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Abstract
This work is devoted to Monte Carlo methods for radiative transfer equa-

tions with singular kernels, and is motivated by the study of wave propagation in
random media with long-range dependence. As opposed to the short-range case
where the collision cross section is integrable and leads to a non-zero mean free
time, the cross section is not integrable in the long-range situation and yields a
vanishing mean free time. For computational efficiency, a particular care is then
required in the construction of the stochastic processes used in the Monte Carlo
methods. For this, we adapt a method of Asmussen-Rosiński and Cohen-Rosiński
based on a small jumps/large jumps decomposition of the generator. We compare
this method with another approach based on alpha-stable processes, and show the
superiority of the first one. We consider various algorithms for the simulation of
the jump distribution, and underline the efficiency of an appropriate stochastic
collocation method. Comparisons between integrable and singular kernel solutions
are given.

1 Introduction

This work is devoted to the derivation of Monte Carlo methods for the resolution of
two-dimensional radiative transfer equations (RTE) of the form

∂tf + k · ∇xf = Q(f), f(t = 0) = f0, (x, k) ∈ R2 × S1, (1)

with collision operator

Q(f)(k) =

∫
S1

F (k · p)(f(p)− f(k))dσ(p), F ≥ 0.

∗christophe.gomez@univ-amu.fr
†pinaud@math.colostate.edu
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Above, σ(p) is the surface measure on S1. Our motivation comes from the study of high
frequency wave propagation in random media. In such a context, the function f solution
to the RTE describes the wave energy density in the phase space, see [12, 19, 28, 31]
for a few references. The collision term models the interaction between the wave and
the fluctuations of the underlying medium in the so-called weak coupling regime. For
instance, if c(x) is the velocity field and reads

1

c(x)2
=

1

c20
(1 + V (x)) ,

where c0 is a constant background velocity and V is a mean zero, stationary random
field that models fluctuations around the background, then the collision kernel F is
proportional to the Fourier transform of the correlation function

R(x− y) = E{V (x)V (y)}.

The symbol E means expectation over realizations of the random medium, and the
kernel F is nonnegative by application of Bochner theorem.

We are interested here in situations where the random media presents long-range
correlations, in the sense that the correlation function R decays so slow at the infinity
that it is not integrable. Such a scenario arises for instance in turbulent atmosphere,
in the earth crust, or in biomedical applications [7, 18, 32]. We display in Figure 1
typical realizations of media with short-range (SR) and long-range correlations (LR).
The structure is very different, and this can be seen in the RTE itself. When the medium
is SR, the kernel F is integrable (with integral µ), and the collision operator can be split
into gain and loss terms. In terms of stochastic processes, which are at the core of
Monte Carlo methods, Q is the generator of a compound Poisson process with intensity
µ, whose simulation is now standard material [16, 21, 33]. Besides, the solution f has
essentially the regularity of the initial condition f0 (we do not take into account here
some well known averaging effects of the transport operator for integrals of f in the
variable k [10]).

Figure 1: Random media with short-range correlations (left), and long-range correlations
(right).

The situation is very different in the LR case. First of all, due to the slow decay of R
at the infinity, the kernel F has a non integrable singularity at zero. As a consequence,
one can only make sense of the term Q by exploiting the difference f(p)− f(k), which
precludes any splitting between gain and losses. The intensity µ is infinite, and the
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operator Q is now the generator of a general Lévy process on S1, and not just of a pure
jump Poisson process as in the SR case. Informally, µ−1 measures the average time
between collisions (the “Mean Free Time”), which means in the LR case that collisions
are taking place in a continuous basis. The simulation of such Lévy processes in the
context of transport equations seems much less studied than its compound Poisson
counterpart, and is then the object of this work. We focus here on the two-dimensional
case with velocities on S1, and will address the three-dimensional case elsewhere. Note
that the choice of S1 is arbitrary, any circle of given radius would be dealt with in
the same fashion. The singularity of kernel tends to favor grazing collisions, and as a
consequence this LR regime bears some strong similarities with the classical peaked-
forward regime [20, 23, 25], with the forward effect magnified by the singularity.

Regarding the regularity of f , it was established in [13, 14] that f is C∞ in all
variables for all t > 0, which is in stark contrast with the SR case. The regularity is
reminiscent of the hypoelliptic nature of (1) when F is not integrable. Our original
motivation for studying (1) is the resolution of some inverse problems, for instance
the localization of sources or inclusions in clutter. Since inversion techniques based on
transport equations are often based on the singularities of f , see [3], the smoothness of
f indicates that the inversion, if possible at all, should be more difficult than in the SR
situation.

Monte Carlo (MC) methods have several advantages compared to classical finite
elements or finite volumes methods. They can handle the high-dimensionality of (1) in
a simple manner, since no mesh is required and the quantity of interest only need be
discretized at a detector where measurements take place. They are very flexible in terms
of geometry, provided the boundary conditions on f can be translated into boundary
conditions on the underlying stochastic process, and are generally applicable when the
coefficients in the equation depend on the variables (x, k). MC methods are also very
easy to implement and can be parallelized in a straightforward manner, which is a strong
feature with today’s technology. Note that discretization-based methods would have to
handle carefully the singularity of the cross-section.

On the down side, while MC methods offer a relatively good accuracy at low cost,
getting more accurate results can come at a significant increase in the computational
time. Some variance reduction techniques might then be necessary to lower this cost.

Typical collisions kernels in turbulent atmosphere are the celebrated Kolmogorov
(K) power spectrum [27], or its Von Karman (VK) variant including the inner and outer
scales of the turbulence [26]. With F (k, p) = Φ(|k − p|), they read

Φ(|k|) = C0|k|−
11
3 (K), Φ(|k|) = C1(1 + L2

0|k|2)−
11
6 e−`

2
0|k|2 , (VK),

where C0 and C1 are constants, and L0, `0 are the outer and inner scales, respectively.
In a turbulent regime, we have L0 � `0, so that the Von Karman power spectrum
behaves like the Kolmogorov power spectrum at k = 0, and is therefore not integrable
in dimensions two and three. In this work, we will mostly focus on kernels of the form
F (k ·p), and explain how our methods can be directly adapted to kernels like F (x, k, p).
We consider kernels with power singularities such as the Kolmogorov power spectrum,
that read

F (k · p) =
A(k · p)
|k − p|1+α

, α ∈ (0, 2), 0 < a ≤ A(s) ≤ a <∞, (2)
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for s ∈ [−1, 1].
With the hypotheses above, the operator Q can be seen the generator of a Lévy

process (Kk(t))t≥0 on S1, with initial condition Kk(0) = k, see [13]. Introducing the
position

Xx(t) = x+

∫ t

0

Kk(s)ds,

the solution f to (1) is then

f(t, x, k) = E{f0(X
x(t), Kk(t))}.

GeneratingN independent copies (Xx
i , K

k
i )i=1,...,N of the random trajectories (Xx(t), Kk(t))t≥0,

f is approximated by the empirical average

fN(t, x, k) =
1

N

N∑
i=1

f0(X
x
i (t), Kk

i (t)),

while the central limit theorem shows that the error is controlled by some measure of
the standard deviation of fN divided by

√
N .

The key to MC methods is an efficient simulation of the process (K(t))t≥0. To
this end, we adapt a method of the probabilistic literature developed by Asmussen-
Rosiński [1], and Cohen-Rosiński [6], that we will refer to as the ACR method. The
idea is to introduce a cut-off in the collision operator to remove the singularity. The
resulting operator is then the generator of a compound Poisson process with finite (but
large) intensity. The issue is that a small value of the cut-off parameter is required for
good accuracy, leading to a high intensity and therefore to many collisions increasing
the computational time. The issue is fixed by adding a correcting term describing
asymptotically the behavior of the operator around the singularity. This term models
frequent jumps of small amplitude, while the regularized generator describes more rare
jumps with larger amplitudes. In the work of Asmussen-Rosiński, and Cohen-Rosiński,
the correction takes the form of a Brownian motion on the real line, while in our case
we obtain a Brownian motion on the circle (more generally we would obtain a Brownian
motion on Sd with generator given by the Laplace-Beltrami operator on Sd).

Without another MC method to compare against, the efficiency of the ACR method
for the simulation of transport equations is not obvious at first since it is only an
approximation and the cost of the generation of a compound Poisson process with large
intensities is to be determined. To this goal, we carefully design an alternative MC
method that does not involve a regularization of the generator, and is based on the so-
called alpha-stable processes. We will refer to this second method as the AS method. We
also derive an efficient way to simulate the jump distribution of the compound process
that accounts for the singularities of the kernel, and is based on the stochastic collocation
method. We show that the ACR method is very efficient and, perhaps surprisingly, that
it is superior to the AS method for both weakly singular kernels (i.e. α close to 0) and
highly singular kernel (α close to 2).

