β-NMF AND SPARSITY PROMOTING REGULARIZATIONS FOR COMPLEX MIXTURE UNMIXING: APPLICATION TO 2D HSQC NMR. Afef CHERNI^{*}, Sandrine ANTHOINE^{*}, Caroline CHAUX^{*} *Aix-Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France.

Overview

Introduction
NMR: Nuclear Magnetic Resonance

a spectroscopy technique used to identify molecules in a given chemical mixture.

2D HSQC: Heteronuclear Single Quantum Coherence

a NMR experience used to determinate the correlations between a carbon and its attached proteins.
BSS: Blind Source Separation

an efficient mathematical method used to analyze data which

(3)

 $(\mathbf{II}) \Psi_{\mathbf{S}} =$

b) $\ell_1 + \iota_+$

a) ι_+

• Objective

Given the measurements $\mathbf{X} \in \mathbb{R}^{M \times L}$, find the unknown sources $\mathbf{S} \in \mathbb{R}^{N \times L}$ and the unknown mixing matrix $\mathbf{A} \in \mathbb{R}^{M \times N}$ related to \mathbf{X} through

$$\mathbf{X} = \mathbf{AS} + \mathbf{N} pprox \mathbf{AS}$$

(1)

(8)

(9)

(10)

• Problem

X Indeterminacies of solutions

 $(\exists \Lambda \in \mathbb{R}^{N \times N})$ such that $\mathbf{A}' = \mathbf{A}\Lambda$ et $\mathbf{S}' = \Lambda^{-1}\mathbf{S}$ (2)

where Λ is a diagonal or a permutation matrix.

are modeled as the linear combination of elementary sources or components (see (1)).

X 2D NMR spectra present a high level of sparsity with a spectral overlap and poor resolution. ►

Theory

• Regularization approach

$$\underset{\mathbf{A}, \mathbf{S}}{\text{minimize}} \Theta(\mathbf{A}, \mathbf{S}) := \underbrace{\Phi(\mathbf{A}, \mathbf{S})}_{\text{Data fidelity}} + \underbrace{\Psi(\mathbf{A}, \mathbf{S})}_{\text{Regularization term.}}$$

• Standard choices: Fixing $\Phi(\mathbf{A}, \mathbf{S})$ as Frobenius norm and adapting $\Psi(\mathbf{A}, \mathbf{S})$:

minimize
$$\Theta(\mathbf{A}, \mathbf{S}) := \frac{1}{2} \|\mathbf{X} - \mathbf{AS}\|_F^2 + \lambda_{\mathbf{A}} \Psi_{\mathbf{A}}(\mathbf{A}) + \lambda_{\mathbf{S}} \Psi_{\mathbf{S}}(\mathbf{S}).$$
 (4)

Previous approaches [1, 2]: solve (4) using different regularization functions defined for all $\mathbf{u} = (u_i)_{i=1...L} \in \mathbb{R}^L$ as:

$$\iota_{+}(\mathbf{u}) = \begin{cases} 0 & \text{if } u_{i} \ge 0 \ \forall i \\ +\infty & \text{otherwise.} \end{cases} \qquad \ell_{1}(\mathbf{u}) = \left(\sum_{i=1}^{L} |u_{i}|\right) \qquad \text{Ent}(\mathbf{u}) = \sum_{i=1}^{L} \operatorname{ent}(u_{i}) \\ \operatorname{ent}(u) = \begin{cases} u \log(u) & \text{if } u > 0 \\ 0 & \text{if } u = 0 \\ +\infty & \text{otherwise.} \end{cases}$$

 $\lambda_{\mathbf{A}}$ and $\lambda_{\mathbf{S}}$ are regularization parameters.

