scattering events as α grows, and on the other hand the jumps are smaller
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Fig. 4.5: Comparison of the AS and ACR methods in terms of cost versus accuracy for α = 0.7, 1.3, 1.8.
The ACR method is consistently more efficient.

Fig. 4.6: Realizations of Gaussian random fields. In the left picture, we have λ = 1{|x1|<15},
and α = 0.1 · 1{|x|≤10} + 1 · 1{10<|x|}. In the right picture, we have λ = 1{x2∈(0,20)} and α(x2) =
5/3 · 1{x2≤2} + 0.5 · 1{2<x2≤8} + 1.9 · 1{8<x2}.

for large α, which reduces the error when evaluating the integral for the position variable X(t) in the
AS method. Nevertheless, the cost of a 0.5% error when α = 1.8 is more than twice higher for the
AS method, and the cost significantly increases when going from an accuracy of about 10% to about
0.1%.

4.4 A Monte-Carlo method for 3D radiative transfer equa-
tions with multifractional singular kernels

The radiative transfer model (4.1) can be extended to more general situations by letting the properties
of the scattering operator depends on the position x:

Φ(x, |p̂ − k̂|) := λ(x)a(|p̂ − k̂|)
|p̂ − k̂|2+α(x)

= λ(x)
21+α(x)/2 ρ(x, k̂ · p̂),

with

ρ(x, s) :=
a
(√

2(1 − s)
)

(1 − s)1+α(x)/2 s ∈ [−1, 1). (4.9)

Above, α : R3 −→ (0, 2) accounts for variations of scattering properties across the ambient space,
and λ ≥ 0 is a function modeling the support of the scattering region. Regions where λ(x) = 0 are
homogeneous and u undergoes a free transport. In Fig. 4.6, we provide examples of 2D random
fields for which α and λ are not constant. In these two pictures, we highlight the roles of λ and
α: λ characterizes scattering regions, and α defines the correlation structure. In the inner circle of
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the left picture we have α ≡ 0.1, which tends to create shorter correlation patterns than outside the
circle where α ≡ 1. In the right picture, we have a three-layer model for α in which the inner band
exhibits smaller statistical patterns than the outer ones. This type of model is used for modeling
non-Kolmogorov atmospheric turbulences.

From a numerical perspective, the 3D context outline in this section is more involved compared
to the 2D setting, where the small-jumps part can simply be approximated by a Brownian motion
mod 2π. Here, the singularity is approximated using a Laplace-Beltrami operator (with respect to
the momentum variable) on the unit sphere S2, so that simulating paths of a jump-diffusion process
over the unit sphere is necessary to handle the small-jumps part. Remember that disregarding small
jumps altogether in order to use standard MC methods results in substantial errors, and mitigating
these errors comes with a notable increase in computational cost.

4.4.1 Approximation and probabilistic representation
In order to adapt the ACR method, we introduce the following small region over which the singularity
of the kernel ρ (in (4.9)) is not integrable:

Sε< = Sε<(k̂) := {p̂ ∈ S2 : 1 − p̂ · k̂ < ε} for ε ∈ (0, 1). (4.10)

The ACR method is based on decomposing the scattering operator Q into two parts:

LQ(x, k̂) = +Qε
<f(x, k̂) + Qε

>f(x, k̂)

:= λ(x)
21+α(x)/2

(∫
Sε

<

+
∫
Sε

>

)
ρ(x, p̂ · k̂)

(
f(x, p̂) − f(x, k̂)

)
σ(dp̂),

where Sε> = (Sε<)c is the complementary set of the region (4.10) over the unit sphere. The term
Qε
> of the scattering operator, with no singularity, is the infinitesimal generator of a standard jump

Markov process with large-jumps. Regarding Qε
<, with the singularity, the following result justifies

the approximation of this operator by a Laplace-Beltrami operator ∆S2 over the unit sphere S2. In
what follows, we use the notations r′

ε =
√

1 − (1 − ε)2/(2 − ε) and 0 ≤ αm ≤ α(x) ≤ αM < 2.

Proposition 4.4.1 Let u be the solution to (4.1) with kernel (4.9), and uε be the solution of
∂tuε + k̂ · ∇xuε = σ2

ε(x)∆S2uε + λ(x)
21+α(x)/2

∫
Sε

>

ρ(x, p̂ · k̂)(uε(p̂) − uε(k̂))σ(dp̂),

uε(0,x, k̂) = u0(x, k̂),
(4.11)

for (t,x, k̂) ∈ (0,∞) × R3 × S2, where

σ2
ε(x) := 21−α(x)a(0)πλ(x)

2 − α(x) r′
ε

2−α(x)
. (4.12)

Assuming a′(0) = 0, for any T > 0, we have

sup
t∈[0,T ]

∥u(t, ·, ·) − uε(t, ·, ·)∥L2(R3×S2) ≤ ε2−(αM/2)
√

2T E(u), (4.13)

where E(u) is a constant depending on the 2nd- and 4th-order derivatives of u.

As we know from Sect. 4.1, when λ and α are constants, u is infinitely differentiable in all variables
for any square integrable initial conditions. However, when λ and α are infinitely differentiable with
bounded derivatives at all orders (from above and below), this result remains valid so u is still assumed
to be smooth.

Based on the approximation result (4.13), we then devise a MC method for (4.11) instead of (4.1).
The advantage in using (4.11) lies in that the angular diffusion term σ2

ε(x)∆S2 is the generator of a
Markov process that can be easily simulated. Indeed, for W a standard 3D Brownian motion on R3,
and × being the cross product in R3, it is shown in [205] that the process B solving the SDE

dB = B × dW −Bdt, B(0) ∈ S2,
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has infinitesimal generator 1
2 ∆S2 , and corresponds to a Brownian motion over S2. A simple adaptation

gives the desired diffusion coefficient. Note also that σε(x) increases as α(x) gets close to 2, and
diffusion on the sphere eventually becomes the dominant dynamics.

In this section the MC method is built by interpreting (4.11) as the forward Kolmogorov equation
of an appropriate Markov process, and as a consequence focusing for simplicity on the forward MC
method (see [140] for terminology). The Markov process we consider for this approach is defined by

Dε(t) :=
∑
n≥0

1[Tn,Tn+1)(t)ψZn
n (t− Tn) t ≥ 0, (4.14)

where for z = (x, k̂):

1. The flow ψzn = (Xx
n ,K

k̂
n) is the unique strong solution to the SDE{

dXx
n(t) = Kk̂

n(t) dt
dKk̂

n(t) =
√

2σε(Xx
n(t))Kk̂

n(t) × dWn(t) − 2σ2
ε(Xx

n(t))Kk̂
n(t) dt,

(4.15)

where ψzn(0) = z, (Wn)n is a sequence of independent standard Brownian motions on R3, and
σε is defined by (4.12).

2. The jump times (Tn)n are distributed according to

P
(
Tn+1 − Tn > t |Dε(Tn) = z, (ψzn(s))s∈[0,t]

)
= exp

(
−
∫ t

0
Λε(ψzn(s))ds

)
n ≥ 0,

with T0 = 0, and for ρ given by (4.9),

Λε(z) := λ(x)
21+α(x)/2

∫
Sε

>

ρ(x, p̂ · k̂)σ(dp̂).

3. The jumps (Zn)n describe a Markov chain with transition probability

P(Zn+1 ∈ dy ⊗ σ(dp̂) |Zn, Tn+1 − Tn) = Πε(zn+1, dz),

where zn+1 := ψZn
n (Tn+1 − Tn), and

Πε(z, dz) := πε(z, p̂)σ(dp̂)δx(dy),

with probability density function

πε(z, p̂) := ρ(x, p̂ · k̂)∫
Sε

>
ρ(x, p̂′ · k̂)dσ(p̂′)

1Sε
>

(p̂).

The above Dirac mass δx(dy) := δ(x − y)dy translates the fact that the jumps only hold w.r.t.
the k̂-variable.

From this construction we have the following probabilistic representation for the solution to (4.11).

Proposition 4.4.2 The Markov process Dε defined in (4.14) has for infinitesimal generator

Aεg(z) := k̂ · ∇xg(z) + σ2
ε(x)∆S2g(z) + Λε(z)

∫
S2
πε(z, p̂)

(
g(x, p̂) − g(x, k̂)

)
σ(dp̂),

and we have
Pµ0(Dε(t) ∈ dx ⊗ σ(dk̂)) = 1

ū0
uε(t,x, k̂) dx σ(dk̂), (4.16)

where

µ0(dx, dk̂) := P(Dε(0) ∈ dx⊗σ(dk̂)) = u0(x, k̂)
ū0

dx σ(dk̂), with ū0 :=
∫
R3×S2

u0(x, k̂) dx σ(dk̂).

66



The terminology forward, for this MC method, comes from the fact that the particles are emitted
at random points at time t = 0, through µ0 and the initial condition u0, and propagate toward the
observation positions z = (x, k̂). This approach is used when we want to simulate the propagation
over the entire space, or at least over regions large compared to the support of the initial condition.
For the 2D case of Sect. 4.3, the probabilistic representation (4.8) corresponds to the backward MC
method, where the particles are emitted at the observation point z = (x, k̂) and are evaluated at time
t through the initial condition u0 of the RTE. This approach is convenient when the initial condition
has a support larger than the region over which we want to evaluate the solution of the RTE.

Let us illustrate two aspects of the representation (4.16). In order to obtain an estimation of
uε(t,x, k̂) at point z = (x, k̂), we evaluate the probability

ū0

|B(z, r)| Pµ0

(
Dε(t) ∈ B(z, r)

)
≃ uε(t,x, k̂),

where B(z, r) ⊂ R3 × S2 stands for the ball centered at z = (x, k̂) with radius r ≪ 1. If we are only
interested in the energy density at point x for instance, we estimate

ū0

|B(x, r)| Pµ0

(
Dε(t) ∈ B(x, r) × S2) = ū0

|B(x, r)|Pµ0

(
D1,ε(t) ∈ B(x, r)

)
≃
∫
S2
uε(t,x, k̂)σ(dk̂),

where B(x, r) ⊂ R3 stands for the ball centered at x with radius r ≪ 1, and D1,ε is the x-component
of Dε.

4.4.2 The Monte-Carlo method
Based on the previous probabilistic representation (4.16), solving (4.11) requires the generation of
random paths of the stochastic process Dε. For any measurable bounded function f , the convergence
of the estimator

µN (t, f) := 1
N

N∑
j=1

f(Dj
ε(t)) −→

N→∞

∫
f(x, k̂)uε(t,x, k̂) dx σ(dk̂) Pµ0 − almost surely,

is guaranteed by the strong law of large numbers. Above (Dj
ε)j is a sample of Dε. The process Dε

being inhomogeneous, i.e. Λε and Πε both depend on z = (x, k̂), we make use of the so-called thinning
method, also referred to as the fictitious shocks method [140], to simulate the jump part. It is based on
a acceptation/rejection step and consists in simulating at first more jumps (or shocks) than necessary.
In a second step, some of the jumps are rejected according to an appropriate probability distribution
in order to recover the original dynamics.

The diffusion part between two jumps satisfies the linear SDE (4.15), and can be simulated using
the following Euler-Maruyama type scheme

(Sn,m) :


Xn,m+1 = Xn,m + hn,m K̂n,m

Kn,m+1 = K̂n,m − 2hn,m σ2
ε(Xn,m) K̂n,m +

√
2hn,m σε(Xn,m) K̂n,m ×Wn,m

K̂n,m+1 = Kn,m+1
|Kn,m+1| ,

where the (Wn,m)m,n are i.i.d. mean-zero Gaussian random vectors with identity covariance matrix,
and hn,m some appropriate stepsizes.

The theoretical justification of our MC method is supported by the following convergence result.

Theorem 4.4.1 Consider

µN,h,ε(t, f) = 1
N

N∑
j=1

f(Dj
h,ε(t)), and µ(t, f) =

∫
f(x, k̂)u(t,x, k̂) dx σ(dk̂),

where (Dj
h,ε)j is a sample of the numerical approximation to Dε. For any T > 0, η > 0 and any

smooth bounded function f on R3 × S2, we have

lim sup
N→∞

P
(

|µN,h,ε(T, f) − µ(T, f)| > ηΣh,ε√
N

+ ε2−(αM/2)F0 + hF1

)
≤ erfc(η/

√
2), (4.17)
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where
Σh,ε =

√
V ar

(
f(Dh,ε(T ))

)
≤ sup |f |,

and F0 and F1 are explicit constants independent of ε and the stepsize h.

In (4.17), there is three terms that quantify the approximation error of our estimator µN,h,ε(t, f):
one of order ε2−(αM/2) due to the approximation of u by uε (the smaller the αM , i.e. the less singular
the kernel is, the smaller the error), one of order h due to the numerical approximation of the diffusion
over the unit sphere, and one due to the MC approximation with the standard 1/

√
N convergence

rate. Note that the discretization error of the diffusion process is only of order h and not of order the
standard

√
h. The reason is that we are only interested in the convergence of MC estimators, allowing

us to consider this discretization error in the weak sense [200]. Note that a weak second-order Runge-
Kutta method can be considered to provide an error in h2 instead of h for the Euler scheme [59], and
a modifications of the SDE (4.15) can also be considered to provide weak higher-order schemes [1].

4.4.3 Numerical illustrations
We first illustrate the role of the correction and the role of α. We also present two situations, related
to optical tomography and propagation through a non-Kolmogorov turbulent atmosphere, where α is
no longer a constant. Furthermore, the stepsize h is chosen proportionally to the shortest mean free
time,

Λ̄−1
ε := αmε

αM/2

2π supλ sup a,

and small enough so that the approximation error w.r.t. ε in dominant. N is also chosen large enough
for the MC error to be small compared to the approximation error in ε. The numerical simulations
below are performed using the Julia programming language (v1.6.5) on a NVIDIA Quadro RTX 6000
GPU driven by a 24 Intel Xeon Sliver 2.20GHz CPUs station.

Role of the correction

To highlight the role of the correction provided by the diffusion on the unit sphere, the MC simulations,
with and without the correction, are compared to a semi-analytic reference solution in the same spirit
as in Sect. 4.3.

Fig. 4.7: Illustration of the relative error and running time of the MC method with and without a
diffusive correction. The reference time in the right picture is the one of the corrected method with
ε = 0.1. The observation time T = 3tS (tS computed for α = 1) and N = 6 × 108.

In Fig. 4.7, we represent the relative error for various sizes of the cutoff ε. The left picture
illustrates the evolution of the relative error for various ε. The blue curve corresponds to the corrected
MC method with ε = 0.1 (with still a fairly large stepsize h = 0.5/Λ̄ε) providing at most a relative
error slightly larger than 1%. The other curves correspond to the noncorrected MC method for
several values of ε. The corrected MC method consistently yields a better accuracy compared to the
noncorrected versions, and even in weakly singular cases where α is less than one. A very small value
of ε (orange and green curves) is necessary to match the accuracy of the corrected method. The right
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picture illustrates the evolution of the relative running time of the noncorrected method w.r.t. the
corrected one. For values of α less than 0.7 (weakly singular kernels), corrected and noncorrected
methods have similar computational times for comparable accuracy, while in the case of singular
kernels, with α ≥ 1, the noncorrected method yields a much larger cost and a much lower accuracy.

Fig. 4.8: Illustration of the relative error and running time of the corrected MC method.

In Fig. 4.8, we illustrate the precision and running time sensitivity of the (corrected) MC method
w.r.t. the stepsize h = h0/Λ̄ε. As expected, we obtain a better precision for smaller stepsizes but at
the price of a longer running time. These effects are amplified as α increases due to the increasing
strength of the diffusion correction. In what follows, we select h0 = 0.3 since this value yields a
relative error less than 1% for a wide range of α’s while not changing significantly the running time.