The paper is organized as follows. In Section 2, we present the ACR method and
give an error analysis. We introduce the AS method in Section 3 and Section 4 is de-
voted to algorithms for the jump distributions. We describe rejection sampling methods
and the stochastic collocation method. We perform simulations in section 5, and start
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by comparing the latter methods, and show the superiority of the last one. We then
address the impact of the Brownian correction in the ACR method, and compare the
performances of ACR and AS methods. We also investigate the sensitivity of the ACR
method to the cut-off parameter. We conclude the simulations section by comparing the
solutions to the RTE for underlying random media with SR and LR correlations, and
by investigating the role of the function a. We finally present generalizations to kernels
of the form F (x, k, p) in Section 6, and a conclusion is offered in Section 7.

Acknowledgment. OP is supported by NSF CAREER grant DMS-1452349.

2 The ACR method

We adapt in this section the method introduced by Asmussen-Rosiński in [1] and Cohen-
Rosiński in [6]. For this, we need first to appropriately parametrize the operator Q. The
natural choice for Q are the polar coordinates and we introduce the surjective map

P : φ ∈ R 7−→ (cos(φ), sin(φ)) ∈ S1.

Setting k = (cos(θ), sin(θ)) and p = (cos(θ′), sin(θ′)) so that k · p = cos(θ′ − θ), and
rewriting

A(k · p) = a(θ′ − θ),

the collision kernel Q can be recast as

Q(f)(k) =
1

2
1+α

2

∫ π

−π

a(θ′ − θ)(f̃(θ′)− f̃(θ))

(1− cos(θ′ − θ)) 1+α
2

dθ′

=
1

2
1+α

2

∫ π

−π

a(θ′)(f̃(θ′ + θ)− f̃(θ))

(1− cos(θ′))
1+α

2

dθ′

= Q̃(f̃)(θ), θ ∈ [−π, π],

where f̃ = f ◦ P is a 2π-periodic function. Note that the 2π-periodic function a is
symmetric with respect to 0 and is nonnegative. The operator Q̃ can be seen as the
generator of a Lévy process on [−π, π] starting from 0, that we denote by (Θ(t))t≥0.
According to our parametrization,

(Kk(t))t≥0 = (P (Θ(t) + θ))t≥0 in law.

For ε ∈ (0, 1), the ACR method consists in splitting Q̃ into

Q̃(g)(θ) = Qε<(g)(θ) +Qε>(g)(θ)

:=
1

2
1+α

2

∫
ICε

a(θ′)(g(θ′ + θ)− g(θ))

(1− cos(θ′))
1+α

2

dθ′ +
1

2
1+α

2

∫
Iε

a(θ′)(g(θ′ + θ)− g(θ))

(1− cos(θ′))
1+α

2

dθ′

where Iε is the set
Iε := {θ′ ∈ [−π, π], | tan(θ′/4)| > ε/4} ,
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and ICε its complementary in [−π, π]. The reason for the latter form of the cut-off will
be apparent further. Because of the regularization, the second piece of the generator,
namely Qε>(g), is now the generator of a classical compound Poisson process with jump
intensity

µε =
Π0
ε

2
1+α

2

, where Π0
ε =

∫
Iε

a(θ)dθ

(1− cos(θ))
1+α

2

,

and jump distribution

Πε(dθ) =
1Iε(θ)a(θ)

Π0
ε(1− cos(θ))

1+α
2

dθ.

The expected number of jumps for the compound Poisson process in any time interval
[0, T ] is given by µεT . The term µε blows up as ε → 0, we will give a precise estimate
further, and this fact is the reason for the need of an efficient simulation technique for
the jump distribution.

The first term of the generator, i.e. Qε
<, models frequent jumps of small amplitude

and can be asymptotically reduced to the generator of a Brownian motion on the circle
as explained in the next section.

2.1 The generator Qε
<

We have the following lemma, proved in Appendix A.1, which describes the relation
between Qε< and the Laplace operator.

Lemma 2.1 Suppose that a ∈ C2([−π, π]) and that g is a smooth 2π-periodic bounded
function with bounded derivatives. Then, for any φ ∈ [−π, π],

Qε<(g)(φ) =
Dε

2

∂2g(φ)

∂φ2
+Rε[g](φ),

where

Dε =
2a(0)ε2−α

2− α
and ‖Rε[g]‖∞ ≤

ε4−α

4− α
‖a‖C2([−π,π])‖g‖C4([−π,π]).

The leading term in Qε< is the generator of a Lévy process with density

pεB(t, φ) =
1

2π
+

1

π

∞∑
`=1

e−tDε`
2/2 cos `φ, t > 0.

It can be directly simulated by remarking that, using the Poisson summation formula,

pεB(t, φ) =
1√

2πtDε

∑
`∈N

e−
(2π`+φ)2

2tDε , t > 0,

which, if φt is a centered Brownian motion with variance tDε, is the density of (φt
mod 2π). Brownian trajectories starting from 0 can easily be generated using the fol-
lowing relation :

φεnh = φεnh − φε(n−1)h + · · ·+ φε2h − φεh + φεh

:= Xn + · · ·+X2 +X1,
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where (Xi)i=1,...,n are i.i.d centered Gaussian random variable with variance hDε, that
we denote by N (0, hDε). Note that Dε is proportional to ε2−α/(2− α), which becomes
larger as α increases. We therefore expect the inclusion of the Brownian term in the
simulation to be critical in order to obtain good accuracy and computational cost.

2.2 The generator Qε
>

As already mentioned, this operator is the generator of a compound Poisson process
with Lévy measure µεΠε. Denoting by (θε(t))t≥0 such a process starting at 0, a sample
path has the form

θε(t) =
Nt∑
i=1

θi, (3)

where (Nt)t≥0 is a Poisson process with intensity µε, independent of (θi)i≥1, which is a
sequence of i.i.d random variables distributed according to Πε(dθ). The sojourn times
in each state i are independent and satisfy an exponential distribution with parameter
µε.

In order to simulate the process, we use the following parametrization. Since the
jump distribution Πε(dθ) is symmetric around the origin, we can write θ = sign(θ)|θ| :=
sθθ
′, where sθ takes the values ±1 with equal probability, and θ′ ∈ Iε,+ := Iε ∩ [0, π].

We then rewrite Πε as
Πε(dθ) = πε(θ

′)dθ′dµ(sθ),

with

dµ(sθ) =
1

2
(δ(sθ + 1) + δ(sθ − 1)) , πε(θ

′) =
1Iε,+(θ′)a(θ′)

Π0
ε,+(1− cos(θ′))

1+α
2

,

and

Π0
ε,+ =

∫
Iε,+

a(θ)dθ

(1− cos(θ))
1+α

2

. (4)

Therefore, in order to simulate a jump θ under Πε(dθ), we generate θ′ according to
πε(θ

′)dθ′, and multiply it by sθ = ±1 with equal probability.
Note that the rate µε satisfies the asymptotics

µε '
ε→0

a(0)

2αεα
, (5)

and therefore blows up as expected in the limit ε→ 0. This expresses the fact that the
process jumps more and more as ε becomes small, which hence increases the simulation
cost. Note also that the rate blows up more rapidly when α is large. Several methods
to simulate πε will be presented in Section 4.

2.3 Error analysis

The main idea of the ACR method is that the Lévy process (Kk(t))t≥0 on S1 starting
at k with generator Q is approximated by the process

(Kk,ε(t))t≥0 =
(
(cos(φε(t) + θε(t) + θ), sin(φε(t) + θε(t) + θ)

)
t≥0
,

7



where φε and θε, defined in the last two sections, are independent. Note that we replaced
φε mod 2π by φε by periodicity. The process (φε(t))t≥0 is generated as described in
Section 2.1, while (θε(t))t≥0 has the form (3).

With

Xx,ε(t) = x+

∫ t

0

Kk,ε(s)ds,

the function
f ε(t, x, k) = E{f0(X

x,ε(t), Kk,ε(t))}
is then the solution to the transport equation below, with the parametrization k =
(cos(θ), sin(θ)),

∂tf
ε + k · ∇xf

ε = Qε>(f ε) +
Dε

2
∂2
θf

ε, f ε(t = 0) = f0,

and it is direct to show that the solution is unique. We have then the following propo-
sition, proved in Appendix A.2.

Proposition 2.2 Suppose that the unique solution to the transport equation (1) satisfies
f ∈ L1((0, T ), L2(R2, C4(S1))), and that a ∈ C2([−π, π]). Then, for all t ∈ (0, T ),

‖f ε(t, ·, ·)− f(t, ·, ·)‖L2(R2×S1) ≤
ε4−α

4− α
‖a‖C2([−π,π])

∫ t

0

‖f(s)‖L2(R2,C4(S1))ds.

Note that the hypothesis (2) on a can be relaxed to hold only in a neighborhood of θ = 0.
The smoothness assumption on f is satisfied for instance if it holds for f0, as equation
(1) propagates regularity. As was mentioned before, solutions to (1) are automatically
C∞ in all variables for all t ≥ t0 > 0 if f0 ∈ L2(R2 × S1). Proposition 2.2 could then be
restated in a more optimal way by taking into account this regularity, and this would
require an additional analysis in an initial layer (0, t0) since regularity occurs only for
t ≥ t0.

