Introduction

Proximal approach

Application

Conclusion

Proximity operators for a class hybrid sparsity + entropy priors. Application to DOSY NMR signal reconstruction.

## A. Cherni<sup>1,2</sup>, E. Chouzenoux<sup>1</sup>, M.-A. Delsuc <sup>2</sup>

<sup>1</sup>Université Paris-Est, LIGM, Marne-la-Vallée, France <sup>2</sup>Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, France.

### ISIVC 2016 - TUNISIA 21-23<sup>th</sup> November







| Introduction | Proximal approach | Application | Conclusion |
|--------------|-------------------|-------------|------------|
| ●00000       | 0000              | 0000        |            |
| Motivation   |                   |             |            |



 $\begin{array}{c} \textbf{Original data}\\ \overline{x} \in \mathbb{R}^{N} \end{array}$ 

| Introduction | Proximal approach | Application | Conclusion |
|--------------|-------------------|-------------|------------|
| •00000       | 0000              | 0000        | 0000       |
| Motivation   |                   |             |            |



 $\blacktriangleright \ \mathcal{T}: \mathbb{R}^M \rightarrow \mathbb{R}^M$  : Noise degradation operator

| Introduction | Proximal approach | Application | Conclusion |
|--------------|-------------------|-------------|------------|
| •00000       | 0000              | 0000        | 0000       |
| Motivation   |                   |             |            |



#### Goal

Find a good estimate  $\hat{x}$  of  $\overline{x}$  from the observations y, using some a **priori** knowledge on  $\overline{x}$  and on the **noise** characteristics.

| Introduction<br>0●0000 | Proximal approach | Application<br>0000 | Conclusion |
|------------------------|-------------------|---------------------|------------|
| Problematic (1         | /2)               |                     |            |

### DOSY NMR

Diffusion Ordered SpectroscopY, an application in the Nuclear Magnetic Resonance field [Delsuc and Malliavin, 1998].

Measure model

$$I(q) = \int_{D_{\min}}^{D_{\max}} X(D) exp(-D\Delta q^2) dD$$

with :

- D : Diffusion coefficient
- $\Delta$  : Diffusion time
- $\mathbf{q} = \gamma \delta \mathbf{g}$  : Measure of the phase dispersion
- $\bullet \ \gamma$  : Gyromagnetic ratio
- $\delta$  : Duration of the Pulsed field gradients (PFG)
- g : Intensity of the PFG

| Introduction  | Proximal approach | Application | Conclusion |
|---------------|-------------------|-------------|------------|
| 00●000        |                   | 0000        | 0000       |
| Problematic ( | (2/2)             |             |            |

# ► Discrete model

$$y = \mathbf{K}x + w$$

• 
$$y = (y_1, ..., y_M) \in \mathbb{R}^M$$
 : measurement signal

• 
$$x = (x_1, ..., x_N) \in \mathbb{R}^N$$
 : original signal

• 
$$\mathbf{K} = (K_{m,n})_{m \in \mathbb{N}, n \in \mathbb{N}} \in \mathbb{R}^{M \times N}$$
: measurement matrix with positive entries

• 
$$w = (w_1, ..., w_M) \in \mathbb{R}^M$$
 : noise signal

where

$$K_{m,n} = \exp(-D_n \Delta q_m^2)$$

| Introduction  | Proximal approach | Application | Conclusion |
|---------------|-------------------|-------------|------------|
| 00●000        |                   | 0000        | 0000       |
| Problematic ( | (2/2)             |             |            |

### Discrete model

$$y = \mathbf{K}x + w$$

• 
$$y = (y_1, ..., y_M) \in \mathbb{R}^M$$
 : measurement signal

• 
$$x = (x_1, ..., x_N) \in \mathbb{R}^N$$
 : original signal

• 
$$\mathbf{K} = (K_{m,n})_{m \in \mathbb{N}, n \in \mathbb{N}} \in \mathbb{R}^{M \times N}$$
: measurement matrix with positive entries

• 
$$w = (w_1, ..., w_M) \in \mathbb{R}^M$$
 : noise signal

where

$$K_{m,n} = \exp(-D_n \Delta q_m^2)$$

#### Measure operator ?

K : Laplace matrix : unstable operator  $\rightsquigarrow$  ill-conditioned matrix  $M < N \rightsquigarrow$  ill-posed problem

| Introduction     | Proximal approach | Application | Conclusion |
|------------------|-------------------|-------------|------------|
| 000000           | 0000              | 0000        |            |
| Existing methods | s (1/2)           |             |            |