Fig. 4.9: Illustration of the relative error and running time of the corrected MC method.

In Fig. 4.9, we depict the precision and running time sensitivity w.r.t. the cutoff parameter ε, and
observe the same phenomena as in the case of the stepsize h. With our choice of h, the parameter ε
defines not only the accuracy of the diffusion correction, but also the average number of jumps, and
as a consequence the running time increases as ε decreases as in the case of the noncorrected MC
method.

The role of α

In this section, we highlight the effects of the kernel singularity on the energy density. We consider
here a constant α’s, with a ≡ 0.002. Our setting is depicted in Fig. 4.10. The spatial variable x is
decomposed into a main propagation axis x3 and a transverse plane x⊥, i.e. x = (x⊥, x3) ∈ R2 × R.
The same notation holds for the direction variable k̂ = (k̂⊥, k̂3) ∈ S2. We choose an initial condition
for the RTE of the form

u0(x, k̂) = δ(x)δ(k̂ − k̂0), with k̂0 = (0, 0, 1),

modeling a source located at x = 0, embedded in the random medium, and emitting in the forward
x3-direction. We set a function λ of the form λ(x) = 1(−5,40)(x3), that defines a scattering layer
between x3 = −5 and x3 = 40. In such a configuration, both transmitted and reflected quantities at
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Fig. 4.10: Illustration of the numerical setting.

x3 = 40 and x3 = −5 are of interest. With our particular choice of k̂0, what is observed at x3 = −5
is purely due to backscattering.

The observables, that are estimated by the MC method, are the following: the (time-integrated)
transverse reflected and transmitted energy respectively defined by

FTtr(x⊥) :=
∫ T

0
dt

∫
S2
σ(dk̂)u(t,x⊥, x3 = 40, k̂)

and
FTref (x⊥) :=

∫ T

0
dt

∫
S2
σ(dk̂)u(t,x⊥, x3 = −5, k̂),

and the reflected and transmitted time evolution of the integrated energy exiting the slab by

Ftr(t) :=
∫
R2
dx⊥

∫
S2
σ(dk̂)u(t,x⊥, x3 = 40, k̂)

and
Fref (t) :=

∫
R2
dx⊥

∫
S2
σ(dk̂)u(t,x⊥, x3 = −5, k̂).

In what follows, the MC estimations of the observables are obtained using N = 1 × 109 particles
and a diffusion stepsize h = 0.3/Λ̄ε. We set ε = 0.01 for the transmitted quantities, and ε = 0.1 for
the reflected ones. In the transmission case, and when ε is too large, the mean free time for the jumps
is large as well and it is possible that particles escape the slab without undergoing any jumps, leading
to inaccurate results. The choice ε = 0.01 provides good results to simulate transmitted quantities.
Nonetheless, a larger value of ε still provides a good accuracy for the reflected quantities since the
particles exiting the slab at x3 = −5 have necessarily undergone some number of jumps and diffusion
steps.

The running times for the time-integrated transmitted (ε = 0.01) and reflected (ε = 0.1) signals
for different values of α are the following:

running time (s) α = 0.3 α = 0.7 α = 0.1 α = 1.3 α = 1.5
ε = 0.01 9.38 15.21 24.54 42.74 65.39
ε = 0.1 3.61 3.72 4.12 4.92 6.01

All these running time measurements account also for the transfer of the resulting arrays from the
device (GPU) to the host, and correspond to the cost for the MC method to reach the expected
accuracy for fixed ε’s and α’s. We clearly observe significantly larger running times for smaller values
of ε and large values of α as expected. This is due to the increase in scattering events and diffusion
steps as the mean free time decreases.

Comparision with the Henyey-Greenstein scattering kernel

According to the definition of the so-called Henyey-Greenstein scattering kernel (4.4) together with
the asymptotic (4.5), our MC method should be a candidate to simulate numerically RTE with such
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a scattering kernel in the highly peaked forward regime. In this section, we compare the solution to
the RTE with the Henyey-Greenstein scattering kernel, for an anisotropy factor g close to one, with
the solution to (4.11) with a singular kernel derived from (4.5), that is by setting a ≡ (1 − g)/(2π)
and α = 1 in (4.9). Note that the value of the constant a changes with g, and as a consequence Λ̄ε,
h, and σε vary accordingly. To illustrate this approximation, we still consider the setting depicted in
Fig. 4.10 and the various observables introduced in the previous sections, but now at time T = 300.
We observe in Fig. 4.11 the very good agreement between the two solutions. The reflected signal

Fig. 4.11: Comparison of the observables obtained using the Henyey-Greenstein scattering kernel and
our singular kernel with α = 1, T = 300, ε = 0.01 for the transmitted observables (left panels), and
ε = 0.1 for the reflected ones (right panels).

is well captured by our method despite fairly large values of ε and h. Also, let us mention that the
computational cost is decreasing as the anisotropic parameter g is getting close to 1, as the overall
jump intensity decreases in this case in the highly peaked regime g → 1.

The RTE with a Henyey-Greenstein scattering kernel is simulated through a standard MC method.
Compared to our method, its computational costs to simulate the transmitted and reflected observ-
ables are the following:

running time (s) g = 0.97 g = 0.98 g = 0.99
HG kernel 8.3 7.6 6.0

singular kernel, ε = 0.01 13.9 6.7 2.0
singular kernel, ε = 0.1 2.5 1.5 0.7

According to this table, under our MC method, and for the reflected observables, lower computational
times are observed for the three considered values of g compared to a standard MC method for the
Henyey-Greenstein scattering kernel. Our MC method provides therefore an efficient tool to simulate
numerically a RTE with such a scattering kernel. For transmitted observables, g needs to be quite
close to one to provide a significant advantage to our method.

Now, we illustrate the influence of a varying α characterizing the strength of the singularity.
We consider two situations, one inspired from optical tomography, and the second one from wave
propagation through atmospheric turbulence.

A two-stage model with a sphere

We keep the setting depicted in Fig. 4.10, and add a defect with a different value of α. This defect
is modeled by ball of radius 3 centered at the origin, with α sets to α1 within the ball, and to 1 in
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the exterior of the ball. See Fig. 4.12 for an illustration. This situation models a biological tissue in
which statistical properties are changing and define a region of interest for imaging.

Fig. 4.12: Illustration of the setting with λ = 1{x3∈(−5,40)} and α(x) = α11{x∈B} + 1 · 1{x̸∈B} where
B is a ball centered at 0 with radius 3. The source is here located at (0, 0,−5).

We illustrate in Fig. 4.13 the impact of the defect on the observables introduced above. The
impact is stronger on transmitted observables and quite significant, giving then the possibility to
identify the defect inside the scattering medium. Reflected quantities tend to be less sensitive to the
presence of the defect since a fraction of the signal is backscattered before reaching it.

Fig. 4.13: Illustration of the transmitted (left-hand-side) and reflected (right-hand-side) observables
with T = 300, and ε = 0.01. For the two top pictures we set x2 = 0 (solid lines), and x2 = 1.5 for the
top-left and x2 = 0.5 for top-right picture (dotted lines).

Non-Kolmogorov turbulences

We consider one more time the setting depicted in Fig. 4.10, with the difference that λ = 1{x3∈(0,20)}
and that α takes three different large values depending on the altitude parametrized by x3, see Fig.
4.14,

α(x3) = 5/3 · 1{x3≤2} + 4/3 · 1{2<x3≤8} + 1.9 · 1{8<x3}.

The value 5/3 corresponds to a standard Kolmogorov turbulence model, while other values are asso-
ciated with non-Kolmogorov turbulence models [31, 195, 212]. In these models, it is considered that
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for altitudes higher than 8km, the atmospheric turbulence yields larger statistical patterns (which
can be modeled through singular scattering kernels) than around the ground (0-2km). Hence, we set
α = 1.9 for altitudes greater than 8km. The function a is no longer constant in these models, and for
our illustrations we chose

a(r) = 0.002 · exp(−r2/(2 × 0.82)).

In Fig. 4.15, one can notice that non-Kolmogorov turbulence yields quite different signals compared
to Kolmogorov turbulence, in particular for reflected quantities. As we can see, the higher the α, the
more diffuse is the signal which then enhances reflected signals. This explains the increased reflections
in the non-Kolmogorov case.

Fig. 4.14: Illustration of a three stages α-profile for a non-Kolmogorov phase function.

Fig. 4.15: Illustration of the transmitted (left-hand-side) and reflected (right-hand-side) observables
with T = 300, and ε = 0.01. For the top two pictures we illustrate x2 = 0 (solid lines) and x2 = 2 for
the top-left and x2 = 5 for top-right picture (dot lines).

4.5 Perspectives
The original motivation for studying radiative transfer models with a spatially dependent scattering
kernel (4.9) is driven by the resolution of some inverse problems. These include source or reflector
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localization in turbulent atmosphere, as well as the estimation of the map α, which has applications
in medical imaging or turbulence atmosphere. Inversion techniques for transport equations often rely
on the singularities of the solution u of the RTE (see [20, 21]). However, the smoothness of u in the
context of a singular scattering kernel suggests that the inversion could be more challenging compared
to the situation of an integrable scattering kernel.

Although MC methods provide a relatively good accuracy at low cost, are easy to implement, and
highly parallelizable, achieving higher accuracy often come at a significant increase in the computa-
tional time. Some variance reduction techniques might then be necessary to lower this cost. They
generally amount to bias the particle trajectories toward regions of higher importance, and often result
in important gains in terms of efficiency [142,192].

Nowadays machine learning techniques are increasingly used to enhance the performance of numer-
ical schemes and tackle inverse problems. Another perspective is therefore to evaluate the potential of
machine learning techniques in simulating numerically RTEs, enabling variance reduction techniques,
and solving radiative transfer based inverse problems.
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Chapter 5
Boundary effects and weak localization in
radiative transfer

This chapter describes the results obtained in Adel Messaoudi’s Ph.D. thesis [158] under the super-
vision of Régis Cottereau (Laboratory of Mechanics and Acoustics in Marseille) and myself. The
pictures presented in this chapter are all borrowed from this Ph.D. thesis. The two first sections of
this chapter correspond to [16,18] in the publication list on page 6.

Radiative transfer models are usually derived for wave problems defined on the entire space R3

under the weak scattering regime [12,45,180]. For instance, the scalar wave equation,

∂2
ttpε(t,x) − c2

(x
ε

)
∆xpε(t,x) = 0 (t,x) ∈ (0,∞) × Ω, (5.1)

with Ω = R3,
c2
(x
ε

)
:= c2

0

(
1 +

√
εV
(x
ε

))
, (5.2)

and equipped with appropriate initial conditions at t = 0, can be recast as the following first-order
hyperbolic system:

ε∂tuε + Aεuε = 0, where Aε := −
(

0 c2(x/ε)
ε2∆x 0

)
,

and
uε(t,x) :=

(
pε(t,x)

ε c−2(x/ε)∂tpε(t,x)

)
(t,x) ∈ [0,∞) × Ω.

The random field V in (5.2) accounts for variations of the wave-speed profile, and is assumed to exhibit
some mixing properties. The energy carried by uε can be described using the Wigner transform,

Wε(t,x,k) := W [uε,uε](t,x,k) =
∫
eik·yuε(x − εy/2) ⊗ uε(x + εy/2) dy

(2π)3 .

The asymptotic behavior of this energy density is given by

W0(t,x,k) = lim
ε→0

Wε(t,x,k) = a(t,x,k)B(k) + a(t,x,−k)BT (k), (5.3)

where
B(k) := 1

2

(
1/|k|2 i/(c0|k|)

−i/(c0|k|) 1/c2
0

)
, (5.4)

and BT (k) stands for its transposition. Here, B corresponds, in the Fourier domain, to an eigenvector
of a dispersion matrix associated to Aε with c2

0 instead of c2(x/ε). The amplitude a(t,x,k) satisfies
the following radiative transfer equation (RTE):

∂ta(t,x,k) + c0k̂ · ∇xa(t,x,k) = −Σ(k)a(t,x,k) +
∫
σ(k,q)a(t,x,q)δ(c0(|q| − |k|))dq, (5.5)
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with k̂ := k/|k|, initial conditions of the form

a(t = 0,x,k) = A(k)δ(x − x0), (5.6)

and scattering kernel and attenuation respectively given by

σ(k,q) := πc2
0|k|2

2(2π)3 R̂(k − q), and Σ(k) :=
∫
σ(k,q)δ(c0(|q| − |k|))dq. (5.7)

Here, R̂ stands for the power spectral density of the random fluctuations V . It is worth mentioning
that the limiting equation is deterministic while the original wave problem is of stochastic nature.
Due to the high-frequency regime under consideration, averaging phenomena occur resulting in a
deterministic model for the energy propagation.

Despite being a significant challenge for engineering applications, radiative transfer models involv-
ing boundaries have received less attention [2,22,150,161,181]. The main configuration studied in the
literature corresponds to a half-space (Ω = R2 × R∗

−), where radiative transfer models remain valid.
With either Dirichlet or Neumann boundary conditions on ∂Ω = {xn = 0}, the resulting boundary
condition for the Wigner transform is a geometric optic type reflection condition:

W (t,x⊥, xn = 0,k⊥, kn) = W (t,x⊥, xn = 0,k⊥,−kn). (5.8)

In this chapter the spatial variable x is split into two components, x = (x⊥, xn). Here, the xn-variable
represents the coordinate along the unit normal vector to the plane R2 × {0}, while x⊥ denotes its
transverse coordinate. Similarly, the wavevector is decomposed as k = (k⊥, kn). Therefore, the
relation (5.8) corresponds to a reflection condition w.r.t. the xn-variable.

In what follows three propagation domains are discussed: the half-space, the slab, and the rect-
angle, all considered with Neumann boundary conditions for simplicity. For each case, the energy
density propagation is described using RTEs, similar to (5.5), with reflection conditions (5.8) along
each boundaries. Additionally, we present interference effects resulting from the presence of these
boundaries. These effects can take place along the boundaries or within the propagation domain.
Our approach is based on a method of images, which allows to extend the propagation domain over
the full physical space R3 and conveniently represents these interference effects using the standard
Wigner transform.

5.1 Boundary effects for a half-space
For the half-space Ω = R2 × R∗

−, the wave equation (5.1) is equipped with Neumann boundary
conditions,

∂xnpε(t,x⊥, xn = 0) = 0 (t,x⊥) ∈ (0,∞) × R2,

and initial conditions of the form

pε(t = 0,x) = 1
ε3/2A

(x − x0

ε

)
and ∂tpε(t = 0,x) = 1

ε3/2B
(x − x0

ε

)
, (5.9)

where x0 represents the source location in Ω. Here, the scaling in ε allows a nontrivial limit for
the Wigner transform. The functions A and B are assumed to be even w.r.t the xn-variable to
provide convenient symmetry properties, and compactly supported so that the supports of the initial
conditions do not cross the interface {xn = 0}. In this chapter, we only consider the situation of initial
conditions supported at a distance of order 1 from the boundaries. Situations where the source in
close to the border (e.g. x0,n → εx0,n for instance) and Dirichlet boundary conditions are addressed
in [158].

