FRACTIONAL WHITE-NOISE LIMIT AND PARAXIAL
APPROXIMATION FOR WAVES IN RANDOM MEDIA

CHRISTOPHE GOMEZ AND OLIVIER PINAUD

ABsTrACT. This work is devoted to the asymptotic analysis of high frequency wave propa-
gation in random media with long-range dependence. We are interested in two asymptotic
regimes, that we investigate simultaneously: the paraxial approximation, where the wave is
collimated and propagates along a privileged direction of propagation, and the white-noise
limit, where random fluctuations in the background are well approximated in a statistical
sense by a fractional white noise. The fractional nature of the fluctuations is reminiscent
of the long-range correlations in the underlying random medium. A typical physical setting
is laser beam propagation in turbulent atmosphere. Starting from the high frequency wave
equation with fast non-Gaussian random oscillations in the velocity field, we derive the frac-
tional It6-Schrédinger equation, that is a Schrédinger equation with potential equal to a
fractional white noise. The proof involves a fine analysis of the backscattering and of the
coupling between the propagating and evanescent modes. Because of the long-range depen-
dence, classical diffusion-approximation theorems for equations with random coeflicients do
not apply, and we therefore use moment techniques to study the convergence.

1. INTRODUCTION

Problems related to wave propagation in random media are encountered in many applications
that range from imaging the earth’s crust in geophysics [10], to communication in underwater
acoustics [35] or laser beam propagation in the atmosphere [13, 32]. The random medium
often models a complex medium for which only partial information is known. Typically, the
large-scale variations of the medium (i.e. the background) are known, while the small-scale
fluctuations (i.e. the heterogeneities) might be too difficult to estimate and are considered as
random.

In these applications, waves are generally in a high frequency regime, with frequencies
sufficiently high so that the interaction of the wave with the fine structures of the medium
cannot be ignored. From both the theoretical and numerical perspectives, describing the
cumulative effects of this interaction is a very challenging task. There is therefore a need for
an approximate, but still accurate, description of the wave propagation. The main objective of
this work is then to derive such reduced models rigorously. The common strategy to attack the
problem relies on the high frequency assumption and on asymptotic theories of random ODEs
or PDEs. There is now a vast literature on this matter, and we refer to [14] and the references
therein for more details.

In this work, we are interested in two particular asymptotic limits, that we intend to per-
form at once. The first one is the paraxial (parabolic) approximation, which is valid when
the wave has a privileged direction of propagation and is sufficiently collimated. In the fre-
quency domain, the d—dimensional Helmholtz equation is reduced to the (d — 1)-dimensional

2010 Mathematics Subject Classification. Primary: 35R60, 60H15, 60H30, 74J20. Key words: Waves in
random media, paraxial approximation, long-range dependence, fractional processes.
O. Pinaud acknowledges support from NSF CAREER grant DMS-1452349.

1



2 CHRISTOPHE GOMEZ AND OLIVIER PINAUD

Schrédinger equation where the time variable plays the role of the variable along the axis of
propagation. There is a significant gain since a boundary value problem is replaced by an
evolution problem with lower spatial dimensions. In homogenous media, the derivation of the
paraxial wave equation is relatively straightforward, and is based on an asymptotic expansion
of the principal symbol of the operator describing the propagation (here the one of the scalar
wave equation). The situation is much more complex when the medium is heterogeneous since
the interaction with the medium generates some backscattering. In order to justify the paraxial
approximation, one has then to resort to some particular features of the medium, for instance
small amplitude of the fluctuations [5], or oscillatory behavior [1, 17].

The second type of limit is of probabilistic nature, and the limiting behavior depends on the
correlation structure of the fluctuations. After the high frequency wave has propagated over
sufficiently large distances in the random medium, it is natural to expect some sort of universal
statistical behavior to describe the multiple scattering on the wavefield. We are naturally
thinking here of applications of the (non-)central limit theorem. There is also a vast literature
on this subject, see for instance [14, 33, 34]. In our context of the paraxial approximation, the
random medium fluctuations are then asymptotically statistically equivalent to a white noise
in the main direction of propagation (say z). This holds when the medium has sufficiently fast
decaying correlations. The resulting limiting model, known as the It6-Schrodinger equation, is
studied mathematically in [11].

When the starting point is the wave equation, or equivalently the Helmholtz equation, there
are, to the best of our knowledge, only two references on the coupled paraxial-white noise limit:
in [1], the authors consider the random Helmholtz equation in layered media and derive the
It6-Schrodinger equation. Layered media are a nice setting since the dynamics is essentially
one-dimensional and the transverse variables play little role. In this latter work, fluctuations
of the medium in the transverse direction are too slow to have a significant effect, and the
resulting white noise only depends on z. The cumulative effect of the random fluctuations on
the wave is then a random phase shift driven by a Brownian motion. In [17], the medium is
more general, and sufficiently complex to lead to a white noise in z with transverse dependence.
The cumulative effect is then more complicated and not just a phase shift.

These two references assume that the medium has short-range correlations. It is not always
the case in practice, as is pointed out in [12, 23, 31] for geophysical problems, wave propagation
in turbulent atmosphere, or medical imaging. This has then stimulated recent mathematical
works on wave propagation in random media with long-range dependence [2, 18, 20, 21, 22,
25, 26]. It is shown there that the wave dynamics in such media can be in great contrast with
that of waves in media with rapidly decaying correlations. For instance, anomalous diffusion
phenomena were exhibited in [18, 20, 21].

The goal of this paper is to derive rigorously and simultaneously the paraxial and the white
noise approximations in the context of random media with slowly decaying correlations in the z
direction. Heuristically, the limiting classical white noise is replaced by a fractional white noise,
leading to the fractional It6-Schridinger equation. From the mathematical viewpoint, this is
a significantly more difficult problem than the ones addressed in [1, 17]. Indeed, in the long-
range case, the martingale techniques of [1, 17] and standard diffusion-approximation theorems
for ODEs with random coefficients do not apply. There is essentially no general theory in this
long-range setting, and we are thus restricted to the use of moments techniques which are fairly
involved analytically. Note as well that the existence theory for the fractional It6-Schrodinger
equation is not trivial, and leads to some additional difficulties in the asymptotic theory.

The paper is organized as follows. In Section 2 we introduce the wave propagation model
under consideration and describe formally the main result of this paper. In Section 3, we
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FicUure 1. Ilustration of the wave propagation model.

introduce various assumptions, define the stochastic integral as well as the notion of solution
for the fractional It6-Schrédinger equation, and finally state precisely the main result. In
Section 4, we give an outline of the proof. The proof is then broken down into the subsequent
sections. Section 5 concerns the derivation of some important estimates. Section 6 is devoted to
central technical results about expectation and limits of iterated integrals. Section 7 addresses
the treatment of the evanescent modes and Section 8 the backscattering. Section 9 is devoted
to the convergence to the fractional It6-Schrodinger equation. Section 10 finalizes the proof of
the main theorems, and Section 11 addresses an estimate introduced in Section 3.

2. THE RANDOM WAVE EQUATION.

Let us be more specific now and introduce the scalar wave equation in the physical space
R? (the setting could be extended to R?, d > 2, since the techniques used in the paper are
independent of the dimension) :

(2.1) AP - ——09?P=V-F  (t,z,z) € (0,+00) x R x R?,

equipped with initial conditions
P(t=0,z,2) =0;P(t=0,z,2) =0 V(z,7) € R x R?,

and where P represents the acoustic pressure field. Above, the z-direction will play the role of
the main propagation axis, A = 8% + A, is the Laplacian, and A, the Laplacian with respect
to the transverse variable x. Here, the forcing term F(¢, z, z) has the form

t
F(t,z,z) = fo(/\—o, %)(5(2’ — Lg)e,,

where § is the Dirac measure, e, is the unit vector pointing in the z-direction. F models a
source located in the plane z = Lg < 0, emitting a pulse in the z-direction with profile fy (see
Figure 1), central wavelength \g, and transverse width ro. The divergence form of the source
term is standard in linear acoustics where P represents the pressure wave, see [17] for instance.
Other types of sources could be considered with minor modifications. In (2.1), the velocity
field verifies
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1 _[alreV@ )] i oseb L and R
2(z,z) % if z€(—00,0)U(L,,+00) ’

where ¢ is the background velocity (constant for simplicity), and where the random field
V (2, ) models fluctuations around cy in the slab (0, L,) x R? and has a stationary covariance.
The parameter o represents the amplitude of the fluctuations, and . will be referred to as their
“correlation length”. This is the standard terminology in the short-range case where . is defined
as the integral of the autocorrelation, but an abuse of language in the long-range situation since
the integral is not finite (see below) and the random medium is multiscale. Here, ;! is probably
best seen as the largest frequency of oscillation of the medium. The main assumption on V is
that it presents long-range dependence in the z-direction. This is expressed mathematically by a
bounded, non-integrable autocorrelation function which decreases at infinity only algebraically
as
E[V(z+ s,x)V(s,y)] ~ & with  $H € (0,1).

z—r+00 ,Zif3
This implies that

+oo
(2.2) /0 |E[V (2 + s,2)V(s,y)]|dz = +o0.

Scalings. We introduce now the scalings, which are similar to these of [17] where fluctuations
with rapidly decaying correlations are considered. We assume first that the correlation length
lc is small compared to the overall distance of propagation in the random medium L., and we

denote their ratio by
l

(&3
€= L—Z < 1.
Second, we assume that the transverse width rg of the source and the correlation length [. are
of the same order,
To ~ lc-

This assumption allows for a full interaction of the wave with the transverse fluctuations of
the medium, leading to a non-trivial transverse behavior. Third, we assume that the central
wavelength )\ is small compared to L, by taking

220

L.

This corresponds to a high frequency regime. With these choices, the Rayleigh length of the

beam is of order of the propagation distance L,. The Rayleigh length is defined as the distance

from the beam waist to the place where its cross-section is doubled by diffraction. Hence, the

beam is still collimated at the exit of the random slab, which is a crucial assumption for the

validity of the paraxial approximation. In homogeneous media, the Rayleigh length is of order
78 /Xo. Therefore, we have for our problem

)\0 )\0 7“8 7“8 2
_—~ =~ — ~ e,
L, 2L, L2
This is a parabolic scaling, where the wave oscillations in the z direction are much faster than in

the transverse direction, which leads to the paraxial wave equation. From now on, we consider
the propagation distance L, as our reference scale of order 1, and rescale parameters as

L,=1L, Ao = €2 l. =¢, and ro = €.
Finally, we consider

o=¢° with s=2-9/2, $He(0,1),
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where $) is related to the decay of the correlation function of V' in the variable z as defined
before. This specific choice of s leads to a nontrivial asymptotic regime in the limit & goes to
0. As a result, the wave equation (2.1) becomes

1 z T t x
2.3 AP——(l Sv(7,7)1 >62P: (if)a/ ~ Lg).
(2.3) g te Vi C (0,0)(2) ) 0; Jo 20 (z = Ls)
The main result of the paper is the asymptotic description of the pulse front exiting, around
the expected arrival time, from the random section at z = L. It is defined by

L,—L L—-L
7S,Lz,rox> :P(ezt—I— S,L,Ex).

Co

(2.4) Pi(t,a) = P()\ot T

Here, the solution is rescaled around the arrival time, and at the transverse scale of the source
profile.

The fractional Ito-Schrédinger equation. We will show that the process P} converges in law
in C°((0, +00), L2(R?)) to a process

Py (t,x) := /e*i“’t\Ilw(L,x)dw,
where ¥, satisfies the following fractional It6-Schrédinger equation
(2.5) AV, (2, 1) = iAz\Ilw(z,x) + ik Uy (2, 2)dW (2, 2) = 0.

Above, k,, := w/cy is the wavenumber, and the initial condition verifies

1 . .
W (0,) = e b/ ER) fo (w0, ),

where e~ #sA=/(2ko) is the semigroup of the free Schrédinger equation and we used the con-
vention
< 1 ) . .
(2.6) fw)= 5 / FOetdt  and  f(t) = / Flw)e— ™t du.
™

In (2.5), Wy is a fractional field in the variable z, with Hurst index
H:=1-$/2€ (1/2,1),

that will be defined further, along with the nature of the stochastic integral. This latter integral
is of pathwise type, and can be seen as a fractional equivalent to the It6-Stratonovich integral
for standard Brownian motions. The function ¥, describes the pulse deformation, in the
paraxial approximation, due to the interaction of the wave with the random medium in the
section (0,L). The initial condition ¥, (0) is simply the free propagation of the source from
z = Lg to z = 0 in the paraxial approximation. In (2.5), backscattering is neglected, leading to
an initial value problem. As was already observed in different contexts in [2, 25] for instance,
the long-range nature thus leads to a different statistical description of the wave than in the
classical mixing case of [17]. In the latter reference, waves are in the regime of the central limit
theorem, and the resulting Schrodinger equation is driven by a standard Brownian field. Here,
we are in a different regime where e=9/2 [V (u/e, x)du converges in law to a fractional field
in z with Hurst index H =1 — $/2 € (1/2,1). An important difficulty in this work is then to
justify that a similar type of limit holds for solutions to (2.3). There are in addition two other
main technical points: showing that the coupling with the evanescent modes is negligible (see
Section 7); these modes exist because of the non-trivial transverse frequency content of the
random medium; and showing that backscattering can be ignored (see Section 8).
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3. PRELIMINARIES AND MAIN RESULTS

Throughout this work, we will use the following conventions for the Fourier transform: f
denotes the Fourier transform w.r.t. the variable ¢ as in (2.6), and f that w.r.t. ¢ and z,

A 1
flw, k) = (27T)3

/f(t,x)e““’””'”dtda: with f(t,a:)z/f(w,ﬁ)efi(““r“‘x)dwdﬁ.

3.1. Assumptions. The source term. We suppose that fo(w, k) is a bounded function with
compact support in both variables, and even in the variable w. We assume moreover that it is
supported away from zero w.r.t. w, that is there exists w. > 0 such that

(3.1) (—we,we) N suppe, folw, k) = 0, Vk € R?.

The latter assumption essentially means that the source is shortband. Larger bandwidths could
be included by direct modifications of the proofs.

The random field. We construct the random field on a probability space (2, 7,P) and in the
Fourier space as follows: the field V' is the Fourier transform of a random measure ‘7(2, dq),
ie.

V(z,x):/ e 7TV (2, dg).
R2

We define V(z, dq) sufficiently explicitly in order to be able to carry on the calculations. Let
then S C R? be a bounded domain, symmetric around the origin (§ = —8), included in a
ball B(0,7s). The domain § is the support of V, and as a consequence the largest transverse
frequency is at most of order e~! (after rescaling). Let also Bg be a real-valued mean-zero
Gaussian random field on [0,400) x S, continuous and stationary with respect to the variable
z, and such that Bg(z,q) = By (z, —q). Its covariance function is given by

E[Bg(z + 20,91)Bs (20, ¢2)] := 75 (2) R(q1, 42),

where R is a continuous positive symmetric and bounded function such that

(3.2) 0< R(qi,q2) < R(g,q) =1, VY(¢,q1,02) €S xS xS.
Besides, rg, is a continuous even function bounded by 7 (0) = 1 and

(635} .
(3.3) reo(2) N with  $ € (0,1).