The next section is devoted to the derivation of an alternative approach to the ACR
method. Our main motivation in doing so is to provide an efficient method to compare
the ACR method against.

3 The AS method

The main idea is to directly simulate the process (Kk(t))t≥0 without using the small
jumps/larger jumps approximation of the generator. The method is applicable provided
we make the additional assumption that a(θ) admits a global minimizer at θ = 0, or
equivalently A(s) admits a global minimizer at s = 1. This allows us to decompose Q
as

Q(f)(k) =
A(1)

2
1+α

2

∫
S1

f(p)− f(k)

(1− cos(k · p)) 1+α
2

dσ(p)

+
1

2
1+α

2

∫
S1

A(k · p)− A(1)

(1− cos(k · p)) 1+α
2

(
f(p)− f(k)

)
dσ(p)

:= Q1(f)(k) +Q2(f)(k)
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The second term Q2 is the generator of a compound Poisson process on S1 with finite
intensity, which does not pose any computational issue since now the average length
of the jumps is large compared to those generated by Qε>. The main difficulty is then
in the first term Q1, for which we need to construct an appropriate random Markov
process (K1(t))t≥0. The first step is to compute the probability density function,

p(t, k, k0) = P
(
K1(t) = k

∣∣K1(0) = k0

)
that satisfies the forward Kolmogorov equation

∂tp(k) = Q1(p)(k), with p(t = 0, k, k0) = δ(k − k0), k, k0 ∈ S1,

and where δ is the Dirac measure. With the parametrization k ·k0 = cos θ, the operator
Q can be diagonalized using Fourier series, and we obtain the following exact expression
for p (written as a function of θ),

p(t, θ) =
1

2π
+

1

π

∞∑
`=1

etλ` cos `θ, (6)

where (below a0 = a(0) = A(1))

λ` =
a0π

1
2 Γ(−α

2
)

2αΓ(1+α
2

)

(
Γ(`+ 1+α

2
)

Γ(`+ 1−α
2

)
−

Γ(1+α
2

)

Γ(1−α
2

)

)
, (7)

see [29] with a slight adjustment of the constant prefactors, with Γ the usual gamma
function. Note that the eigenvalues λ` are negative, and we then recast them as follows,

λ` = −Dα(β` − β0),

with

Dα = −
a0π

1
2 Γ(−α

2
)

2αΓ(1+α
2

)
, β` =

Γ(`+ 1+α
2

)

Γ(`+ 1−α
2

)
,

where Dα is positive. Before going further, we need to introduce the so-called alpha-
stable processes, that are central in the simulation of (K1(t))t≥0.

3.1 Alpha-stable processes

We use here the notation of [30]. A random variable X has a stable distribution if there
are real parameters α ∈ (0, 2], β ∈ [−1, 1], σ ≥ 0, and µ such that

E{exp itX} =

 exp
{
−σα|t|α

(
1− iβ(sign(t) tan(πα/2))

)
+ iµt

}
if α 6= 1,

exp
{
−σ|t|

(
1 + 2iβ(sign(t) log |t|/π

)
+ iµt

}
if α = 1,

The law of X is denoted by Sα(σ, β, µ). We will only be concerned with symmetric stable
processes for which β = µ = 0, and write the corresponding law as Sα(σ) = Sα(σ, 0, 0).
The density of such a symmetric alpha-stable random variable is then

ϕα,σ(ξ) =
1

2π

∫
R
e−σ

α|x|αe−iξxdx.

Stable random variables can be simulated with the algorithm described in [35].
We introduce in the next paragraph an approximated process that is essentially an

alpha-stable process on S1.

9



3.2 An approximate process

The process is constructed following the key observation that β` converges very fast to
`α as `→∞, see Figure 2. We then replace β` by `α in the definition of p(t, θ), as well
as β0 by 0 with the rationale that |β0| � β` when ` � 1. We therefore consider the
density

p0(t, θ) :=
1

2π
+

1

π

∞∑
`=1

e−tDα`
α

cos `θ, θ ∈ [−π, π].

By the Poisson summation formula, p0 can be written as,

p0(t, θ) =
∑
`∈Z

ϕα,(tDα)1/α(2π`+ θ), θ ∈ [−π, π],

where ϕα,(tDα)1/α is the density of a symmetric alpha-stable random variable introduced

before. The above expression shows that if X ∼ Sα((tDα)1/α), then p0 is the density of X
mod 2π. Periodized densities of the form of p0 are referred to as ”wrapped distribution”.

Figure 2: The ratio β`/`
α as a function of ` for various values of α.

3.3 Correcting the approximate process: stochastic collocation

The density p0 is an excellent approximation of p, as is shown on figure 3. For the two
cases in the figure, the `2 relative error is about 0.003. In the case α = 1.6, the error is
essentially around the origin, where most of the values of θ will be drawn, and is about
half a percent of the peak value. The error for larger values of θ is smaller by roughly
a factor 10.

Even though these small errors translate into small errors in the transport solution,
it is not possible to obtain an arbitrary precision by using p0 instead of p. For arbitrary
accuracy, a random variable drawn according to p0 needs to be corrected to satisfy p. A
straightforward way to do this would be by a rejection method. While the acceptance
rate is expected to be high since p0 and p are close, the rejection requires many calcu-
lations of the densities that could be costly. A better approach is to use the stochastic
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Figure 3: Comparison between p (blue) and p0 (green) for α = 0.8 (left) and α = 1.6
(right). Above, a(x) = 0.1 and t = h = 0.03, which is a typical value for the time
stepsize in the resolution of the radiative transfer equation

collocation method, see [15]: if X has density p0, and if its cumulative distribution func-
tion (CDF) is denoted by G, then G(X) is a uniform random variable in [0, 1]. Besides,
if Y has density p with CDF F , then the following relation holds in law:

Y = (F−1 ◦G)(X). (8)

Equation (8) forms the basis of the stochastic collocation method. In our case, we
can expect F−1 ◦ G to be close to the identity since p0 is close to p. The idea is then
to approximate F−1 ◦ G by Lagrange interpolation with appropriate nodes, and since
F−1(G(x)) is almost linear, only a small numbers of nodes is required. The cost of
inverting F−1 is then minor. The function F−1 ◦G is represented in Figure 4 for several
value of α. As in Figure 3, the time t used for the simulations is the value of a typical
stepsize h (see further) for the resolution of the transport equation, that is h = 0.03. It
is clearly seen that indeed (F−1 ◦G)(x) is close to being linear, the nonlinear behavior
being stronger for small α. The main reason is that we neglected the term β0 that
becomes larger as α decreases.

A natural question is to wonder whether other (simple) distributions for X in (8) pro-
vide as good candidates as the wrapped alpha-stable. We investigate this by considering
a wrapped Gaussian distribution:

pG(t, φ) =
1√

2πtD

∑
`∈Z

e−
(2π`+φ)2

2tD .

Such a random variable can be easily simulated by drawing a Gaussian random variable
modulo 2π. Denoting by G1 the associated CDF, plots of F−1 ◦G1 are given in Figure
4 for several values of D. It is apparent that F−1 ◦ G1 is far from being linear, and
therefore that the function G is a much better choice.

Interpolation of (F−1◦G)(x) is generally done with Gauss quadrature nodes for good
accuracy. We actually use here the Gauss-Lobatto rule that includes the endpoints,
which we noticed was giving slightly better results. How these nodes are calculated is
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Figure 4: Left: the function (F−1 ◦G)(x) for several values of α. Note the close to linear
behavior. Right: the function (F−1 ◦ G1)(x) for several values of D0. The nonlinear
behavior is apparent. For both figures, t = h = 0.03, and a0 = 0.1.

explained in Section A.4 of the Appendix. Given a collection (xi)i=1,...,NI of collocations
points in [0, π], (8) is replaced by, using the symmetry of F−1 ◦G around the origin,

Y = sign(X)

NI∑
i=1

F−1(xi)LNI (|X|) := HNI (X),

where LNI is a Lagrange interpolation polynomial of degree NI −1. The Gauss-Lobatto
rule with NI points is exact for polynomials up to order 2NI−1. We display in Figure 5
the function F−1 ◦G on [0, π], its approximation HNI , and the Gauss-Lobatto nodes for
NI = 5 and NI = 9, and various values of α. We set as before t = h = 0.03. We observe
a very good fit with an `2 relative error between F−1 ◦G and HNI of 0.5%, 0.07%, 0.1%,
and 0.3%, for α = 0.4, α = 0.8, α = 1.2, α = 1.9, respectively. The convergence of the

Figure 5: Comparison between F−1 ◦G and HNI for several values of α. The blue line
is the identity.

stochastic collocation method as NI →∞ is addressed in [15].
The construction of the interpolation function HNI can de done offline (the cost

is negligible compared to that of a whole simulation of the RTE), so that the overall
cost of the AS method includes the generation of X, and the calculation of a low order
polynomial (say maximum of order 10).
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The next section is devoted to the simulation of the jump distribution πε introduced
in Section 2.2.