5.1.1 The method of images
The basic principle of the method of images is to replace the wave propagation problem posed on a
half-space with two new ones posed on the full-space:

∂2
ttp

±
ε (t,x) − c2

♯,ε(x)∆xp
±
ε (t,x) = 0 (t,x) ∈ (0,∞) × R3,
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Fig. 5.1: Illustration of the method of images for the half-space bounded above by the dashed line
representing {xn = 0}. p− represents an up-going wave propagating in a full-space from the original
source location (in green). p+ represents the down-going wave propagating from a fictitious source
location resulting from the method of images (in red). The rightmost picture illustrates the original
wave p propagating in the half-space, from the original source location, as a superposition of p+ and
p−.

with symmetric initial conditions,

p−
ε (t = 0,x) = 1

ε3/2A
(x⊥ − x0,⊥

ε
,
xn − x0,n

ε

)
, p+

ε (t = 0,x) = 1
ε3/2A

(x⊥ − x0,⊥

ε
,
xn + x0,n

ε

)
,

and

∂tp
−
ε (t = 0,x) = 1

ε3/2B
(x⊥ − x0,⊥

ε
,
xn − x0,n

ε

)
, ∂tp

+
ε (t = 0,x) = 1

ε3/2B
(x⊥ − x0,⊥

ε
,
xn + x0,n

ε

)
.

The extended wave-speed profile reads

c♯,ε(x) := c
(x⊥

ε
,
xn
ε

)
1R−(xn) + c

(x⊥

ε
,−xn

ε

)
1R∗

+
(xn) x ∈ R3.

The solution p−
ε is referred to as the up-going wave, and p+

ε to as the down-going wave. Note that
c♯,ε is an even function w.r.t. the xn-variable so that

p+
ε (t,x⊥, xn) = p−

ε (t,x⊥,−xn), (5.10)

for all (t,x⊥, xn) ∈ [0,∞) × R2 × R. Finally, the extended wave problem is obtained by considering
p♯ε defined as

p♯ε(t,x) := p−
ε (t,x) + p+

ε (t,x) (t,x) ∈ R+ × R3.

The symmetry relation (5.10) leads to the boundary conditions ∂xn
p♯ε(t,x⊥, xn = 0) = 0, so that,

restricted to the half-space, the extended wavefield p♯ε corresponds to the original one pε:

p♯ε(t,x) = pε(t,x),

for any (t,x) ∈ [0,∞) × Ω.
The wave equations associated to the up- and down-going waves can be recast as first order

hyperbolic systems:

ε∂tujε + Aεujε = 0, where Aε := −
(

0 c2
♯,ε(x)

ε2∆ 0

)
,

with
ujε(t,x) :=

(
pjε(t,x)

ε c−2
♯,ε (x)∂tpjε(t,x)

)
(t,x) ∈ [0,∞) × R3,

for j ∈ {−,+}. A similar system can be obtained for p♯ε by setting

u♯ε := u−
ε + u+

ε .
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The energy density carried by u♯ε is described through its Wigner transform

W ♯
ε := W [u♯ε,u♯ε],

and the energy density associated to the original problem is assumed to be given by the restriction of
W ♯
ε over the original half-space.
Note that c2

♯,ε can be written as (5.2), where the fluctuations around the background wave speed
c0 are of the form

V♯

(
x, x
ε

)
= V♯(x,y)|y= x

ε
:= V (y⊥, yn)1R−(xn) + V (y⊥,−yn)1R∗

+
(xn) |y= x

ε
.

For any fixed slow component x, the power spectral density of V♯(x, ·), w.r.t. the fast component y,
reads

E
[
ν̂♯(x,p)ν̂♯(x,q)

]
= (2π)3δ(p + q)R̂(p), (5.11)

where V̂♯(x,p) stands for the Fourier transform of V♯(x, ·) w.r.t. the y-variable. Due to the symmetries,
the resulting power spectral density does not depend on the slow component x, and the method of
images plays no role in the limiting RTE.

5.1.2 Radiative transfer model and boundary effects
The Wigner transform for u♯ε can be expanded as

W ♯
ε (t,x,k) = W [u♯ε,u♯ε](t,x,k) = W s

ε (t,x,k) +W s
ε (t,x⊥,−xn,k⊥,−kn)

+W c
ε (t,x,k) +W c

ε (t,x⊥,−xn,k⊥,−kn),

where, using the symmetry relation (5.10),

W s
ε := W [u−

ε ,u−
ε ] and W c

ε := W [u−
ε ,u+

ε ].

The term W s
ε is referred to as self-Wigner transform, and W c

ε to as cross-Wigner transform.
To describe the energy density carried by u♯ε, it is necessary to analyze the asymptotic behavior

of both the self-Wigner transform and cross-Wigner transform. Thanks to the method of images
the asymptotic behavior of the self-Wigner transform remains as for the full space (5.3). However,
when considering the cross-Wigner transform, the same asymptotic analysis to that of the self-Wigner
transform can be applied. This strategy results as well in a standard (linear) RTE, but this time with
null initial conditions,

lim
ε→0

W c
ε (t = 0) = 0,

as the supports of the initial conditions of u−
ε and u+

ε are disjoint. Therefore, the contribution of the
cross-Wigner transform is here negligible:

lim
ε→0

W c
ε (t) = 0,

for any time t > 0. As a result, the energy density carried by u♯ε is given by

W tot(t,x,k) := lim
ε→0

W ♯
ε (t,x,k) = W0(t,x,k) +W0(t,x⊥,−xn,k⊥,−kn)

=
(
a(t,x,k) + a(t,x⊥,−xn,k⊥,−kn)

)
B(k)

+
(
a(t,x,−k) + a(t,x⊥,−xn,−k⊥, kn)

)
BT (k),

where the amplitude a satisfies the RTE (5.5) defined over the full-space R3, and B is given by (5.4).
The resulting asymptotic energy density W tot satisfies the reflection condition (5.8), and describes
the energy propagation over the entire propagation domain. To capture interference effects we need
to be a bit more careful.

The idea behind the interference phenomena is the following. Considering two mean-zero random
variables X and Y with variance s2, one can draw an analogy between the variance E[(X + Y )2] and
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the total energy density of the extended wave field p♯ε, which is the superposition of p−
ε and p+

ε . By
expanding the square and the expectation, we obtain:

E[(X + Y )2] = E[X2] + E[Y 2] + 2E[XY ] = 2s2(1 + cos(ϕ)),

with ϕ ∈ [0, 2π). Therefore, the manifestation of the amplification phenomenon depends on the
correlation between the two random variables. More precisely, for two independent random variables,
no phenomenon is observed; for two perfectly positively correlated variables, the mean square of X+Y
is doubled. To observe some correlations between p−

ε and p+
ε , it should necessarily be at the interface

{xn = 0}, where the two waves are crossing. These correlations can be captured by the cross-Wigner
transform that can be rewrite as

W c
ε (t,x,k) = 2

ε(2π)

∫∫
e−2iknyn/εe2ipnxn/εW s

ε (t,x⊥, yn,k⊥, pn)dpndyn. (5.12)

The presence of the highly oscillatory terms e−2ikn/ε and e2ipnxn/ε suggests to focus our attention at
the vicinity of the interface {xn = 0} (within one wavelength), leading to the two changes of variables:

x → xε := (x⊥, εx̃n/2) and k → kε := (k⊥, εk̃n/2).

This first change of variable allows to focus near the boundary {xn = 0}, and the second one corre-
sponds to directions approximately parallel to this plane.

As a result, the asymptotic (nontrivial) contribution of W c
ε is given by

lim
ε→0

εW c
ε (t,xε,kε) = 2

(2π)

∫
e−ik̃nyneipnx̃nW0(t,x⊥, yn,k⊥, pn)dpndyn,

with W0 defined by (5.3). This yields the total energy at the vicinity of the boundary {xn = 0}:

Eboundary(t,x⊥, x̃n) = 2
∫
a(t,x⊥, xn = 0,k)(1 + cos(knx̃n))D(k)dk,

with
D(k) :=

(
1/|k|2 0

0 1/c2
0

)
. (5.13)

Finally, for x̃n = 0, that is exactly at the boundary, we have the relation:

Eboundary(t,x⊥, x̃n = 0) = 2
∫
W tot(t,x⊥, xn = 0)dk,

corresponding to a doubling of the energy described at the macroscopic level.
To conclude this section, it’s important to note that the underlying idea to exhibit interference

effects involves the analyze of two waves propagating in opposite directions along the mediator plane
of the line joining the two sources. In the case of the half-space, the two waves cross at the boundary.
In the remaining of this chapter, this idea is behind all the interference effects we describe.

5.2 Weak localization phenomena for a slab
In this section, a slab is defined as a domain contained in between two parallel planes:

Ω = R2 × (0, H).

The wave equation (5.1) is equipped with two Neumann boundary conditions,

∂xnp(t,x⊥, xn = 0) = ∂xnp(t,x⊥, xn = H) = 0, (t,x⊥) ∈ (0,∞) × R2.

The initial conditions (5.9) are again assumed to be compactly supported within Ω to do not cross
the boundaries, and even w.r.t the xn-variable to provide convenient symmetry properties.

As described below, the situation in a slab slightly differs from that in a half-space. Although
similar interference effects can be observed at the boundaries of the slab, additional interferences occur
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Fig. 5.2: Illustration of the method of images for the slab. The red crosses correspond to the source
locations. Each wave propagates in a periodic full-space. Interference effects are observed within one
wavelength of the boundaries (thick black lines), as well as along the dashed lines within the slab.

between waves emitted in opposite directions and crossing each other within the slab after bouncing
back and forth between the boundaries. We refer to these additional interference effects as weak
localization phenomena in the sense of [47, 76]. Although this term is often associated with enhance
backscattering produced by heterogeneous propagation media, this terminology is here associated to
reflection produced by the boundaries of the propagation medium.

The methodology used to analyze this situation relies again on the method of images, but it is
now combined with an appropriate periodization of the source and wave-speed profile.

5.2.1 The method of images
The main idea is here to replace the wave problem posed on the slab, with given initial conditions,
by a family of problems set over the full-space (see Fig. 5.2). To this end, we introduce the following
wave problem over the full-space:

∂2
ttqε(t,x) − c2

♯,ε(x)∆xqε(t,x) = 0 (t,x) ∈ (0,∞) × R3,

with initial conditions (5.9), and wave-speed profile

c♯,ε(x) =
∑
j∈Z

c
(x⊥

ε
,
xn − 2jH

ε

)
1[0,H)(xn−2jH)+ c

(x⊥

ε
,

−xn + 2jH
ε

)
1[−H,0](xn−2jH) x ∈ R3.

The extended wavefield over the full-space is then given by

p♯ε(t,x) :=
∑
j∈Z

qε(t,x⊥, xn − 2jH) + qε(t,x⊥,−(xn − 2jH)) (t,x) ∈ [0,∞) × R3, (5.14)

and through symmetry relations corresponds to the original wavefield on the slab:

p♯ε(t,x) = pε(t,x),

for all (t,x) ∈ [0,∞) × Ω.
A first order hyperbolic system can be associated to p♯ε and qε by considering

uε(t,x) :=
(

qε(t,x)
ε c−2

♯,ε (x)∂tqε(t,x)

)
and u♯ε(t,x) :=

(
p♯ε(t,x)

ε c−2
♯,ε (x)∂tp♯ε(t,x)

)
,

for (t,x) ∈ [0,∞) × R3. According to (5.14) both wavefield are related as follows,

u♯ε(t,x) =
∑
j∈Z

uε(t,x⊥, xn − 2jH) + uε(t,x,−xn + 2jH) (t,x) ∈ [0,∞) × R3.
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5.2.2 The self- and cross-Wigner transforms
The energy density carried by p♯ε, represented by the Wigner transform of u♯ε, can be expanded as

W ♯
ε := W [u♯ε,u♯ε] = W 1,♯

ε +W 2,♯
ε +W 3,♯

ε ,

with

W 1,♯
ε (t,x,k) :=

∑
j∈Z

Wε(t,x⊥, xn − 2jH,k) +Wε(t,x⊥,−xn + 2jH,k⊥,−kn),

W 2,♯
ε (t,x,k) :=

∑
j,ℓ∈Z

V jℓε (t,x,k) + V jℓε (t,x⊥,−xn,k⊥,−kn),

W 3,♯
ε (t,x,k) :=

∑
j,l∈Z
ℓ ̸=j

W jℓ
ε (t,x,k) +W jℓ

ε (t,x⊥,−xn,k⊥,−kn),

where
Wε := W [uε,uε],

refers to as the self-Wigner transform, and

V jℓε (t,x,k) :=
∫
R3
eik·yuε

(
t,x⊥ − εy⊥

2 , xn − εyn
2 − 2jH

)
⊗ uε

(
t,x⊥ + εy⊥

2 ,−xn − εyn
2 + 2ℓH

)) dy
(2π)3

W jℓ
ε (t,x,k) :=

∫
R3
eik·yuε

(
t,x⊥ − εy⊥

2 , xn − εyn
2 − 2jH

)
⊗ uε

(
t,x⊥ + εy⊥

2 , xn + εyn
2 − 2ℓH

) dy
(2π)3 ,

which both refer to as cross-Wigner transforms.
The cross-Wigner transform V jℓε corresponds to waves whose initial conditions are located around

(x0,⊥, 2jH + x0,n) and (x0,⊥, 2ℓH − x0,n) respectively. The mediator plane of the line joining these
two sources, and along which interference effects take place, is {xn = (j + ℓ)H}. When restricted
to the slab, V jℓε provides nontrivial effects at the boundaries of the slab: {xn = 0} for ℓ = −j, and
{xn = H} for ℓ = 1 − j.

Regarding the cross-Wigner transform W jℓ
ε , it corresponds to waves whose initial conditions are

located around either (x0,⊥, 2jH+x0,n) and (x0,⊥, 2ℓH+x0,n) in a first case, or around (x0,⊥,−2jH−
x0,n) and (x0,⊥,−2ℓH−x0,n) in a second case. The mediator plane of the line joining these two sources,
and along which interference effects take place, is {xn = ±x0,n±(j+ℓ)H}. When restricted to the slab,
W jℓ
ε provides nontrivial effects along {xn = x0,n} for ℓ = −j in the first case, and {xn = H − x0,n}

for ℓ = −1 − j in the second case. In contrast to V jℓε , the terms W jℓ
ε describe interference effects

affecting only the coherent part of the energy. The reason for this difference, w.r.t. V jℓε , arise from
the fact that when the two waves associated to W jℓ

ε intersect, they have experienced different random
propagation media, while for V jℓε they travel through the same medium by symmetry.

5.2.3 Boundary effects and weak localization phenomena
As for the half-space, without specific precaution, both cross-Wigner transforms V jℓε and W jℓ

ε go to
0 as ε → 0. In fact, the limits of V jℓε and W jℓ

ε can be both described as solutions to standard (linear)
transport equations with null initial conditions. As a result, the total energy density propagating over
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the whole slab is only given by the contribution of W 1,♯
ε , which is associated to self-Wigner transforms:

W tot(t,x,k) := lim
ε→0

W ♯
ε (t,x,k) = lim

ε→0
W 1,♯
ε (t,x,k)

=
∑
j∈Z

W0(t,x⊥, xn − 2jH,k) +W0(t,x⊥,−xn + 2jH,k⊥,−kn)

=
∑
j∈Z

(a(t,x⊥, xn − 2jH,k) + a(t, (x⊥,−xn + 2jH,k⊥,−kn))B(k)

+
∑
j∈Z

(a(t,x⊥, xn − 2jH,−k) + a(t,x⊥,−xn + 2jH,−k⊥, kn))BT (k),

according to (5.3). From this formulation, W tot satisfies the reflexion condition (5.10) at both xn = 0
and xn = H. The sum in j accounts for the periodic behavior of the energy density within the slab.