Hence, rg is not integrable at the infinity. Let then © be a smooth odd function satisfying for
alll e N,

(3.4) sup |®(l) (u)] < Cfa,
u€ER

where @) stands for the I-th derivative of ©, and consider © (B, (z, q)), which is not a Gaussian
variable. Introducing a random measure m(dq), supported~0n (S: , independent of the random
field By, and whose properties are defined below, we write V' as V(z,dq) := m(dq)©(Bg(z, q)),
so that

(3.5) Vi) = [ m(dger6(5y(2.0)

We suppose that m*(dq) = m(—dq), with bounded associated total variation measure |m/, that
is, almost surely,

(3.6) Im[(S) < Cp,



FRACTIONAL WHITE - NOISE LIMIT AND PARAXIAL APPROXIMATION FOR WAVES IN RANDOM MEDIA

for some deterministic constant C,, > 0. This yields in particular that V is real and bounded,
and therefore that the velocity field cannot take negative values for ¢ sufficiently small. We
suppose moreover that m is stationary,

HM%WN@H=LmMmM®w@7

where m is a positive measure on S with finite mass and where the ¢; are smooth functions.
This construction yields a potential V' with a stationary covariance in both z and x, which is
a common assumption in applications. An example of measure m is the following;:

(3.7) m(dq) = Z a;(Ujdq, + Ujd—q,),
Jj=0

where (a;);>0 € I*(N,R) is deterministic, (U;);>0 € CY and (g;);>0 € S are independent iid
sequences of random variables with appropriate distributions, and the U; have zero mean.

Note that E[V(z,z)] = 0 by symmetry, and in the same spirit as [25, Lemma 1], we show in
Proposition 6.1 of Section 6 that V itself satisfies the long-range property

+o0 5 2
%Ro(x —y) with Cg:= ;ﬁ (/ O(u)ue ™ /Qdu> ,

~Y
z—4o00 29 ™ —00

E[V(z + 20, 2)V (20, )]

and

(3-8) /m (dq)R ’ /m (dg)e "™

This implies in particular that (2.2) is satisfied. Examples of realizations of V are given in
Figure 2

The limiting field Wy in (2.5) is heuristically obtained as follows: the scalings in V' and the
long-range behavior act in a such a way that only the linear part in © is not negligible, and such
that e=9/2 [ By (u/e, q)du is well approximated (in distribution) by a fractional Brownian field
in z. Hence, Wy is a random field with covariance operator given by

C
2 )@?+£Hfmf@Wﬂ%@—w

(39 EWn(0)Wa(z29)] = gmp—y

for all (z1,22) € [0,+00) x [0,+00) and (z,y) € R? x R2. The construction of Wy and the
definition of the stochastic integral are given in the next section.

3.2. Stochastic integral and fractional It6-Schrédinger equation. The stochastic in-
tegral with respect to a fractional Brownian motion obtained here in the limiting process is
of pathwise type, and is defined according to the work of Zihle [36]. We start this section
with the construction of the fractional field Wy with covariance operator (3.9), which is used
thereafter to define the stochastic integral. Finally, we give the definition of a solution of (2.5)
before stating the main results of the paper.

The fractional field. A one dimensional standard fractional Brownian motion with Hurst
index H, on a probability space (Q, T, IP’), is a centered Gaussian process by with covariance

Elb ()b (0)] = 5 (u*"

Moreover, such a process admits the following spectral representation

+ 0y — o), V(u,v) € [0,400) x [0, 400).

(3.10) b () = CY/2 / il S

ir|r|H-1/2
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FIGURE 2. Examples of realizations of V. Here, V' is obtained via (3.5) with
O(x) = sin(10z) and S = [—15, 15]. The measure m is as in (3.7), where the U;
are uniform in [—1,1], the ¢; are chosen with a discrete uniform distribution
among the points of a uniform discretization of &, and a; = 1 for 7 < 100
and zero otherwise. The field By, is obtained via a similar formula as (3.11)
where the e,, are cosines, the 3, behave like n=2 and W, is replaced by a
Gaussian process with autocorrelation rg(z) defined as the Fourier transform
of 1(_15,15)(k)/|k|*~". From left to right, $ = 0.9,0.5,0.1. Observe the arising
of long-range correlations in the z direction as $) decreases, that is as rg
decreases slower at the infinity.

with Cy = HT'(2H) sin(wH) /7, and where w(dr) is a complex Gaussian random measure such
that w*(dr) = w(—dr) and
Elw(dr)w*(ds)] = 6(r — s)drds.
The construction of the fractional field with covariance operator (3.9) is done in the Fourier
domain. Let (Wg ,)n>1 be a sequence of independent standard fractional Brownian motions
with Hurst index H on the probability space (Q, 7, P). Using the fact that
Q:L*(S) — LS
¢ —  [sdqR(p,q)¢(q)

is a positive self-adjoint trace class operator [8, Corollary 4.4], their exist a sequence (e,)n>1
of orthonormal eigenvectors and a sequence (3,),>1 of positive eigenvalues for (). Therefore,
the Gaussian random field

(311) BH(Za (]) = Z V ﬁnen(q)WH,n(z)
n>1
defines a infinite-dimensional standard fractional Brownian motion on L?*(S), and then
Co
H(2H - 1)

(3.12) Wy (z,2) = UH/ m(dq)e” """ By (z,q) with o
s
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defines a random mixture of fractional Brownian fields with Hurst index H and with covariance
operator given by (3.9). Note that our asymptotic noise model is not Gaussian. This is due
to the random measure m, which was introduced for the purpose of deriving a potential with
a stationary covariance. When the medium fluctuations satisfy some mixing properties, the
asymptotic noise is however always Gaussian [1, 14, 17]. However, for medium perturbations
with slowly decaying correlations, it is not necessarily the case. In a one-dimensional wave
propagation setting, it has been observed in [26] that the asymptotic noise model is not neces-
sarily Gaussian if the initial medium fluctuations have non-Gaussian statistics. Nevertheless,
the form of Wy allows the use of the Gaussian properties, and then the use of [36] to define
the stochastic integral in (2.5).

The stochastic integral. We follow here the approach of [27, 28]. Let us consider the Banach
space

We(0,L, B) := {¢ € C%([0,L], B) such that [[t]|ap < +oo},
i “Jo(2) - ow)
Z)— u
ol = s [lote)ls + [ 2 ).

2€[0,L (2 —
and where B is a given Banach space. For 3 € (0,1), we denote by C?([0, L], B) the Banach
space of S-Hoélder functions on [0, L] with values in B, equipped with

[¢(u) — o(v)llB
= su z + su —_—
I#ls.c.5 ze[o%)L] lo@)llz ocnen<r (u—v)P
Remark that for a € (0,1/2)
L1—2a
(313)  lélan < (1+ T )Iéli-acn sothat C'=((0, L], B) C W(0, L, B).

Now, for @ € (0,1) and z € (0,L), we introduce, for a real-valued function f, the so-called
Weyl’s derivative given by

o .7 1 /() TG = [
D f(2) = r'l—a) [ o a/o (z —u)otl du},
—1)« z L zZ)— u
(3.14) Dy f(z) = rE1 1)@) [ (Lf( z)a +a / {i ) Z)*’; (w) dul,

whenever these quantities are well-defined, and where I'(u) = fOJrOO r“~le="dr is the gamma
function. Following [36], the generalized Stieljes integral of a function f € C”([0, L], R) with
respect to g € C#([0, L],R), with v+ > 1, v > a, and p > 1 — « is defined by

L L
(3.15) | rag= 0 [ 0ps@p s .
where
(3.16) gr-(u) = g(u) —g(L™).

The definition does not depend on «, and we have

z L
/ fdg = / 0.0yds.
0 0

Moreover, according to [28], this integral can be extended to more general classes of functions
thanks to the relation

‘/OL fdg‘ < flla,1Aalg)s
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o= [ (L [ S0,

1
Au(g) = =——————— D}=%g,- .
(g) F(l _ Ol)F(Oé) 0<225<L | t— 9t (’LL)|

Consequently, this integral is well-defined as soon as f € W*(0, L,R) and A,(g) < +oo.
As a result, for a random function F' € W (0, L, L?(R?)), the stochastic integral with respect
to the fractional field Wy,

where

and

/OZ Fu,z)dWgy (u, x),

is defined by (3.15) almost everywhere in z and P-almost surely. In fact, we have for o €
(1 — H,1/2) and for all z € [0, L],

| Fomra

E[ sup Aa(Wi(2))] < /S E[Jm|(dq)]E[An(Br ()] < Csup E[Au(Br(q))] < oo,

zER? qeS

L2(]R2) CllFlweo,L.L22) sup, Aoa(Wh (z)),

with

as will be proved later in Lemma 9.1.

The fractional Ito6-Schrédinger equation. The notion of solution for the It6-Schrodinger equa-
tion (2.5) is made precise in the following definition. First, let us introduce some additional
notations. Let k& € N*, and let us denote by H*(R?) the k-th Sobolev space on R?. Con-
sider moreover W(0, L) := W*(0, L, H*(R?)), equipped with the norm || - ||, g+ (r2), and the
complete metric space

WE(0,L) := (] Wg(0,L),
kEN*
equipped with .
dooo(9:9) = Y o (LANl6 = Wlla,mze)) -
k>1

Definition 3.1. Let H € (1/2,1), a € (1 — H,1/2), and Wy be the fractional field defined by
(3.12). We say that ¥,, € W2 (0, L) is a pathwise solution of (2.5) if, with probability one, for
all (z,z) € [0, L] x R?, we have

U, (z,z) = U,(0,z +—/ AU, (u, x)du + ik, /Oz\Ilw(u,x)dWH(u,x).

In other words, a solution to (2.5) is a pointwise solution of this equation for almost all
realizations of the randomness. We will see later that a solution to (2.5) has automatically
Holder regularity

v, ecl%0,L):= () c"(lo,L], H*(R?) with 6=H+a—1.
keN~
Here, CZ=9(0, L) is a complete metric space equipped with
1
di—0..00($,0) =) ok (AN llo = dlla—ocmr @)
E>1

so that CZ=9(0, L) ¢ W (0, L) according to (3.13). The solutions we define here are classical
solutions in the standard terminology. It is not completely trivial to construct less regular
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solutions to (2.5), which is required for non-linear problems, see [29]. Indeed, the standard
technique is to use the mild formulation, and then treat a term of the form

/OZ S(z —u)¥,(u, x)dWg (u, z),

where S is the Schrodinger semigroup. As explained before, some Holder regularity in w is
needed in order to make sense of the integral. Since the semigroup is not sufficiently regular-
izing, this regularity in « has to be exchanged for some regularity in « on ¥,,, and the fixed
point procedure cannot be closed. This is not a problem in our linear setting where we can
iterate the stochastic integrals and suppose that the initial condition is C*° in z. A different
strategy has to be adopted in the non-linear case [29].

Note that the stochastic integral here is the fractional equivalent to the Ito-Stratonovich
integral for standard Brownian motions, and as such satisfies the classical integration by parts
formula. This then formally yields the conservation relation, for all z € [0, L],

1 -
o (2)l2@2) = 1w (0)llz2m2) = 5l fo(w)llz2@2).-

3.3. Main results. We will actually not work directly with the process P§ given by (2.4), but
rather with an approximate process p7 defined by

L
S,L,sx),
0

(3.17) v (t,x) = p(szt +
where p solves the wave equation (2.3) with a regularization parameter a. > 0,

(3.18) Ap — 01(2)(1 + 85V<§, 5)1(0@)(2))83;) +iqep = fo(giz, g)d’(z — Lg),

and vanishing initial conditions. Thanks to the estimate below, proved in Section 11,

C 1/2
(3.19) sup | Ptz ) = plt, 2,6 | o) <~

(t,z)€(0,T) xR

vT >0,

it is equivalent, from the viewpoint of convergence in law (see [6, Theorem 3.1 pp. 27]), to
consider p% instead of P§ by choosing a. = o(e?). The main theorem will be hence stated in
terms of p7. The introduction of p is an important point since the regularization term provides
us with straightforward estimates in L2((0, L) x R?), that would require much more work with
the nonregularized process P. These estimates are not uniform in &, but sufficiently tamed,
and are exploited throughout the paper.

We will mostly work in the frequency domain, and in order to take Fourier transforms in
time, we extend p to negative times by setting p(—t, z,x) = p(¢, z, x), for all ¢ > 0.

The main result of this paper is the following theorem, that concerns the convergence of the
pulse (3.17).

Theorem 3.1 (Convergence result). The family (p7)zc(0,1), defined by (3.17), converges in
law in the space C°((—oo, +00), L2(R?)) N L%((—o0, +o0) x R?) to a limit given by

Y (t,x) = /e_i“’t\llw(L,ac)dw7

where W, is the unique pathwise solution to the fractional Ité-Schrodinger equation (2.5).

The second theorem below is a by-product of the proof of the main theorem, and provides
us with some interesting properties of the solutions of the fractional It6-Schrodinger equation:
existence and uniqueness, conservation of the energy, approximation by a smooth process which
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can be expanded in terms of scattering events, and approximate formulas for moments of any
order.

Theorem 3.2 (Properties of the fractional It6-Schrodinger equation). We have the three fol-
lowing statements:

(1) The fractional It6-Schrédinger equation (2.5) admits a unique pathwise solution U, for
all « € (1 — H,1/2), which satisfies

1,
(3.20) o (2)llz2@e) = Slfo@)llirzee) V2 €[0,L].

Moreover, W, € C£=9(0,L) for all 0 € (0, H — 1/2).
(2) For all 0 € (0,H —1/2), the process ¥, can be approzimated by

U,(z)= lim UA(z)  with  UA(z) )Y A (2)

Azrroe n>1

where the limit holds in C2=%(0, L) in probability. Here, we have in the Fourier domain

In . n n n) —i|lk|?z i ul™ Q™) 2
A (2, k) = (iky) / m(dq' ))/A()dU( JeiInl"2/ (ko) i (a.QT0) £ (w0, Q)

””mum

where u™ := (uy, ..., un), @™ = (q1, ..., qn), m(dq(")) =m(dq)...m(dg,), Q™ :=
(QOa"'in)} with Qm =R—=q1 — " —4m, and

n

Gn(u (n) Q(n) Z ‘Qm71|2— |Qm|2)um

m=1

Moreover,
An(2) = {(ul, o) €10,2], st 0<wu;<uj_y Vje€ {2,...,71}}7

and (w(dr,q))qes is a family of complex Gaussian random measure defined by

Z BrnCeoT'(2H — 1) sin(rH)

™

en(q)wn(dr),

(3.21) w(dr, q)

n>1

where (wy,(dr))p,>1 is the family of independent complex Gaussian random measure in
the spectral representation (3.10) of the family (W, g)n>1 introduced in (3.12).

(3) We have for all (My, M) € N?, distinct frequencies (w;j,)(i j)e{1,2}x{1,...M;}> and
e L2(R2(M1+M2))

M,y Mo
E |:< qu’un,j] (Z) Hl \Ilwz,jg (Z)a ¢>L2(R2(MI+MZ)):|
1= J2=

Mo
— : A
B A1—1>I£oo E [< H \I/wl 91 1 \ij2"72 (Z)’ S0>L2(]R2(Ml+1\42))} '

J2=

Here, U, ; is the unique pathwise solution of the fractional It6-Schrédinger equation
(2.5) with frequency w; j,.
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The conservation relation (3.20) is a consequence of a negligible backscattering and shows
that the energy of the pulse is conserved at the end of the random section, that is

1
1921l L2((— o0, 4+00) xR2) = S 1 follz2((~ 00,400 xm2).

Note also that the convergence in the second point holds in W2 (0,L) with « =1 — H + 6
according to (3.13), and that ¥, becomes smoother in z as H increases, which is expected
since the regularity of the fractional brownian motion improves with H. Moreover, we will
see further that the process \Ilf is the solution to a fractional It6-Schrodinger equation with a
regularized fractional white noise, and as such enjoys some regularity properties (w.r.t. z) that
are convenient in justifying formal computations, in particular the calculation of the moments
as in item (3) above. Moments are important for instance in imaging applications, where they
help quantify the stability of reconstructions with respect to changes in the random medium,
see e.g. [7, 3, 4, 19]. The series expansion in item (2) is the classical Born series, see e.g. [24,
Section 17.2].
Note finally that ¥, satisfies various formulations of (2.5), for instance

: 2 z z
Foler) = Wal0.0) = B [ Gumduct ikoon [mlda) [ Batusn = gaBa(uo)
2kw 0 S 0
in the Fourier domain, or the mild formulation
W (z,m) = e N R (0, 0) ko / m(dq) / eI T @RI (4, k—q)d B (u, g)du,
S 0

where the relation between Wy and By is given by (3.12).

