# ISOTOPIC PATTERN ANALYSIS BASED ON A NEW FOURIER DECONVOLUTION APPROACH Cherni Afef<sup>1,2</sup>, Chouzenoux Emilie<sup>2,3</sup>, Christian Rolando<sup>4</sup>, Delsuc Marc-André<sup>1</sup>

<sup>1</sup> Université de Strasbourg, IGBMC (UMR 7104), CNRS, INSERM U596, Illkirch-Graffenstaden, France. <sup>2</sup> Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM, Marne-la-Vallée, France. <sup>3</sup> Centre pour la Vision Numérique, CentraleSupélec, INRIA Saclay, Gif-sur-Yvette, France. <sup>4</sup> Miniaturisation pour la Synthèse, l'Analyse et la Protéomique (MSAP), 59655 Villeneuve d'Ascq, France.

**European Mass Spectrometry Conference** 

## Saarbrucken, Germany 11-15 March

## **EMSC 2018**



MS SIMULATED SPECTRUM

× Isotopic pattern deconvolution of peptide spectra.

#### Method

X Use direct spectra ↓

- No peak picking!
- $\checkmark$  Use built isotopic pattern using averagine model [2]

Peptide analysis.

✗ Include as well experimental line-shape

Implification of spectra.

### **CONVEX OPTIMIZATION**



• 1D Simulated signal: With 50 ions, charged with z from 1 to 3. On the window m/z values are from 1000 to 1100 Daltons, simulated on 5000 points with 1% noise level. Reconstruction is done with 2000 iterations.



Fourier deconvolution approximation

× Large size of data with different charge values.

Computational challenge & Large memory resources are needed to store the dictionary.

 $\checkmark$  We suppose that isotopic pattern is locally stable.

 $\checkmark$  Mass axis will be decomposed into windows.

 $\checkmark$  Isotopic pattern will be only calculated for each average mass of each window.

 $\checkmark$  Locally convolution product.

Faster computation & Less memory.

## CONCLUSION

 $\checkmark$  1D deconvolution of isotopic masses of proteins Generalization of our approach to process any 1D & 2D complex mixture.

#### Fig. 1: Reconstruction of MS simulated spectrum

Dictionary-based approach ensure the isotopic deconvolution with high reconstruction quality

#### EXPERIMENTAL MS SPECTRUM

• Measure 1:

 $3 \mu M$  fo the **peptide** "EVEALEKKVAALESKVQALEKKVEALEHG-NH2"  $(C_{140}H_{240}N_{38}O_{45})$  in its **trimer** form in 50 mM of NH<sub>4</sub>OAc, acquired in native conditions. **FT-ICR** spectrum with size **M=8130981**,  $m \in [153.57, 4999.96 \text{ Daltons}], z \in [1, 5].$ 

• Isotopic deconvolution:



#### Acknowledgement

• This work was supported by the CNRS MASTODONS project under GRANT 2016TABASCO, by the ANR pour la RECHERCHE, GRANT ANR2014 ONE SHOT 2D FT-ICR. • Great thanks to Fabrice Bray for preparing experimental MS spectrum.

#### REFERENCES

[1] Afef Cherni, Emilie Chouzenoux, Marc-André Delsuc, "Fast dictionary-based approach for mass spectrometry data analysis", in Proc. IEEE ICASSP, pp.x-x, Calgary, 15-20 April 2018. [2] Michael W Senko, J Paul Speir, and Fred W McLafferty, "Collisional activation of large multiply charged ions using Fourier transform mass spectrometry", Analytical Chemistry, vol. 60, no. 18, pp. 2801-2808,1994.

Fig. 2: Analysis of the real FT-ICR-MS spectrum of a peptide in trimer form: (top) zoom on the acquired data;

(bottom) recovered spectrum at z = 5 using dictionary-based approach.

 $\checkmark$  Major peak at m = 9526.439 Daltons fits well with the theoretical monoisotopic mass of the studied peptide equals to m = 9526.337 Daltons.

 $\checkmark$  A second peak shifted by -1 Dalton due to unavoidable grid ambiguity.

 $\checkmark$  A third peak distant with +21.959 Daltons of the main peak, identifies the Sodium adduct (theoretical relative position of +21.982 Daltons).

Faithfull approach.