4 Algorithms for the jump distribution

We present here two methods to draw random numbers according to πε: rejection
sampling, and the stochastic collocation. Since the intensity µε is small, many drawings
according to πε have to be performed, and an efficient way to do this is necessary. The
main difficulty is the presence of the singularity at θ = 0, that is not integrable when the
cut-off is removed, and is driving the general shape of πε, see Figure 6 for an illustration.
The key is therefore to handle appropriately this singularity. The qualitative behaviors
are similar around θ = 0 for non constant functions a bounded below and above.

We present first a carefully designed rejection method, that will be used as a bench-
mark for the stochastic collocation method introduced in section 4.2.

Figure 6: Representations of πε(θ) for a(θ) = 0.1 and a(θ) = 0.1e−(1−cos(θ)), ε = 0.1 and
several values of α.

4.1 Rejection sampling

The method relies on the condition that the density πε can be bounded by another
density (a proposal), which, due to the singularity, limits the options. A good proposal
for the rejection sampling has to capture properly this singularity and has to be easily
simulated. Such a proposal can be derived using a change of variables as described in
the following lemma, proved in Appendix A.3:

Lemma 4.1 Let V be a random variable with density

πε,V (v) =
1

2(3α−1)/2Π0
ε,+

· a(4 arctan(v))(1 + v2)α

v1+α
1(ε/4,1)(v),

where Π0
ε,+ is defined by (4). Then, the random variable Θ = 4 arctan(V ) has πε for

density.

13



The density πε,V can then be bounded as follows:

πε,V (v) ≤ cεfP (v), where cε :=
ā(1− ε′α)

2(α−1)/2Π0
ε,+αε

′α , ε′ =
ε

4
,

and

fP (v) :=
Cε
v1+α

1(ε/4,1)(v), with Cε :=
αε′α

1− ε′α
.

Inverting the CDF corresponding to fP , one can see that

W =
ε′

(1− (1− ε′α)U)1/α
,

has fP for density when U is uniformly distributed over (0, 1). This distribution is
known as a bounded Pareto distribution with parameters (α, ε, 1). Note that according
to (5), the constant cε, central to the rejection method, is of order 1 in ε. One can then
expect a rejection rate weakly sensitive to ε. The algorithm goes as follows:

Until acceptance:

1. Draw a random variable W according to fP.

2. Draw a random number U uniformly distributed over (0, 1).

3. Accept W if

U ≤ πε,V (W )

cεfP (W )
=
a(4 arctan(W ))

ā2α
(1 +W 2)α,

and reject otherwise.

In order to illustrate how fP approximates πε,V and how the rejection method per-
forms, we provide Quantile-Quantile plots (QQ-plots from now on) of πε,V versus fP in
Figure 7, and the acceptance rate 1/cε are summarized in Table 1 for several values of
ε and α.

Figure 7: QQ-plot for πε,V versus fP , from 106 realizations of the distributions, in the
case a(θ) = 0.1, and ε = 0.1 and several values of α.

From this results, one can see, as expected, that the acceptation rate is essentially
constant with respect to ε. We observe as well that the rejection method performs worse
as the singularity becomes stronger, that is as α becomes closer to 2. We fix this issue
in the next paragraph.
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1/cε α = 0.3 1.1 1.9

ε=0.5 0.85 0.52 0.30

0.1 0.83 0.47 0.27

0.05 0.82 0.47 0.27

0.01 0.82 0.47 0.27

Table 1: Acceptance rate for the rejection method with proposal fP , in the case a(θ) =
0.1, for several values of ε and α.

Improved proposal. Since most of the mass of the density is located around the
singularity at 0, instead of bounding the term (1 + v2)α by 2α, we consider its Taylor
expansion at first order when α ∈ (0, 1] and second order when α ∈ (1, 2). Then, we
have

πε,V (v) ≤ c̃εf̃P (v),

with

f̃P (v) =
1

Dε

1(ε′,1)(v)×


1

v1+α
+ αv1−α if α ∈ (0, 1]

1

v1+α
+

α

vα−1
+
α(α− 1)

2
v3−α if α ∈ (1, 2),

(9)

where

Dε =


(1− ε′α

αε′α
+
α(1− ε′2−α)

2− α

)
if α ∈ (0, 1](1− ε′α

αε′α
+
α(1− ε′2−α)

2− α
+
α(α− 1)(1− ε′4−α)

2(4− α)

)
if α ∈ (1, 2),

and

c̃ε =
ā

2(3α−1)/2Π0
ε,+

Dε.

Drawing random numbers from f̃P is not difficult by using the decomposition

f̃P (v) =

 µ1f
1
P (v) + µ2f

2
P (v) if α ∈ (0, 1]

µ1f
1
P (v) + µ2f

2
P (v) + µ3f

3
P (v) if α ∈ (1, 2),

where

µ1 =
1− ε′α

Dεαε′
α , µ2 =

α(1− ε′2−α)

Dε(2− α)
, and µ3 =

α(α− 1)(1− ε′4−α)

2Dε(4− α)
,

so that the sum of the µj is one, and where the densities are

f 1
P = fP , f 2

P (v) =
2− α

(1− ε′2−α)
v1−α

1(ε′,1)(v) and f 3
P (v) =

4− α
(1− ε′4−α)

v3−α
1(ε′,1)(v).
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As we can see, compared to fP , f̃P has corrective terms. We already know how to
simulate f 1

P , and it is not difficult to see that

W2 =
(
1− (1− ε′2−α)U

)1/(2−α)
and W3 =

(
1− (1− ε′4−α)U

)1/(4−α)
,

where U is uniformly distributed over (0, 1), have respectively f 2
P and f 3

P for densities.
Then, to draw random number according to f̃P we proceed as follow:

1. Draw an integer j ∈ {1, 2, 3} according to the distribution (µ1, µ2, µ3).

2. Draw a random number W according to f jP.

One can see from Figure 8, compared to Figure 7, that f̃P is a better proposal than
fP , for which we then expect a better acceptation rate. This is confirmed with the
results summarized in Table 2.

1/c̃ε α = 0.3 1.1 1.9

ε=0.5 0.993 0.999 0.999

0.1 0.997 0.999 0.999

0.05 0.998 0.999 0.999

0.01 0.999 0.999 0.999

‖πε,V − f̃P‖∞ α = 0.3 1.1 1.9

ε=0.5 0.034 2.5 10−3 2.7 10−3

0.1 0.054 2.1 10−3 7.6 10−4

0.05 0.074 2.0 10−3 4.1 10−4

0.01 0.179 1.7 10−3 9.8 10−5

Table 2: Acceptance rate for the rejection method with proposal f̃P and ‖πε,V − f̃P‖∞,
in the case a(θ) = 0.1, for several values of ε and α.

Figure 8: QQ-plot for πε,V versus f̃P , from 107 realizations of the distributions, in the
case a(θ) = 0.1, for ε = 0.1 and ε = 0.01, and several values of α.

Nonconstant function a(θ). We now test the rejection method for a nonconstant
function a, and choose as an example a(θ) = 0.1e−(1−cos(θ)). The performances are
illustrated in Figure 9 and in Table 3. The method still works well, but now the results
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are more sensitive to the parameter α and ε. Note that the choice of function a here is
particularly favorable since it presents a maximum at θ = 0 and decays fast away from
zero. We will see an example of function a in the next section for which the rejection
method fails. This is actually our motivation for designing an alternative approach.
While the rejection method is well-suited to handle the singularities, it has a few flaws:
the performance of strongly depends on the function a, and we can expect poor results if
a has a minimum at θ = 0 for instance; also, f̃P depends on the variable V = tan(θ/4),
and it would more convenient to work directly with the variable cos(θ) without using
trigonometric formulas since cos θ appears directly in the kernel. We addresses these
issues in the next section.

Figure 9: QQ-plot for πε,V versus f̃P , from 107 realizations of the distributions, in the
case a(θ) = 0.1e−(1−cos(θ)), for ε = 0.1 and ε = 0.01, and several values of α.

1/c̃ε α = 0.3 1.1 1.9

ε=0.1 0.767 0.916 0.972

0.01 0.903 0.992 0.999

Table 3: Acceptance rate for the rejection method with proposal f̃P and ‖πε,V − f̃P‖∞,
in the case a(θ) = 0.1e−(1−cos(θ)), and for several values of ε and α.

4.2 Stochastic collocation

We design here a method that is essentially independent of the choice of the function
a (provided the latter is bounded below and above): we use the stochastic collocation
method of section 3.3 with a simple proposal fast to compute, in particular simpler
than the f̃P of the last section. For this, we reparametrize πε(θ

′) as follows: with
τ = (cos θ′ + 1)/2 ∈ [0, 1], we rewrite πε(θ

′) as

πε(θ
′)dθ′ ≡ πε(τ)dτ =

1
[0,1− ε2

4
]
(τ)a(2τ − 1)

2
1+α

2 Cε(1− τ)1+α
2 τ

1
2

dτ,
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where Cε is an appropriate normalization constant. Above, we made the abuse of
notation a(θ) ≡ a(cos θ) ≡ a(2τ − 1) and we slightly modified the definition of the
interval Iε and replaced it for convenience by

Iε =

{
θ ∈ [−π, π], 1− cos θ >

ε2

2

}
.