The rest of the paper is dedicated to the proofs of the theorems. We will focus on Theorem
3.1 as its proof contains that of Theorem 3.2. Since the proof is fairly long and involved, we
begin with an outline that describes the main steps.

4. OUTLINE OF THE PROOF

The random Helmholtz equation. The proof starts by recasting the wave equation in the
Fourier domain in all variables, except z. Defining for this the Fourier transform in time

1 ) .
§F(w) = ﬁ/g(t)ezwt/ﬁdt with g(t) = /QE(W)G_Z“’t/Ezdw,

that accounts for the high frequencies generated by the source, we obtain from (3.18) the
Helmholtz equation
2~ =& ko% s zx ~e . ~&
azpw(zv JJ) + Ampw('z? (E) + 87 (1 +e V(gv E) 1(0,L/E)(z))pw(za .’II) + Zaspw(zv .T)
(4.1) - f0<w,§>5'(z’—Ls).

We will construct solutions to (4.1) in Section 5, and show that pc, satisfies the required
regularity to justify all the calculations. Taking the Fourier transform w.r.t. to x of the
wavefield rescaled around the propagation axis pg,(z,ex), that is

A 1 = IKT
o, (2, k) == )2 /pi)(z,ax)e dz,
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FiGUre 3. Illustration of the right- and left going mode amplitudes.

we find

2

kS

+ 5742 /S m(dq)f/(g, q)f)i(z, k—q) = folw,x)0'(z— Lg),

)ﬁi(z, k) +i0eps (2, K)
(4.2)

where k, = w/cy is the wavenumber, and V = ©(Bg) according to (3.5). Following the
standard terminology in absence of the regularization parameter (c. = 0), when the wavevector
k satisfies || < |kw|/e, we will refer to the corresponding mode as a propagating mode. These
modes can propagate over large distances. When the wavevector satisfies |x| > |k, |/e, we refer
to an evanescent mode.

Left-going and right-going waves. The proof is based on a decomposition of p, into right-
and left-going propagating modes, see Figure 3, with amplitudes a°, and 53, respectively. These
amplitudes are defined as the solutions to

(43) ﬁi](z7 :‘ﬂ?) = )\1() (di}(z’ H)eikwks,w(f”v)z/az + I;Z(Z, Kz)e—ikwksyw(ﬁ)z/gz)
e,w R
4.4) 0,95 (2, k) = L VAew (k) as (2, K eikwe w(r)z/e® _ je 2K o tkwe w(r)z/e” ’
w 22 w w

for |k| < |kw|/e, and where

4

. . e

(4.5) Aew(K) == \/1 — 2|k|2/k2 4oy e, with Qe = I:T

We consider here the principal square root for complex numbers, namely the square root with
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positive imaginary part. Using (4.2) we find the following coupled-mode equations
(4.6)

9. [O:LLZJ(Z,K)} :/ m(dq)H: (2, k,q {EJ
b, (2, k) {lk—ql<|ko|/e}NS (da) HS ) b, (2,5 —q)

. efikw)\57w(n)z/s2 R
(dq)V (2/¢,q) _pikwe w(m)z/e? Pu(2, K — q),

+éef

, ik /
—_—— m
2/ A w(K) J{In—al>|kol/c}nS

for |k| < |ky|/e, where

" R
HE(z,k,q) =e°2 Ve V(z/e,
. o(2,5.q) @) (z/€.9)
( ' ) eikw()‘E,w(Q)an,w(H))Z/€2 eiik‘w()‘E,w(q)+)‘5,w(n))z/€2
K| ko O (@FAew (9))2/6 =ik (e (@)= Ae o (5)) /€3
The system (4.6) is equipped with the boundary conditions
A ) N .
(4.8) ag,(0,k) = %(“)e—“%&w“/*fo(w,n) and  05(L,k) =0,

where the first condition represents the (known) amplitude of the wave incoming from the
left-homogeneous half-space and entering the slab (0, L), and the second condition implements
the fact that no wave is entering the right-hand side of the slab. These conditions will be
investigated in more details in Section 5. Despite its formulation, the system (4.6) is not an
initial value problem (IVP), but rather a boundary value problem. The limiting problem will
nevertheless be shown to be an IVP.

Note that in the homogeneous case where V' = 0, the justification of the paraxial approxi-
mation is straightforward. Indeed, in that case ag(z, %) is constant for z > Lg and therefore
equal to aZ, (0, k) defined in (4.8), so that the right-going wave (2.4) is given by

z—L

i) =p(2e e 25 )

Co

= %// e—iwte—if'ca:eilcw()\E,W(;-c)—l)(z—LS)/eZJﬁ()(w7I{)deK7

and therefore, pointwise in (¢, z),
1 - . -\N\Q ~
i%pi(t,x) =3 // e~ wteminme~iang (=L f () k) dwdk
1

=5 [ e ) @),

where e?#2=/(2k») ig the semigroup of the free Schrédinger equation.

Iterated integrals. When V is random, the core of the proof is an asymptotic analysis of
the amplitudes a, and Bg solutions to (4.6). There are several steps, most of which involve
computing moments of the form

(4.9) E[ﬁ@(sﬁ(?,pj))],

which arise when iterating (4.6). The random variables ©(Bg(u/e,q)) are not Gaussian, but
we will see in Section 6 that they asymptotically behave as Gaussian variables. This is based
on the ideas of [34]: suppose that n is even; the even function © is then projected on the basis
of the Hermite polynomials, which gives rise to a series of terms in (4.9). The leading one
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corresponds to the product of the first order terms in the Hermite expansions, and consists of
the product of n/2 moments of order 2 of Bg. Any other term involves at least n/2+1 moments
of order 2 which, after integration, the use of the scaling u;/e and of the long-range dependance
property, leads to negligible contributions. The fact that a fractional Brownian field is obtained
at the limit is a direct consequence of the asymptotic behavior of the correlation function (3.3).

FEvanescent modes. With the technical results for terms of the form (4.9) at hand, we can
then proceed to the analysis of a5, and bS,. The first step is to show that the coupling between
propagating and evanescent modes can be neglected. This is actually a fairly subtle point.
The fact that evanescent modes are expected to decrease exponentially as z increases in (0, L)
cannot be exploited close to the transition propagating/evanescent modes. Indeed, in this case,
Ac. is of order 2 at the transition, which yields exponentials in (4.3) with arguments of order
one. Note also that more technical difficulties arise at the transition since A, appears in the
denominator in the definition of H,.

Our strategy to handle the evanescent modes then goes as follows: we start from (4.6)
with wavevectors  satisfying |k| < |ke|/e, which means that we only consider the propagating
modes. This is not a limitation since we will prove the convergence of (a<,, bg,) in the distribution
sense, which will restrict || to some bounded domain independent of ¢, say |x| < R. The first
term in the r.h.s. of (4.6) corresponds to propagating modes with momentum x — p scattered to
propagating modes with momentum « after interaction with the random medium; the second
term corresponds to evanescent modes with momentum k — p scattered to propagating modes
with momentum x. When |s| < R the second term is zero, since only propagating modes
with large wavenumbers of order |k,,|/e (which is of order e~ since k,, is bounded from below
independently of € according to assumption (3.1)) are coupled to the evanescent modes. This
naturally does not mean that evanescent modes have no influence on the propagating modes,
the coupling appears in the first term of the r.h.s. via modes with wavenumbers close to the
transition.

We then define the following approximate system, that only describes the propagating
modes, for all |&| < |kw|/€,

A (2, k) ag, (0, k) : 5 A (u, v — q)
(4.10) [ 50 ] _ { v [ du m(da) FIE (u, v, q) | 52\ .

B (2, k) bz (0, k) 0 {k—q|<|ko|/e}NS BE (u, k — q)
Above, we extended AS, and BE to 0 for |k| > |ku|/e (since we will prove convergence in the
distribution sense), and we have introduced

(4.11)
5 i 5—2 ik (AT (@) =27 (K))z/e> —iky (AT ()AL L (K))z/e>
e 715 kw ~ e e,w g,w e £,w e, w
Hw(za K?, q) - 2 V(Z/Eg R — Q) [_eikw(/\g,w(q)+/\;w(n))z/82 _e_ikw()\;w(q)—A;w(K))Z/EZ‘|
with

ALw(q) == V1 —e|ql?/kE.
The important fact is that evanescent modes are absent in the system above, the second term
in the r.h.s. in (4.6) was removed. A minor point is that HE is approximated by HE, where

w?

the regularization term a. is set to zero and the )., in the denominator in H; are set to

one. We want then to show that (A, B¢) is a good approximation of (ag,,b,). For the sake
of clarity, let us assume that flf) is replaced by HE in (4.10) since the approximation of Hf
is not the main issue here. Integrating (4.6) in z and taking the difference with (4.10), we
need to prove that two homogeneous solutions to (4.10) for |x| < R, that is solutions with
the first term in the r.h.s. set to zero, are close to each other as ¢ — 0. The solutions are

not equal for ¢ fixed, otherwise there would not be any evanescent modes in (4.6), which is
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clearly wrong. The main difficulty is that the system is not closed: even if we only consider
modes with |x| < R in the Lh.s. of (4.6), modes with larger wavenumbers are involved in
the r.h.s.. We will then use the following observation to overcome this issue: two modes
with very different wavenumbers, say one with |k| < R and the other with || > R, are
related to each other only after a large number of interactions with the medium; since, in
average, there is some loss of amplitude at each interaction (due to scattering and not the
regularization parameter a.), the coupling between the || and the |x’| modes is expected to
be small. This idea can be seen as a form of asymptotic closure of the non-closed system.
However, technical difficulties in the iterated integrals arise when x’ crosses the transition
propagative-evanescent modes, which leads us to consider large ', but not sufficiently large to
reach the transition. The remaining very large wavenumbers |x”| > |k/| are treated as follows:
after introducing appropriate boundary conditions as explained in Section 5, the amplitude
of these wavenumbers can easily be controlled by some negative powers of ¢ without using
iterated integrals and dealing with the transition. This non-uniform bound would not be
available without the regularization parameter a., and this is what motivated its introduction.
Then, if " is chosen appropriately, the wave has lost sufficient energy when scattered from s
to k" (with |&”| > |K/|) to compensate the previous non-uniform bound. We have then the
following proposition, proved in Section 7:

Proposition 4.1 (Coupling with evanescent modes is negligible). For all z € [0, L], for all
w >0, and for all test function ¢ € C§°(R?) x CS°(R?), we have

(| [ - [220)0) e

An easy consequence of this result is that for all 4 > 0, T" > 0, and test function ¢ with
¢ € C5°(R?), we have

>,u>:0.

(4.12) ;g@(te[sg;ﬂ (D5 (8) = D5 1(8), 8) | > 1) =0,

where p7 is given by (2.4) and

, ] e—ikw(L—Ls)/EZ R . e
pi (t, ) = L L P —— L (L,n)e’k“f’“(”) /e,
1,L 9 )\57w(/€) w

Let us remark that the left-going mode amplitude is not involved in pi,p, because of the bound-
ary condition b<,(L) = 0 (no wave is coming from the right homogeneous space). Since p§ — PiL
converges in probability to 0, it is then enough to investigate the limit in law of pf ; to prove
Theorem 3.1 (see [6, Theorem 3.1 pp. 27]). Even if this latter convergence only holds in a
weak sense, energy estimates given in Section 5 will allow us to obtain the strong convergence
in L?(R?).

Backscattering. The second step of the proof is to study pj ; and therefore the couple
(A B2). The system (4.10) is closed, but the backscattered mode amplitude b, (0) is unknown
and cannot be considered as an initial condition. This issue is corrected by introducing the
propagator P, defined as the solution to, for all |k| < |k,|/e,

0(k—r) 0

Pz, k1) = —I—/ du/ mdql:lf, u, K, Q)P (u, k —q, 1),
(= r) 0 5(””’”)} 0 Jr—da<lkal/cins (A e P )
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where the initial condition is the identity operator. The propagator is extended to zero for
|k| > |ko|/e. According to symmetries in HE, the propagator can be decomposed as follows

Pz, k,1) =

PL(z,k,m) PO (2,5,7)
Pre(z, k1) PY(z,k,7)|

where (P%€,P%) is the solution to
(4.13)

Po(zk 7")} [5("‘@ - 7")} /Z / ; PLe(u, k — q,T)
G = + [ du m(dq)H (U, K, Q) | sher R
[7’3’5(3’ ) 0 o Jn—ai<ibulsens Pt (u k= ar)
The term P%¢ describes scattering to the same direction of propagation, while P%¢ describes

scattering to the opposite direction. We then find the following relation between the right and
left going modes in terms of the propagator:

Ao - [rremn [0 0 e

The expression of the wave exiting the random section is thus, after integration against a test
function ¢ € C5°(R?),

<p§ >_paL( ¢) + i, (t, 9),
with

Pon(t.0)i= [ [ dwdne 105 00300) [ arPe (Lo r)s )
;L (t / / dwdre™ etk Ls /< Ge (0 ) / drPYE(L, 1, r)UE (1) (k).

Here, we have defined the following functions,

eik“’ (/\E,W(m)—l)L/52

Aew(T) & —ikw(Ae,w(r)—1)Lg/e?
c(r) = Y——~fo(w,r)e” etewlr s/e”, c (k) =
65r) = Y2 fy () v = g s

Before describing the asymptotic behavior of the propagator, we need to introduce a few more
notations:

Pt (L) = [P (Lot PRI () = [ PE (Lo (o))

A1) = folw,r)elrE /b,

The next result shows that the backscattering is negligible and provides us with the leading
term in the propagator.

(4.14)

Proposition 4.2 (Backscattering is negligible). We have the following two statements:
(1) For all p > 0, we have

lim P /H’P:Z)f ||L2(R2)dw>n) 0,

where P, bf is extended by O for |k| > |ky]|/e-
(2) For alln > O we have

hm P / ||'P j(L)||L2(R2)dw > 77) =0,
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where X5 is the solution to

m(dq)HS 1 1 (2, k,q) X5 (2,5 — q)  with  X5(0) = ¢

w?

(4.15) 0,X (2, k) z/

{le—gl<|kul/e}NS
for |k| < |kw|/e, and HE is defined by (4.11) (ﬁjm is the (1,1) entry of HE). Here,
Poye and X5 are extended by 0 for [k| > |ky|/e.

w7

Proposition 4.2 is proved in Section 8. The proof is based on a series expansion of the
propagator and on the fact that the coupling between right and left going modes appears via
an oscillatory integral. Note also that neglecting the backscattering leads to an IVP on X.

Convergence to the Ito-Schridinger equation. The last step is to characterize the limit of X5.
With the same arguments as before, we only need to investigate the convergence in law of X
to prove Theorem 3.1. The proof, given in Section 9, is also based on a series expansion of ]
and on the computation of the limiting moments of ;. We will need the following functional
spaces: for k € N*, let us denote by

Hy = {qﬁ:qﬁ with < € H’“(Rz)} with  [l|2, = /(1+ 1[2)%/2) () | 2dlr.