Regarding the interference effects within one wavelength of the boundary {xn = 0}, and using a
representation similar to (5.12), we have now

E{xn=0}(t,x⊥, x̃n) :=
∫

lim
ε→0

W ♯
ε (t, εx̃n/2,k)dk

=
∫

lim
ε→0

W 1,♯
ε (t, εx̃n/2,k)dk

+ 1
2
∑
j∈Z

∫
lim
ε→0

εV j,ℓ=−j
ε (t,x⊥, εx̃n/2,k⊥, εk̃n/2))

+ lim
ε→0

εV j,ℓ=−j
ε (t,x⊥,−εx̃n/2,k⊥,−εk̃n/2)dk⊥dk̃n,

yielding after some algebra to

E{xn=0}(t,x⊥, x̃n) = 2
∑
j∈Z

∫
a(t,x⊥, 2jH,k)(1 + cos(knx̃n))D(k)dk,

where D is given by (5.13). At exactly the boundary, we obtain again a doubling of the total energy,

E{xn=0}(t,x⊥, x̃n = 0) = 2
∫
W tot(t,x⊥, xn = 0)dk.

The same type of result holds at the boundary {xn = H},

E{xn=H}(t,x⊥, x̃n) =
∫

lim
ε→0

W ♯
ε (t,H + εx̃n/2,k)dk

= 2
∑
j∈Z

∫
a(t,x⊥, (2j + 1)H,k)(1 + cos(knx̃n))D(k)dk.

yielding also a doubling of the total energy

E{xn=H}(t,x⊥, x̃n = 0) = 2
∫
W tot(t,x⊥, xn = H)dk.

Regarding, the interference effects along the plane {xn = x0,n}, we have this time

E{xn=x0,n}(t,x⊥, x̃n) :=
∫

lim
ε→0

W ♯
ε (t,x⊥, x0,n + εx̃n/2,k)dk

=
∫

lim
ε→0

W 1,♯
ε (t,x⊥, x0,n + εx̃n/2,k)dk

+ 1
2
∑
j∈Z∗

∫∫
lim
ε→0

W j,ℓ=−j
ε (t,x⊥, x0,n + εx̃n/2,k⊥, εk̃n/2)dk⊥dk̃n.
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After some algebra, the total energy reads

E{xn=x0,n}(t,x⊥, x̃n) =
∫
W tot(t,x⊥, xn = x0,n)dk

+ 2
∑
j∈Z∗

∫
cos(knx̃n)e−Σ(k)tA(k)δ(x⊥ − x0,⊥ − c0tk̂⊥)

× δ(2jH − c0tk̂n)D(k)dk

+ 2
∑
j∈Z∗

∫
sin(knx̃n)e−Σ(k)tA(k)δ(x⊥ − x0,⊥ − c0tk̂⊥)

× δ(2jH − c0tk̂n)D̃(k)dk,

with
D̃(k) := 1

c0|k|

(
0 1

−1 0

)
,

D given by (5.13), A by (5.6), and Σ(k) by (5.7). In this formulation, the Dirac masses δ(2jH−c0tk̂n)
account for the periodic onset of the interferences, which occurs at each time 2jH/c0 for j ≥ 1. Also,
each contribution is damped at rate Σ(k) (no multiple scattering) and freely transport along the
plane {xn = x0,n}. These additional contributions are associated to the coherent part carried by the
amplitude a, satisfying the RTE (5.5), along the plan {xn = x0,n}.

The same type of result holds for the plane {xn = H − x0,n}, where the total energy reads

E{xn=H−x0,n}(t,x⊥, x̃n) =
∫
W tot(t,x⊥, xn = H − x0,n)dk

+ 2
∑
j∈Z

∫
cos(knx̃n)e−Σ(k)tA(k)δ(x⊥ − x0,⊥ − c0tk̂⊥)

× δ((2j + 1)H − c0tk̂n)D(k)dk

+ 2
∑
j∈Z

∫
sin(knx̃n)e−Σ(k)tA(k)δ(x⊥ − x0,⊥ − c0tk̂⊥)

× δ((2j + 1)H − c0tk̂n)D̃(k)dk.

5.3 The case of a rectangle
The interference effects we observe for a rectangular domain [0, H1] × [0, H2] share similarities with
those observed in the half-space and the slab. Nevertheless, due to the bounded nature of the propaga-
tion domain, there are additional interference locations. In this section, we follow the same strategy,
but do not provide any mathematical details on the interference effects as their descriptions are
quite technical. Instead, we provide formal descriptions supported by some illustrations. A detailed
treatment of this situation can be found in [158].

The method of images The method of images follows here a similar strategy to that used for the
slab. The solution to the wave equation on the rectangle is extended over the full space R3, but in
contrast to the slab, both coordinates are bounded and necessitate a periodic extension. The solution
to the extended wave equation can be expressed as a superposition of waves whose initial conditions
are located in a symmetric and periodic manner in order to enforce Neumann boundary conditions.
We refer to Fig. 5.3 for an illustration. As a result, the extended solution reduces to the original wave
problem when restricted to the rectangle.

Self- and cross-Wigner transform The analysis of the energy propagation is conducted using
the Wigner transform of the extended solution. This Wigner transform can be expanded over two
types of Wigner transform: the self- and cross-Wigner transform. As with the slab, the self-Wigner
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Fig. 5.3: Illustration of the method of images for the rectangle [0, H1]× [0, H2]. Each wave propagates
from a different initial location (in red).

transforms account for energy propagation all over the rectangle, and can be described in terms of
the standard RTE (5.5) over the full space:∫

W tot(t,x,k)dk =
∑

j1,j2∈Z2

∑
α1,α2∈{+,−}

∫
a(t, α1(x1 − 2j1H1), α2(x2 − 2j2H2),k)D(k)dk,

where a satisfies (5.5) in R2 instead of R3, D is given by (5.13). Here, W tot satisfies reflexion
conditions similar to (5.10) along each boundaries. The infinite sums in j1 and j2 account for the
periodic behavior of the energy propagation when restricted to the rectangle w.r.t. both variables.

The cross-Wigner transforms capture interference effects over the propagation domain. As ob-
served for the half-space and the slab, these effects occur along the mediator line of the line connecting
the two source locations.

Interference effects along the boundaries As in the context of a half-space or a slab, con-
structive interference effects can be observed within one wavelength of each boundaries, resulting in
a doubling of the total energy when looking exactly at the borders. In this case the whole energy is
affected, not only its coherent part. We refer to Fig. 5.4 for an illustration.

Interference effects along lines parallel to the boundaries Similar to the slab, interference
effects occur within one wavelength along lines parallel to the boundaries, passing through the source
location and three other symmetric points. In this context, the two interacting waves have not
experienced the same propagation medium, so that only the coherent part of the energy is affected.
We refer to Fig. 5.5 for an illustration.

Due to the bounded nature of the propagation domain, additional symmetries between two source
locations become possible.

Interference effects along lines passing though the corners The periodic extension of the
rectangle in both coordinates allows to draw mediator lines, w.r.t. the lines connecting the source
locations, that are now oblique when crossing the rectangle. As illustrated in Fig. 5.6, pairs of sources
are able to produce interference effects along oblique lines passing through symmetric points, here
the corners of the rectangle. In this context, the two interacting waves have travel through the same
propagation medium, resulting in interferences that affect the whole energy, not only its coherent
part. In contrast with the interference lines parallel to the boundaries, here, a given line supports
interference effects only once over time. Despite the periodic nature of these effects, as they pass
through the same corner, the lines supporting the interference effects rotate as the source locations
producing these interferences are getting apart from each other.

84



Fig. 5.4: Illustration of the interference effects localized within one wavelength of the four boundaries
(red dashed lines).

Fig. 5.5: Illustration of the interference effects within one wavelength of the vertical lines {x1 = x0,1}
and {x1 = H1 − x0,1}, as well as the horizontal lines {x2 = x0,2} and {x2 = H2 − x0,2} (the red
dashed lines).
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Fig. 5.6: Illustration of an interference effect within one wavelength of the line passing through the
lower left corner (red dashed lines).

Interference effects along lines passing though the source location and symmetric points
Twelve additional symmetric points can be identified, all located along the boundaries and inside the
rectangle (including the original source location). We refer to Fig. 5.7 for an illustration. As for the
corners, and for the same reasons, oblique lines of interference are passing periodically through these
points. However, a given line supports interference effects only once over time. Nonetheless, in this
context, the two interacting waves have not experienced the same propagation medium, resulting in
interference affecting only the coherent part of the energy.

Fig. 5.7: Illustration of an interference effect within one wavelength of the line passing through
one of the twelve points (here (H1, H2 − x0,2)). The points are x0 (the source location), and from
the bottom to the top, (x0,1, 0), (H1 − x0,1, 0), (0, x0,2), (H1 − x0,1, x0,2), (H1, x0,2), (0, H2 − x0,2) ,
(x0,1, H2 − x0,2), (H1 − x0,1, H2 − x0,2), (H1, H2 − x0,2), (x0,1, H2), (H1 − x0,1, H2).

5.4 Perspectives
The understanding of the weak localization phenomena in the context of RTEs is a major challenge in
nondestructive testing of concrete structures. These phenomena, driven by interference effects, offer
the opportunity to extract valuable information from the enhancement intensity about the internal
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structure and material properties. Numerical test should be performed to compare our theory with
the work of [47, 76] conducted in homogeneous media. In particular, in heterogeneous media, the
weak localization effects are exponentially damped, much like the total energy traveling over the
whole domain. Therefore, quantifying the duration over which weak localization phenomena can be
effectively leveraged in measurements before becoming negligible would be an interesting pursuit.

For engineering applications, the boundaries of the propagation medium play an important role.
An interesting problem is to provide a precise description, in the context of elastic waves, of the
surface modes (Rayleigh and Love) and their interplay with bulk modes. This relation could be
incorporated into radiative transfer models, for applications in geophysics and nondestructive testing,
and investigate how surface modes are related to the weak localization effects presented in this chapter.
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Chapter 6
Wave scattering by rough surfaces

Two aspects are discussed in this chapter. The first situation corresponds to waves propagating along
a waveguide with rough-boundaries, and the second to waves that impinge upon a rough surface.

Acoustic wave propagation in waveguides has been studied for a long time due to its wide range
of applications. One of its most important application is submarine detection, such as mines or
archaeological artifacts detection. Additionally, it finds applications in underwater communication
and the study of the ocean’s structure or biology. Underwater acoustic waveguides are used to model
propagation media such as a continental shelves. These environments are characterized by indexes of
refraction that are both spatially and time dependent. Despite this complexity, the sound speed in
water, approximately 1500m/s, remains sufficiently large with respect to the motions of water masses
to consider this propagation medium as time independent. However, even small inhomogeneities in
water conditions, such as the heave or rough ocean bottoms, can induce significant effects over large
propagation distances.

When waves impinge upon a rough surface, they undergo scattering events due to the irregularities
in the surface profile. These scattering events result in changes of the wave’s direction, amplitude, and
phase. Consequently, the study of wave scattering phenomena by rough surfaces involves unraveling
the intricate details of these interactions to predict and analyze the behavior of waves in practical
scenarios. In applications such as radar systems, electromagnetic wave scattering theory from rough
surfaces is crucial to account for the effects of the roughness of the land or the sea surface. A similar
theoretical framework can be applied in optics. For acoustic waves, one can refer to applications
in ocean acoustic tomography or thermometry, where the sea bed and sea surface roughness play a
critical role, but also in non-destructive testing using ultrasonic waves.

This chapter describes both of these scenarios. First, we discuss the situation where a wave
propagates along a random surface in context of a waveguide. Then, we discuss the classical situation
where a wave impinges upon a rough surface, producing reflected and transmitted components. This
chapter covers the results obtained in [7, 19] of the publication list on page 6.

6.1 A Pekeris waveguide model with a rough surface and bot-
tom topography

Mathematical studies regarding acoustic wave propagation in randomly perturbed waveguides have
been carried out in many papers [70,82,91] under the assumption of rigid waveguide boundaries and
random perturbations of its index of refraction. This section focuses on a two-dimensional acoustic
waveguide model with a Pekeris profile, a randomly perturbed free surface, and uneven bottom to-
pography (see Fig. 6.1). Our approach is built on a conformal transformation providing a smooth
change of coordinates and allowing the use of the modal decomposition of the unperturbed waveg-
uide (Fig. 6.1 left picture). In this context, a propagating wavefield can be decomposed over three
kinds of mode: the propagating modes, which propagate over long distances along the waveguide; the
evanescent modes, whose amplitudes decrease exponentially with the propagation distance along the
waveguide; and the radiating modes, representing modes that can penetrate beneath the ocean floor.

88



Ocean

Bottom

Ocean

Bottom

Fig. 6.1: Illustration of two semi-infinite waveguides with a Pekeris profile. The left picture depicts
an unperturbed waveguide, while the right picture illustrates a perturbed waveguide with a free
surface and an uneven bottom topography. In both cases, the bulk properties of the waveguides are
homogeneous with a propagation speed c1 in the oceanic section of the waveguide, and c0 in the
bottom part of the waveguide.

Using an asymptotic analysis, corresponding to a high-frequency regime, the impact of the randomly
perturbed waveguide geometry on the mode coupling can be described in term of a diffusion model.

These mechanisms result in an effective attenuation of the mode amplitudes. It turns out that the
surface and bottom fluctuations mainly affect the propagating-mode amplitudes in a similar manner.
However, for the majority of the propagating modes, the attenuation mechanism is mainly due to
the coupling between the propagating mode themselves. In contrast, for the highest propagating
modes, the attenuation mechanism is mainly due to the coupling with the radiating modes, and it is
significantly stronger than for the lower propagating modes.

6.1.1 Waveguide model
A two-dimensional linear acoustic wave model is considered:

∆ − 1
c2
ε(z, x)∂

2
ttp = ∇ · F (t, z, x) ∈ R × R × (0,∞), (6.1)

with ∆ = ∂2
xx + ∂2

zz. Here, the coordinate z represents the propagation axis along the waveguide, and
the coordinate x represents the transverse section of the waveguide (see Fig. 6.1). Let d > 0 be the
average ocean depth. The velocity field is given, for z ∈ R, by

cε(z, x) =
{
c1 if V εs (z) < x < d+ V εb (z),
c0 if x > d+ V εb (z), (6.2)

with c0 > c1, and where V εs and V εb model respectively the free surface and the bottom topography
(see Fig. 6.2 for an illustration). In our context, the free surface models the heave produced by the
wind speed, and the uneven bottom topography models a sandy seabed with variations induced by
water currents [126]. The forcing term F is defined as:

F(t, z, x) = f(t)Ψ(x)δ(z − LS)ez,

where ez stands for the unit vector pointing in the z-direction. This term models a source located
in the plane z = LS , emitting a signal f(t) in the z-direction with transverse profile Ψ supported in
(0, d). Furthermore, due to the continuity of the pressure field at the free surface x = V εs (z), which is
tantamount to neglect the surface tension, the wave equation (6.1) is complemented by the following
boundary conditions:

p(t, z, V εs (z)) = psurface (t, z) ∈ R × R,
where psurface represents the atmospheric pressure. However, one can assume without loss of gener-
ality that:

psurface = 0,
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Ocean

Bottom

2

Fig. 6.2: Illustration of the waveguide model. In this figure d represents the mean ocean depth, and
the random fluctuations are given by the graphs of V εs at the free surface, and d+V εb at the bottom of
the waveguide model. We illustrate the source term F emitting a wave f(t) in the z-direction. L/ε2

characterizes the size of the section in which the random fluctuations occur. The right arrow (with a
0) pointing to the left at z = L/ε2 indicates that no wave is coming from the right at the end of the
random section.

which leads to Dirichlet boundary conditions at the free surface, and corresponding to a pressure-
release condition. The central wavelength λ of the source term is assumed to be of order one, and we
consider a propagation distance given by L/ε2 to place ourselves in a high-frequency regime.

Waveguide models with a Pekeris profile (6.2) have been extensively studied for half a century [174],
and has been widely used to model an ocean with a constant propagation speed profile (like in
Figure 6.1). Such conditions can be found during the winter in Earth’s mid latitudes and in water
shallower than about 30 meters [138]. This profile is convenient for mathematical treatments, but
it underestimates the real complexity of the medium. Nevertheless, the analysis carried out in this
paper can be extended to more general propagation speed profiles. This model can also be used
for electromagnetic waveguides, such as dielectric slabs or optical fibers with randomly perturbed
boundaries [145,149].