### Constrained formulation

$$\underset{x \in \mathbb{R}^{N}}{\text{minimize}} \quad \Psi(x) \quad \text{subject to} \quad \frac{1}{2} \|\boldsymbol{K}x - y\|_{2}^{2} \leq \tau$$

where  $\tau > 0$ : noise characteristic parameter  $\Psi$ : regularization function.

| Introduction<br>000●00 | Proximal approach | Application<br>0000 | Conclusion |
|------------------------|-------------------|---------------------|------------|
| Existing methods       | s (1/2)           |                     |            |

## ► Constrained formulation

$$\underset{x \in \mathbb{R}^{N}}{\text{minimize}} \quad \Psi(x) \quad \text{subject to} \quad \frac{1}{2} \|\boldsymbol{K}x - y\|_{2}^{2} \leq \tau$$

where  $\tau > 0$ : noise characteristic parameter  $\Psi$ : regularization function.

Lagrangian formulation

$$\underset{x \in \mathbb{R}^{N}}{\text{minimize}} \quad \frac{1}{2} \|\boldsymbol{K}x - y\|_{2}^{2} + \lambda \Psi(x)$$

| Introduction     | Proximal approach | Application | Conclusion |
|------------------|-------------------|-------------|------------|
| 000000           |                   | 0000        | 0000       |
| Existing methods | s (1/2)           |             |            |

### Constrained formulation

$$\underset{x \in \mathbb{R}^{N}}{\text{minimize}} \quad \Psi(x) \quad \text{subject to} \quad \frac{1}{2} \|\boldsymbol{K}x - y\|_{2}^{2} \leq \tau$$

where  $\tau > 0$ : noise characteristic parameter  $\Psi$ : regularization function.

Lagrangian formulation

$$\underset{x \in \mathbb{R}^{N}}{\text{minimize}} \quad \frac{1}{2} \|\boldsymbol{K}x - y\|_{2}^{2} + \lambda \Psi(x)$$

Regularization choice

$$(\forall x \in \mathbb{R}^N) \quad \Psi(x) = \sum_{n=1}^N \psi(x_n)$$

| Introduction    | Proximal approach | Application | Conclusion |
|-----------------|-------------------|-------------|------------|
| 0000●0          |                   | 0000        | 0000       |
| Existing method | ds (2/2)          |             |            |

- ► Most used regularization functions
  - Shannon entropy [Nityananda and Narayan, 1982]

$$(\forall x \in \mathbb{R}^N) \quad \Psi(x) = \sum_{n=1}^N \psi(x_n)$$

where :

$$(\forall x \in \mathbb{R}) \quad \psi(x) = \begin{cases} -x \log x & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ +\infty & \text{elsewhere.} \end{cases}$$

•  $\ell_1$  norm [Candes, 2008]

$$(\forall x \in \mathbb{R}^N) \quad \Psi(x) = \ell_1(x) = \sum_{n=1}^N |x_n|$$

| Introduction | Proximal approach | Application | Conclusion |
|--------------|-------------------|-------------|------------|
| 00000●       | 0000              | 0000        |            |
| Outline      |                   |             |            |

## Introduction

- Proposed approach
  - Hybrid regularization
  - Proximity operators
- Application to DOSY NMR
- Conclusion

| Introduction<br>000000 | Proximal approach<br>●000                                | Application<br>0000                                                                                                     | Conclusion<br>0000 |
|------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------|
| Sparse                 | + Entropy regularizat                                    | tion                                                                                                                    |                    |
| (                      | $(orall x \in \mathbb{R}^{N}, lpha \geq 0, eta \geq 0)$ | $\Psi(x) = \underbrace{\alpha \Psi_1(x)}_{\text{Entropy prior}} + \underbrace{\beta \Psi_2(x)}_{\text{Sparsity prior}}$ | ()<br>prior        |

| Introduction<br>000000 | Proximal approach<br>●000 | Application<br>0000 | Conclusion<br>0000 |
|------------------------|---------------------------|---------------------|--------------------|
| Sparse + E             | Entropy regularization    |                     |                    |
|                        |                           |                     |                    |