Consider also W (0, L) := W(0, L, Hy), equipped with the norm || - ||la.x := || - ||la2,, and the
complete metric space

W (0,L) == () W (0,L)  equipped with  dao0(¢,%) = 2% (LA ¢ —P]|ag) -

keN* E>1

We finally introduce the complete metric space of Hy-valued functions with Holder regularity

CE=0,L) == (1) C"0([0, L], M),
keN

equipped with

R 1

di—0.0.00(0:0) =) or ANl =dlla-0.cru),

E>1

as well as the spaces C% (0,L) and €°(0, L) with immediate definitions. Let us recall that
according to (3.13), we have CZ£=9(0, L) c W (0, L) for = H+a— 1. The convergence result
is the following;:

Proposition 4.3 (Convergence to the fractional It6-Schrodinger equation). We have the three
statements below:
(1) For all M € N* and frequencies (w1,...,wnr), the family (X5 (L),..., X5, (L)) con-
verges in law in L?(R*M) to (X, (L),...,X,,,(L)). Here, X, is the unique pathwise
solution in W;(O,L), foralla e (1—H,1/2), of

(4.16) X, (z,k) = ¢° (k) +ikoon /S

where By is defined by (3.11) and oy by (3.12). Here, the stochastic integral is defined

P-almost surely pointwise in k and q. Moreover, X, € ég’G(O,L) forall 6 € (0,H —
1/2), and

z
m(dg) / duei5=a* =K/ ko) . (4, s — q)d B (u, q),
0

1.
(4.17) X (2)| 22 (R2) = |0 (0) || L2 (R2) = §Hfo(w7')||L2(R2)-
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(2) We have for all (My, My) € N2, all frequencies (Wis)(ij)ef1,2y x{1,....M,}» and test func-
tion p € L?(R2(M+M2)y

M, Mo
. 15 D a——
i B[ T 25, (0 T ¥ 000) L o)
Ji=1 Jo=1
M, Mo
=K [< Hl le,jl (L) Hl XWQ,)'Q (L)a ¢>L2(R2(M1+Mz))} .
J1= J2=

(3) Therefore, the process defined in the Fourier domain by
\i/w(z, K) = e_i‘"””lzz/(%“”)Xw(z7 K)
satisfies all the requirements of Theorem 8.2 with Wy defined by (3.12).

In order to identify the moments of X, with the limits of those of X7, we will identify
the moments of each term in a Duhamel expansion of X,,. The main technical difficulty is to
handle the fractional stochastic integral and to justify the calculations, in particular exchange
of expectation, limit, and integration. We will for this proceed by regularization, and start by
constructing an approximate solution X2 that solves (4.16) with By replaced by Bi} defined

by, for q € S,
4 1/2 A eiru -1
By (u,q) == Cy nz>:1 Bnen(q) /_A an(dT)7

with Cy = HI'(2H) sin(nH)/m, and where (wy,(dr)),>1 is the family of independent complex
Gaussian random measure given in the spectral representation (3.10). Since B is C> w.r.t.
to u, the integral in (4.16) is now simply a Lebesgue integral, and computations can be easily
justified. We then pass to the limit A — 400 in order to construct and characterize solutions
to (4.16). These points are addressed in the proof of Proposition 4.3 in Section 9, and the
proofs of Theorems 3.1 and 3.2 are then straightforward owing to the previous propositions.

5. EXISTENCE THEORY AND ESTIMATES

This section is devoted to the existence of solutions to (4.1), their regularity, and to the
derivation of some important estimates that will be used throughout the proof.
Existence. We introduce first the Green’s function
eths x|
G:(z,x) = ——, with x=(z,2) and k& =ko/1+ia.c?/k2.
47|x]|
We then recast (4.1) into the integral form
(5-1) ﬁi; - Taﬁi; = UQ,e,

where

2

Tou(z, x) = ‘“47r /(0,L)x1R2 G (z— 2 o — x')V(;, ;)u(z’, z')dz'da’

/

. x
upe(w, z,x) = / Lo (w,z,z,2") fo (w, —)dm’
R2 g
and
eiki |z—Lg|?+|z—a’|?
dn(|z — Lg|? + |z — 2'|2)2

We have then the following lemma, whose proof is standard and is just sketched:

1
Lo.(w,z,2,2") = (2 — Lg) (fo) (lz — Ls|* + |z — xl|2) ’ - 1) .
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Lemma 5.1. For all e > 0 and dall k, € R, (5.1) admits a unique solution pS, in the Sobolev
spaces
W2’p((—OO,Ls) X Rz) N W27p((L51OO) X R2)7 1< p <00,

that satisfies (4.1) in the distribution sense and almost surely.

Proof. First of all, since the potential V' is bounded, it follows from Riesz compactness criterion
(see [30, Theorem XIIL.66 pp. 248]) that the operator 7. is compact in LP(R3), 1 < p < oc.
Moreover, application of the Young inequality show that ug. € L9((0,L) x R?), 1 < ¢ < 0.
The existence and uniqueness of a solution to (5.1) in LP((0, L) x R?) for 1 < p < oo is then
a consequence of the Fredholm alternative. Remarking further that uwg. € LP((—o0,Lg) X
R?) N LP((Lg,o0) x R?), the solution p¢, belongs to the latter space and satisfies (4.1) in the
distribution sense. Standard elliptic regularity finally yields pg, € W2P((—oo, Lg) x R?) N
W?2P((Lg,0) x R?). O

A first consequence of the latter lemma is that the Helmholtz equation is satisfied almost
everywhere for z > Lg and z < Lg. A second consequence is that p5, and 0,5, both admit
limits as z — L?;E. The Helmholtz equation then yields the following jump conditions across
the plane z = Lg,

(5.2) (L% R) = 5 (L k) = folw,r) and  0.95,(LE, k) — 095 (Lg, k) = 0.

We then use these relations to solve the Helmholtz equation for z < Lg, for z € (Lg,0), and
for z > L. This will allow us to derive boundary conditions at z = 0 and z = L that will lead
to some estimates on p¢,.

Open boundary conditions. We need first some properties of the A, defined in (4.5), which
follows from some of the principal square root. For a complex number z = u + v, with v # 0,
the principal square root admits the expression

(5.3) Vz= %(\/ \/u2+v2+u+isign(v)\/\/u2+v2—u).

As a consequence,
(5.4) Re(Mew(r)) >0, VeeR? and Im(\.,(x)) <Cyage, for 1—¢&2|x?/k2>0.

For the second inequality above, we used the fact that the square root is of Holder regularity
1/2. We will also need the following expressions, that are consequences of (4.3)-(4.4):

\ w(ﬂ)efikw)\e,w(fﬁ)z/52 E2
5.5 ac = & NE 782 N
(55  @(zn) 5 7o) + g 000
and
. /\ 7W(ﬁ)eikw)\gw(;'-i)z/ez B 82 .
(5.6) b (2, k) = £ 5 [pw(z, K) — mazpw(z, H)} .

The boundary conditions are derived below:

o Solution of the Helmholtz equation for z € (—oo,Lg) U (Lg,0). Since there are no
sources at z = —oo, there are no right-traveling waves in z < Lg and therefore
as(z,k) = 0 for z < Lg. Moreover, since the medium is homogeneous in (—o0,0),
the coefficients a(z, k) and bg (z, %) are constant in (—oo, Lg) U (Lg,0). Using the
jump conditions (5.2), we find

Aew A )
(5.7) ai}(L;:, K) = 5#("6)%(&)7 H)efzkw)\a’w(n)[‘s/g'
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The coefficient bg, is unknown at this point in (Lg,0). We then eliminate it in the
expression of p¢ (z, k), which leads after direct manipulations to the following boundary
condition at z = O:

ikwAe w(K) . 2iky\/Aew(K) .
(5.8) 0.05,(0, k) + 2572’(5)]93(0, K) = ZTE’(H)af)(L;C, K), Vk € R?.

Note that we used here the fact that 0,p°(z,x) and p°(z, k) are continuous in z, K
a.e., according to the regularity of Lemma 5.1.

e Solution for z € (L,+00). Asin the previous case, there are no sources at z = +00, and
therefore bg,(z, %) = 0 for z > L. Since ag,(z, %) is constant in (L, 4o00) and unknown,
we can eliminate it in the same fashion as above to obtain the following boundary
condition at z = L:

koAe w(k)
(5.9) 0.05(L,m) = Ty ) w2
We then use the boundary conditions (5.8)—(5.9) to arrive at the following result:

Lemma 5.2. The wavefield pg, satisfies the following estimates:

(5.10) / Re\e ()P (L, )P + / Rel(he oo (9)I55(0,5) P+ % 1 o0,y
< Ol folw, )72 @2,

2
~E € ~c
(5.11) /]Rz Im(Aa,w(ff))Ipw(L,ﬁ)\der/ Im(Az . (r))1P, (0, H)IQdH+EIIVPWII%%(M)XR%

~ kz
2 w
< Cllfolw, e, (1 + a) ’
(5.12) 55, (L Yoy + 56,0 )2y < Cllfolws ooy

Above we use the notation V = (9,,V,) for the gradient of the whole physical space R®. We
have moreover

. . 1 4
(5.13) hms(ljlp 195, (L, M 22y < 5l folw, )22y
E—

Proof. We start by multiplying (4.2) by p< (2, ). Integrating in (2, &) over [0, L] x R?, using
boundary conditions (5.8)—(5.9), and taking first the imaginary part leads to

||L2((o L)xR2)

/ Re(Ae o ()55 (L ) 2dr + / Re(Ae o ()15 0, 5)|
R2 R2

= 2Re ( /R ] ./Ag,w(n)az(L;n)ﬁg,((),n)dn) .

Since Re(A¢w(k)) > 0 for all k according to (5.4), we then find

/KRe( w(8))|D5, (0, )| dn<2(/ e (R)]|GE (LS, 5) |2d,.;> </| OH|dn)1/27

where K is the support in the x variable of fo. Since there are constants Cy, Cy and C3 such
that (the last inequality follows from (5.4)),

0 < C1 < Re(Aew(k)), Mew(r)] < Co,  elbelmOectDLs/s® < 0y e K,
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we deduce from (5.7) that
and therefore (5.10). For the second estimate, we take now the real part, and obtain

2
= IVFE e )Pdede + [ Tm(he ()55 (L) P + / T (e o)) 5 0, )P
ko Joo,0)x®2 R2
Using the fact that Im(\. ,(k)) > 0, that V' is bounded uniformly in (z,z), expression (5.7),
estimates (5.14) and (5.10), the estimate (5.11) follows directly. Estimates (5.12) and (5.13)
that case, we obtain

15 (L M2 zy + 1560, M2y < [l Folw, JelbelTmPes OB/ o gy 152.(0, )| 2oy,

(5.14) / 155,00, k) |2dr < C/ | folw, &)|ds,
€
kw s 2 +
== (1+5 V<f 7>>|pw(z x)|*dzdx 4 2Im \/ cw(R)AE (LY, k)PS0, k)dk | .
& 2
(0,L)xR
are obtained in a similar manner as (5.10), we instead multiply (4.2) by pg (2, k) Ae w(x) 1. In
and we conclude using Young’s inequality. This ends the proof. O

Following definitions (5.5)-(5.6), it is then direct to estimates @, and b¢, from Lemma 5.2:

Corollary 5.1. The following estimates are satisfied:
~ C ~
(5.15) / e |5, (2, ) 4 185 (20 )7 <~ Lo, e
0.L) % {|r|<|kw|/€} ag' et
CAUNE AR[BE (0, m)? < O fo(w, Mo
{Isl<lkol/e}

Proof. The bound (5.15) is a consequence of (5.5)-(5.6)-(5.10)-(5.11) and the relation

1
Ve < |>‘E,w(’f)| *(1+|>‘ew( )‘ ) < §(l+aw,e+1_52|’i|2/ki) < 1+aw,s/2~

since the real and imaginary parts of A. ,(x) are positive. In fact, we have

DO —

/ dzdr |45, (z, 1) + 156,z 9)
0,L)x{|x|<|kw|/e}

54

<2 [ A e o ()15, (2,2 + e[ 0.5 (2, )2
0.L)x {|x|<|ke|/e} k2| Ae ()]

4
~e 3 ~e
< 2((1 + O‘w,E/Q)”pw||%2((0,L)><]R2) + 7k2\/T”azpw”%%(o,L)xR?))

R 1 1
< Cllfoe Wingen (5 + =)
€

For (5.16), we use (4.3) at z = 0, together with (5.10), along with the fact that v/2Re(\. (k) >
|Aew(k)| when || < k, /e, and the calculation below:

/ b0 Pz < G anAe(R)] (1050, + | fow, )1
{lsl<|kwl/e} {Irl<lkul/e}
< G AR Re(reia (7)) |5 (0, W) + Coll folw, ) [F2 ey
{lel<lku/e}
< Csllfo(w, )72 @2)-
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This ends the proof. O

Let us remark that the regularization term a. is introduced precisely in order to obtain
(5.15), which allows us to control ag, and b, on (0, L) and not just at z = 0 and z = L. The
estimate is used in the proof of the fact that the coupling with evanescent modes in negligible,
see Section 7.

6. TECHNICAL RESULTS ON ITERATED INTEGRALS

This section is devoted to crucial technical results that will be used throughout the paper.
The following fact is of importance: for f(ug,...,u,) an integrable function, invariant with
respect to any permutation o, that is

f(ulv LU 7u’n) = f(ua(l)a cee 7u0'(n))a
we have
1
(6.1) / f(ul,...,un)dul...dun:—' flug, .. ug)duy ... duy,
An(2) e Jo,z)m
where A,,(z) is the simplex defined by
(6.2) An(z) == {(ur,...,un) €[0,2]", st. 0<u; <wujoy Vje{2,...,n}}.
The next proposition shows that the random field V' satisfies a long-range property in the z

direction.

Proposition 6.1. For all zp € R and (x,y) € R?> x R?, we have

+oo 5 2
%Ro(x —y) with Cg:= C—ﬁ(/ uO®(u)e™ /2du) .

z—r+00 ,2'56 21

E[V(z 4 z0,2)V (20,9)]

— 0o

The correlation function Ry is defined in (3.8).

The proof of this proposition follows the lines of [25, Lemma 1]. We give its proof below as
a preliminary to the proof of Proposition 6.2 further.

Proof. Let us first note that
B[V (z + 20, 2)V (20, 9)] = / m(dg)e " “YE[O(By (2 + 20,))O By (20,9))];
s

so that we just need to investigate the term E[O(Bg(z + 20,9))O(Bg(20,¢))]- The analysis is
based on the Hermite polynomials defined by

0 —u?)2
9" (u) : €

6.3 Hi(u) := (—1)! , with g(u) = ,
which form an orthogonal basis of L?(R, g(u)du):

(6.4) (i Hon) 2 gy = Ui

Decomposing © with respect to this basis, we have

o
O(u) =) —Hi(u)  where  ©:=(H,©)0 00

We will also use Mehler’s formula which, for two centered Gaussian random variables such that
E[X?] = E[X2] = 1, yields

E[H;(X1)Hp(X2)] = UE[X1X2] 01
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Then, we obtain

0,0,

!m!

E[O (Bo (= + 20.9))©(Bs (20.0))] = >

I,m>1

02 .
=Y el (g0

>1

E[Hi(Bs (2 + 20,9)) Hm(Bg (20, q))]

@2
= O¥ry(2) + Z Tfr%(z)

1>2

Moreover, following (3.3), we have 277} (z) — 0 as z — +oo for [ > 2, and also

©? ©?
Z ‘Tfr%(z)‘ < Cz T|l < C<@’®>L2(R,g(u)du) < +00,
1>2 1>2

for z large enough. As a result, using dominated convergence for series, we obtain
ZﬁE[@ (Bﬁ (Z + Zo, q))@(Bﬁ (207 q))} zﬁrioo Cﬁ@i
which concludes the proof of Proposition 6.1. O

Since the proof of Theorem 4.3 is based on a moment technique, we will be required to
compute moments of the form

W%S) /An(z) E[lﬁ[l@(gﬁ(ugjvpj))}@s(z,uh ceUp)dug . duy,

Jj=

where n is an even number (otherwise this moment is 0 by symmetry), and ¢, is a bounded
function. The following result is extensively used in the forthcoming sections up to simple
modifications. It provides us with crucial uniform (in €) bounds as well as with an important
convergence result.