Consider then the density

q1(x) = Nε 1[0,1− ε2
4

]
(x)(1− x)−1−α

2 with N−1
ε =

2

α

((
2

ε

)α
− 1

)
.

Random variables with density q1 can trivially be simulated since the cumulative dis-
tribution is invertible analytically. Hence, if U satisfies a uniform distribution on [0, 1],
then

X = 1− 1

(1 + (
(

2
ε

)α − 1)U)
2
α

(10)

has density q1. Note that the function q1 captures exactly the singularity of πε at τ = 1.
Recall that the stochastic collocation method is based on the relation Y = (F−1 ◦

G)(X), where F is the CDF of our target distribution πε andG is a proposal distribution,
that we choose with density q1. We use here Gauss interpolation as, contrary to the AS
method, it offered slightly better accuracy than Gauss-Lobatto.

In figure 10, we display the function F−1 ◦ G for G = G1 and its interpolant for
NI = 5 and NI = 15 collocation points. For NI = 5, the relative `2 error between
F−1 ◦ G and its interpolant is 2%, 2.7%, and 1.3% for α = 0.3, α = 1.1, and α = 1.9,
respectively. When NI = 15, the error becomes 0.1%, 0.09%, and 0.07%, and the fit is
excellent. In figure 11, we zoom around the singularities of πε at x = 0 and x = 1 where
the density is larger. We observe as well an almost perfect fit. The generation of the
interpolation polynomial has a negligible cost and is done offline, before propagating the
particles. Also, the additional cost of using 15 collocations points instead 5 points is very
minor, and as a consequence we will set NI = 15 in the simulations. In terms of overall
cost, πε is simulated by generating a random number U with a uniform distribution,
and by computing a polynomial of degree 15 at the point X drawn from q1.

In figure 12, we plot F−1◦G for nonconstant functions a. The important observation
is that the behavior F−1 ◦ G is qualitatively the same as a varies, and therefore that
the stochastic collocation method will be just as efficient as in the case where a is a
constant. This is expected since the singularities of πε are not affected by a when the
latter is bounded below and above.

5 Simulations

We need first to define a typical time scale. When the scattering kernel is integrable,
one is given by the mean free time introduced earlier, and corresponding to µ−1

ε . In
our non-integrable case, the mean free time is zero, and we need a different quantity.
A natural one is the inverse of −λ1, that is the inverse of the first non zero eigenvalue
of Q. When t � tS := (−λ1)

−1, the distribution of the angle is almost uniform and
particles are in a diffusive regime. At such large times, the solution f(t, x, k) to the
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Figure 10: Interpolation of the function F−1 ◦ G with Gauss collocation points for
ε = a(θ) = 0.1. In the case NI = 15 (bottom figures), F−1 ◦ G and its interpolant
cannot be distinguished, with relative `2 errors of 0.1%, 0.09%, and 0.07%, for α = 0.3,
α = 1.1, and α = 1.9, respectively.

Figure 11: Zoom of figure 10 for α = 1.1 and NI = 15 around the singularities of πε at
x = 0 and x = 1. Again, the fit is excellent and F−1 ◦G and its interpolant cannot be
distinguished.

RTE (1) does not depend on k anymore and satisfies a diffusion equation [22] (see also
[13] in the context of singular kernels). For these time scales, it is preferrable to solve a
diffusion equation instead of the RTE, and we therefore consider times not significantly
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Figure 12: Representation of F−1 ◦ G for ε = 0.1, α = 1.1, and several functions a(x).
The qualitative behavior stays the same.

larger than tS.
We represent in Figure 13 the characteristic time tS as a function of α for a(x) = a0 =

0.1. It does not vary much for α ∈ (0, 1.5), and then drops to zero when α ∈ (1.5, 2).
We plot in Figure 14 the mean free time µ−1

ε of the ACR method, as a function of α,

Figure 13: Characteristic time tS as a function of α for a(x) = a0 = 0.1.

for ε = 0.03, 0.1, 0.3 and various functions a. When a(x) = a0 = 0.1 and ε = 0.1 for
instance, the mean free time can be as low as 0.1 for α close to 2, or about 0.5 when
α = 1, which is significantly smaller than the characteristic time tS ' 3 (see fig. 13).
Results are roughly quantitatively the same for the non constant functions a of the
figure. Figures 6 and 14 together illustrate well the typical behavior of the jump process
(θε(t))t≥0 of Section 2.2: when α is small, the mean free time is of order of tS, and few
collisions take place. Figure 6 shows that the jumps can be of large amplitude since the
probability of moving away from θ = 0 where the density is largest is not negligible.
When α is larger, the collision rate increases, and the amplitude of the jumps becomes
smaller, as we see on Figure 6 that the density is very small away from θ = 0.
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Figure 14: Mean free time µ−1
ε of the ACR method as a function of α, for ε = 0.3, 0.1, 0.03

and various functions a.

In the next section, we compare the rejection sampling and the collocation method
for the simulation of the jump distribution.

5.1 Comparison of the algorithms for the jump distribution

We proceed as follows: we fix ε = 0.1, choose NI = 15 collocation points, and two
functions a(θ), a(θ) = 0.1e−(1−cos θ) and a(θ) = 0.1(1 − 3 cos(θ)/4). We then generate
107 samples drawn from πε and compare the computational time of the two methods.
The results are summarized in table 4. The different costs are expressed in terms of
the cost of the collocation method. Simulations are performed on one core (Intel Xeon
E5-2697A at 2.60GHz), and the unit is 1.46s for a code written in the Julia language.
Note that these results are only indicative of trends and may vary on different platforms.

a(θ) = 0.1e−(1−cos θ) a(θ) = 0.1(1− 3 cos(θ)/4)

Collocation Rejection Collocation Rejection

α = 0.3 1 2.2 1 6.3

α = 1.1 1 2.2 1 9.4

α = 1.9 1 2.05 1 11.2

Table 4: Comparison of the methods for the jump distribution for ε = 0.1 and two
functions a(θ). 107 samples are drawn from πε, with units of 1.46s on one core (Intel
Xeon E5-2697A at 2.60GHz).

It is apparent that the collocation method is more efficient, which is expected since
it does not depend on the function a. Its cost is also independent of α, which is clear
according to the construction of the method. The difference in the computational time
between the two functions a for the rejection method is explained as follows: the function
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(1 − 3 cos(θ)/4) has a minimum at θ = 0, around which most of the drawings of the
rejection are done, while e−(1−cos θ) has its maximum at θ = 0 which limits the impact of
a nonconstant function a. The results are very similar for other values of ε like ε = 0.03
or ε = 0.3.

We compared the stochastic collocation with the Metropolis-Hastings algorithm [17,
24] and the stochastic step function method [34], with again better performances for the
collocation.

Following the results of this section, we will use from now on the collocation method
for the simulation of the jump distribution.

5.2 Impact of the Brownian correction of the ACR method

We investigate in this section the impact of the Brownian correction in the ACR method
on the accuracy of the results. As mentioned in section 2.1, we expect this correction
of size ε2−α to be crucial for large α. We need a reference solution to quantify the
error. In our case with a singular collision kernel, we were not able to find a simple
analytical solution to the transport equation. We therefore derive a semi-analytical
expression in Appendix A.5. The initial condition has the form, with x = (x1, x2) and
k = (cos θ, sin θ),

f0(x, θ) =
1√

2πc2
e−
|x|2

2c2
1

2π
(1 + cos θ), (11)

where c = 0.1 in all calculations. Denoting by f the solution to the RTE for a(θ) = a0

constant, we have an expression for f integrated over the spatial direction x2 and the
slab x1 ∈ [z1, z2], with the angle integrated over several bins [θi, θi+1], i = 1, · · · , NB,
θi+1 = θi + ∆θ. Our reference solution is hence the following function of t and i =
1, . . . , NB,

Ji(t) =

∫ z2

z1

∫
R

∫ θi+1

θi

f(t, x1, x2, θ)dx1dx2dθ. (12)

Set ε = a0 = 0.1, and t = 3. For α = 0.3 and α = 1.1, t = 3 is roughly the characteristic
time tS depicted in Figure 13, while when α = 1.9, this is about 3tS. The direction
Kε(t) is generated following the ACR method, and the position Xε(t) is calculated as
explained below.

Integrating Kε(t). As seen in Section 2.3, there are two contributions to the angle
defining the direction, the Brownian part φε, and the pure jump part θε, with

Kε(t) = (cos(φε(t) + θε(t)), sin(φε(t) + θε(t)) := Kε(φε(t), θε(t)).