In (6.2), the perturbations of the waveguide geometry V εs and V εb are defined by

V εs (z) = εVs(z)fs(ε2z) and V εb (z) = εVb(z)fb(ε2z).

Here, Vs and Vb are assumed to be two independent mean-zero stationary bounded stochastic pro-
cesses. The two functions fs and fb, which specify the locations of the waveguide fluctuations, are
assumed to be smooth with their supports included within the interval (0, L). Note that the scal-
ing ε ≪ 1, in front of Vs and Vb, corresponds to small fluctuations of the waveguide geometry, and
place ourselves in the weak scattering regime. In fact, wind speeds at approximately 5m/s result in
a standard deviation of the surface roughness at about 0.1m. A similar order of magnitude applies
to the roughness of sandy bottoms (see [126, Chapter 2] and [137]). Therefore, we have to wait for
long propagation distances (of order 1/ε2) to observe significant cumulative stochastic effects on the
pressure wave. Let us note that the two random processes Vs and Vb are assumed to be independent.
This assumption is justified because the surface and bottom standard deviations are small compared
to the ocean depth, and then the bottom topography does not induce any ripples on the free surface.
Power spectral densities for Vs and Vb can be found in the literature [126, Section 2.4 and Section 2.9]

Is(u) :=
∫
Rs(z)eiuzdz = Cs

|u|αs
e−C′

s/|u|µs and Ib(u) :=
∫
Rb(z)eiuzdz = Cb

4π(u2 + 1)αb/2 , (6.3)

with Cs, C
′
s, Cb > 0, and

Rs(z) := E[Vs(z + z0)Vs(z0)] and Rb(z) := E[Vb(z + z0)Vb(z0)].

For instance, the cases αs = 4, αs = 6, and µs = 2, Is is referred to as the Pierson-Neumann spectra,
and for αs = 5 and µs = 4 to as the Pierson-Moscovitz spectra. Consequently, the trajectories of V εs
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Fig. 6.3: Schematic representation of the change of coordinates from the unperturbed domain D0
onto the perturbed domain DVs

.

and V εb are at least C2 with bounded derivatives, and therefore the surface fluctuations (the graph of
V εs ) produce no breaking wave.

To develop the asymptotic analysis, the random fluctuations Vs and Vb are assumed to be ϕ-mixing
processes: considering the σ-algebras

F0,z := σ(Vs(u), Vb(u), 0 ≤ u ≤ z) and Fz,∞ := σ(Vs(u), Vb(u), z ≤ u),

we have
sup
z≥0

A∈Fz+u,∞
B∈F0,z

∣∣P(A|B) − P(A)
∣∣ ≤ ϕ(u) with ϕ ∈ L1(R) ∩ L2(R).

This mixing property describes, through the function ϕ, the loss of the statistical dependency between
the past and the future of a random trajectories.

6.1.2 The conformal mapping
To investigate the asymptotic behavior of the acoustic pressure wave within the perturbed waveguide
domain, we use a change of coordinates through a conformal transformation [179] from

D0 = {u+ iv ∈ C : u > 0} onto DVs
= {z + ix ∈ C : x > V εs (z)}.

This change of coordinates allows us to study the pressure wave p(t, z, x) in a waveguide domain with
a flat surface (see Fig. 6.3). In other words, one can focus our attention on p0(t, u, v) defined by

p0(t, u, v) = p(t, z(u, v), x(u, v)),

which represents the pressure wave p(t, z, x) solution to (6.1) in a waveguide domain with a flat
surface. Here, z(u, v) + ix(u, v) = Φ(u+ iv) stands for the change of coordinates from D0 onto DVs

.
In the new set of coordinates, the acoustic pressure wave p0 satisfies Dirichlet boundary conditions at
the flat surface of the waveguide,

p0(t, u, v = 0) = 0 (t, u) ∈ R × R.

The original pressure wave p(t, z, x) can be obtained from p0(t, u, v) by inverting the change of coor-
dinates,

p(t, z, x) = p0(t, Re(Φ−1(z + ix)), Im(Φ−1(z + ix))).

The main effect of this change of coordinates is to transfer the random fluctuations of the free surface
to random fluctuations into the interior and at the bottom of the waveguide (see Fig. 6.4).
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Fig. 6.4: Illustration of the conformal transformation applied to a waveguide with a free surface
and uneven bottom topography. The two top figures depict waveguides with a free surface. In these
figures the vertical dashed lines represent unperturbed medium parameters. In the top-left picture,
the bottom is unperturbed, that is V εb ≡ 0, while in the top-right picture, the bottom of the waveguide
is perturbed. The bottom picture illustrates the waveguide after the conformal transformation. In
this figure, the perturbed vertical dashed lines mean perturbed medium parameters. Moreover, if the
bottom was already perturbed before the conformal transformation, it is now also perturbed by the
waveguide transformation.

In the time-Fourier domain p0 can be decomposed over a basis of modes,

p̂0(ω, u, v) =
N(ω)∑
j=1

p̂j(ω, u)ϕj(ω, v)︸ ︷︷ ︸
propagating modes

+
∫ k2

ω

0
p̂γ(ω, u)ϕγ(ω, v)dγ︸ ︷︷ ︸
radiating modes

+
∫ 0

−∞
p̂γ(ω, u)ϕγ(ω, v)dγ︸ ︷︷ ︸
evanescent modes

, (6.4)

corresponding to the spectral decomposition of the (unperturbed) Pekeris operator defined by

Rω = d2

dv2 + k2
ωn

2(v) with n(v) =
{
n1 = c0/c1 > 1 if v ∈ (0, d),

1 if v ≥ d,

where kω = ω/c0. The (ϕj)j∈{1,...,N(ω)} and (ϕγ)γ∈(−∞,k2(ω)) are the (eigen)elements of the spectral
measure associated to Rω, corresponding respectively to its discrete spectrum and continuous spec-
trum. The coefficients p̂j and p̂γ represent the amplitudes associated to each mode (propagating,
radiative and evanescent modes).

The waveguide fluctuations result in a coupling between all these modes. In (6.4), the only modes
that can propagate over long distances along the waveguide are the propagating modes. All the other
modes play only a secondary role in the analysis.

6.1.3 Main result
Neglecting the backscattering effects, an asymptotic analysis can be applied based on a approximation-
diffusion theorem. The effective mode-coupling mechanism can be described in term of a diffusion
process, so that the expected pressure field of p̂0(ω, u, v), at the end of the perturbed section u = L/ε2,
can be approximated for ε ≪ 1 by

E
[
p̂0

(
ω, u = L

ε
, v
)]

≃
N(ω)∑
j=1

âj,0(ω)√
βj(ω)

e−Tj(ω,L)+iPj(ω,L)eiβj(ω)L/ε2
ϕj(ω, v).

Here, the βj(ω)’s correspond to modal wavenumbers as introduced in Sect. 3.1, and the âj,0(ω)’s
represent the initial amplitudes of the propagating modes generated by the source term and entering
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the random section. It turns out that the coherent transmitted wavefield at u = L/ε2 is composed of a
superposition of propagating modes, where each mode is affected by an effective frequency-dependent
attenuation and phase modulation through respectively Tj(ω,L) and Pj(ω,L). In particular, the
attenuation coefficients are of the form

Tj(ω,L) = Csj (ω)
∫ L

0
f2
s (z)dz + Cbj (ω)

∫ L

0
f2
b (z)dz,

with Csj (ω), Cbj (ω) > 0, accounting for the modal cumulative net scattering effects of the perturbed
waveguide geometry.

Due to the exponential decay of the evanescent mode amplitudes w.r.t the propagation distance,
these modes do not play a direct role in the transmitted wavefield. Nonetheless, they induce an
indirect influence on the propagating modes through a mode-dependent phase modulation encoded in
Pj(ω,L). The radiating modes do not play any direct significant role neither. Through the asymptotic
analysis and the continuous nature of the associated spectrum, it can be shown that these modes are
not affected by the perturbations of the propagation medium. Their contributions are therefore of
the form ∫ k2

ω

0

âγ,0(ω)
γ1/4 ei

√
γL/ε2

ϕγ(ω, v)dγ,

involving a rapid phase term which cancels out the integral in the limit ε → 0. Nevertheless, they
also play an indirect role in the attenuation coefficient Tj(ω,L) as described in the following result.

Theorem 6.1.1 In the limit of a large number of propagating modes kω ≫ 1, knowing that N(ω) =
[kωdθ/(c1π)], we have for α ∈ {s, b}:

• for j ≪ N(ω)1/2,

Cαj (ω) ∼
kω≫1

K1,αk
3/2
ω

j2

N(ω)2

∫ ∞

0

√
uIα(u)du;

• for j ∼ N(ω)1/2,

Cαj (ω) ∼
kω≫1

K2,αk
3/2
ω

j2

N(ω)2

∫ ∞

0

√
uIα

(
u− j2πθ

2N(ω)d

)
du;

• for N(ω)1/2 ≪ j ≲ νN(ω), with ν ∈ (0, 1),

Cαj (ω) ∼
kω≫1

K3,αk
2
ω

j3

N(ω)3

∫ ∞

0
Iα(u)du;

• for j ∼ N(ω),
K4,αk

5/2
ω ≤ Cαj (ω) ≤ K5,αk

5/2
ω ;

where all the Kj,α are positive constants, the Iα’s are given by (6.3), and θ =
√

1 − 1/n2
1.

This result provides the order of magnitude of the mode-dependent and frequency-dependent atten-
uation Tj(ω,L), which is responsible for the effective attenuation of the forward propagating-mode
amplitudes. Let us make two remarks. First, the surface and bottom fluctuations affect the mode
amplitudes mainly in a similar manner. Secondly, higher-order modes experience more significant at-
tenuation as they interact more intensely with the random boundaries, leading to increased scattering.
In fact, the higher the mode is the more it bounces on the random boundaries, and then the more it is
scattered. While low-order modes have their attenuations mainly produced by the coupling between
the propagating modes, high-order modes (j ∼ N(ω)) experience stronger attenuations due their
coupling with the radiating modes. The reason is that only the highest order modes can efficiently
couple with the radiating modes, resulting in a stronger attenuation as the radiating modes allow
strong losses in the bottom of the waveguide [91]. This kind of result has also been reported in [7] for
waveguides with a bounded cross-section, which do not support radiative modes and, therefore, does
not exhibit these additional affects.
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Fig. 6.5: Illustration of the basic physical setup: A source illuminates a rough surface producing
reflected (in red) and transmitted waves (in green). Both waves exhibit a specular and diffusive
components. The diffusive component, the speckle, corresponds to scattering of the incident wave by
the rough interface.

6.2 Reflection and transmission problems of high-frequency
waves through a randomly perturbed interface: general-
ized Snell’s laws

Despite the huge importance of this problem and the wide range of applications, there exists a limited
number of rigorous results characterizing the wavefield, whether it is transmitted through or reflected
from a rough interface [7, 16, 94, 163]. Many works in the physical literature consider a random
interface problem in a perturbative situation, where the effects of small interface variations yield
relatively small corrections in the transmitted and reflected wavefields. In this section, the interface
fluctuations are modeled trough a random field, enabling us to describe the transmitted and reflected
fields, even though they are modified to leading order. It is worth mentioning that the problem of
reflection from or transmission through a rough interface requires specialized techniques that differ
from those associated with bulk propagation, that is the approximation-diffusion approach [70]. The
basic configuration we consider here is illustrated in Fig. 6.5: a beam like wavefield (under the paraxial
scaling) illuminates a rough surface with constant medium parameters, that are different above and
below the interface.

The incident wave is typically decomposed into a reflected wave and a transmitted wave. These
wavefields are further decomposed into two main components: the specular component and the
speckle, also called incoherent or diffuse component, which results from scattering. Two central
questions are then:

i How does the fluctuations of the interface modify the specular components?

ii How can we characterize the speckle components of the wavefields, and what parameters influ-
ence their relative magnitudes and spatial supports?

It turns out that the central scaling ratio that distinguishes various canonical scattering situations
is the correlation length (or characteristic scale) of interface variations relative to the beam width.
This is particularly relevant in the critical scaling scenario considered here, where the amplitude of
the interface fluctuations is of the order of the wavelength. In particular, if the interface fluctuations
occur on the scale of the probing cone width, the reflected and transmitted specular cones exhibit
random arrival time properties. However, their main wave energies remain confined within the specular
cones as the interface fluctuations does not induce strong coupling in between modes with different
lateral wave vectors (traveling in relative oblique direction). On the other hand, when the interface
fluctuations occur on a smaller scale relative to the width of the probing cone, such a coupling takes
place. This generates homogenized specular reflected and transmitted cones with frequency-depend
attenuations related the interface elevation statistics. The missing energy from these effective specular
cones have been converted into wide speckle cones that carry a total energy of order one. The radius
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Fig. 6.6: Illustration of the physical setup. The plan z = 0 contains the source location, while the
rough interface between D0 and D1 occurs around z = zint. The reflected wave is observed at z = 0,
and the transmitted wave is observed at z = ztr.

of these large cones are characterized by the ratio of the wavelength with the correlation length of the
interface variations. In our situation, the roughness of the interface is not strong enough to generate
the enhanced backscattering effects [121]. The scattering operator we obtain is similar to the one
obtained in [183] under the Born (single scattering) approximation, and involves the statistics of the
interface relative elevation.

There is a large literature addressing the important interface scattering problem. Most of the
literature deals with physically motivated expansions, such as perturbative approaches or Kirchhoff-
type approximations, which impose stringent conditions on the applicable scaling regimes [25, 57,
189]. Additionally, integral equation formulations are commonly employed, especially in characterizing
near-field scattering [148, 187]. Sophisticated numerical methods have been developed [56, 184] to
understand wave scattering from complicated geometries. Here, we provide statistical representations
of such geometries and related scattering effects, as well as a statistical description of the speckles in
term of a Gaussian random fields.

6.2.1 The physical model
The wave equation In this section, a three-dimensional linear wave propagation modeled is con-
sidered through the scalar wave equation:

∆u− 1
c2(x, z)∂

2
ttu = ∇ · F (t,x, z) (t,x, z) ∈ R × R2 × R, (6.5)

equipped with null initial conditions

u(t = 0,x, z) = ∂tu(t = 0,x, z) = 0 (x, z) ∈ R2 × R,

and continuity conditions at the interface that are specified below. The coordinate z represents the
main propagation axis while x represents the transverse directions, F corresponds to the source term,
and the Laplacian operator ∆ = ∆⊥ + ∂2

zz acts on all spatial variables x and z. The propagation
medium consists of two homogeneous subdomains separated by a randomly perturbed interface around
z = zint:

D0 := {(x, z) ∈ R2 × R s.t. z < zint + σV (x/lc)} (6.6)
and

D1 := {(x, z) ∈ R2 × R s.t. z > zint + σV (x/lc)}. (6.7)
We refer to Fig. 6.6 for an illustration of the physical setup. The term V corresponds to a mean-zero
random field with second order derivatives (for technical reasons), modeling the interface variations
and characterizing its roughness. Away from the interface the velocity field is given by:

c(x, z) :=
{
c0 if (x, z) ∈ D0,
c1 if (x, z) ∈ D1.
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The forcing term
F (t,x, z) := Ψ

( t− k0 · x
λ

,
x
r0

)
δ(z)ez,

where ez denotes the unit vector pointing in the z-direction, models a source located in the plane
z = 0 and emitting a quasi plan wave Ψ in the spatial direction (k0, (c−2

0 − |k0|2)1/2) towards the
random interface (requiring |k0| < c−1

0 ). In a dimensionless situation, λ represents the wavelength
and r0 the spatial beam width of the source term.