• Generalization: Fixing $\Phi(\mathbf{A}, \mathbf{S})$ as β -divergence and adapting $\Psi(\mathbf{A}, \mathbf{S})$

Practical implementation

- Generic alternating minimization strategy
 - For k = 0, 1, ... $\begin{vmatrix} \mathbf{A}_{k+1} = \operatorname*{argmin}_{\mathbf{A}} & \beta - \operatorname{div}(\mathbf{X}, \mathbf{AS}_k) + \lambda_{\mathbf{A}} \Psi_{\mathbf{A}}(\mathbf{A}) & (\mathbf{I}) \\ \mathbf{A} & \mathbf{S}_{k+1} = \operatorname*{argmin}_{\mathbf{S}} & \beta - \operatorname{div}(\mathbf{X}, \mathbf{A}_{k+1}\mathbf{S}) + \lambda_{\mathbf{S}} \Psi_{\mathbf{S}}(\mathbf{S}) & (\mathbf{II}) \\ & \mathbf{S} & \mathbf$

• Multiplicative algorithm based on a MM strategy for $\beta > 2$ (I) $\Psi_{\mathbf{A}} = \iota_{+}$

$$\mathbf{A}_{k+1} = \left(\frac{\left(\mathbf{X} \odot (\mathbf{A}_k \mathbf{S})^{\odot(\beta-2)}\right) \mathbf{S}^T}{(\mathbf{A}_k \mathbf{S})^{\odot(\beta-1)} \mathbf{S}^T}\right)_+^{\odot_{\overline{\beta-1}}} \odot \mathbf{A}_k.$$

$$\mathbf{S}_{k+1} = \left(\frac{\mathbf{A}^T (\mathbf{X} \odot (\mathbf{A}\mathbf{S}_k)^{\odot(\beta-2)})}{\mathbf{A}^T (\mathbf{A}\mathbf{S}_k)^{\odot(\beta-1)}}\right)_+^{\odot \frac{1}{\beta-1}} \odot \mathbf{S}_k$$

$$\mathbf{S}_{k+1} = \left(\frac{\mathbf{A}^T (\mathbf{X} \odot (\mathbf{A}\mathbf{S}_k)^{\odot(\beta-2)}) - \lambda_{\mathbf{S}}}{\mathbf{A}^T (\mathbf{A}\mathbf{S}_k)^{\odot(\beta-1)}}\right)^{\odot \frac{1}{\beta-1}} \odot \mathbf{S}_k$$

$$\underset{\mathbf{A}, \mathbf{S}}{\text{minimize}} \ \Theta(\mathbf{A}, \mathbf{S}) := \beta - \mathbf{div}(\mathbf{A}, \mathbf{S}) + \lambda_{\mathbf{A}} \Psi_{\mathbf{A}}(\mathbf{A}) + \lambda_{\mathbf{S}} \Psi_{\mathbf{S}}(\mathbf{S})$$
(5)

$$\forall (\mathbf{u}, \mathbf{v}) \in (\mathbb{R}^L_+)^2) \quad \beta \text{-}\mathbf{div}(\mathbf{u}, \mathbf{v}) = \sum_{i=1}^L \beta \text{-}\mathrm{div}(u_i | v_i)$$
(6)

and for all $(u, v) \in \mathbb{R}^2_+$ and $\beta \in \mathbb{R} \setminus \{0, 1\}$

$$\beta \operatorname{-div}(u|v) = \frac{1}{\beta(\beta-1)} \left(u^{\beta} + (\beta-1)v^{\beta} - \beta uv^{\beta-1} \right).$$

c) Ent $+\iota_+$

$$\mathbf{S}_{k+1} = \left(\frac{\gamma}{\alpha} \mathcal{W}\left(\frac{\alpha}{\gamma} \exp(-\frac{\delta}{\gamma})\right)\right)_{+}^{\odot\frac{1}{\beta-1}} \odot \mathbf{S}_{k}$$

where \odot denotes the Hadamard product, \mathcal{W} the Lambert function [3] and $\begin{cases}
\alpha = \mathbf{A}^T (\mathbf{A} \mathbf{S}_k)^{\odot(\beta-1)} \odot \mathbf{S}_k, \\
\gamma = \frac{\lambda_{\mathbf{S}}}{\beta-1} \mathbf{S}_k, \\
\delta = \lambda_{\mathbf{S}} (\mathbf{S}_k + \mathbf{S}_k \odot \log(\mathbf{S}_k)) - \mathbf{A}^T (\mathbf{X} \odot (\mathbf{A} \mathbf{S}_k)^{\odot(\beta-2)}) \odot \mathbf{S}_k.
\end{cases}$