Proposition 6.2. For all even number n > 2 and s = 2 — /2, there exists a constant C > 0
such that

=),
sup sup ————
c€(0,1) P1rpn E7) Jig g

and, for the Cg of Proposition 6.1,

B[ TT0(8s(%.07))] [t - < P

=1

gig% En(%s) /AR(Z)IE{E@(Bﬁ (%,pj))}gog(z,ul, coy Up)dug .. duy,

w2 R(paspp)
_2%0.6 R (Z)Z H m¢5(27’111,...,Un)dU1...dun,
™ F (a,B)EF

where @ is a uniformly bounded function in . Here, the sum runs over the pairings F of
{1,...,n}, and the limit ¢ — 0 is uniform with respect to (p1,...,pn). A pairing over vertices
of {1,...,n} is a partition of this set made of n/2 pairs of couples («, B), for which o < 8 and
such that all the elements of {1,...,n} appear in only one of the pairs. Note that the number
of pairings behaves like n™/?, which appears in the estimate above.
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Proof. The proof follows some of the ideas of [34]. For the first result of the proposition, we
decompose O(\;; ! -) over the Hermite polynomials (with resulting coefficients ©,,;), and obtain

n

2 [T0(en(20))] - 5[ TTo( 0 (%)
o (% el (s (2]

Ig>1
Be{L,...,n}

Note that we introduce the factor
1

(n —2)1/2

in order to force the convergence of a series, as will be explicit further. This is a key point of the
proof. We want to use now [34, Lemma 3.2], which states that for n > 2, and a (X1,...,X,)
mean zero Gaussian vector such that

EX]]=1 and [E[X;X)]|<1 V() e{l,....n}* with j#IL

Ap =

we have

I!---1,!
n 24 (CI') Z TiyjaTigga """ 7Aifzjq
(6.5) NEeoE T
=1 if W+ +l,=2¢and 0<1y,...,1,<q

0 otherwise
where r;; = E[X;X,], and

Iy, .. b)) = {(i1, 1, yigedg) €{1,...,n}*%, st ig#js VBE{l,....q}
and all index r € {1,...,n} appears [, times}.

Above such a Gaussian vector is said to be standard. Nevertheless, because of the factor A,, we
cannot apply (6.5) directly, we first have to make use of the following multiplication theorem
[15]:
(1/2]
H(Au) =X, > (1=22)"
k=0
Specializing (6.5) to our case, we find

[HHZ oy (B (4 »m))]

= I(lyyesdy) P=1 . .
if L4+, —2qand0<l1,...,ln§q with I :=1l; — 2k;,
0 otherwise.

Al

2 — o )

Let us remark that all the indices [ are odd since © is assumed to be odd (©,,; = 0 for [ even).
Hence, I; =1; —2k; > 1 for all j =1,...,n, so that ¢ > n/2. Consider now the term

A= [ Hrﬁ(““ﬂ ) R(pio i)

duy . ..du,,.
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We deduce from the definition of I(ly,...,I,) that each of the uy,...,u, appear at least

once in the product above. Keeping n/2 of them for integrating rg, and bounding rg by
sup,, |rs(u)| = 1 for the others, and using the fact that rg(u) is even, we find

qg—n/2 /2
(6.6) Agn < (22)”/2 (sup Irs (u)|> ( sup |R D1,D2)] (/ ’Tﬁ ‘du) .
_,_/

P1,p2

<1

We now need to estimate the cardinal of I(I1,...,l,). For this, we use again (6.5) with X; =
-+ =X,, = X where X ~ N(0,1), and find, with now r; ;= 1, together with (6.6),

/[072] [HHl 2k, (ﬁa( ,pj))} ‘dul...dun
<cn (/ ‘7‘5 ‘du) ]EHJf[lHlj%] (X)H'

Moreover, we have
) 8| [T ()] < [Tt =12/t
j=1

according to [34, Lemma 3.1], which yields

/[O,z]n [HHZ <>‘ Bﬁ( ,pj))}dul...dun

> Z H l/2 k; ()\ 271)k:j [lJ/Q]' )

k; 70, Ll /2]

After standard computations, we find for I; odd,

)

(I; = 2k;)! > 2l/A=ki([1,/2] — k), and  (n—1)4/27h <pl/2(n —1)lli/2-k
and then, with the binomial theorem,
[1;/2]

n— 1)/2=ki (\=2 _ 1)ks [;/2]!
2 (n=1) A" =D 2k /(1 — 2k;)!

k}jZO
iz Q4 /2!
D/ 2=k 272 ka7l
95 /2] g_:o(" ) ™ =) EE]
1/2
< n (n+ ;2 2)[11/2].

9lL;/2]
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Hence, using again that all the indices /; are odds, we obtain

/0 [0,2]" [H@(B~‘3< J’J))}dm coodug
# n/
< n"/2cn </0 ’7”53 (g) ’du) P
Be{l,....,n}

" Onzr|
< (A n1/2 ncn (/ ‘Tﬁ ‘du) Z n2l+1

>0

2 J

3 ﬁ "/ l”;; (n+ A2 —2)ls/2

n

Now, let us consider

Z |On, 2l+1\ _ Z Z |@n,12!z+1\

1>0 =[nM]
=T+ IL

where M is independent of n and will be specified later. In what follows, we just work with
I > 1 since the bound is direct for [ = 0 . For the first term, we perform an integration by
parts in ©,, 2;11 using definition (6.3), and obtain

Onaris = A (-1 [ 0D Tu)g™ () = A1
and according to (6.4), we have
On2041] < A HIOW ()| 22 (R g (wydu) 1 Hat | L2 (R, g(wyau) < At sup O (u)|\/(20)1.

As a result, using that (21)! < 22/(1!)? we obtain
[nM]—1
I<Ci+Cn'? Y 2h <0y +nl/2emM
=1
For the second term 17, we have after 2/ integration by parts,

Onarr1 = A2 /@@“ A tu) g™ (u)du,

and therefore, according to (3.4), using that {! > e(l/e) ,

3 ‘G”lﬂ“' <c Y Moo Y (f) (eC3)".

1>[nM] ’ 1>[nM)] ! 1>[nM]

Then, setting M > eC%, we have II < C. Hence,

o PIITO(E () i o oz ([ () o)

We finally conclude by estimating the term involving rg: following (3.3), there exists z. > 0
such that for all 2’ > 2., we have |rg(2’)| < C|2'|~?, and therefore, for all z > ez,

(6.8) /OZ 5 <g) ‘du < C(a + &% /Z u*ﬁdu) < 029

since s =2 — H/2.

n/2
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For the second result of the proposition, we decompose O itself over the Hermite polynomials

to obtain
(e (2n)]= X (I17) BT (50(20))]
ae{l,...,n}
=07 IT ro(™="2)Rlpaps) + Bilur,- ua),
F (a,B)EF
with
R;(UI,W’UH)_;S,(;;M jl:[lczll H;[ ( ( ’pj)ﬂ
and

Sj(ll,...,ln):{lk:1fOI'k‘<j; le{Q,...,n}, lkE{l,...,n}fOI'k‘>j}.

According to (6.5), RS can be recast as

[AURSRSES 3bS > H(@l"‘) [ TT 70 85 ()

J=lq>n/24+15; (1

.....

where Sj)q(ll, coly) =S, L) Nl + -+ 1, = 2¢}. Let us emphasize the fact that
g > n/2+ 1 since there is at least one index [; greater than 2 and n is even. This is what will
allow us to gain some extra powers of £ to obtain the convergence to the leading term. We
need to estimate for this the term A, for ¢ > n/2 + 1 in the same way as before. Since rg

and R are bounded by one, we directly find, for all (i1, j1,...,%, jq) € I(l1,. .., 1),

1 Uq u A n/2t u Ugr
/[ LT e () R s ), < / IT Iro (") jdus .. dus,
02" m=1 m=1

where (¢}, 71,... ) repeat j twice. Since n/2 + 1 is odd, only one other index,

vi;/2+17j;/2+1
denoted by j’, appears twice. In that context, two cases are possible. In the first case, we have

a term of the form rZ ((u; — u;/)/e) (if any there is only one), and

C1e?9 it $He(0,1/2),

/duj/ duyr? (M1 < { Clelog(1/e) if 5 =1/2,
0 0 c Clle if §e(1/2,1).

Using then (6.8),

n/2+1

/[0z]n H |rﬁ )|dU1 i = </ du/ dv!m v)|dudv>n/21

/du/ dvry) 5 )dudv

< CeM2eNNI=9) 16g(1 /).

If we are not in the first case, we have a term of the form rg((u; — uj/)/e)rg((u; — ug)/e),
k # j'. Using then the Cauchy-Schwarz’ inequality with respect to w;, a change of variable,
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the fact that rg is even, and again (6.8) leads to

duy...du, <C </ du/ dU‘TfJ
2z
5 (U
></0 du g (E)

< Ce/2eHNA=D) 1o (1 /e).

n/2+1

/ H ro (F )
[0.2]"

n/2—1
v)‘dudv)

As a result, bounding the cardinal of I(ly,...,[,) in the same way as before, we obtain

/ sup
[0,z]™ P15+

[ HHl (Bs (22, p,) ”dul dun,
< CIM/2HN1=9) log(l/s)‘E[ I = (X)} ‘
m=1
and therefore, using (6.7),

1 /
— sup
en(2-9) [0,2]™ P1s---sPn
n— 1)

< MU og(1/) Y Y > HW

J=lq=n/2418; (11, l,) M=1

]E[R;(ul, o ,un)} ‘dul - duy,

n

_ O(n - 1)"
< IN1-9) log(1/e)nC™ Z 161
1>1 Vil

According to (3.4), we have
|0 = ’/@(l)(u)g(u)du’ <ccy

so that the sum above is finite, and which shows that for n fixed, the error term R, converges
to zero as € — 0. It remains to treat the leading term. For this, we write

_ 5]
Yo s)/ )(ua uﬂ)— £ fJ‘dul...dun
5 A, (z)(aﬁe]_— € [ua — ugl

< (n—1N
- n! £2(2-s)

)
u—vy  glcy ‘dd
o2 = o[ udv

]H/Q

)

where (n — 1)!! = n!/(27/2(n/2)!) is the number of pairings of {1,...,n}. According to (3.3),
for any > 0 and 2, such that z > z., we have |rg(2) — csl2| ™| < neglz| ™2, and as a result,

=198
£2(2-s) o Jo

e9¢q

e u;v ‘dudv < 7]6.6/ |u — v| ™V dudv

|u - /U|fJ lu—v|>eze

+ &‘/ rg(u — v)dudv
lu—v|<ze

+Cﬁ/ |u — v| ™ dudv,
Jlu—v|<eze



FRACTIONAL WHITE - NOISE LIMIT AND PARAXIAL APPROXIMATION FOR WAVES IN RANDOM MEDBA

This finally yields, for all > 0,

1 S u—v e9¢y =
lim sup 7/ / T ( ) — ‘dudv <nc / / u — v Y dudv.
e=o €279 Jo Jo 9 lu —v]® ? o Jo | |

€
The proof of the proposition is complete. d

7. PROOF OF PROPOSITION 4.1

Let ¢ = (¢1,¢2) € C5°(R?) x C§°(IR?) be a test function such that supp(¢) C B(0,r4). In
order to control the transition between propagating and evanescent modes, we introduce the
following integer

nei=inf(n>0 st {QueQn. st 1<elQu*/k2}#0)

where QZ,E is the set

Qe={Qn=r—q1——qu st. (K aq,...,q:) € B(0,74) x S (r)}.
Above, S7 (k) is defined by
(7.1) St (k) = {(qh...,qn) eS" st Qi < lkol/e VIe{l,... ,n}}.
Let us remark that with this definition, we have, for all ¢ < gg,
(7.2) Ne > i(M — r¢) and Mew(Qn)] >n:=+1— e,
Ts \ /€ '

for all @, € Qf, . with n < n.. The integer n. measures the number of iterations it takes for
the momentum Q,, to be at least of order 1/4/2. Note that this order is arbitrary, any order
of the form £~%, @ > 0 would work just fine. Integrating then (4.6) in z and iterating n. — 1
times this relation, we obtain

ne—1 n

‘:‘3(27”“)]_ (n) (n) (s O+ O [@3(0,@1)}
L’Z(z,ﬂ) ,;)/Anmdu /ss,sm)m(dq J LA Qi1.2)) bS,(0,Qn)

j=1
[&2 (un., Qn. )]

+/ du("E)/ m(dq(™) HE(u,Q-1,Q;5) |5
A (2) 8™ (k) ( )H (5, Qs i) 0%, (U, Qn.)

j=1

=I%(z,k) + J°(2, k),

where HZ and A, (z) are defined by (4.7) and (6.2), m(dq"™) := m(dq)...m(dg,), and
Qj =k—q — - —¢j, and Qo := K, . Let us point out the important fact that iterations
are stopped before evanescent modes appear in the series (that is before the second term in
the r.h.s. of (4.6) enters the expansion), and this gives rise to only the two terms I°(z, )
and J¢(z, k). The first one is the driving term, and the second one is a reminder. The latter
will be shown to be negligible, the main argument being that it is essentially of order 1/n.!
after integration over the simplex A,_(z). Writing a complete series expansion, i.e. choosing
ne = 400 (which then sets J¢ to zero), requires to handle the transition propagative-evanescent
modes which is more difficult than treating the reminder J¢. Note also that in Proposition
4.1, we are only interested in the convergence of af (z, ) and bS(z, k) for & in the support
of ¢, and we can therefore only consider the above equation for |k| < |k,|/e. Thus, we set
If(z,k) = J°(2,k) = 0 for |k| > |ky|/e. We then have the following two lemmas, whose proofs
are postponed to the end of the section.
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Lemma 7.1. For all z € [0, L], we have, for all > 0,

ii_%P(Wa(z)’¢>L2(R2)xL2(R2>| ” “) -0

This first lemma shows that J° gives a negligible contribution, and therefore that I¢ is
the leading term. In the second lemma below, we introduce an auxiliary process I¢ that
approximates I¢ by letting the regularization term «a. vanish in the complex exponentials and
by replacing the A, ., in the denominator by one.

Lemma 7.2. For all z € [0, L], we have, for all p >0

lim P(|(1°(2) = I°(2),8) pa(zoyw paaey| > 1) =0,

e—0
where

oo

>

ne—1 n
I°(z,K) == Z /A du(n)/ m(dq™) HHf,(uj,Qj—l,Qj) {
= Jane 55..(x)

€
w
£
j=1 w

where HE is defined by (4.11), and I°(z, k) = 0 for |k| > |ko|/e.

Now, with the notation

Lf(z,k) := [ggéz’g] with Lf(z,k) =0 for |k| > |ko|/e,

e re
P<‘< [gg((jﬂ - [gggz;]’¢>L2(R2)xL2(R2) ~ ,u)
<P((r(2) - INE(Z)7¢>L2(R2)><L2(R2)‘ > p1/3)
FP((F() = L), 6) oy oy | > 4/3)
+P([(°(2), 0) ey ooy | > #/3)
and owing to Lemmas 7.1 and 7.2, it just remains to prove that, for all x' > 0,
(7.3) Hn P(|(1°(2) = L(2): @) ooy o oy | > 1) = 0.