Since θε is constant between two consecutive jumps (say at t1 and t2), the jump part
can be integrated exactly. The integral needs to be discretized for the Brownian part
though, and since the latter is continuous but not smooth, we just use a rectangle
method of low order. As an example, let t1 and t2 (t1 < t2) two successive jumps of θε,
fix a discretization parameter h and write t2− t1 = Nhh+rh, where Nh is an integer and
rh ∈ [0, h). For Nh ≥ 1, we have then the following expression for the approximation of

22



X(t):

Xε,h(t2) = Xε,h(t1) + h

Nh−1∑
i=0

Kε
(
φε(t1 + ih), θε(t

+
1 )
)

+ rhK
ε
(
φε(t1 +Nhh), θε(t

+
1 )
)
,

and φε(t2) for the next iteration is obtained by

φε(t2)− φε(t1 +Nhh) ∼ N (0, rhDε),

while θ(t+2 ) is the new angle after the jump. When Nh = 0, we simply have

Xε,h(t2) = Xε,h(t1) + (t2 − t1)Kε
(
φε(t1), θε(t

+
1 )
)
,

with update φε(t2)− φε(t1) ∼ N (0, (t2 − t1)Dε).
We plot trajectories ((Xε,h(t), φε(t) + θε(t) mod 2π))t≥0 in Figure 15 for several

values of α and initial condition ((0, 0), 0). We recall that the final time is t = 3 and
that ε = a0 = 0.1. The parameter h is set to 0.03. When α = 0.3, the mean free time
µ−1
ε is 1.09, and the Brownian correction is weak (of order ε2−α), so we can mostly see

the pure jump part. When α = 1.1, the Brownian correction becomes apparent, and is
fully entangled with the jump part when α = 1.9. We have µ−1

ε = 0.43 for α = 1.1 and
µ−1
ε = 0.12 for α = 1.9, note the decrease in the amplitude of the jumps from the case
α = 0.3.

Figure 15: Trajectories (Xε,h(t), φε(t)+θε(t) mod 2π) for several values of α and initial
condition ((0, 0), 0). The Brownian correction becomes more apparent as α increases.

In Figure 16, we represent the reference solution (Ji(t))i=1,...,NB and the numerical
solution to the RTE fε,h, including or not the Brownian correction. We use 107 trajec-
tories, NB = 80 bins and set z1 = 2.7, z2 = 3. When α = 1.9, the solution is completely
off when the correction is not included, while the relative error is about 3% when it is
included (the error is calculated for only one simulation, and is therefore just indica-
tive). When α = 1.1, the relative errors are 6% without the Brownian, and 0.3% with,
and 1.4% and 0.4% respectively for α = 0.3. In all cases, this shows that the Brownian
correction is crucial in order to obtain a good accuracy in the simulations.
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Figure 16: Comparison between the reference solution and the numerical solutions in-
cluding or not the Brownian correction. The non corrected solution is completely off
when α = 1.9, while there is a good accuracy when the Brownian part is included.

5.3 Comparison ACR/AS methods

We compare in this section the performances of the ACR and AS methods. We do
so in terms of accuracy versus computational cost for α = 0.7, 1.3, 1.8. We do not
address smaller values of α since we will see that the ACR method is already much
more competitive than AS for α = 0.7. We fix a(x) = a0 = 0.1, and use our reference
solution (Ji(t))i=1,...,NB with NB = 20 to quantify the error. As in the previous section,
we set t = 3, which is about the characteristic time tS for α = 0.7 and α = 1.3, and
about 2tS for α = 1.8. Since the error is itself a random variable, we average it over 20
simulations to obtain a more stable estimate. We then vary the number of particles, the
time stepsize h (see the previous section), and the parameter ε for the ACR method,
and record the minimal computational cost required to achieve a given accuracy. The
results are depicted in Figure 17. The cost is expressed in units of 0.17s, which is the
computational time to achieve an error of about 10% for a code written in the Julia
language, and ran in parallel on a 32 cores Intel Xeon E5-2697A at 2.60GHz. We
integrate the position X(t) in the ACR method as explained in the previous section,
while X(t) in the AS case is calculated by a low order quadrature for the integral of
K(t).

In the case α = 0.7, the cost of achieving an error of 0.2% is about 10 times higher
for the AS method. The gap is reduced for lower accuracies, about twice the cost of
AS when the error is 10% for instance. The fact that the ACR method is more efficient
is confirmed with α = 1.3 and α = 1.8, with the gap shrinking as α increases. This is
explained on the one hand by the fact that the ACR method is more sensitive to the
parameter α than AS since there are more and more collisions as α grows, and on the
other that the jumps are smaller for large α which reduces the error in the calculation
of X(t) in the AS method. Still, the cost of a 0.5% error when α = 1.8 is more than
twice higher for the AS method. Note that the cost significantly increases when going
from an accuracy of about 10% to about 0.1%.

The better performances of the ACR method can be explained as follows: while the
process (K(t))t≥0 is simulated exactly in the AS method (in the sense that there is no
approximation apart from the collocation sampling), the position X(t) is obtained by
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Figure 17: Comparison of the AS and ACR methods in terms of cost versus accuracy
for α = 0.7, 1.3, 1.8. The ACR method is consistenly more efficient.

numerical integration of K(t). Since the latter presents rough variations, a sufficiently
fine discretization is needed. A better way to handle the integration of K(t) would to be
adapt the stepsize to the random variations of K, which is essentially what is provided
by the ACR method: the decomposition of the generator into the pure jump and the
Brownian parts allows us to separate the large jumps from the smaller variations. As
a consequence, the former part can be integrated exactly, leading to a reduced error
compared to the AS method.

5.4 Sensitivity to the parameter ε

The parameter ε is crucial in the ACR method, and it is therefore important to inves-
tigate how it is affecting the efficiency. We already know that the mean free time is of
order εα, and that the error is of order ε4−α, which means that there is a trade-off be-
tween accuracy and cost in the choice of ε (see Section 2.3). We would like to investigate
here this fact numerically. In Figure 18, left panel, we represent the error as a function
of the number of particles, for α = 0.7, 1.8, and ε = 0.03, 0.1, 0.3 the higher group of
curves corresponds to α = 1.3. We are in the same setting as the last section, with
t = 3, a(x) = 0.1, and a stepsize h = 0.03. We observe as expected that the smaller the
ε, the smaller the error with a significant margin for α = 0.7, and a much smaller one
when α = 1.8. This is to be compared with the cost of decreasing ε: in Figure 18, right
panel, we represent the cost of running a simulation for ε = 0.03, 0.1, 0.3. The reference
is the cost of a simulation with 106 particles, h = 0.03, ε = 0.3 and α = 0.7 (the results
are qualitatively similar for other choices). When α = 0.7 and α = 1.3, the cost is not
very different when decreasing ε from 0.3 to 0.03, while it increases significantly in the
case α = 1.8 when going from 0.1 and 0.03 (this is explained by the mean free time of
order εα). Since the errors between the cases ε = 0.1 and ε = 0.03 are quite similar as
depicted in the left figure, this suggests that ε = 0.1 is a good compromise and a better
choice than ε = 0.3 or ε = 0.03.
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Figure 18: Left: error as a function of the number of particles for various values of α.
The upper group of curves corresponds to α = 1.8, and the lower group to α = 0.7.
Right: computational cost as a function of ε. Note the significant increases in the case
α = 1.8.

5.5 Comparison Short-Range versus Long-Range underlying
random medium

Our goal in this section is to compare the solutions to the RTE (1) with singular kernels
to solutions with integrable kernels. We choose a simple kernel given by a constant
function, that is

QI(f)(k) = a1

∫
S1

(f(p)− f(p))dσ(p).

The process (K(t))t≥0 with generator QI is straightforwardly simulated as it suffices
to draw the angle uniformly over [−π, π]. For a meaningful comparison with singular
kernels of the form (2), we choose a1 such that the mean free time associated with QI
(namely (2πa1)

−1) is equal to the characteristic time tS associated with the singular
kernel. We set as usual a(x) = 0.1, for α = 0.5 and α = 1.8, we display in Figure 19 the
solutions to the RTE on a slab of width 0.2 centered at x2 = 0, as functions of x1, for
t = tS, 2tS, 3tS and integrated in angle. We use the initial condition (11). For t = tS,
the three solutions for α = 0.5, α = 1.8, and for the constant kernel case (referred as
“Uniform” in the figure), are quite similar with the distinction that the scattered part
(i.e. the part that lags behind the peak) is weaker in singular cases since scattering is
mostly peaked forward. When t = 2tS, significant differences appear, with in particular
the fronts in the singular case being widened by the regularization of the RTE. The
widening is stronger when α is larger, as expected. On the other hand, the ballistic
front in the uniform case does not change, also as can be expected. When t = 3tS, the
front in the case α = 0.5 merges with the scattered part, while it can still be observed
when α = 1.8 since forward scattering is stronger.

These results substantiate the claim made in the introduction that inverse problems
based on transport equations with singular kernels should be more ill-posed than those
with integrable kernels: inversion strategies are often based on the singularities of the
solution, that here are smoothed out by the RTE.
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Figure 19: Comparison of solutions in the short-range (red curves) and long-range cases
(blue and green curves) at multiples of the characteristic time. Note the regularization
of the front in the long-range case.