$$(\forall x \in \mathbb{R}^N, \alpha \ge 0, \beta \ge 0)$$
  $\Psi(x) = \underbrace{\alpha \Psi_1(x)}_{\text{Entropy prior}} + \underbrace{\beta \Psi_2(x)}_{\text{Sparsity prior}}$ 

$$\Psi_{1}: \quad \mathbb{R}^{N} \to ]-\infty, +\infty]$$
$$x \to \sum_{n=1}^{N} \psi_{1}(x_{n})$$
(1)

| Introduct | on Proximal approach<br>•000                              | Application<br>0000                            | Conclusion<br>0000 |
|-----------|-----------------------------------------------------------|------------------------------------------------|--------------------|
| Spars     | se + Entropy regulariza                                   | ition                                          |                    |
|           | $( orall x \in \mathbb{R}^{N}, lpha \geq 0, eta \geq 0)$ | $\Psi(x) = \alpha \Psi_1(x) + \beta \Psi_1(x)$ | $J_2(x)$           |

Entropy prior Sparsity prior

$$\Psi_{1}: \mathbb{R}^{N} \rightarrow ]-\infty, +\infty] \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \rightarrow \sum_{n=1}^{N} \psi_{1}(x_{n}) \\ (1) \end{array}}_{k \rightarrow 0} \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ -\log(x) + \iota_{[0,+\infty)}(x) \\ Burg \end{array}}_{k \rightarrow 0} \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ -\log(x) + \iota_{[0,+\infty)}(x) \\ Burg \end{array}}_{k \rightarrow 0} \\ \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ -\log(x) + \iota_{[0,+\infty)}(x) \\ Burg \end{array}}_{k \rightarrow 0} \\ \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ Burg \end{array}}_{k \rightarrow 0} \\ \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ Burg \end{array}}_{k \rightarrow 0} \\ \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ Burg \end{array}}_{k \rightarrow 0} \\ \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ Burg \end{array}}_{k \rightarrow 0} \\ \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ Burg \end{array}}_{k \rightarrow 0} \\ \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ Burg \end{array}}_{k \rightarrow 0} \\ \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ Burg \end{array}}_{k \rightarrow 0} \\ \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ Burg \end{array}}_{k \rightarrow 0} \\ \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ Burg \end{array}}_{k \rightarrow 0} \\ \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ Burg \end{array}}_{k \rightarrow 0} \\ \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ Burg \end{array}}_{k \rightarrow 0} \\ \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ x \log(x) \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ x \log(x) \\ x$$

| Introduction<br>000000 | Proximal approach<br>●ooo                 |             | Application<br>0000  |                   | Conclusion |  |
|------------------------|-------------------------------------------|-------------|----------------------|-------------------|------------|--|
| Sparse +               | Entropy regulariza                        | tion        |                      |                   |            |  |
|                        | A/                                        |             |                      |                   |            |  |
| (∀x ∈                  | $= \mathbb{R}^{N}, \alpha > 0, \beta > 0$ | $\Psi(x) =$ | $\alpha \Psi_1(x) +$ | $\beta \Psi_2(x)$ |            |  |

$$(\forall x \in \mathbb{R}^{n}, \alpha \ge 0, \beta \ge 0) \qquad \Psi(x) = \underbrace{\alpha \Psi_1(x)}_{\text{Entropy prior}} + \underbrace{\beta \Psi_2(x)}_{\text{Sparsity prior}}$$

$$\begin{split} \Psi_{1}: & \mathbb{R}^{N} \rightarrow ] - \infty, +\infty] & \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ & x \rightarrow \sum_{n=1}^{N} \psi_{1}(x_{n}) \\ & (1) \end{array} } \\ \end{array}$$

$$\Psi_2: \quad \mathbb{R}^N \to \mathbb{R}$$
$$x \to \sum_{n=1}^N \psi_2(x_n)$$

| Introduct | ion Proximal approach<br>•000                                     | Application<br>0000            | Conclusion<br>0000 |
|-----------|-------------------------------------------------------------------|--------------------------------|--------------------|
| Spars     | se + Entropy regulariza                                           | ition                          |                    |
|           | $( orall x \in \mathbb{R}^{	extsf{N}}, lpha \geq 0, eta \geq 0)$ | $\Psi(x) = \alpha \Psi_1(x) +$ | $\beta \Psi_2(x)$  |

