Faculté des Sciences Aix+Marseille Université

Année universitaire 2018/2019

Site : \square Luminy \square St-Charles \boxtimes St-Jérôme \square Cht-Gombert \square Aix-Montperrin \square Aubagne-SATIS

Sujet de : \boxtimes 1 er semestre \square 2 ème semestre \square Session 2 Durée de l'épreuve : 2h

Examen de : M1 Nom du diplôme : Master de Traitement du signal et des images Code du module : S52MA1M5 Libellé du module : Mathématiques pour le signaux et les images 1

Calculatrices autorisées : NON Documents autorisés : NON

Aucun document ni calculatrice ne sont autorisés.

Il est conseillé de lire l'énoncé en entier avant de commencer.

Une réponse non justifiée ne rapportera aucun point.

— On note $\langle ., . \rangle$ le produit scalaire usuel sur \mathbb{C}^N tel que $\langle x, y \rangle = \sum_{n=0}^{N-1} x[n]\overline{y[n]}$ pour $x = (x[i])_{i=0,\dots,N-1} \in \mathbb{C}^N$ et $y = (y[i])_{i=0,\dots,N-1} \in \mathbb{C}^N$.

On note
$$||x||^2 = \sum_{n=0}^{N-1} |x[n]|^2$$
 pour $x \in \mathbb{C}^N$.

Exercice 1

Soit u l'application de \mathbb{R}^3 à valeurs dans \mathbb{R}^3 telle que :

pour tout
$$\overrightarrow{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3$$
, $u(\overrightarrow{x}) = \begin{pmatrix} 7x_1 - 2x_2 + x_3 \\ -2x_1 + 10x_2 - 2x_3 \\ x_1 - 2x_2 + 7x_3 \end{pmatrix}$.

- 1. Montrer que u est un endomorphisme.
- 2. Exprimer la matrice de u dans la base canonique de \mathbb{R}^3 .
- 3. Calculer l'image par u de chacun des vecteurs $\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $\overrightarrow{e_2} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\overrightarrow{e_3} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$. À quelles valeurs propres sont associés ces vecteurs?
- 4. Montrer que la famille $\mathcal{B} = \{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ est une base de \mathbb{R}^3 .
- 5. Écrire la matrice de passage de la base canonique de \mathbb{R}^3 à la base \mathcal{B} .
- 6. Écrire la matrice de passage de la base $\mathcal B$ à la base canonique de $\mathbb R^3$.
- 7. Calculer la matrice de u dans la base \mathcal{B} .

Exercice 2

On fixe $N \in \mathbb{N}^*$.

Pour $k \in \{0,..,N-1\}$ on pose e^k le vecteur de \mathbb{C}^N tel que

$$e^k = (1, e^{2i\pi \frac{k}{N}}, e^{2i\pi \frac{2k}{N}}, \dots, e^{2i\pi \frac{(N-1)k}{N}}).$$
 (1)

- 1. Calculer $||e^k||$ et montrer que la famille $\left\{\frac{e^k}{\sqrt{N}}, k=0,\ldots,N-1\right\}$ forme une base orthonormée de \mathbb{C}^N .
- 2. Soit $u \in \mathbb{C}^N$. Calculer u à l'aide des vecteurs $\frac{e^k}{\sqrt{N}}$ et des produits scalaires $\langle u, \frac{e^k}{\sqrt{N}} \rangle$.
- 3. Calculer u en fonction des vecteurs e^k et des produits scalaires $\langle u, e^k \rangle = \hat{u}[k]$.

On rappelle que le vecteur $\hat{u} = (\hat{u}[0], \hat{u}[1], \hat{u}[2], \dots, \hat{u}[N-1])$ est appelé transformée de Fourier discrète de u. Enfin, on note que la formule $\hat{u}[k] = \langle u, e^k \rangle$ peut se calculer en développant le produit scalaire $\langle u, e^k \rangle = \sum_{n=0}^{N-1} u[n] \overline{e^k[n]}$, ce qui donne :

$$\hat{u}[k] = \sum_{n=0}^{N-1} u[n] e^{-2i\pi \frac{kn}{N}} .$$

- 4. Exemples:
 - (a) On fixe ω_0 dans $\{0,\dots,N-1\}$. Soit $e^{\omega_0}\in\mathbb{C}^N$ le vecteur défini comme précédemment (voir l'équation (1)) par $e^{\omega_0}[n]=e^{2i\pi\frac{n\omega_0}{N}}$ pour $n\in\{0,\dots,N-1\}$.

Calculer sa transformée de Fourier $\widehat{e^{\omega_0}}$.

- (b) On fixe $\ell \in \{0, ..., N-1\}$ et on prend δ^{ℓ} pour le ℓ -ième vecteur de la base canonique de \mathbb{C}^{N} . Il s'agit du vecteur de \mathbb{C}^{N} tel que pour $n \in \{0, ..., N-1\}$ on a $\delta^{\ell}[n] = 1$ si $n = \ell$ et 0 sinon. Calculer sa transformée de Fourier $\widehat{\delta^{\ell}}$.
- 5. On applique le filtre linéaire défini à l'aide d'un vecteur $h \in \mathbb{C}^N$ sur un signal x et on calcule donc $y = h \star x$.

En utilisant le cours, donner l'expression de la transformée de Fourier de y en fonction de celle de x et de celle de h.

- 6. Soit v tel que $v[n] = e^{\omega_0}[n] \times x[n]$ pour tout n = 0, ..., N-1. Pour tout k = 0, ..., N-1, calculer $\hat{v}[k]$ en fonction de la transformée de Fourier de x.
- 7. Soit w tel que $w[n] = \delta^{\ell}[n] \times x[n]$ pour tout n = 0, ..., N-1. Pour tout k = 0, ..., N-1, calculer $\hat{w}[k]$ en fonction de x.
- 8. Plus généralement, on considère une suite $h \in \mathbb{C}^N$ et on calcule z tel que pour tout $n = 0, \dots N-1$ $z[n] = h[n] \times x[n]$. Montrer que \hat{z} est le résultat du filtrage de \hat{x} par un filtre dont on précisera la réponse impulsionnelle.

Ce type d'opération est souvent utilisé en traitement du signal par exemple pour fenêtrer un signal.