We investigate in the next section the effect of the function a of the kernel on the
form of the solution.

5.6 Impact of the function a

We use the same setting as in the last section, namely we represent the solutions on a
slab around x2 = 0 at multiples of the characteristic time associated with a constant
function a. We compare the results for a(u) = a0 = 0.1 (with u ≡ k · p), a(u) = a1(u) =
(2 + u)/30, and a(u) = a2(u) = 0.1e−(1−u). The coefficients where chosen such that
a(1) = a1(1) = a2(1), that is such that the “amplitude” at the singularity is the same in
the three cases. Results are displayed in figure 20. Since the function a2 is more peaked
around u = 1 than a1, which is itself more peaked than a0, its associated scattered part
is weaker than in the two other cases.

Figure 20: Comparison of the solutions for constant and non constant functions a.
Observe the largest front for the most peaked function.
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6 Generalizations

We explain in this section how the ACR method can be generalized to collision operators
of the form

Q(f)(x, k) =

∫
S1

f(p)− f(k)

|k − p|1+α(x)
a(x, k, p)dσ(p),

which arise for instance when the statistical properties of the underlying random media
vary with the position.

The pure jump part. We start with the generatorQε>. A standard method to handle
compound Poisson processes with parameter-dependent Lévy measures is the so-called
“fictitious shock method”, see [21], also referred to as “thinning”. The intensity µε
depends now on (x, k), and let

µε := sup
x∈R2,k∈S1

µε(x, k).

We then generate a compound Poisson process with intensity µε (note that the global
supremum in the above definition can be localized to yield better efficiency). Suppose
the process has a discontinuity at some time t. Then:

• With probability p = 1− µε(X(t), K(t−))/µε, we set K(t+) = K(t−), that is K is
not modified.

• With probability 1− p, K(t−) is modified according to πε(X(t), K(t−), p), where

πε(x, k, p)dσ(p) =
a(x, k, p)

π0
ε(x, k)|k − p|1+α(x)

dσ(p),

and

π0
ε(x, k) =

∫
S1

a(x, k, p)

|k − p|1+α(x)
dσ(p).

The method is exact, and the question left is how to simulate πε. The rejection method
can readily be adapted, the constant a being now the supremum of a over (x, k, p). The
stochastic collocation method can also be used in this framework as follows: rewrite a as
a(x, k, p) = a(x, k·p, p⊥), where p⊥ = p−(k·p)k, and let A(x, k·p) := supp⊥ a(x, k·p, p⊥).
Defining

νε(x, p)dσ(p) =
A(x, k · p)

ν0
ε |k − p|1+α(x)

dσ(p),

where ν0
ε is an appropriate normalization, πε is simulated by rejection sampling with

proposal νε. The distribution νε can then be simulated with the stochastic collocation
method: discretize the range of the function α into N1 intervals, and that of A into N2

intervals. Consider the resulting N1N2 densities µε,i, i = 1, · · · , N1N2. For each i, one
can generate offline the interpolation polynomial as described in Section 4.2, and store
the coefficients. The accuracy depends on N1N2, but with a polynomial of order 15, we
would just need to store 15N1N2 coefficients, which is not expensive.
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The Brownian part. Following the calculations of section A.1, the coefficient a(0)
in the definition of Dε ≡ Dε(x, k) has to be replaced by a(x, k, k). Assuming there are
no jumps between t and t + h, the angle φε can be approximately generated with the
relation

φε(t+ h)− φε(t) ∼ N (0, hDε(X(t), K(t))).

If there are jumps in [t, t + h], then the interval is decomposed appropriately, and we
apply a formula as above in each subintervals.

7 Conclusion

This work is devoted to Monte Carlo methods for radiative transfer equations with sin-
gular collision kernels. We compared the ACR method based on an approximation of
the generator with the AS method based on the true generator. We showed the superi-
ority of the ACR method, due in part to the separation of the large jumps contribution
allowing for a more accurate integration of the momentum.

We also compared various methods for the simulation of the jump distribution, and
obtained significantly better performances with the stochastic collocation method. We
made clear of the importance of including the Brownian correction for very singular
kernels, and compared solutions to the RTE in the singular case with solutions in the
integrable case. We in particular confirmed the regularization effect of singular kernels.

This work is a first step in the simulation of high frequency wave energy transport
in random media with long-range correlations, our ultimate goal being the resolution of
imaging problems with transport-based techniques as in [4, 5]. Various relevant compu-
tational issues were not addressed here, in particular how to reduce the variance in the
simulations, and how to adjust the parameter ε to it. A comparison with deterministic
methods is also of importance. Note that these latter methods would need to take a
particular care of the singularity of the kernel. These questions will be the object of
future works, as well as the extension of the Monte Carlo methods to three-dimensional
settings.

A Appendix

A.1 Proof of Lemma 2.1

Let us start by rewriting the generator as follows

Qε<(g)(θ) =
1

2
1+α

2

∫
ICε

a(θ′)(g(θ′ + θ)− g(θ))

(1− cos(θ′))
1+α

2

dθ′

=
a(0)

2
1+α

2

∫
ICε

g(θ′ + θ)− g(θ)

(1− cos(θ′))
1+α

2

dθ′ +
1

2
1+α

2

∫
ICε

(a(θ′)− a(0))(g(θ′ + θ)− g(θ))

(1− cos(θ′))
1+α

2

dθ′

:= Rε
1(θ) +Rε

2(θ),

where ICε = {θ′ ∈ [−π, π], | tan(θ′/4)| ≤ ε/4}.
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Regarding Rε
1, Taylor expanding g up to fourth order, and using symmetries to

cancels the first and third order terms, we find, for some ξθ ∈ (θ, θ + θ′),

Rε
1(θ) =

a(0)g′′(θ)

2
1+α

2
+1

∫
ICε

θ′2

(1− cos(θ′))
1+α

2

dθ′ +
a(0)

2
1+α

2 4!

∫
ICε

θ′4g(4)(ξθ)

(1− cos(θ′))
1+α

2

dθ′

:= Lεg(θ) +Rε
12(θ),

where Lεg is the leading term. Regarding Rε
2, we perform again a Taylor expansion on

g up to the fourth order and and using again symmetries, we obtain

Rε
2(θ) =

g′′(θ)

2
1+α

2
+1

∫
ICε

θ′2(a(θ′)− a(0))

(1− cos(θ′))
1+α

2

dθ′ +
1

2
1+α

2 4!

∫
ICε

θ′4g(4)(ξθ)(a(θ′)− a(0))

(1− cos(θ′))
1+α

2

dθ′.

We use the following lemma in order to treat the terms above.

Lemma A.1 We have∣∣∣∣∣
∫
ICε

φ2dφ

(1− cos(φ))
1+α

2

− 2
3+α

2

2− α
ε2−α

∣∣∣∣∣ ≤ 3

2
3−α

2 (4− α)
ε4−α,

and ∫
ICε

φ4

(1− cos(φ))
1+α

2

dφ ≤ 2
5+α

2

4− α
ε4−α.

As a result, Taylor expanding a up to the second order and using symmetries to cancel
the first order term, we have for any θ ∈ [π, π],∣∣∣∣Qε<(g)(θ)− a(0)ε2−α

2− α
g′′(θ)

∣∣∣∣ ≤ ε4−α

4− α

(
‖a‖∞ + ‖a′′‖∞

)(
‖g′′‖∞ + ‖g(4)‖∞

)
.

Proof. [of Lemma A.1] Using that

1− cos(θ′) = 2 sin2(θ′/2) =
4 tan2(θ′/4)

(1 + tan2(θ′/4))2
,

we have, with the change of variable u = tan(φ/4),∫
ICε

φ2dφ

(1− cos(φ))
1+α

2

=
1

23 1+α
2

∫
ICε

φ2(1 + tan2(φ/4))1+αdφ

| tan(φ/4)|1+α

=
26

23 1+α
2

∫ ε/4

−ε/4

arctan2(u)(1 + u2)αdu

|u|1+α
.

Now, using standard analysis, we find∣∣∣∣∣
∫ ε/4

−ε/4

arctan2(u)(1 + u2)αdu

|u|1+α
−
∫ ε/4

−ε/4

|u|2du
|u|1+α

∣∣∣∣∣ ≤ 6

∫ ε/4

−ε/4

|u|4du
|u|1+α

,

with ∫ ε/4

0

u3−αdu =
ε4−α

28−2α(4− α)
and

∫ ε/4

0

u1−αdu =
ε2−α

24−2α(2− α)
.
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Gathering all previous estimates, we obtain∣∣∣∣∣
∫
ICε

φ2dφ

(1− cos(φ))
1+α

2

− 2
3+α

2

2− α
ε2−α

∣∣∣∣∣ ≤ 3

2
3−α

2 (4− α)
ε4−α,

concluding the proof of the first point. The second point of the lemma follows from the
same lines as above, and we have∫

ICε

φ4dφ

(1− cos(φ))
1+α

2

=
210

23 1+α
2

∫ ε

−ε

arctan4(u)(1 + u2)αdu

u1+α

≤ 2
5+α

2

4− α
ε4−α.