The above wave equation (6.5) only requires the two following continuity relations across the
randomly perturbed interface:

u(z = zint(x)+) = u(z = zint(x)−) and ∂zu(z = zint(x)+) = ∂zu(z = zint(x)−),

where
zint(x) := zint + σV (x/lc).

Finally, no wave is assumed to come from above the source location nor below the interface. The only
waves present in the system are generated by the source term.

The parameter scaling Here, the distance from the source to the interface is denoted by zint, and
the distance from the source to the plane where the transmitted wave is recorded by ztr. Both of
these distances are assumed to be of order L ∼ 1 (the reference scale). The dimensionless parameter

ε := λ

L
≪ 1,

is assumed to be small to provide a high-frequency regime. Moreover, a paraxial (or parabolic) scaling
is considered by enforcing

r2
0
λ

∼ L,

which corresponds to a Rayleigh length of order the typical propagation distance. As already men-
tioned in this manuscript, in the homogeneous case, the Rayleigh length LR = πr2

0/λ corresponds to
the distance from the beam waist to the place where the area of its cross-section is doubled. The inter-
face fluctuations are here critically scaled in the sense that the magnitude of the interface fluctuations
and the central wavelength are of the same order,

σ ∼ λ.

Finally, lc denotes the correlation length of the interface fluctuations, which ranges from the central
wavelength to the beam width:

λ ≲ lc ≲ r0.

Note that if r0 ≪ lc the situation is trivial and corresponds essentially to a planar interface. The
ratio λ/lc characterizes how rough the surface is for the incident wave, and the cone radius for the
reflected and transmitted speckle components. For simplicity, we set

L = LR ∼ 1, λ = ε, r0 =
√
ε, σ = ε, and lc = εγ , (6.8)

with
γ ∈ [1/2, 1].

In the forthcoming presentation, a distinction is made between γ = 1/2 (that is lc ∼ r0) and 1/2 <
γ ≤ 1 (corresponding to λ ≲ lc ≪ r0). These two scenarios result in fundamentally different behaviors
for the reflected and transmitted signals. While the former induces only random specular components
(without speckle), the latter, due to fast interface oscillations compared to the beam radius (lc ≪ r0),
induces homogenization effects for the specularly reflected and the transmitted wave components. In
this case, random speckles over cones larger than the ones covered by the specular and transmitted
components are observed.
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Random fluctuations In (6.6) and (6.7), the random fluctuations of the interface delimiting the
two subspaces are defined by a mean-zero stationary random field V . These random fluctuations
are assumed to satisfy mixing properties describing the loss of statistical dependency for V over the
interface. In our 2D context, the mixing property is defined as follow. We introduce

α(r) := sup
S,S′⊂R2

d(S,S′)>r

sup
A∈σ(V (x),x∈S)
B∈σ(V (x),x∈S′)

|P(A ∩B) − P(A)P(B)|,

where
d(S, S′) = inf

s∈S
s′∈S′

|s− s′|

is the distance between two nonempty subsets S and S′, and σ(V (x), x ∈ S) is the σ-field generated
by the family V|S := (V (x))x∈S . Roughly speaking, the value α(r) quantifies the degree of statistical
dependency for the random field V over pair of regions at distance at least r. The α-mixing property
consists in assuming

α(r) → 0 as r → ∞,

giving a vanishing of the statistical dependency between V|S and V|S′ as the distance between S and
S′ tends to infinity.

6.2.2 Refection and transmission for an unperturbed interface
In the context of an unperturbed (flat) interface, the asymptotic specular reflected wave is given by

Uref (s,y) := lim
ε→0

uε
(
tεobs,ref (y) + εs,xobs,ref +

√
εy, z = 0

)
(6.9)

= R
2(2π)3

∫
e−iω(s−y·q)Û0(ω,q, 2zint)Ψ̂(ω,q)ω2dωdq.

Here, uε corresponds to the scaled solution of (6.5) according to (6.8). Therefore, Uref corresponds
to the asymptotic wave front observed at position xobs,ref +

√
εy (depending on the source frame√

εy) and time tεobs,ref (y) + εs (depending of the pulse duration εs), where

tεobs,ref (y) := tobs,ref +
√
εk0 · y, with tobs,ref := 2zint

c2
0λ0

,

and
xobs,ref := 2k0zint

λ0
.

Here, λ0 is defined by

λ0 =
√

1 − c2
0|k0|2

c0
.

The travel time is influenced here by the offset y as the beam width
√
ε is large compared to the

pulse duration ε, and that the wave front travels obliquely relative to the vertical direction. Note that
xobs,ref is twice the lateral position

xint := k0zint
λ0

, (6.10)

where the incident pulse hits the interface. Therefore, the standard reflexion relation reads

θinc = θ0
ref := arctan

( |k0|
λ0

)
, (6.11)

where the incident and reflected angles are equal. We refer to Fig. 6.7 for an illustration of the
geometrical properties of the reflection.

Regarding the reflected wave profile, the reflection coefficient R is given by

R := λ0 − λ1

λ0 + λ1
,
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Fig. 6.7: Illustration of the reflection and transmission in the context of a flat interface at z = zint.
The source is located at x = 0 in the plan z = 0, and the emitted wave hits the interface at x = xint,
in the plan z = zint, with an incident angle θinc. The reflected wave, with angle θ0

ref , is observed in
the plan z = 0 at x = xobs,ref , while the transmitted wave, with angle θ0

tr, is observed in the plan
z = ztr at x = xobs,tr.

where λ1 is defined as λ0 by just replacing c0 by c1, and

Û0(ω,q, z) := e−iωzc0qTA0q, (6.12)

where A0 is defined by

A0 := 1
2(1 − c2

0|k0|2)3/2

(
1 − c2

0k2
0,2 c2

0k0,1k0,2
c2

0k0,1k0,2 1 − c2
0k2

0,1

)
= 1

2c3
0λ

3
0

(
I2 − c2

0 k⊥
0 (k⊥

0 )T
)
. (6.13)

The term Û0 leads to the following homogeneous semi-group

Ǔ0(ω,y, z) := ω2

(2π)2

∫
eiωy·qe−iωzc0qTA0qdq, (6.14)

satisfying the Schrödinger type equation

i∂zǓ0(ω,y, z) + 1
k0,ω

∇y ·
(
A0∇yǓ0

)
(ω,y, z) = 0 z > 0, (6.15)

where
Ǔ0(ω,y, z = 0) = δ(y), and k0,ω = ω/c0,

which is characteristic of the paraxial approximation. Due to the initial lateral direction k0, we do not
have the standard Schrödinger equation with a Laplacian term. Nevertheless, the standard Laplacian
can be recovered by sending this direction to zero. Under this paraxial wave model, the limit (6.9)
corresponds to the travel of the emitted pulse from the source location to the interface, and back from
the interface to the source location (yielding the z = 2zint).

The transmitted specular wave is given by

U tr(s,y) := lim
ε→0

uε
(
tεobs,tr(y) + εs,xobs,tr +

√
εy, z = ztr

)
(6.16)

= T
2(2π)3

√
λ0

λ1

∫
e−iω(s−y·q)Û1(ω,q, ztr − zint)Û0(ω,q, zint)Ψ̂(ω,q)ω2dωdq,

with this time
xobs,tr := xint + xtr := xint + k0(ztr − zint)

λ1
,

where xint is given by (6.10), and

tεobs,tr(y) := tobs,tr +
√
εy, with tobs,tr := zint

c2
0λ0

+ ztr − zint
c2

1λ1
.
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Here, U tr corresponds to the wave front observed in the frame of the source term at position xobs,tr,
and time tεobs,tr(y). The time tobs,tr, for the pulse to reach the plan z = ztr, is the sum of the time
to reach the interface and the time to go from the interface to the plan z = ztr. The lateral position
xobs,tr, where the pulse hits the plan z = ztr, corresponds to a sum of vectors. The first vector
represents the lateral position where the pulse hits the interface, and the second one the additional
lateral displacement once the pulse goes through the interface and reaches the plan z = ztr. We refer
to Fig. 6.7 for an illustration for the geometrical properties of transmission. From this formulation,
one has the usual Snell’s law:

sin(θinc)
c0

= sin(θ0
tr)

c1
,

with θinc defined by (6.11), and

θ0
tr := arctan

( |k0|
λ1

)
.

Regarding the transmitted pulse profile, the transmission coefficient is defined by

T := 2
√
λ0λ1

λ0 + λ1
,

so that the conservation relation R2 + T 2 = 1 holds, and Û0 is defined by (6.12). The term Û1 is
defined in the same way as Û0:

Û1(ω,q, z) := e−iωzc1qTA1q, (6.17)
where A1 is defined as A0 (6.13) by just changing c0 by c1. The term Ǔ1, defined as (6.14) with
c1 and A1 instead of c0 and A0, satisfies a corresponding paraxial wave equation (6.15). Therefore,
the formulation (6.16) corresponds to the travel of the emitted pulse from the source location to the
interface, and from the interface to the plane z = ztr under the paraxial approximation. The factor
T accounts for the transmission at the interface.

6.2.3 Random specular components for lc ∼ r0 (γ = 1/2)
From now on, the interface is randomly perturbed. In case of a correlation length of order the beam
radius, the asymptotic reflected pulse front, as defined in (6.9), is given by the following result.

Proposition 6.2.1 The family (Uε,ref )ε converges in law in L2(R × R2), as ε → 0, to

Uref (s,y) := R
2(2π)5

∫∫∫∫
e−iω(s−2λ0V(y′)−q·y)eiω(q′−q)·y′

× Û0(ω,q, zint)Û0(ω,q′, zint)Ψ̂(ω,q′)ω4dωdy′dq′dq,

where V is a random field with the same law as V .

The reflected wave front consists in a superposition of contribution observed at point y. Each of
these contributions results in waves emitted with initial lateral direction q′, propagating according to
Û0(q′), and scattered into direction q at point y′ before propagating back according to Û0(q) (see Fig.
6.8 for an illustration). Note that a random time correction 2λ0V(y′) is observed for contributions
scattered at point y′. In Uref , for a given frequency ω, the scattering operator corresponds to

Kref (ω,q′,q) :=
∫
eiω(q′−q)·y′

e2iωλ0V(y′)dy′. (6.18)

A similar result holds for the transmitted wave front.

Proposition 6.2.2 The family (Uε,tr)ε converges in law in L2(R × R2), as ε → 0, to

U tr(s,y) := T
2(2π)5

√
λ0

λ1

∫∫∫∫
e−iω(s−(λ0−λ1)V(y′)−q·y)eiω(q′−q)·y′

× Û1(ω,q, ztr − zint)Û0(ω,q′, zint)Ψ̂(ω,q′)ω4dωdy′dq′dq,

where V is a random field with the same distribution as V .
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Fig. 6.8: Illustration of the contributions to the reflected and transmitted waves observed at points
xobs,ref +

√
εy and xobs,tr +

√
εy respectively. The dashed light grey lines represent the specular

cones.

The transmitted wave front U tr consists as well in a superposition of diffracted contributions observed
at point y. Each of these contribution results in waves emitted with initial lateral direction q′,
propagating according to Û0, scattered into direction q at point y′ when going through the interface,
and then propagates according to Û1 until it reaches z = ztr (see Figure 6.8 for an illustration). For
the transmitted wave, the scattering operator reads

Ktr(ω,q′,q) :=
∫
eiω(q′−q)·y′

eiω(λ0−λ1)V(y′)dy′. (6.19)

6.2.4 Effective specular components for lc ≪ r0 (γ > 1/2)
The case γ > 1/2 corresponds to a correlation length smaller than the beam width. The incident
wave is therefore strongly scattered and homogenization phenomena take place, as well as incoherent
wave fluctuations. In this context the asymptotic behavior of the reflected wave front (6.9) is given
by the following result.

Proposition 6.2.3 The family (Uε,ref )ε converges in probability, as ε → 0, in S ′(R × R2), the set
of tempered distributions, to the deterministic pulse profile

Uref (s,y) = R
2(2π)3

∫∫∫∫
e−iω(s−q·y)Û0(ω,q, 2zint)ϕV (2ωλ0)Ψ̂(ω,q)ω2dωdq.

Here,
ϕV (u) = E

[
eiuV (0)] (6.20)

is the characteristic function of V (0), and Û0 is defined by (6.12).

In this result, for simplicity, the wave front does not have any dependence at the scale of the correlation
length as the asymptotic profile would not depend on it. Let us make two remarks. First, the impact
of the interface fluctuations on the specular reflected wave can be described as the reflection problem
with a flat interface where the homogenized scattering property are captured through a convolved
initial pulse profile:

1
2Φ ∗s Ψ(s,y),

where ∗s is the convolution operator acting on the s-variable, and

Φ(s) := 1
2π

∫
e−iωsϕV (2ωλ0)dω

corresponds to a scaled version of the probability density function of V (0). Second, compared to the
case γ = 1/2, the scattering operator (6.18) is now homogenized,

E[Kref (ω,q′,q)] =
∫
eiω(q′−q)·y′

E
[
e2iωλ0V(y′)

]
dy′ = δ(ω(q′ − q))ϕV (2ωλ0).
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This homogenized version of the scattering operator acts as for a flat surface, it does not modify
the incident direction q′, and the effective contributions of the interface fluctuations produce only a
low-pass filter in frequency through the characteristic function ϕV .

The same strategy applies for the transmitted wave front, and we have the following result.

Proposition 6.2.4 The family (Uε,tr)ε converges in probability, as ε → 0, in S ′(R × R2) to the
deterministic pulse profile:

U tr(s,y) = T
2(2π)5

√
λ0

λ1

∫∫∫∫
e−iω(s−q·y)Û1(ω,q, ztr − zint)Û0(ω,q, zint)

× ϕV ((λ0 − λ1)ω)Ψ̂(ω,q)ω2dωdx′dq,

where ϕV is defined by (6.20), the Ûj’s by (6.12) and (6.17).

The profile U tr is similar to the one obtained for a flat surface (6.16), but again with a convolved
initial condition accounting for the homogenization effects. The scattering operator (6.19) becomes
here

E[Ktr(ω,q′,q)] =
∫
eiω(q′−q)·y′

E
[
eiω(λ0−λ1)V(y′)

]
dy′ = δ(ω(q′ − q))ϕV ((λ0 − λ1)ω).

6.2.5 Incoherent wave fluctuations and generalized Snell’s laws for lc ≪ r0
(γ > 1/2)

We now aim at describing the incoherent wave fluctuations, resulting from diffraction, which account
for the missing energy carried by the homogenized specular components.

The reflected speckle profile refers to the following reflected wavefield

Sε,ref (s̄, ȳ,y, s̃, ỹ) := ε−2(γ−1/2)uε,ref (tεobs,ref (s̄, ȳ,y, ỹ) + εs̃,xεobs,ref (ȳ,y) + εγ ỹ, z = 0),

observed at position
xεobs,ref (ȳ,y) := xobs,ref + ε1−γ ȳ +

√
εy, (6.21)

and time

tεobs,ref (s̄, ȳ,y, ỹ) := tobs,ref + ε1−γk0 · ȳ +
√
εk0 · y + εγk0 · ỹ + ε2(1−γ)s̄. (6.22)

Here, the observation point and time exhibit extra terms in ε1−γ and ε2(1−γ) corresponding to the
roughness parameter λ/lc. These terms account for neighborhood and time windows larger than the
ones of the specular components (see Fig. 6.9 for an illustration). They can even be of order one if
λ ∼ lc (that is γ = 1). The order of magnitude of the speckle can be understood as spreading a beam
width of order r0 over a two dimensional spatial window of order r2

0/lc ∼ λ/lc. Therefore, it is indeed
expected to observe a speckle with amplitude of order( r0

r2
0/lc

)2
∼
( lc
r0

)2
∼ ε2(γ−1/2).