This follows from the calculation below. After straightforward algebra and the change of
variable kK — k + ¢ + - - - + ¢, we have

7E 5 _ a‘i}(o) De
<I (Z) - L (Z)’¢>L2(R2)><L2(R2) - Z < |:6i;(0>:| 7Rn>L2(R2)><L2(R2)’

n>ne

where RZ (k') = 0 for || > |ky|/e, and is given by, for || < |k |/e,
R)= [ [ e [ Q0G| 2]
) An(2) 3oL (w) ]1:[1 T 95(Qo)

where Qj =k +¢,+ -+ ¢gj+1, and

Stot)i={(ar, . an) € 8" st Qi < lkol/e, WEE{L....n}}.
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We need now to bound R},. For this, the following estimate, which is a consequence of the first
result of Proposition 6.2, will be used several times in the course of the proof of the proposition:
(7.4)

1
The:i=——— sup u®?
’ g2n(2-s) ) o J[o L]Qw
q; ,q5 ’

Since Qo € supp(¢), the support of R is included in K, = {|r/| < nrs + 4}, and then,
according to (6.1),

E IR e e ne] S CEImS)] Kl (510 16;0))? T/ (n)?
=4

u€R?

n

#1700 (20, )] < 0.

(nl /2 C)Qn
E
Using finally (5.7) and estimate (5.16) in order to bound g, (0) and b¢,(0), as well as the Markov’
and Cauchy-Schwarz’ inequalities, we find,

P(|(I°(2)~L*(= ¢>L2(]R2)><L2(R2)‘ > ')

||f0 HL2(]R2) Z ( {HRZH%z(Kn)xL?(Kn)})1/2

n>ne

< Z m“s +74),

n>n5

(nrs + 7‘¢)2.

which concludes the proof of Proposition 4.1. We end this section with the proofs of Lemmas
7.1 and 7.2.

Proof of Lemma 7.1. The proof is very similar to the one above, and we only detail the differ-
ences. The main ingredient is the fact that J. is proportional to 1/n.! after integration. After
the change of variable kK — k + q1 + - - - + ¢, wWe have

z (ALE (un ) .
£ _ AUJ €
<J ¢>L2(R2)><L2(R2) —A dun5< [ba(ung):| 7Hn£(un€)>L2(R2)XL2(R2)

with H,, (un, ') = 0 for |&'| > |k,|/e, and for |s/| < |ko|/e,

T (u,. k) = du™=D dg(™ n SO 1 O F(Qo)]
Hl(u ’H) /An(z,un) " »/SLLYE(H’)m( d )jl;[le(uj,Qj 17Qj) ¢2(Q0)

Here, Q]‘ is as before, and
A, (z,up) = {(ui,...,un—1) €[0,2]"71, st wjpr <uy Vie{l,...,n—1}}.

As a result, using the Cauchy-Schwarz’ inequality, (7.4) with n = n. — 1, as well as estimate
(5.15), we find

EH<JE(Z)a¢>L2(R2)xL2(R2)
- 2)0%71 1/2
< du a,, (U, Kk 2+ b U, K
= oo </ /{|n|<|k 1/e} sl e )>

(s—2)—2

£

S 3

—————C"".
o (ne — 1)!
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According to the bound from below for n. given in (7.2), and the fact that n! > Cn"t1/2e="
we find

et < G (8+1/2-25-n./2) log(n.)
a2t (ne —1)! 3/4
This concludes the proof of the lemma. d

Proof of Lemma 7.2. The proof simply consists in sending the regularization parameter a. to
zero and using the fact that €2|Q,|?/k2 — 0 as e — 0 for n < n.. Let us for this introduce,
for € {0,...,n},

ffn(z, K) ::/ du(")/ m(dq(”))
Ay (2) S" <(K)

!
H o(uy, Qi—1,Q;) H HE (uj,Qj-1,Q;) [Aggo,g:;]’

j=1 j=l+1
so that
ne—1ln—1 .
Is(za’%) Is Z '% Z Z (Il n\% '% Ils—&-l,n(zvﬁ)> .
n=1 1=0
After the usual change of variable Kk — k + ¢1 + - - - + ¢n, We have
- ; ag,(0)
€ € _ w €
<Il,n(z) - Il+1,n(z)7 ¢>L2(1R2)><L2(1R2) = < [EZ(O):| > l’n>L2(R2)><L2(R2)’

with Ij (k) = 0 for [r'[ > |ky|/e, and for [r| < |ky|/e,
!
) = [ ™ [ midg™) ) IL 50 Q-1.Q)
An2) Ee)) i
5 N A _ 1€ ) & € N oW ¢1<Q0)
x [HS (w1, Qr, Quin) — HS (w1, Qu, Quin)l [ HE(u,Q5-1,Q5) 52(00)]
isite 2(Qo

where Qj =K +¢n+ -+ ¢j+1. Now, we deduce from (5.3) and the fact that the square root
is of Holder regularity 1/2, that for all |g| < |k |/e,

1 1
(7.5)  [Re(he(@) = Nou(@)? < 5 (/1 = 22lal2/k2)2 + 02 . = (1= 21g/k2) ) < S
With (7.5), (5.4), the definition of n. and (7.2), we then find, for I < n.,

A (Q) = Ae(@Q1)| | AL (Q) — 1 - Ccalll C\E
AE,w(Ql))‘g,w(Ql) /\Q,W(Ql) U no

_
)\s,w (Ql)

and
koo Ao (QD) = Ao (Quor)ur/e® _ Gi(AL ,(Q)=AL ,(Qi-

ko e (@) =2 L (Q) =Moo (Quo1) AL L (Qi—1))wr /&% _ 1‘

<cC

eikw(RE(AE,w(Ql))_)‘g.w(Ql)_(Re()‘E,w(Ql*l))_)‘;,w(Ql*l)))ul/gz _ 1‘
+ ’e—kwlm()\a,w(@ﬂ*)\a,w(Ql—l))uz/€2 _ 1’

< Ca;/Q.
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The rest of the proof is now classical and follows from the same techniques as (7.3): we first
apply (7.4) to obtain

B (I, wrien] < 02 +a0) CUEImISTM] 1Kol (s [6;(])? T/ (al)? 720 10)
j=1
uER2

(’7524'045)02”

<
- n!

(nrs + r¢)2.

and then use (5.7) and estimate (5.16) in order to bound @ (0) and b (0), as well as the
Markov’ and Cauchy-Schwarz’ inequalities to arrive at

P(|{I°(2) ~I°( ¢>L2(R2)><L2(JR2)| > 1)

—1n—-1

ECS S (® [ msncn])

n=1 [=0

ne—1 n

Ye
<= ——=n(nrs+r
. ﬁn!( s +7¢)

This concludes the proof. O

I /\

n=1

8. PROOF OF PROPOSITION 4.2

The proof is based on iteration techniques. We only prove the second point of the proposition
since it is the most interesting one and the first point follows from similar calculations. We
start by writing P%% '»e as an infinite series obtained by iterating (4.13), that is

(8.1) P ¢5 ZT" “(z,K) with TV (2, k) = ¢, (K),
n>0

where, for n > 1,
Ton(en) = [ au® [ midg™)HE (0,06 (@),
An(2) n L (x)

and
(82) H (ll(n q(n . H uj;Qj—lan)~

Here, S (k) is defined by (7.1), HE by (4.11), and HE, ; ; denotes the (1,1) entry of the
matrix HS. As we will see, the leading term in 7 is the one obtained by the product of the
diagonal elements of the matrices ﬁj(uj, Qj—1,Q;). Any other term involving an off diagonal
component introduces an oscillatory integral leading to a vanishing limit as ¢ — 0. This will
be proved further. The leading term is therefore

(8.3) XE(z,K) = Z X5"(z, k), X% (2, k) := ¢ (K),
n>0

where, for n > 1,
(8.4)

e,n L ik, )n (n) (n) ( ) iGE (u™,q(™) e
A ) = <82‘5 /An(z) u o) 11 Vew/ea PulQn)

j=1
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with
G5, (u™ q ko Z = A (Qj-1))u;

Before getting to the core of the proof, we present some technical results that show that the
two series above are well-defined, and that expectation and limits can be taken term by term.

Lemma 8.1. The series (8.1) is well-defined, and we have, for all ¢ € L*(R?),

+o0
E |:<PZZ;£( ) ¢>L2(R2):| :E[Z<7ZL7€(Z)’¢>L2(R2 Z]E |: TTLE >L2(R2):| ,
n=0
and
+oo
By (P35 2)-0) g ] = D B BLCT ). s

Similar properties hold for (8.3).

Proof. We only consider (8.1), and just need to show that

S sup (B[ )]) < oo

n>1 €€(0,1)

This follows from a direct adaptation of the estimate on Rfl in the proof of (7.3) in Proposition
4.1, which yields
2n

C
E[[[ 73 (2)|[2es)] < (s +rg )%,

where T, is such that suppfo C B(0, rfo). This concludes the proof. d

Owing to Lemma 8.1, it is not difficult to show that X7 is the unique solution to (4.15) such
that

€ 2 i
E (2550 ey | < CllAolws M aqae-
We now proceed to the proof itself and write
PSZ)E( k) — X5(2, k) ZT”EZH
n>1

where

n

T (k)= Y /A =) ' /Sn (x) dq™ H it (s @rm—15 Q) 82, (@)

(1, ln—1)ELS
with o =1, := 1, and
=1 = (I, .. laor) €{1,2}"7Y, st Imp €4{2,...,n—1}

with L, =1 and [p,-1 = 2}.

(8.5)

The set L, is such that there is at least one contribution of the off-diagonal of f{j. Following
Lemma 8.1, we can study the series above term by term, and in particular,

. , . ~ 1/2
lim E[[ P45, (2) — X5 2qen)] < 3 Im E[I727(2) [3agen)]) 2,

n>1
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where, using the second point of Proposition 6.2,
E (1727 ()3 g |
k’wcl/Q 2n n
(=27 d / Efm(da{")m(da$" 611 )30 (Qzr)
{|n\<nr5+rf } S xSn

X Z Z Ir l(n) l(n (n ),qén)) H R(Qa;Qﬁ)~

(l1,15-5li,n—1)ELR Fo,n (a,B8)EFa,n
(I2,1505l2,n—1)ELR

~

e—0

We will show that the limit of the r.h.s is actually zero. Above, T is as in the proof of
Lemma 8.1 and ¢, is defined by (4.14). The second sum is taken over all the pairings F» ,, of
Sn ={1,2} x{1,...,n}. Here, a pairing over vertices of S,, is a partition of this set made of n
pairs of couples (a, 8) € S, X Sy, such that all the elements of \S,, appears in only one of the
pairs. We have also introduced the notations

e—0
H &Ea—(&l)’la(a(l)’ua’QO‘_(OJ)’Qa)glsﬁ_m,l),lﬁ(ﬁ(l)aUﬁvQﬁ—(oJ),Qﬁ)
—usl®
(@,8)€Fa,m ua — ugl
with

eikeGeu(@Aew@u/= i (j1) = (1,1)

—ikw (Xe,w (@) +Ae,w (P ))u/6 if 1) —
z = ¢ 1 (]’ ) (1a2)
Ej,z(l,wp, q) = _ etk (Aew(@+Aew(P)u/e®  if G,1) = (2,1)
—emthuQew(@—Aew@)u/e® if (5 1) = (2,2),

and &5,(2,u,p,q) == & ,(1,u,p,q). Note that in the definition of Ix,, the shift (0,1) comes

form the definition (8.2). Now, let us consider a pairing F ,, and 15") € L,,. Using the notation
of (8.5), take also a couple (ag,Bp) such that ap(1l) = 1 and ag(2) = mg for instance. The
other cases follow exactly the same lines and are omitted. Using the following relation

5 zr(u v)
|U—’U| _Cf)/ ‘|1J’J ’f',

where ég :=T'(2H — 1)sin(vH) /7 with H = (2 — $)/2, we single out the pairing (ag, 8y) and
obtain

1f2,n(1(1n)71§”),qg ),(lén) ) = Cg hm/ - ﬁ/ ugn)/ dué”)
7] An(z) An(2)

27 (@(1), va; Qa—(0,1), Qa)EL,_, ) 1, (B(1); us: Qp—(0.1), Qp)

fe (0 la s —(0,1)> _
X
(a”@gfz,n o Uﬁ‘ﬁ
(a,8)# (0, B0)
% e”“‘ﬂo gléao o o (Q0(1)7 Uaygy an—(071)7 an)

x e "0 Eiso-0.dsg Bo() w0, @y—0.1), Qo)

Integrating by parts (with respect to the variable u,, ) the function eitao (’”rk“(’\W(QQO)+>‘ffw(Q“o—(°=1)))/52),

with antiderivative f
eiuao (rt+kow(Xe,w (an )+ e w (Qag —(0,1)))/52) —

i(?" + kw()‘e,w(an) + AE’W(QQO—(OJ)))/€2) 7
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we find, using dominated convergence,

|I]:2,n (lgn)v lgn)a qgn)v qén))|

<G / du(™ / dul” |ty — g~
Ay O A H

(a,B)EF2,n
(a,8)#(@0,B0)

ei“ao—(o,l)(r+kw(As,w(an)+)‘E,M(Qa0—(o,1)))/€2) —1 dr
X lim - 5 ‘ 5
e—0 i(r + kw()‘s,w(an) + )‘Eyw(an—(O,l)))/E ) 7|
e / a0 / du” 11 fua = ug| ™
An_1(2) An(2) (0,B)EFan
(a0,8)#(a0+(0,1),50)
. / eiuao (T+kw()‘s,w(an)+>\5,w(QaO—(O,1)))/52) —1 dr
x lim -
=0 i(r + kow(Aew(Qay) + Ae,w(an—(O,l)))/52) |r|t=5
with ugf)) = (U112, -+ s Ul mo—15Ul,mo+1s - - - » Ul,n), and where A,_1(z) is the same simplex as

(6.2) with now n — 1 elements. Let us remark that we are working here with fixed qgn) and
qg"), so that

gl_r% )\E,w(Qag) + As,w(an—(O,l)) =2.

Therefore, together with the Markov inequality and dominated convergence, the following
lemma concludes the proof of Proposition 4.2.

Lemma 8.2. For all a # 0 and u # 0, we have

iu(r—a/e®) _ 1
fm [
e=0 ) |r—a/es||lr|*—9
where s =2 — $/2.

Proof. Let > 0 and 5 > 0 be small parameters, and let us decompose the integral into three
parts as follows:

N S S ===
= .
|T _a/58||r|1_5 |r—a/es|>n/e® n<|r—a/es|<p/e® |[r—a/es|<n |T _a/€S||r|1_ﬁ

We treat the last integral first and make the change of variable r — r 4+ a/e°r to obtain

eiu(r—a/ss) -1 elur _ 1
/ —| - 1_ﬁ|dr:/ —| - |1_ﬁdr
|r—a/es|<n \r—a/s HT‘ |r|<n |T||T+a/€ |

< |u|/ dr

= i< Ir +a/est0

< |u|€s(1*f))/ dr
\

ri<n llal =&t~

< Oet1=9),
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For the second integral, we have, with the change of variable r — r/e®,

iu(r—a/e®) _ 1 iu(e’r—a)/e® 1
/ —|e p 1iﬁ|dr:55/ le p 5 |dr
n<|r—a/es|<p/es |T - a/€ ||T| esn<|esr—al<p |€ r—= a||r|

es(1-9) / dr
[
- (|a‘ - gsn)liﬁ esn<|r—al<p |’I“ - a|
< Ce*17 D og(1/e).

For the last term, we find, after the change of variable r — r/e*,

/ ‘eiu(T—a/as) _ 1| J s(l—f))/ |eiu(r—a)/65 _ lld
———dr=c¢ —_———dr
[r—a/es|>p/es T*a/ESHTPifJ |r—al>pn |T 7CLHT|1756

< 5s<1fm/ _dar
i — )
|[r—al>p |r—a||r|1 o

which concludes the proof of Lemma 8.2. g

9. PROOF OF PROPOSITION 4.3

The proof is split into two steps. We start by constructing solutions to the fractional Ito-
Schrédinger equation (4.16) in the Fourier form. We prove the announced pathwise regularity
in VAV&(O, L) and in ég’a(O, L), and show that, up to a phase shift, the obtained solution is
the Fourier transform of the solution in the sense of Definition 1.1. The second step is to prove
the convergence of the process X7. We will show for this the convergence of the moments of
X and use a regularized process.