Entropy prior Sparsity prior

$$\begin{split} \Psi_{1}: \quad \mathbb{R}^{N} \rightarrow ] - \infty, +\infty] & \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \rightarrow \sum_{n=1}^{N} \psi_{1}(x_{n}) \\ (1) \end{array}}_{k \rightarrow 0} & \underbrace{ \begin{array}{c|c} \text{Entropy prior } \psi_{1} \\ x \log(x) + \iota_{[0,+\infty)}(x) \\ -\log(x) + \iota_{[0,+\infty)}(x) \\ Burg \end{array}}_{k \rightarrow 0} \end{split}}_{n \rightarrow 0 \end{split}}$$

 $\Psi_2: \mathbb{R}^N \to \mathbb{R}$  $x \to \sum_{n=1}^{N} \psi_2(x_n)$ 

| Sparsity prior $\psi_2$ |          |  |
|-------------------------|----------|--|
| $ x ^{0}$               | $\ell_0$ |  |
| x                       | $\ell_1$ |  |
| $\log(1+ x )$           | log-sum  |  |
| $\log(1+x^2)$           | Cauchy   |  |

| Introduction | Proximal approach | Application | Conclusion |
|--------------|-------------------|-------------|------------|
| 000000       | o●oo              | 0000        | 0000       |
| Proximity    | operator          |             |            |

### Definition

Let  $\Psi : \mathbb{R} \to ] - \infty, +\infty]$  a lower semi continuous (lsc) and proper function. The proximity operator of  $\Psi$  is defined as [Hiriart-Urruty and Lemaréchal, 1993, Bauschke and Combettes, 2011]

$$\operatorname{prox}_{\Psi} : \mathbb{R}^{\mathbb{N}} o \mathbb{R}^{\mathbb{N}}$$
  
 $x o \operatorname{Argmin}_{y \in \mathbb{R}^{\mathbb{N}}} \left( \Psi(y) + \frac{1}{2} \|y - x\|^2 \right)$ 

| Introduction | Proximal approach | Application | Conclusion |
|--------------|-------------------|-------------|------------|
| 000000       | 0●00              | 0000        | 0000       |
| Proximity    | operator          |             |            |

### Definition

Let  $\Psi : \mathbb{R} \to ] - \infty, +\infty]$  a lower semi continuous (lsc) and proper function. The proximity operator of  $\Psi$  is defined as [Hiriart-Urruty and Lemaréchal, 1993, Bauschke and Combettes, 2011]

$$\operatorname{rox}_{\Psi} : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$$
$$x \to \operatorname{Argmin}_{y \in \mathbb{R}^{\mathbb{N}}} \left( \Psi(y) + \frac{1}{2} \|y - x\|^2 \right)$$

### Separability

p

For every 
$$n \in \{1, ..., N\}$$
 and  $x = (x_1, ..., x_N)$ :

$$\operatorname{prox}_{\Psi}(x) = (p_n(x_n))_{1 \le n \le N}$$

with : 
$$p_n(x_n) = \operatorname{prox}_{\alpha\psi_1 + \beta\psi_2}(x_n)$$

| Introduction         Proximal approach           000000         00000 |                      | Application<br>0000 | Conclusion<br>0000 |
|-----------------------------------------------------------------------|----------------------|---------------------|--------------------|
| Proximity                                                             | operators for hybrid | sparse + entropy    | prior $(1/2)$      |