The following result describes the asymptotic behavior of the two-point statistics of the speckle
profile:

Cε,ref (s̄, ȳ,y, s̃1, ỹ1, s̃2, ỹ2) := Sε,ref (s̄, ȳ,y, s̃1, ỹ1)Sε,ref (s̄, ȳ,y, s̃2, ỹ2). (6.23)

Proposition 6.2.5 We have

lim
ε→0

Cε,ref (s̄, ȳ,y, s̃1, ỹ1, s̃2, ỹ2) = Cref (s̄, ȳ, s̃1 − s̃2, ỹ1 − ỹ2),

in probability in S ′(R × R2 × R2 × R × R2 × R × R2), where

Cref (s̄, ȳ, s̃, ỹ) := R2

4(2π)3

∫∫
e−iω(s̃−p·̃y)A(2λ0, ω,p)|Ψ̂|22(ω) (6.24)

× δ(s̄− srefp )δ(ȳ − yrefp )ω4dωdp,
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Fig. 6.9: The left picture illustrates the zone where the reflected speckle profile can be observed (in
light grey) compared to the specular reflected component (in grey). The right picture illustrates the
spatial window over which the speckle profile is analyzed.

with
A(v, ω,p) :=

∫
E
[
eiv(V (y′)−V (0))]e−iωp·y′

dy′, (6.25)

and
|Ψ̂|22(ω) := 1

(2π)2

∫
|Ψ̂(ω,q)|2dq. (6.26)

We also have,

yrefp := 2zintc0A0p and srefp := p · yrefp /2 = zintc0pTA0p ≥ 0.

The asymptotic correlation function exhibits stationarity w.r.t. the variables in s̃, ỹ (evolving respec-
tively at the scale of the pulse width and correlation length), but does not depend on the variable y
(corresponding to variations at the beam width scale). This means that the two-point statistics in s̃
and ỹ are identical over regions of order the beam width. In a similar manner, the intensity carried
by the speckle profile satisfies

lim
ε→0

∣∣Sε,ref (s̄, ȳ,y, s̃, ỹ)
∣∣2 = Cref (s̄, ȳ, 0, 0),

which does not depend on the variable y and the small scale fluctuations in s̃ and ỹ . The intensity
is therefore uniform over these scales.

Regarding the self-averaging property of the correlation function, the speckle profile is here corre-
lated around a given (s̄, ȳ,y). Hence, looking at the second order moment of the correlation function
in S ′ corresponds to look at the fourth order moment of the speckle, but with two elements around
some (s̄1, ȳ1,y1) and two others around some (s̄2, ȳ2,y2). These two observation points being far
apart from each other (in time and space) the correlated speckles around each of these points become
statistically independent:

E[Cε,ref (s̄1, ȳ1,y1)Cε,ref (s̄2, ȳ2,y2)] ≃ E[Cε,ref (s̄1, ȳ1,y1)]E[Cε,ref (s̄2, ȳ2,y2)].

The term A(·, ω,p) corresponds to the distribution of the scattered directions p produced by the
random interface. These directions p are related to variations at the scale of the correlation length
through the characteristic function of the relative elevation V (y′) − V (0). This effective scattering
operator has already been formally derived in [183] to describe the mean intensity of the diffusive
reflected wavefield under the Born approximation. From the Dirac masses in (6.24), the resulting
speckle can be observed, for a given direction p, at position yrefp and time srefp := p · yrefp /2. Both
of these quantities depend on the distance zint from the source term to the interface location, and
therefore influence the cone size of the reflected speckle and the time window to observe its evolution.
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Fig. 6.10: Illustration of the incident angle θ0
inc (dash-dot line) and the reflected angle θref (p) ∈

(0, π/2) for γ = 1 and p = β1k0 + β2k⊥
0 , with (β1, β2) = r (cos(φ), sin(φ)).

Fig. 6.11: Illustration of the generalized Snell’s laws of refraction and transmission.

Generalized Snell’s law of refraction From the observation point yrefp , the standard reflection
relation between the incident and reflected angle (6.11) can be generalized as follows. For a given
frequency ω and nonnull slowness vector k0, (θinc > 0), we have

tan(θref (p))
tan(θinc)

= |xint + ε1−γyrefp |
|xint|

=
√(

1 + ξε
p · k0

cos2(θinc)

)2
+ ξ2

ε (p · k⊥
0 )2, ξε := ε1−γ c2

0
sin2(θinc)

for p distributed according to the scattering operator A(2λ0, ω, ·). The case γ ∈ (1/2, 1) yields the
perturbation formula

θref (p) = θinc + ξε tan(θinc)p · k0 + O(ε2(1−γ)|p|2).

We refer to Fig. 6.10 for an illustration of θref (p) when γ = 1 (that is λ ∼ lc). From these illustrations,
one can remark that the cone produced by the reflected speckle can be fairly large, depending on the
norms of the scattered directions p. For null slowness vector k0 (θinc = 0), the refraction formula is
simply given by tan(θref (p)) = ε1−γc0|p|, that is

θref (p) = arctan(ε1−γc0|p|).

In a similar manner, the transmitted speckle profile is given by

Sε,tr(s̄, ȳ,y, s̃, ỹ) := ε−2(γ−1/2)uε,tr(tεobs,tr(s̄, ȳ,y, ỹ) + εs̃,xεobs,tr(ȳ,y) + εγ ỹ, z = ztr),

where
xεobs,tr(y, ȳ) := xobs,tr + ε1−γ ȳ +

√
εy,
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Specular
transmission

Reflected
components

Fig. 6.12: Illustration to the zone where the transmitted speckle profile can be observed (in light
grey) compared to the specular reflection component (in grey).

and
tεobs,tr(s̄, ȳ,y, ỹ) := tobs,tr + ε1−γk0 · ȳ +

√
εk0 · y + εγk0 · ỹ + ε2(1−γ)s̄.

The corresponding correlation function is defined as:

Cε,tr(s̄, ȳ,y, s̃1, ỹ1, s̃2, ỹ2) := Sε,tr(s̄, ȳ,y, s̃1, ỹ1)Sε,tr(s̄, ȳ,y, s̃2, ỹ2),

where its asymptotic behavior is given by the following result.

Proposition 6.2.6 We have

lim
ε→0

Cε,tr(s̄, ȳ,y, s̃1, ỹ1, s̃2, ỹ2) = Ctr(s̄, ȳ, s̃1 − s̃2, ỹ1 − ỹ2),

in probability in S ′(R × R2 × R2 × R × R2 × R × R2), where

Ctr(s̄, ȳ,y, s̃, ỹ) := T 2λ0

4λ1(2π)3

∫∫
e−iω(s̃−p·̃y)A(λ0 − λ1, ω,p)|Ψ̂|22(ω)δ(s̄− strp )δ(ȳ − ytrp )ω4dωdp.

with A defined by (6.25), |Ψ̂|22 by (6.26), and

ytrp := 2(ztr − zint)c1A1p ≥ 0, and strp := p · ytrp /2 = (ztr − zint)c1pTA1p.

Accordingly, the mean intensity carried by the speckle profile is given by

lim
ε→0

∣∣Sε,tr(s̄, ȳ,y, s̃, ỹ)
∣∣2 = Ctr(s̄, ȳ, 0, 0),

in probability, which does not depend on the variable y and the small scale fluctuations in s̃ and ỹ.
The intensity is therefore again uniform over these scales.

Generalized Snell’s law of transmission From ytrp , we obtain the following relation between
the transmission angle and the specular transmission angle θ0

tr:

tan(θtr(p))
tan(θ0

tr)
=

|xobs,tr − xint + ε1−γytrp |
|xobs,tr − xint|

=
√(

1 + ξε
p · k0

cos2(θtr)

)2
+ ξ2

ε (p · k⊥
0 )2, ξε := ε1−γ c2

0
sin2(θinc)

,

for p distributed according to the scattering operator A(λ0 −λ1, ω, ·). From this relation, the standard
Snell’s relation of transmission can be generalized as follow:

sin(θtr(p))
c1

= sin(θinc)
c0

√√√√ Ξ
1 + sin2(θ0

tr)
(

Ξ − 1
) , Ξ :=

(
1 + ξε

p · k0

cos2(θtr)

)2
+ ξ2

ε (p · k⊥
0 )2,
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Fig. 6.13: Illustration of the specular transmission angle θ0
tr (dash-dot line) and the transmission angle

θref (p) ∈ (0, π/2) for γ = 1, c0 = 1.5, c1 = 1, and p = β1k0 + β2k⊥
0 with (β1, β2) = r(cos(φ), sin(φ)).

leading for γ ∈ (1/2, 1) to the perturbed relation

sin(θtr(p))
c1

= sin(θinc)
c0

(
1 + ξε

p · k0

cos2(θ0
tr)

+ O(ε2(1−γ)|p|2)
)
,

providing the approximation

θtr(p) = θ0
tr + ξε

tan(θtr)
cos2(θtr)

p · k0 + O(ε2(1−γ)|p|2).

We refer to Fig. 6.13 for an illustration of θtr(p) when γ = 1, that is in the context of a rough interface
λ ∼ lc. From these illustrations, one can again remark that the cone produced by the transmitted
speckle can also be fairly large, depending on the norms of the scattered directions p. Finally, for a
null slowness vector k0 = 0 (θinc = 0), the transmission angle satisfies tan(θtr(p)) = ε1−γc1|p|, so
that

θtr(p) = arctan(ε1−γc1|p|).

6.2.6 Gaussian statistics of the speckle patterns for lc ≪ r0 (γ > 1/2)
We conclude this section with a direct statistical description of the speckles themselves in the Fourier
domain at the scale of the pulse width and correlation length. For the reflected speckle, we consider

Ŝε,ref (s̄, ȳ,y, ω,p) := ε−2(γ−1/2)
∫∫

eiω(s̃−p·̃y)uε,ref
(
tεobs,ref (s̄, ȳ,y, ỹ)+εs̃,xεobs,ref (ȳ,y)+εγ ỹ

)
ds̃dỹ,

where xεobs,ref and tεobs,ref are respectively given by (6.21) and (6.22). To regularize the Dirac masses
in (6.24) around yrefp and srefp , we introduce

Ŝε,refy (s̄, ȳ, ω,p) := Ŝε,ref (s̄, ȳ,y, ω,p) 1
ε3(γ−1/2)φ

1/2
(

2 s̄− srefp

ε2(γ−1/2) , 2
ȳ − yrefp

ε2(γ−1/2)

)
, (6.27)

where we have added the square root of a symmetric mollifier, that acts as a windowing around
s̄ = srefp and ȳ = yrefp . Recalling that s̄ and ȳ scale at respectively ε2(1−γ) and ε1−γ , the resulting
window scales at the pulse width ε and correlation length εγ respectively. The asymptotic behavior
of the speckle is the following.

Theorem 6.2.1 For n ≥ 1 and any fixed y1, . . . ,yn,∈ R2, the family (Ŝε,refy1 , . . . , Ŝε,refyn )ε converges
in law, as ε → 0, in S ′

n (which is n times the Cartesian product of S ′(R×R2 ×R×R2,C)) to a limit
(Ŝref1 , . . . , Ŝrefn ) made of n independent copies of a complex valued mean-zero Gaussian random field
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Ŝref (independent of the yj’s) with covariance functions of the form

E[Ŝref (ϕ)Ŝref (ψ)] =
∫

· · ·
∫

K̂ref (s̄1, s̄2, ȳ1, ȳ2, ω1,−ω2,p1,p2)

× ϕ(s̄1, ȳ1, ω1,p1)ψ(s̄2, ȳ2, ω2,p2)ds̄1ds̄2dȳ1dȳ2dω1dω2dp1dp2,
(6.28)

E[Ŝref (ϕ)Ŝref (ψ)] =
∫

· · ·
∫

K̂ref (s̄1, s̄2, ȳ1, ȳ2, ω1, ω2,p1,p2)

× ϕ(s̄1, ȳ1, ω1,p1)ψ(s̄2, ȳ2, ω2,p2)ds̄1ds̄2dȳ1dȳ2dω1dω2dp1dp2,
(6.29)

for any ϕ, ψ ∈ S(R × R2 × R × R2,C), where the kernel K̂ref is given by

K̂ref (s̄1, s̄2, ȳ1, ȳ2, ω1, ω2,p1,p2) = (2π)3R2

4 A(2λ0, ω1,p1)|Ψ̂|22(ω1)φ̂(ω1,p1)δ(ω1 − ω2) (6.30)

× δ(p1 − p2)δ(s̄1 − srefp1
)δ(s̄2 − s̄1)δ(ȳ1 − yrefp1

)δ(ȳ2 − ȳ1).

In contrast to the correlation function (6.23), exhibiting a self-averaging property, the asymptotic
behavior of the speckle (6.27) is described through a Gaussian random field w.r.t. the scattered
direction p. The term δ(p1 −p2) in (6.30) translates that two distinct directions produce independent
components. This is of course expected as these two components will be observed at locations far
apart from each other. The p-variable being also related to fluctuations at the scale of the correlation
length, the resulting Gaussian field is then described at this scale around the given time srefp and
location yrefp .

A similar result can be obtained for the transmitted speckle in the Fourier domain,

Ŝε,tr(s̄, ȳ,y, ω,p) := ε−2(γ−1/2)
∫∫

eiω(s̃−p·̃y)uε,tr
(
tεobs,tr(s̄, ȳ,y, ỹ) + εs̃,xεobs,tr(ȳ,y) + εγ ỹ

)
ds̃dỹ,

after introducing a window around ytrp and strp ,

Ŝε,try (s̄, ȳ, ω,p) := Ŝε,tr(s̄, ȳ,y, ω,p) 1
ε3(γ−1/2)φ

1/2
(

2
s̄− strp
ε2(γ−1/2) , 2

ȳ − ytrp
ε2(γ−1/2)

)
.

Theorem 6.2.2 For n ≥ 1 and any fixed y1, . . . ,yn ∈ R2, the family (Ŝε,try1 , . . . , Ŝε,tryn )ε converges
in law, as ε → 0, in S ′

n to (Ŝtr1 , . . . , Ŝtrn )ε, made of n independent copies of a complex mean-zero
Gaussian random field Ŝref with covariance functions similar to (6.28) and (6.29), but with kernel

K̂tr(s̄1, s̄2, ȳ1, ȳ2, ω1, ω2,p1,p2) = (2π)3T 2λ0

4λ1
A(λ0 − λ1, ω1,p1)|Ψ̂|22(ω1)φ̂(ω1,p1)δ(ω1 − ω2)

× δ(p1 − p2)δ(s̄1 − sp1)δ(s̄2 − sp1)δ(ȳ1 − yp1)δ(ȳ2 − yp1).

6.3 Perspectives
In the second part of this chapter, the statistical properties of the reflected and transmitted wavefields
are described in the case of a moderately rough interface (the central wavelength and the magnitude
of the interface fluctuations are of the same order λ ∼ σ). In this regime, effective specular and
diffusive (speckle) components are observed, but no enhance backscattering effects. To observe such
effects, it would be necessary for the rough surface to produce significant multiple scattering, which
is achieved when λ ≪ σ.