9.1. Existence theory for the fractional It6-Schrédinger equation (4.16). As explained
in the outline, we construct solutions via a regularization procedure. The solutions will be
written in terms of Duhamel expansions, since, as in the proof of Proposition 4.2, it will be
enough to check the term by term convergence to obtain the convergence of the whole series.
We then introduce the process X', defined formally as

(9-1) X (2, k) = 90 () + Y X (z,5),

n>1

where

R A B T

(9.2) An(2)
g /(A,Aw o m1_=[1 |Tm|H*1/2w(drm’qm)’
with
n) _(n 1 «—
(9.3) Gn(u( )7q( )) = _ﬁ (|Qm|2 _ |me1|2)um.
“ m=1

Here, we use the same notation as in Section 8. Moreover, (w(dr, ¢))qes is the family of complex
Gaussian random measures, independent of m(dq), defined by (3.21), such that w*(du,q) =
w(—du, q), and with covariance function

~ CgI'(2H — 1)sin(7H)

(9.4) Elw(du, g1)w*(dv, ¢2)] = - R(q1,q2)0(u — v)dudv.
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We introduce as well the regularized standard fractional Brownian field B and its k—th
derivative bA M= 0k BA (b = bA Y, for g € S,

2H _ 1 zru _
U q ‘ /A ZT|T|H 1/2 (d’l", q)a
Ak |H 2H —1) el
by |r|H 73 w(dr, q).

is well-defined since

Note that bA k

(9.5)
A 2k—2
r dr
U dU/Imldq o UQ)I2}<CE[/Imqu (¢,q }/ dU/A||l2H T < Ca.

We will use the notation Bj;>° = By, with By defined by (3.11). Let finally

IA(w)(z,/f) = ikaH/ m(dq)/ due_i(l”_q‘Q_""Iz)“/(%”)w(u,n —q)dBfI(u,q),
S 0
for A € [1,+00], whenever it is well-defined, and let us remind the reader about the following

notation
1
Ao (B ——  su DI=%[BA),- (s, q)|.
(BA@) = pyay S, 1D Bill- 5.0)
When A < 400, we wrote Z4 in terms of the fractional integral defined in (3.15). Since Bi
has smooth trajectories, it follows from [36, Theorem 2.4] that the fractional integral is equal
to the usual Lebesgue integral.

Our goals are then to show that (X2) a>1 forms a Cauchy sequence in the appropriate metric
space, and to show that the limit satisfies (4.16). We start by addressing the path regularity
of X%, and by characterizing it as a mild solution to a regularized fractional It6-Schrédinger
equation.

Proposition 9.1. The series X2 defined by (9.1) converges in C° (0, L), and we have

(9.6) XA(z k) = 60 (k) + ikuon /

[ m(ag) / e=ilIn=al” =)/ (260) YAy, 5 — )dB (u, q),
0

with 0% = Cy/(H(2H — 1)). Moreover, the trajectories of X2 belong to CX(0, L), and for all
z >0,

1.
(9.7) 122 (2) |22 m2) = 15 (0)]| p2(rey = §\|fo(w7')||L2(R2)-

The path regularity of X will be useful to justify future calculations. The proposition is
proved in Section 9.1.1. The next step is to recover the mild formulation of (2.5) in the Fourier
domain by passing to the limit A — +o00 in (9.6). We need for this uniform estimates in A.
They are consequences of next two technical lemmas that follow the ideas of [28]. The first
one (Lemma 9.1) is based on the Garsia-Rademich-Rumsey inequality [16] below:

Garsia-Rademich-Rumsey inequality: Let p > 1 and @ > 1/p. Then, there exists a
constant Cy ; > 0 such that, for any continuous function f on [0, L], we have

[F(t) = f(s)]P < Caplt — 577~ 1/ / |u_v|ap+1| dudv,
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for all (¢,s) € [0, L], and with the convention 0/0 = 0.

Owing the inequality above, the increments (in time) of Bj;(t, ¢) can be estimated as follows:

Lemma 9.1. Let6 € (0, H) and A € [1,+00]. There exist positive random variables (Z;'(q))qes,
such that for all q € S,

|Bii(t.q) — Bip(s. )| < Zg (@)t — s °
with probability one, and for all p > 1,

sup sup E[| Z3(q)[P] < +oc.
A>1q€eS

Therefore, the trajectories of Bi belong to CAO{I;(’(O7 L) for all 0 € (0,H), and we also have

sup supE[Ag(BfI(q))} < 00,
A>1qgeS
forae (1—H,1/2), and allp > 1.
The second lemma we need consists in adapting [28, Proposition 4.1] to our context, and
provides us with estimates on Z4(v).

Lemma 9.2. Let A€ [l,400], k>0, a € (1—H,1/2), and ¢ € WIS‘HQ(O,L). We have the
following relations:

(1) Forall0<s<t< 1L,

IZ4@) () = T4 (@) ($) o, < Kl,mk/ [ml(dg)Aa (B (q))

[ [0+ WO [ g 00— )],

(r=s)° (r =yt

(2) For allt e |0, L],
A(
Iz / e s < K [ im0

/ e oy e ]

y)a—i-l

(3) The following estimate holds:

IZ4 (@) 1 -ac 2 SKs,a,k/sIml(dQ)Aa(Bﬁ(Q))[Illblla,k+ sup |9 (r) 94,120 -

rel0,L]

Here, (K o k)]e{l 2,3} are non random positive constants.

Note that there is a loss of regularity in the ¢ variable since estimates on Z%(¢)) in H;,
require 1 € Hy42. This is due to the lack of regularizing effects of the Schrodinger semigroup:
regularity in time has to be exchanged for some regularity in space. The proofs of the last two
lemmas are offered below.

Proof of Lemma 9.1. Let € (0, H) and p > 1 such that p/§ € N*. According to the Garsia-
Rademich-Rumsey inequality with @ = H — 6/2 and p = 2/60, we have for all 0 < s <t < L,

L H-0 |BH u,q) — Bﬁ(%‘]”we 0/2
|B#(t,q) — Biy(s,q)| < |t — s C / / o — oo dudv} a.s.,

=78 (q)
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where C' is a deterministic constant. Moreover,

A E[| B (u, q) — Bfy (v, q)|*"/"] 6/2
E[|Z3'(q)|?] < cPLP~E / / —E dudv} ,

thanks to the Jensen’s inequality applied with » € RT +— 7P on the double integral, and the
Hoélder’s inequality for the expectation. Using that B (u, q)— Bi (v, q) is a mean zero Gaussian
random variable, we find

E(|B1(u,q) — By (v, @)|*/?] < CpoE[|Bf (u, q) — B (v, q)|*]*/*

/H(QH _ 1) A (eir(u—v) _ 1)61'7"1)
A A _
BH(uaq) _BH(U7Q) - Cﬁ [A 7/’"’]"|H71/2 w(dr7 q)

Hence, using (9.4)

with

A
|ezr(u v) _ | .
EHB;}(U, q) BH v q C/ |’I"‘2H+1 d/rR(q,Q)
0o |67/I” o 1‘2 R
< Clu— v\ZH/ Wdﬂz(q,q),
after the change of variable r — r/(u — v). This then yields

E[|Bf;(u,q) — Bi (v, q)[*"°] < Cpolu — v /7R (q,q) < Cpplu—v|*P/7,
and gives the first point of the lemma. Now, remembering (3.14) and (3.16) we have

A _ RA S
|Dtl__a[B}41]t*(57q>| < 1 [|BH(t7q) BH( ,Q)‘

F(a) (t _ S)l—a
t A A
+ (1 _ Oé)/ |BH(??yqz;)2B}i(S7Q)|dy ,

and following the same lines as above, with now using a e (0, H+ «a—1) such that p/@~ e N*,
we have

E[A%(B4(@)] < C, . N2 @)) < O, 5. 27/2(0,0),
which concludes the proof of the lemma. O

Proof of Lemma 9.2. According to the first item of [28, Proposition 4.1] and the fact that

T - ei(IHIQ*IH*q\Q)(T*y)/(%w)| L 11— ei(IHIQ*IH*q\Q)y/(ka”
L <)
s (’l” _ y)a+1 — 0 ya+1
|1 — et

2 21\«
< Ol ~ e =) [ dr—s
< Clq|* |2k — gl

with the change of variable y — 2k, y/(|x|?> — |k — ¢|?), we have

4@ O-TA @G < [ ImldAa(B@) [ arfli2- a0~ Dlha
S s
18—l [ 00—l

=) =y
which gives the first point of the lemma after the change of variable kK — k + ¢ and basic
computations. The second point follows closely the proof of the first item of [28, Proposition

)
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4.1]. The last point is a direct consequence of the first one. In fact, taking s = 0 in the first
relation yields

) = 6(s) e,
24O < Croe[ 390 10O lssa + 500 {19000, + | ]

and also
IZ4 () () = T4 (@) (5) |,

§ i EORITENA

< Coanlt =3[ 0 WOl + 500 (19O + / - 00 = vl 44])
This concludes the proof of the lemma. O

Now, using the previous two technical lemmas and Proposition 9.1, we have the following
result proved in Section 9.1.2.

Proposition 9.2. Let 0 € (0,H — 1/2). The family (X2)a>1 converges in probability as
A — +o00 in CAOIi*G(O,L), to a limit denoted by X,,, which is the unique pathwise solution to

(98) Xz K) = 6° (k) + ikoon / m(dq) / e=illn=alP=Ix)u/ ko) (. — )dB (u, ).
S 0

A corollary (proved in Section 9.1.3) of this convergence result is the following.

Corollary 9.1. The process defined by WA (z, k) = e~ ilI51*2/2ke) XA (4 1) converges in prob-
ability as A — +oo in CE=0(0,L) to U, (2, k) = e iIF"2/ k) X, (2, k), which is the unique
pathwise solution to

~ ~ ilk|? LN
(9.9) U, (z,k) =V,(0,k)— 2|kL /0 \Ilw(u,/i)du—i—ikwaH/Sm(dq)/o U, (u, k—q)dBg (u,q).

It remains to address the last point of Proposition 4.3, and to show that we can Fourier
transform W,, to recover the fractional Schrédinger equation of Definition 1.1. It is just a
matter of switching order of integration. The proof is given in section 9.1.3 for the sake of
completeness.

Proposition 9.3. The Fourier transform realize a one-to-one correspondence between the
solution of (9.9) and the ones of (2.5).

9.1.1. Proof of Proposition 9.1. The first step consists in studying the regularity of each term
X™4 in the series (9.1). This is straightforward: since ¢¥ € Hj,, for all k € N, recasting then
XA™ in terms of by as

(9.10)  X"(2, k) = (k)" / du'™ / m(dq™)e 9 T b (m, 4 )90 (Qn),
An(z) " m=1

it is a direct consequence of (9.5), the Jensen inequality and the Fubini theorem that X" €

C([0, L], H). We also obtain the recursive formula below by permuting order of integration,

(9.11) X™MA(z, k) = ika'H/
S

Introducing, for A > 1 and N € N*,

m(dq)/ due_i(‘“_qlz_l'“‘z)"/(%“)Xg_l’A(u,Ii — q)dBi(u, q).
0

N
(9.12) Xy =,
n=0
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which then satisfies

(9.13)

X;:{N(z, k) = o2 (k) + ik‘waH/
S

we show now that (é\,’ﬁN)N is a Cauchy sequence in probability in C°([0, L], H}) for all k > 1

and A > 1. We will use the following result (see [9, Theorem 3.9 pp. 104]).

m(dQ)/ due™ InaP KB/ @R XA (u, 5 — g)d B (u, q),
0

Theorem 9.1. Let (E,d) be a complete metric space. A sequence (X,,)n>0 of E-valued random
variable converges in probability if and only if

Vn>0andv >0, Ing>0 st Vn,m>ng, P(d(Xpn, Xm) >1n) < v,
that is (X, )n>o0 s a Cauchy sequence in probability.

Let us first remark that it is enough to work on the event

E= </S m|(dq) (/0 |bg’2(u,q)du+|bg’1(0,q)|> < M>’

where M > 0 is arbitrary. Indeed, using the Markov and Cauchy-Schwarz inequalities,

1/2
IP>(/0Ldu/$|m|<dq>|b;f.‘;2<u,q>| >M)< o (E /OLdu/S|m|<dq>|b2’2<u,q>|2D <S4

according to (9.5), and a similar estimate holds for the term involving b‘g’l(o, q) after an easy
adaptation of (9.5). Hence, on the event E, we have for all u € [0, L]

010 [ mla@nley ol < [ i) ( / u|bfﬁ<v7q>dv+|bé’1<o,q>|) <M

It then follows from (9.2) and the latter bound, that

AN (2, )] < O / A ] /5 ] (g b2 oy, 45)] Fow, @)
z ]=1

An(

OTL
S R
n! [0,z]™

da® [T [ ) b (05,09l o @01
j=1"%

where the division by n! comes from the integration over A, (z) as in (6.1). Now, from the
definition (9.2) of X4, the weight in the Hz-norm can be simplified using that

|"{| < |"€_Q1 —"'—Qn|+|Q1+~-+qn| ST]@O'FTLTS,
aslongas Q, =Kk—q — - —qn € Suppfo and q1,...,q, € S. As a result, we have

I oo 10 = sup [ (1 )24 2P

z€[0,L]

CLM)*" .

< A [0t (1] 4+ 7525721 fofeo, )Pl
(n!)?
(CLM)n .
L rs)”)* 2 fo(w, M,

yielding the desired Cauchy property of the partial sum (Xﬁ ~)~- Now, using

L
IZ4 (22— 22 M) lleo o)) < C/O du/s|m|(dQ)|b§(u7Q)\\\Xf—XJ;‘,NHCO([O,L],H,C),
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it suffices to pass to the limit N — +oo in (9.13) to obtain (9.6). The fact that JPX2 €
C°([0, L], Hy,) for all p > 0 is a consequence of (9.5) and of (9.6). It remains to obtain the
conservation of the L? norm. Since we just proved that X2 € C'([0, L], H}.), we can write

(9.15) 0. X2 (2, k) = ikyom /s m(dq)e_i(l"_q‘Q_‘”|2)Z/(2k“’)bﬁ(z,q)/'\f(f(z, K—q),
so that
(02420, X2(2)) g = thucn [ [ dim{dg)e oD/ Chp z )
x XMz, 6 — )Xz, k) € iR,
since S, m and w(dr, -) are assumed to be symmetric. As a result, we obtain

d d
I @) = 2Re(( AL X2ED) o)) = 0.

dz

which concludes the proof of Proposition 9.1.

L2(]R2))

9.1.2. Proof of Proposition 9.2. The first step of the proof starts with the following lemma,
proved further in this section.

Lemma 9.3. The family (Xf)A21 is Cauchy in probability on the complete metric space
(W2 (0,L),dg 00)-

Owing the latter lemma, let us denote by A, the limit of (X’')4>1 in probability in
(WOQO(O,L),JQ,OO), and let us prove that this limit satisfies (9.8). Note that the last point
of Lemma 9.2 implies that (X4) 4>, is also Cauchy in probability in CZ=9(0, L). According to
the second point of Lemma 9.2, we have

1T+ (X = X sk < Kok /S m|(da)Aa (B ()1 X — X2 | o ko
and
IZ+° (X2 = ZHXL fak < Kwk/s [m|(da) Aa(Br (a) — Bii () 162 a2
For the first term, we have for all 7 and M > 0,
P(ITH (X = XDk > n) < P(I X = X aps2 > 1/ (MKay))
+2( [ mldnra(Buta) = ).
so that according to Lemmas 9.1 and 9.3,

(9.16) lim P(Hﬁm(&) — XMk > n) —0.