### **Case of Shannon entropy** $(\psi_1)$

| $\psi_2$    | $prox_{lpha\psi_{\mathtt{1}}+eta\psi_{\mathtt{2}}}(x)$ / $x\in\mathbb{R}$                                                                                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\beta = 0$ | $lpha W\left((1/lpha) \exp\left((x/lpha) - 1 ight) ight)$                                                                                                                                                                   |
| $\ell_1$    | $lpha W\left((1/lpha)\exp\left((x-eta)/lpha-1 ight) ight)$                                                                                                                                                                  |
| $\ell_0$    | $\begin{cases} p & \text{if } \beta < \overline{\beta} \\ \{0, p\} & \text{if } \beta = \overline{\beta} \\ 0 & \text{elsewhere} \end{cases}$                                                                               |
|             | where $p = lpha W \left( (1/lpha) \exp \left( (1/lpha) - 1  ight)  ight)$ and $\overline{eta} = (1/2)p^2 + lpha p \in ]0, +\infty[$                                                                                         |
| log-sum     | $\operatorname{Argmin}_{p \in ]0, +\infty[ \text{ s.t. } \varphi(p)=0} \left( (1/2)(x-p)^2 + \psi(p) \right)$<br>with $\varphi(p) = p^2 + (\delta - x + \alpha)p + \varphi(\delta + p)\log(p) + \delta(\alpha - x) + \beta$ |
| Cauchy      | $\frac{1}{(1/2)(x-x)^2 + c(x-x) + \beta}$                                                                                                                                                                                   |
| Cauchy      | $ \begin{array}{c} \text{Argmin} \\ p \in ]0, +\infty[\text{s.t. } \varphi(p)=0 \end{array} ((1/2)(x-p)^2 + \psi(p)) \\ \end{array} $                                                                                       |
|             | with $\varphi(p) = p^3 + (\alpha - x)p^2 + (\delta + 2\beta)p + \alpha(\delta + p^2)\log(p) + \delta(\alpha - x)$                                                                                                           |

W(.) denotes the Lambert function [Corless et al., 1996].

| Introduction | Proximal approach | Application | Conclusion |  |
|--------------|-------------------|-------------|------------|--|
| 000000       | 000●              | 0000        |            |  |
| <b>D</b>     | C                 |             |            |  |

## Proximity operators for hybrid sparse + entropy prior (2/2)

## **Case of Burg entropy** $(\psi_1)$

| $\psi_2$    | $prox_{\alpha\psi_1+\beta\psi_2}(x)$                                                                               |
|-------------|--------------------------------------------------------------------------------------------------------------------|
| $\beta = 0$ | $(x + \sqrt{x^2 + 4\alpha})/2$                                                                                     |
| $\ell_1$    | $(x-eta+\sqrt{(eta-x)^2+4lpha})/2$                                                                                 |
| $\ell_0$    | $(x + \sqrt{x^2 + 4\alpha})/2$                                                                                     |
| log-sum     | $\operatorname{Argmin}_{p\in ]0,+\infty[\mathrm{s.t.}\varphi(p)=0}\left(\tfrac{1}{2}(x-p)^2+\psi(p)\right)$        |
|             | with $\varphi(p) = p^3 + (\delta - x)p^2 + p(\beta - \delta x - \alpha) - \delta \alpha$                           |
| Cauchy      | $\operatorname{Argmin}_{p\in ]0,+\infty[ \mathrm{s.t.} \varphi(p)=0} \left( \frac{1}{2} (x-p)^2 + \psi(p) \right)$ |
|             | with $\varphi(p) = p^4 - xp^3 + (\delta + 2\beta - \alpha)p^2 - \delta xp - \delta \alpha$                         |

| Introduction<br>000000 | Proxima<br>0000 | l approach | Application<br>●000 | Conclusion<br>0000 |
|------------------------|-----------------|------------|---------------------|--------------------|
| Application to I       | DOSY            | NMR        |                     |                    |
|                        |                 |            |                     |                    |

### Prior function

$$\Psi = \alpha \operatorname{ent} + (1 - \beta)\ell_1$$
  
$$\alpha = 1 - \beta \in [0, 1]$$

## Minimization

PPXA+ : Parallel Proximal Algorithm [Pesquet and Pustelnik, 2012]

## Resulting algorithm

 $\label{eq:palma_loss} \begin{array}{l} \mbox{PALMA} : \mbox{Proximal Algorithm for } \ell_1 \mbox{ combined with MAxent} \\ \mbox{prior.} \\ \mbox{Code available at http://palma.labo.igbmc.fr} \end{array}$ 

| Introduction      | Proximal approach | Application | Conclusion |
|-------------------|-------------------|-------------|------------|
| 000000            |                   | 0000        | 0000       |
| Numerical results | s (1/3)           |             |            |

$$\blacktriangleright$$
 M = 50, N = 200, Dmin = 1, Dmax = 103



Original signal

Measured data



▶ Results with  $\sigma = 10^{-5}$  ( noise level), and  $\tau = 7.14 \, 10^{-5}$ .