This novel framework precisely characterizes the statistics of the diffusive scattered waves from
rough interfaces, both in transmission and reflection, in term of a Gaussian random field. This charac-
terization can be used in remote sensing type imaging problems including: estimating the parameters
of the rough (random) interface, and imaging objects hidden behind the interface by computing the
empirical spectrum of the reflected speckle [88, 127]. The analysis can also be extended to Synthetic
Aperture Radar (SAR) probing scenarios where the source cone is moving, typical mounted on an
aircraft. In general imaging contexts one can exploit the memory effect, which means that the speckle
pattern illuminating a hidden object is not completely changed, but rather shifted by a specific amount
when the incoming angle of the source is shifted.
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Chapter 7
Digressions in mathematical biology:
Stochastic and deterministic models for the
secondary metastatic emission process

The emergence of a metastatic phenotype is governed by a number of key mutations that was trans-
lated into mathematical models by [107,160], resulting in the derivation of a metastatic risk score. In
an early work, [136] established a link between the primary tumor size at surgery and the risk of re-
currence from a large cohort of breast cancer patients. In addition to such phenotypic characteristics,
specific genetic signatures of the primary tumor have been identified as associated with increased risk
of metastasis [204]. Nevertheless, these risk prediction models are static; they do not aim to represent
the time evolution of the disease. In contrast, dynamic models offer the ability to predict how a
system evolves over time, making it easier to incorporate data obtained at various observation points.
To account for the relationship between the metastatic process and the primary tumor, a dynamic de-
scription of primary tumor growth is integrated into metastatic models. The simplest dynamic model
for tumor growth is the exponential model, which describes growth under no restriction such as in
vitro settings. However, in many cases of interest, especially in vivo scenarios, sigmoid (S-shaped)
models with an initial exponential phase followed by a deceleration provide more suitable descriptions
of growth dynamics. The Gompertz model is a classical example that has been commonly used, as
well as power growth models that have been used for the description of clinical [111] and preclinical
tumor growth data [32].

A stochastic dynamic model for metastasis was proposed by [28]. Their approach characterizes
the emission times of metastases as random events through a non-homogeneous Poisson process with
an emission rate increasing according to the primary tumor size. The Poisson law allows for an
interpretation of the emission process as being memoryless, and provide fairly explicit mathematical
formulations. A variant of this model successfully described data on bone lesions in the case of a
metastatic breast cancer [108]. Dynamic models for metastasis can also be used to infer parts of the
process that cannot be directly observed experimentally or clinically. For instance, [122] introduced
a PDE model to describe the size distribution of metastatic colonies. Using clinical information
concerning visible metastatic colonies, they successfully characterized the micrometastatic state of a
patient with hepatocellular carcinoma. Later, this size-structured model was integrated into mixed-
effects models, providing prediction of the size evolution of metastases in animal models without
[113] and with [33] surgical removal of the primary tumor. Both approaches incorporate secondary
metastatic emission into the model, that is the ability for metastasis to spread further. Indirect
evidence of secondary metastatic emission has been provided through cancer network models [50,164,
165] and the identification of self-seeding mechanisms [55,186].

In most of the models mentioned above, metastases do not have the ability to emit metastases
themselves. However, it is easy to think of situations where this property would make a difference in
the model. For instance, consider a scenario in which a single metastasis is emitted before the primary
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tumor surgery1. If this metastasis cannot generate further metastases, its successful removal cures the
patient. However, the second surgery might fail if the metastasis is able to seed additional metastasis
as well. Of course, there are other mechanisms potentially leading to treatment failure (e.g. local
recurrence, surgery impossible,...), but for simplicity they are not discussed here. This section presents
the relationship between the Iwata PDE model, which accounts for secondary metastatic emission,
and a stochastic model based on a cascade of Poisson processes. Under this stochastic framework,
the cascade effect accounts for secondary metastatic emissions, and we illustrate how this stochastic
approach can be used to assess metastatic risk post-surgery.

7.1 A simple probabilistic framework for metastatic risk
Forecasting the likelihood of metastatic disease at the time of the primary tumor’s diagnosis is of ma-
jor clinical importance since it is strongly linked to survival expectancy. One possibility to construct
such a predictive model is by using large databases to correlate information regarding the presence of
metastases and the primary tumor’s characteristics at the time of diagnosis or surgery. As an illus-
tration, [159] proposed a relationship between the primary tumor size at surgery and the probability
of metastasis based on clinical data on breast cancer:

P(no metastases) = exp(−c dz),

where d is the largest diameter of the primary tumor at surgery, and c and z are parameters inferred
from the data. Such a probability formula can be derived through the use of a nonhomogeneous
Poisson process with an intensity function depending on a power growth model for the primary
tumor.

Power growth. The growth diameter d of the largest primary tumor is the solution of the ordinary
differential equation d′(t) = aPG d(t)α. Here, aPG corresponds to the growth speed and α allows
to describe different growth shapes: exponential growth (α = 1), linear growth (α = 0), and a
range of sigmoid growth patterns in between (0 < α < 1).

Power law of emission. The emission intensity λ of the Poisson process depends on the current size
of the primary tumor through a power law, λ(t) = b d(t)β . In this context, b can be understand
as the metastatic aggressiveness of the primary tumor. In [122], the parameter β is linked to the
type of primary tumor vascularization: β = 3 (dimension of space) for a uniform vascularization,
and β = 2 (dimension of a surface)2 for a surficial vascularization.

The stochastic nature of the metastatic emission process can also be described using various probability
distributions, allowing to drop the memorylessness property. Nevertheless, the Poisson model offers
the advantage of not necessitating extra statistical parameters, while ensuring a high level of analytical
tractability and ease of numerical implementation.

7.2 Mathematical formalism and results
7.2.1 Size-structured model
To describe the micrometastatic state of cancer patients, [122] developed a size-structured model that
describes the time evolution of a density function ρ(t, x) representing the size distribution of metastatic
colonies. Before describing this model, we need to introduce some notations.

The relationship between the size of the primary tumor Xp and its emission intensity λp is here
given by a size-dependent emission law γp,

λp(t) := γp(Xp(t)).
1After a surgery the emission intensity is set to zero.
2The interpretation of β depends on the unit of the primary tumor measure. A surficial vascularization would

correspond to β = 2 if the size is measured in diameter, but to β = 2/3 (the fractal dimension of a surface in space) if
the size is measured in volume.
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The evolution of Xp is given by a Gompertz law:

X ′
p = g(Xp), with Xp(0) = x0,

with a set of clinical parameters summarized in Table 7.1. These parameters were estimated by [122]
from clinical data on a hepatocellular carcinoma with multiple liver metastases. In a similar manner,

Model Parameter Symbol Value Unit
Growth (Gompertz law) Initial size x0 1 cells
g(x) := aGomp x log(x∞

p /x) Growth rate aGomp 0.00286 days−1

Maximum size x∞
p 7.3 · 1010 cells

Emission (power law) Rate constant b 5.3 · 10−8 days−1 cells−β

γp(x) = b xβ Emission power β 0.663 –

Table 7.1: Growth and emission laws derived by [122] from clinical data of a hepatocellular carcinoma
with multiple liver metastases.

the size of a metastasis is given by Xm, which is the solution to

X ′
m(t) = g(Xm(t)), with Xm(0) = x0

m,

and corresponding secondary emission intensity by

λm(t) := γm(Xm(t)).

The metastatic density function ρ of the Iwata model solves the following PDE:

∂tρ(x, t) + ∂x[g(x)ρ(x, t)] = 0, (x, t) ∈ (x0
m, x

∞
m ) × (0,+∞),

g(x0
m)ρ(x0

m, t) = γp(Xp(t)) +
∫ x∞

m

x0
m

γm(x)ρ(x, t)dx, t ∈ (0,+∞),

ρ(x, 0) = 0, x ∈ [x0
m, x

∞
m ],

(7.1)

where x0
m corresponds to the size of a newly emitted metastasis and x∞

m corresponds to the theoretical
maximum size of the metastases. The well-posedness for this model has been established under general
conditions by [27].

Various model observable (MO) associated to this model can be defined: for a given function f , a
MO is defined by

MOf (t) :=
∫ x∞

m

x0
m

f(x)ρ(x, t)dx.

Here are some examples.

• f = 1 corresponds to the number of metastases:

MO1(t) :=
∫ x∞

m

x0
m

1 · ρ(x, t)dx

• Similarly, the number of macrometastases is obtained with

fmacro(x) :=
{

1 if x ≥ c
0 if x < c

,

and the number of micrometastases with

fmicro(x) :=
{

0 if x ≥ c
1 if x < c

,

where c stands for the detectability threshold (depending on the imaging modality).
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• The total metastatic mass M is obtained with the identity function fId(x) = x for all x:

MOfId(t) :=
∫ x∞

m

x0
m

xρ(x, t)dx.

The PDE model (7.1) is not convenient when it comes to evaluate MO numerically. Fortunately, all
the MO can be characterized as being the solutions of a Volterra convolution equation [112].

Theorem 7.2.1 For any f ∈ L∞([x0
m, x

∞
m ]), MOf is the unique solution of the following renewal

equation,

MOf (t) =
∫ t

0
λp(s)f(Xm(t− s))ds+

∫ t

0
λm(s)MOf (t− s)ds. (7.2)

This representation is the basis of an efficient numerical resolution algorithm [112] that can be used
for parameter estimation [113].

7.2.2 Probabilistic framework for secondary metastatic emission
We now introduce the stochastic counter part of the Iwata model. This stochastic model is based
on a cascade of independent Poisson processes (PPs), and define recursively the emission times with
respect to a generational hierarchy.

• The emission times (T (j))j≥1 at which the first generation of metastases occur, those emanating
from the primary tumor, are modeled as the jump times of a PP (N (1))t≥0 with intensity λp.

The emission times for the next generations of metastases are defined recursively.

• Let k ≥ 2 and n1, . . . , nk−1 ≥ 1. The j-th emission time for the k-th generation of metastasis
and filiation n1, . . . , nk−1 is defined by

T (n1,...,nk−1,j) := T (n1,...,nk−1) + T̃ (n1,...,nk−1,j).

This corresponds to the time it takes for the offspring, with filiation n1, . . . , nk−1, to give birth
to its j-th offspring. Here, (T̃ (n1,...,nk−1,j))j≥1 are the jump times of a PP (N (n1,...,nk−1)

t )t≥0
with intensity λm.

For instance, T (2,3,4) corresponds to the emission time of the 4th offspring produced by the 3rd offspring
of the 2nd offspring of the primary tumor. Also, we assume that{

(N (n1,...,nk)
t )t≥0, k ≥ 1, n1, . . . , nk ≥ 1

}
forms a family of independent PPs. In other words, we assume that the primary tumors and all the
metastases emit independently from each other.

From this construction, a stochastic model observable (SMO) for the k-th generation can be ex-
pressed by

SMO(k)
f (t) :=

∑
n1,...,nk≥1

1(T (n1,...,nk)≤t)f
(
Xm

(
t− T (n1,...,nk))),

for f ∈ L∞([x0
m, x

∞
m ]). Therefore, a global SMO with secondary emission can be defined by

SMOf (t) :=
∞∑
k=1

SMO(k)
f (t). (7.3)

A global SMO accounts for the contribution of SMO(k)
f over all the generations. The following result

establish the connection between the SMO and MO.

Proposition 7.2.1 Let f ∈ L∞([x0
m, x

∞
m ]). The SMO (7.3) is well defined in the sense that

P
(
0 ≤ SMOf (t) < +∞ ∀t ≥ 0

)
= 1,

and E[SMOf (t)] is finite for any time t ≥ 0. Moreover, we have for any t ≥ 0

MOf (t) = E[SMOf (t)].
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Let us remark that all the SMO can be seen as integrals w.r.t. a random measure:

SMOf (t) =
∫
f(x)Mt(dx),

for any t ≥ 0, with
Mt :=

∑
k≥1

∑
n1,...,nk≥1

δXm(t−T (n1,...,nk)).

From this representation, we can establish the connection between the stochastic model and structure
size model (Iwata model).

Theorem 7.2.2 (Link to the structured population model) For all t ≥ 0, the measure

µt := E[Mt]

is σ-finite, absolutely continuous with respect to the Lebesgue measure, and its Radon-Nikodyn density
is given by ρ(·, t),

dµt
dx

= ρ(·, t),

where ρ is the solution to (7.1).

From Prop. 7.2.1, one can remark that all the SMO can be seen as a probabilistic representation
of the corresponding MO. This remark is of interest to design rough confidence/prediction intervals
from inferred parameters. In this respect, the following result concerns the variability of the SMO
with respect to its mean MO.

Proposition 7.2.2 Let f ∈ L∞([x0
m, x

∞
m ]). The variance of the SMO,

vf (t) := var[SMOf (t)]

is finite for any t ≥ 0, and satisfies a renewal equation,

vf (t) =
∫ t

0
λp(s)(f(Xm(t− s)) + em,f (t− s))2 +

∫ t

0
λm(s)vf (t− s), (7.4)

Here,
em,f (t) := E[SMOm,f (t)],

where SMOm,f is defined as (7.3), but for a different cascade of PPs, which has only λm for intensity
(for both the first and subsequent generations).

The renewal equation (7.4) allows the use of an efficient numerical resolution algorithm [112] to
compute the variance of SMOf and not rely on a Monte-Carlo approach.

7.3 Numerical illustrations
Let us illustrate this approach with the parameters of Table 7.1, and the observables that were used
in [122] to parametrize their model, that is the number of metastases exceeding given thresholds c (i.e.
fmacro with different thresholds). The corresponding numerical simulations are given in Fig. 7.1. In
this illustration one can observe the prediction of the size-structured model (blue line). Some paths
of the PP cascade model are also displayed to illustrate the variability inherent of a stochastic model.
Note that these paths evolves mainly between the two red dashed lines accounting for the variance of
the model.

In this context, the stochastic framework is a valuable tool to assess the impact of secondary
metastatic emission following the surgery of the primary tumor, and evaluate the risk of a metastatic
disease through a Monte-Carlo approach. To represent the impact of a surgery at time tsurgery,
the emission intensity λp(t) of the primary tumor is set to zero for t ≥ tsurgery. Using the clinical
parameters of Table 7.1, we assume that the primary tumor is surgically removed 500 days after
its inception, where it has reached a tumor mass of 180 g, and evaluate the number of metastases
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Fig. 7.1: Comparison of the size-structured model fit and stochastic variability of the PP cascade
model. Expectation (blue solid line) corresponds to the size-structured model prediction used to
fit the clinical data from [122] (computed via Eq. (7.2)). Random trajectories of the PP cascade
model are displayed through thin grey lines, and the red dashed lines corresponds to E[Nmacro,t] ± 2 ·√

var[Nmacro,t] (with var[Nmacro,t] computed via Eq. (7.4)). As in [122], we count time from inception
of the first primary tumor cell, which was back-calculated from primary tumor data assuming a
Gompertzian growth model (hence the first CT scan with metastatic disease is approximately 3 years
post-inception).

another 500 days later (Fig. 7.2). We consider both a model with secondary metastatic emission
and a model without secondary emission (where metastases cannot emit themselves new metastasis).
Knowing that every secondary emission is preceded by at least one primary emission, the probability
of a metastatic disease is the same for both models. However, the model with secondary emission
predicts a significantly higher number of metastases in average (E[Nt] = 4.7 with secondary emission
vs. E[Nt] = 1.2 without). Not surprisingly, the model with secondary metastatic emission is more
pessimistic than without secondary emission.

7.4 Perspectives
This approach combining a deterministic and a stochastic model could benefit from further develop-
ments for individualized risk predictions, and be included as a factor (among others) in comprehensive
decision frameworks based on modern machine learning methods. Other (individual) factors play a
key role in the context of cancer and metastatic diseases. For instance, circulating biomarkers, such
as circulating tumor cells or circulating tumor DNA, can be a useful source of information. Once
validated, a mathematical model can serve as a powerful tool for informed treatment decisions by
integrating case-specific information into a consistent quantitative framework.
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Fig. 7.2: Probability of a metastatic disease after surgery with (top panel) or without (bottom panel)
secondary metastatic emission (each based on 10.000 simulations). The primary tumor is assumed to
be surgically removed 500 days after its inception. The number of metastases is evaluated another
500 days later.
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