A.2 Proof of Proposition 2.2

Let uε = f ε − f , which we assume is smooth in order to justify the formal calculations.
With the notation of Lemma 2.1, uε satisfies

∂tu
ε + k · ∇xu

ε = Qε>uε +
Dε

2
∂2
θu

ε −Rε[f ], uε(t = 0) = 0. (13)

For (·, ·) the scalar product on R2 × S1, we have

(Qε>uε, uε) ≤ 0, (∂2
φu

ε, uε) ≤ 0,

and therefore, we obtain from (13),

1

2

d

dt
‖uε(t)‖2L2(R+×S1) ≤ (Rε[f(t)], uε(t)).

This yields from the Cauchy-Schwarz inequality,

d

dt
‖uε(t)‖L2(R+×S1) ≤ ‖Rε[f(t)]‖L2(R2×S1),

and the conclusion follows from Lemma 2.1.

A.3 Proof of Lemma 4.1

Let us assume that Θ is a random variable with density πε, and let g be a bounded
continuous function. With the notation of section 2.2, we have

E[g(Θ)] =

∫
Iε,+

g(θ)a(θ)

Π0
ε,+(1− cos(θ))(1+α)/2

dθ

=
1

2(1+α)/2Π0
ε,+

∫
Iε,+

g(θ)a(θ)

sin1+α(θ/2)
dθ
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and making the change of variable θ → 2θ,

E[g(Θ)] =
2

2(1+α)/2Π0
ε,+

∫
I′ε,+

g(2θ)a(2θ)

sin1+α(θ)
dθ,

with
I ′ε,+ := {θ ∈ (0, π/2) s.t. tan(θ/2) > ε/4}.

Now, using that sin(θ) = 2 tan(θ/2)/(1 + tan2(θ/2)), and making again the change of
variable θ → 2θ, we obtain

E[g(Θ)] =
2

23(1+α)/2Π0
ε,+

∫
I′ε,+

g(2θ)a(2θ)

tan1+α(θ/2)
(1 + tan2(θ/2))1+αdθ

=
22

23(1+α)/2Π0
ε,+

∫
I′′ε,+

g(4θ)a(4θ)

tan1+α(θ)
(1 + tan2(θ))1+αdθ,

with
I ′′ε,+ := {θ ∈ (0, π/4) s.t. tan(θ) > ε/4}.

Now, with v = tan(θ), we finally obtain

E[g(Θ)] =
1

2(3α−1)/2Π0
ε,+

∫
g(4 arctan(v))

a(4 arctan(v))(1 + v2)α

v1+α
1(ε/4,1)(v)dv

= E[g(4 arctan(V ))],

which concludes the proof.

A.4 Gauss and Gauss-Lobatto quadratures

Gauss quadrature. This is classical material, and the standard method is the Golub-
Welsch algorithm [11]. For a measure µ(x), and given a three-term recurrence relation
between orthogonal polynomials Pk for the measure µ of the form

Pk+1(x) = (x− αk)Pk(x)− βkPk−1, k ≥ 0, P−1(x) = 0, P0(x) = 1,

one forms the N × N symmetric tridiagonal matrix J with diagonal (α0, · · · , αN−1)
and upper diagonal (

√
β1, · · · ,

√
βN−2). The collocation nodes of the N nodes Gauss

quadrature are then the eigenvalues of J . The important point is therefore to obtain the
coefficient αk and βk. There is simple method based on the moments of µ, which unfor-
tunately becomes numerically unstable when about more than 10 collocations points are
needed. We then use a different approach based on a discretization method explicited
in [9]. The idea is to discretize the measure µ as

µ(x) =
P∑
p=1

wpδ(x− xp),

for some weights wp and points xp to be determined. We then obtain a three-term
recurrence relation with coefficients (αPk , β

P
k ) for this discrete measure using the Stieljes
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algorithm (see again [9]), where the limit of (αPk , β
P
k ) as P → ∞ yields the coefficients

of the original measure µ. The choice of wp and xp is important for the efficiency of
the method, and is done as follows: for some weight function ω(x) for which Gauss
quadrature nodes yp and weights γp can be easily calculated, we write (with an abuse
of notation, we suppose µ has density µ(x)), for some interval I,∫

I

f(x)µ(x)dx =

∫
I

f(x)µ(x)

ω(x)
ω(x)dx '

P∑
p=1

f(yp)µ(yp)

ω(yp)
γp.

We then set xp = yp, and wp = µ(xp)γp/ω(xp). As an example, consider the collocation

method of Section 4.2. We have µ(x) = q1(x) for x ∈ [0, 1 − ε2

4
], and we choose

ω(x) = (1 − x)δ−1, for δ = 0.1, which is a Gauss-Jacobi type weight. This choice is
made since, as the function p1, ω has a singularity at x = 1. The associated nodes
and weights are known and tabulated, generally over the interval [−1, 1]. We then do
a linear transformation to relocate them to the interval [0, 1 − ε2

4
]. The overall cost of

the calculation of the collocation points is negligible compared to complete simulation
of the RTE.

Gauss-Lobatto quadrature. The procedure is direct using what is above. If I =
[a, b], then define the measure ν(x) = (x − a)(b − x)µ(x). The interior nodes of the
Gauss-Lobatto rule for µ are then the Gauss nodes for ν, see [8].

A.5 Semi-analytical solution

We derive here a representation formula for a particular solution to (1). For f the
solution to (1) with an initial condition of the form (11) and x = (x1, x2), let

g(t, x1, k) =

∫
R
f(t, (x1, x2), k)dx2, k ∈ S1.

Writing k = (cos θ, sin θ) and z = x1 for convenience, g solves (assuming f decays
sufficiently fast at the infinity),

∂tg + cos θ∂zg = Q(g) = a0

∫
S1

g(p)− g(k)

|k − p|1+α
dσ(p).

We decompose then g into Fourier modes as

g(t, z, θ) =
∑
`≥0

g`(t, z)e`(θ), with e0 =
1√
2π
, e` =

cos `θ√
π
, ` ≥ 1.

Denoting by λ` the eigenvalues of the operator Q explicitely defined in (7), we find the
system of equations

∂tg0 + 1√
2
∂zg1 = λ0g0

∂tg1 + 1√
2
∂zg0 + 1

2
∂zg2 = λ1g1

∂tg` + 1
2
∂zg`−1 + 1

2
∂zg`+1 = λ`g`, ` ≥ 2.
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After taking the Fourier transform in z, we find

∂tĝ`(t, ξ) = λ`ĝ` − iξ(c`ĝ`+1 + d`ĝ`−1) (14)

where

c0 =
1√
2
, d0 = 0, d1 =

1√
2
, c` =

1

2
, ` ≥ 1, d` =

1

2
, ` ≥ 2.

Storing the coefficient ĝ` up to some order ` = L into a vector ĝL, (14) can be written
into the matrix form

∂tĝL(t, ξ) = AL(ξ)ĝL(t, ξ).

This gives us an approximation gL of g represented by

gL(t, z, θ) =
1

2π

L∑
`=0

(∫
R
eizξetAL(ξ)ĝL(0, ξ)dξ

)
`

e`(θ),

where (f)` is the component of f along e`. If f0 in (11) is the initial condition, then
g(t = 0) reads

g(0, z, θ) =
1√

2πc2
e−

z2

2c2
1

2π
(1 + cos θ) =

1√
2πc2

e−
z2

2c2

(
e0√
2π

+
e1√
4π

)
,

which admits as Fourier transform

ĝ(0, ξ, θ) = e−c
2ξ2/2

(
e0√
2π

+
e1√
4π

)
.

The function Ji defined by (12) is then finally

Ji(t) =

∫ z2

z1

∫ θi+1

θi

g(t, z, θ)dzdθ =
1

2π

L∑
`=0

(∫
R

eiz2ξ − eiz1ξ

iξ
etAL(ξ)ĝ(0, ξ)dξ

)
`

∫ θi+1

θi

e`(θ)dθ,

which we evaluate numerically.
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Birkhäuser, Basel, 2003, pp. 357–368.

[30] G. Samorodnitsky and T. M.S., Stable Non-Gaussian Processes, CRC Press, 1994.

[31] P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, Academic
Press, New York, 1995.

[32] C. Sidi and F. Dalaudier, Turbulence in the stratified atmosphere: Recent theoretical devel-
opments and experimental results, Adv. in Space Res., 10 (1990), pp. 25–36.

[33] J. Spanier and E. M. Gelbard, Monte Carlo principles and neutron transport problems,
Addison-Wesley, Reading, Mass., 1969.

[34] T. M. Srensen and F. E. Benth, Levy process simulation by stochastic step functions, SIAM
Journal on Scientific Computing, 35 (2013), pp. A2207–A2224.

[35] R. Weron, On the chambers-mallows-stuck method for simulating skewed stable random variables,
Statistics and Probability Letters, 28 (1996), pp. 165 – 171.

36