Recovered signal with different regularizations

| Introduction | Proximal approach | Application | Conclusion |
|--------------|-------------------|-------------|------------|
| 000000       | 0000              | 000●        | 0000       |
| Numerical    | results (3/3)     |             |            |

▶ Results for different noise levels

| σ                | Shannon prior | Shannon $+\ell_1$ | Burg prior | Burg $+\ell_1$ |
|------------------|---------------|-------------------|------------|----------------|
| 10 <sup>-2</sup> | 12.45         | 13.16             | 12.92      | 12.92          |
| 10 <sup>-3</sup> | 18.16         | 20.86             | 12.11      | 13.44          |
| 10 <sup>-4</sup> | 20.87         | 25.95             | 12.03      | 15.53          |

Quality reconstruction in dB for various choices of the penalization function

 $\rightsquigarrow$  Optimal case : Shannon +  $\ell_1$  prior

| Introduction | Proximal approach | Application | Conclusion |
|--------------|-------------------|-------------|------------|
|              |                   |             | 0000       |
| Conclusion & | nerspectives      |             |            |

 $\surd$  New proximity operators combining entropy and sparsity promoting terms.

 $\surd$  Great approach to solve DOSY NMR problem reconstruction.  $\checkmark$  The proposed novel proximity operators can be applied in a variety of proximal algorithms, in the convex or the non-convex case.

| Introduction | Proximal approach | Application | Conclusion |
|--------------|-------------------|-------------|------------|
|              |                   |             | 0000       |
| Conclusion & | nerspectives      |             |            |

 $\surd$  New proximity operators combining entropy and sparsity promoting terms.

 $\surd$  Great approach to solve DOSY NMR problem reconstruction.  $\checkmark$  The proposed novel proximity operators can be applied in a variety of proximal algorithms, in the convex or the non-convex case.

Test with complex data in spectrometry field.
Hybrid regularization in blind signal restoration problems.

| Introduction | Proximal approach<br>0000                                                                                                                                                                                                                                                                                                                                                                                        | Application<br>0000                                                                                         | Conclusion<br>o●oo |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------|
| Refere       | nces                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                             |                    |
|              | Bauschke, H. H. and Combettes, P. L. (2011).<br>Convex analysis and monotone operator theory<br>CMS Books in Mathematics. Springer, New Yo<br>Candes, E.J. Wakin, M. (2008).<br>Enhancing sparsity by reweighted 11 minimizati<br>Journal of Fourier Analysis and Applications, 1<br>Corless, R. M., Gonnet, G. H., Hare, D. E. G.,<br>On the lambert W function.<br>Advances in Computational mathematics, 5(1) | <i>in Hilbert spaces.</i><br>rk, NY.<br>4(5) :877–905.<br>Jeffrey, D. J., and Knuth, D. E. (19<br>:329–359. | 96).               |

Delsuc, M.-A. and Malliavin, T. E. (1998).

Maximum entropy processing of DOSY NMR spectra. Analytical Chemistry, 70 :2146–2148.



Hiriart-Urruty, J. B. and Lemaréchal, C. (1993).

Convex analysis and minimization algorithms II : Advanced theory and bundle methods, volume 306 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York.



Nityananda, R. and Narayan, R. (1982).

Maximum entropy image reconstruction-a practical non-information-theoretic approach. Journal of Astrophysics and Astronomy, 3(4).



Pesquet, J.-C. and Pustelnik, N. (2012).

A parallel inertial proximal optimization method. Pacific Journal of Optimization, 8(2) :273–305.

| Introduction | Proximal approach | Application | Conclusion |
|--------------|-------------------|-------------|------------|
| 000000       | 0000              | 0000        | ○○●○       |
|              |                   |             |            |

## Thank you for your attention !

Introduction 000000 Proximal approach

Application

Conclusion 000●

Proximity operators for a class hybrid sparsity + entropy priors. Application to DOSY NMR signal reconstruction.

Afef Cherni<sup>1</sup>, Emilie Chouzenoux<sup>2</sup>, Marc-André Delsuc <sup>3</sup>

<sup>1</sup> afef.cherni@etu.unistra.fr <sup>2</sup> emilie.chouzenoux@univ-mlv.fr <sup>3</sup> madelsuc@unistra.fr

ISIVC 2016 - TUNISIA 21-23<sup>th</sup> November