Application to 2D HSQC NMR

Real case

where

 $\mathbf{X} \in \mathbb{R}^{5 \times 1024 \times 2048}$: 5 mixtures.

$$\mathbf{A} \in \mathbb{R}^{5 \times 4}$$
: a mixture matrix.

 $\mathbf{S} \in \mathbb{R}^{4 \times 1024 \times 2048}$: 4 pure sources (Limonene, Nerol, α -Terpinolene, β -Caryophyllene).

Simulated case

X is simulated following model (1) with $\mathbf{N} \sim \mathcal{N}(0, \sigma^2)$ with $\sigma = 1.9713 \times 10^4$.

	Data fidelity term	$\lambda_{\mathbf{S}}$	$\Psi_{\mathbf{S}}$	SDR	SIR	SAR	Amari-index
Simulated case	Squared Frobenius	ι_+		18.073	28.854	18.514	0.0121
		0.1σ	$\ell_1 + \iota_+$	30.299	31.475	39.462	0.0272
			Ent $+\iota_+$	18.287	36.859	18.354	0.0090
		σ	$\ell_1 + \iota_+$	21.140	21.788	29.872	0.0492
			Ent $+\iota_+$	17.334	36.909	17.421	0.0198
		10σ	$\ell_1 + \iota_+$	17.041	25.581	22.104	0.0189
			Ent $+\iota_+$	16.021	30.625	18.216	0.0861
	β -divergence		ι_+	36.711	40.854	41.571	0.0054
		0.1σ	$\ell_1 + \iota_+$	36.531	40.853	41.255	0.0054
			Ent $+\iota_+$	36.711	40.854	41.570	0.0054
		σ	$\ell_1 + \iota_+$	32.041	40.868	34.135	0.0054
			Ent $+\iota_+$	36.710	40.852	41.570	0.0054
		10σ	$\ell_1 + \iota_+$	22.906	41.140	23.102	0.0054
			$\mathbf{Ent} + \iota_+$	36.688	40.851	41.513	0.0054
Real case	Squared Frobenius	10σ	$\ell_1 + \iota_+$	04.984	13.956	07.951	0.1804
			Ent $+\iota_+$	05.755	14.434	08.446	0.1793
	β -divergence	10σ	$\ell_1 + \iota_+$	07.240	11.487	10.574	0.1610
			Ent $+\iota_+$	07.220	11.396	10.632	0.1657

Average criteria obtained in 2D NMR spectra with various $\lambda_{\mathbf{S}}$.

• Conclusions

✓ The β -divergence combined with ℓ_1 norm or **Ent** function ensures the BSS of the 2D HSQC NMR. ✓ In the real case, better SDR and SAR values are obtained using β -divergence. However, a slight deterioration on the SIR values is noticed.

• Perspectives

IP Optimize the choice of $\lambda_{\mathbf{S}}$.

Verify the linearity of the model (1) in the context of 2D NMR.

• References

[1] A. Cherni and C. Chaux. Régularisation mixte et parcimonie pour la séparation aveugle de sources en spectroscopie rmn 2d. 2019.

[2] A. Cherni, E. Piersanti, S. Anthoine, C. Chaux, L. Shintu, M. Yemloul, and B. Torrésani. Challenges in the decomposition of 2d nmr spectra of mixtures of small molecules. Faraday discussions, 218:459–480, 2019.

[3] R.-M. Corless, G.-H. Gonnet, D.-E. Hare, D.-J. Jeffrey, and D.-E. Knuth. On the lambert W function. Advances in Applied Mathematics, 5(1):329–359, 1996.