A—+o0

For the second term, we find in the same way,

P75 (X) = T XD ok > 1) < (1A sz > M)

+B( [ Imlda)da(Ba0) = B @) > 0/ (Ko ).
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Here, for the first term on the right hand side, using that the convergence in probability implies

the convergence in law, the mapping theorem [6, Theorem 2.7 pp. 21|, and the Portmanteau
Theorem [6, Theorem 2.1 pp. 16], we have

limsupP(|1 XL aksz = M) < P(I1Xllapre = M),
A——+oo
and
lim P(||Xw|\a,k+2 > M) =0, since  P(|Xullansz < +00) = 1.
M—+oo

Second, we have

(9.17) Jlim P( [ (@A (Ba() = B @) > 0/ (M) =0

following the proof of Lemma 9.6 below. As a result, combining (9.16) and (9.17) we obtain
that X, is a solution of (9.8). The next lemma addresses the conservation relation and the
pathwise uniqueness of solutions to (9.8), and concludes the proof of Proposition 9.2.

Lemma 9.4. Equation (9.8) admits a unique pathwise solution in W2 (0,L) for any a €
(1 - H,1/2). Denoting by X,, this solution, we have the conservation relation:

1. -
| X (2) L2 (r2) = 5“.]00(("}7')”%2(]1%2) Vz €0, L].
From this relation, we immediately deduce the conservation of the L2-norm for U, and U,,.

Proof. Uniqueness follows directly from the conservation relation and the linearity of the
Schrodinger equation. We prove the relation as follows. Let us consider a solutions X, of
(9.8) in W2 (0, L). Using the last point of Lemma 9.2, this solution belongs to C=9(0, L) for
any 6 € (0, H — 1/2). Then, according to the change of variable formula [36, Theorem 4.3.1],
we obtain

1 re) = 1Oy = 2 [ e [ Humga ()
= QkWJHRe(i/dn/Sm(dq) /02 dBH(u,q)ei("‘*qﬁ*|”|2)“/(2k“)m2@,(z,/<; - q))
=0,

since m, S, and w(dr, -) are symmetric. O

The section is ended by the proofs of Lemmas 9.3.

Proof of Lemma 9.8. Let n >0, v >0, N > 0, and let us write

P(da oo (X7, X0) > ) < Pldaoo (X2, X057) > 0/3)

(9.18) + P(da,oo (X2 RE, X2 N) > 1/3)
+ P(do oo (X2 5, X2 > 1/3),
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where Xf’N is defined by (9.12). First, let M > 0 and k,, such that Zkan 2% < /6, and so
that
(9.19)

P(da oo (Xihy, X2) > 1/3) < (ZHXJ‘N X2 o > n/6)
k=0

kﬂ
= P(I;J 15 — XL ok > /6, /S iml(da)Aa (B (a) < M)

+B( [ il (Bi) > M),
In order to treat the first term in the r.h.s, we use that
1288 = XM ok < D 1XD ok,
n>N

which yields, together with the Markov’s inequality
k"]

P(anX;‘,N = Ao > 0f6. [ Imlda) Ao (Bh() < )

ZZE[WHM”“I( ml(dg)A (B;}(@)szw)]'

Ic 0n>N

In order to take care of the expectation above, we have, according to (9.11) and the first point
of Lemma 9.2,

z 1 z
I A = A < KosM swp ([ s(F3005.0) + YY)

z€[0,L]

< Ka kM / jnk S, O d8+ sup / (a+1/ drjﬁk(r, S)),

2€[0,L] z—5)

where we have introduced the notation

n XA (u) |l YA () — X5 (y) ||,
F(u:0) = A ), + I [ g IR 2 20 S,

(u— (u—y)ott
In the latter inequality above, we need to get ride of the sup,c(o ) in order to interchange

expectation and time integrals. To this end, using the Cauchy-Schwarz inequality and that
a€ (1—H,1/2), we have

L z z
ds 1/2
||X£L+1’A||a,k S Ka,kM(A \77;,4,]6(8’ O)dS + sup / (,2:—8W</S (jrfk(r, 3))2d7") )

z€[0,L] JO

< Ka)kM(/OL j{}k(s,O)ds + (/OL (Soiirsl/z(/oL(jrfk(T,S)Fdr) 1/2).

Using once again the Cauchy-Schwarz inequality, we obtain

E[|

(Js \m|<dq>Aa<Bg<q>>§M)]

SK;,kM(/OL]E[jM(S 0)lds + sup (/LE[(j;b‘,‘k(r,s))Q]dr)l/z).

s€[0,L]

(9.20)
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We now need the following technical lemma that we prove at the end of this section.

Lemma 9.5. For all (k,n) e NXN* and 0 <v <u < L, we have

2k02n
limsup E[|| X2 (u) — X2 (0)[13,,] < ChH,foni'((u —v)2H 22
A—+o0 n:

for some positive constants C' and Ck,H,fo'

From this result, and using that |u?# — v?#| < Cy |u — v], it is direct to see that

L ko L
1 1
lim sup/ ]E[j,fk(s, 0)]ds < K e (1 —|—/ + 7dr),
0 0

o -
Amroc a,H, fo (n!)l/Z ra ' patl/2

and the same type of bound holds for sup¢y 1 (fOL E[(j{}k(r, 5))?]dr)'/2. Then, going back to
(9.20), we have

]< ;o nkCon
Js Iml(da)Aa(Bf (@) <M) | = TaH fo ™ (p1)1/2°

(921) B[ ot

Injecting this relation in (9.19), we finally obtain using Lemma 9.1, together with the Markov’s
inequality

’I’Lk" cn

. 5 Ch
(9.22) hmsupP(da,oo(Xf’N,Xf) >n/3) < i +Cyam M Z EOLEk

A—+o0 n>N

In the same way, we obtain

C
. A+B A+B 2
(9-28)  limsup sup P(daoc.o (X5 A2 ) >0/3) < 2+ Copamp,M Y

For the remaining term of (9.18), we have first

k"?
P(d oo (KR, k) > 1/3) S P( S IXKE = XLl > 1/6)
k=0

=

n

<> P(IX2EE = Xy llak > 1/ (6(ky +1)))-
0

~
Il

Second, according to (9.11), we have for all n € {0,..., N — 1},

n A n A A A A
(ADHLATE _ pnt LAy (o gy = TATB(xnATE _ xmA) (5 g

9.24 = .
(5:24) + ikszH/ m(dq)/ due_z("’“_‘”Z_l””lz)”/(%“))\,’ﬁ’A(w/ﬁ — q)d(Bi™8 — B (u, q).
s 0

To treat this relation, we make use inductively of the second point of Lemma 9.2. In order
to deal with the second part on the r.h.s of (9.24), we will use this result with BfIJrB -~ Bj
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instead of B7;. We then have,
(9.25)
IS FHATE — XA ok < Cl,a,k/s Iml(dg)Aa(B™ (0) = B (o)X | k+20

+ C2,a,k/ [ml(dg)Aa (B P (@) 1K = X2 lags2a
S

S Cn,a,k:/s |m|(dQ)AOé(BfI+B(q) - B?I(Q)) Z ||X:;n7A a,k+2a(n+1—m)
m=0

| [ imltanaa(Bg @) "
since X0A4TE = x04 = 40 Now, using the facts that

P47 = Xy llak > 0/(60k, + 1))

N
< SOP(JADAE = XD 0k > 1/ (6(ky + N + 1)),
n=0

as well as

Pl = A0 g > )
<Pl =2 > O [ mldgAa(Bi@) <M. [ i@ (B ) < o)

+B( [ mlidg) o5 (0) > M) + B( [ ml(dn)a(Bia) > 1),

we have, according to Lemma 9.1, the Markov’s inequality, and the second inequality of (9.25)
together with (9.21),

C
PP 0o > 1) < 52+ B [ mldp)Aa(BE (@) - B(@) = Cn)
S

<51+l /S ImI(dg)Aa( By (g) = BA(@)] /Crnan

for all M > 0, and where C, Cz, and C ,, ps are positive constant independent of A and B.
Note that the growth of C ,, as as a function of n does not matter here since the term above is
summed for n < N. Gathering all the previous estimates, we find, combining (9.22) and (9.23)
in (9.18)

lim sup SupP(da,oo(XerB? Xoﬁl) > 77)
A—+oco0 B>0

o4 nkCcn
SuT CoafeM Z (n))1/72
n>N
+ Capytimsup sup E[ [ ml(dg)Aa(B™ (@) - B (0)
A= 400 B>0 S

for any M > 0 and N large enough. Then, the following lemma allows us to conclude the proof
of Lemma 9.3.
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Lemma 9.6. Let o € (1 — H,1/2), and
ru _q
B 0,) = B (w,) - Bif(w.) = | L w(drq).
{A<|r|<A+B} ir|r|H=1/2
We have

lim supsu E[Aa BAtB }:0.
AH+°OB>%qeg (B (@)

As a result, we finally obtain

A (o4 nkc«n
lim sup sup P(dy oo (X2, X4 > 0) < =+ C - M —
imsup sup (dayo0 (X5 D) >n) <57+ Can gy T;v (72

for any M > 0 and N large enough. Passing to the limit in N first, and then in M in the
above inequality ends the proof of Lemma 9.3. O

Proof of Lemma 9.6. Following exactly the proof of Lemma 9.1, we have for 0 € (0,H+a—-1)
such that 1/0 € N*,

E[AQ(BQ‘*B(q))] < K LHH 014 1/(H +a—1-§)]

BA+B BA+B 2/6 /2
// ) = DA ),

|U7U‘2H/6

and since B:ZH_B(U, q) — BjﬁB(v7 q) is a Gaussian random variable, one has

supE [Aa(BfB(q))} <Kj, sup R'Y%(q,q)
q

q€S
Lol ler(w=v) 112 \1/0  dudv 10/2
x| ( i) -1
o Jo “\pacpi<arsy 7| |lu — v|2H/

The proof is ended using the dominated convergence owing that

|eir(u—u) _ 1‘2 -
/{|T|>A} Wdrﬁd;ﬂu—ﬂ .

We end the section with the proof of Lemma 9.5.

Proof of Lemma 9.5. Let us start with the following remark. Reminding the definition (9.2)
of X4, and using that

Kl <le—qu = —an|l+ o+ +aul <rp +nrs,

aslongas Q, =Kk—q1—-—qn € Suppfo and q1,...,q, € S, the weight of the Hg-norm can
be simplified as follows :

12 () = X5 A )Ry, < L+ (g, +nrs)®) 2N XA (1) = XA (0) 122 pey.

Moreover, we also have

XA (u, k) — XA (0, k) = (iky)" /A ( )dum) / m(dq<n>)eicn<u<ﬂ>,q<">>¢g(Qn)
u,v n

(9.26) Eirmtm
(n)
></( e dr H IREETE w(drm, ¢m),
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where
Ay (u,v) = {u(") = (u,...,up) € [0,L]", st. 0<wu,<---<wu; and v<wu <u}.

As a result, taking the L? norm and then the expectation of (9.26), we have using the Fatou’s
lemma

lim supE [HXLLA(U) — X0 (v) ||2L2(R2)]
A—+o0

< Mol Mngemn € [ [ aal [ du? [ [ Emi(dal)midas”)
A(uv) Ay, (u,v)

1 ]E 617'1 mUl,m d e’LTQ mU2,m d
X [1m su H — 5 T — 5 T :| ‘
A—>+£ [ L [A |T17m|H71/2 ( 1,m7q1,m)‘/_A |7'2,m|H71/2 ( 2,m7q2,m)

n—1) (n—1) —

Using the symmetry of the variables ug = (u12,U13, - .., U1,) and uy (ug2, u2s, - .., Uap)

in the above expectation, the integrals fA () dugn) I (u0) duén) can be replaced by

u
/ duu/ ugnil)/ du21/ dugnil).
n - 1 [0 uu]" 1 v [0,1121]"71

Moreover, we have with (3.2) and (3.6),

) £ mULm A gira,mua,m
AETooE H /A |7“1 |H 12 (drl7nzyq1,77L)[A Ww(drz,m7QQ,m)

= CH Z H |ua - uﬁ|2H72 R(Qanﬁ)a

-7:2,n (G,B)E]'-Q,n

<1

where the sum is taken over all the pairings 75, of {1,2} x {1,...,n}. Now, in order to
integrate with respect to the u-variables, we have to distinguish three cases on the pairings
Fo,n. The three cases are the following :

(1) (1,1) and (2, 1) are paired in Fy p;

(2) (1,1) is paired in F3, with an element of the form (1, j) where j € {2 L,n}

(3) (1,1) is paired in F3 , with an element of the form (2, j) where j € {2,...,n}.

Now, setting
u u
:/ duu/ dugnfl)/ dugl/ duénfl) H |ua—Ug|2H_2,
v (O] v [0, ] = (@) EFan

we have for point (1)

n—1
Iu,u / / dunduzl\un — UQ1|2H 2(/ |’U) - w'|2H72dwdw’)
[0,L]?

< Kl,H(u - ,U)2Ha

and for point (2)

u U1 n—1
I, < / / duyrduyjlugy — u1j|2H_2(/ |w — w’|2H—2dwdw’)
v 0 (0,L]2

< KQH(uQH — 2,

In the third case, we have to distinguish in I,, , the two cases ug; < w11 and w17 < u2p. For the
first one ug; < w11, we follow the same strategy as for point (2) and we obtain the same result.
For the second case u2; < w1, we rather work with ug1, and we have two possibilities. If (2,1)
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is paired in F3,, with an element of the form (2, j) with j € {2,...,n}, we proceed as in point
(2) above, and if (2, 1) is paired in F3,, with an element of the form (1,7) with j € {2,...,n},
we proceed as in the case ug; < uj; by exchanging the role of uy; and uas.

Finally, using that the number of pairing of {1,2} x {1,...,n}is (2n — )l = (2n)!/(2"n!)
we have

n,A n,A 2 3 2 C?{n(Qn_ Hh 2H 2H 2H
E“|Xw’ (u) — X% (U)HL2(]R2)] < ||f0(w7')HL2(R2)W((U_U) +u=t =)
; 2 C¥u 2H 2H 2H
< [ folw, Mz ey — = ((w = 0)™ +u™ =™,
which concludes the proof of Lemma, 9.5. O

9.1.3. Proof of Corollary 9.1. First, it is clear that U4 converges in probability as A — +oo
in C1-9(0, L) to ¥,,. Moreover according to (9.15), we obtain

(9.27)

. 2 z z
\I/f(z, K) = \pjj(o, K) — 22"]:' / ‘I/f(u, K)du + ikwaH/ m(dq)/ \Ilﬁ(u, K — q)dBfI(u, q)
w 0 S 0

and we only need to address the convergence of the last term. Introducing
AW em) = thoon [ mlda) [l -~ B0,
S 0

for A € [1, +oc] where Bf;>° = By, we have

ICAPE) = K5 (W) [lae < 1K = KF) (L)l + 1A (TS — o)l

< kolon /S Im](dg)Aa (B (0)) [ Fllo

a,ks

Hlkelon [ Il Aa (Bl @) - b
so that proceeding as in the proof of Proposition 9.2, we obtain that, for all n > 0

. AgAY _ jtoo(yg —
Jim PIAEE) = K2 (80) o > n) = 0.

Therefore, we can pass to the limit A — 400 in (9.27) and obtain that U,, satisfies the desired
equation. Uniqueness follows from the one-to-one correspondence between (9.8) and (9.9) via
VU, and X,,.

9.1.4. Proof of Proposition 9.3. With the notations of the previous section, we just need to
show that for all ¢ € L*(R?)

<]€+DQ(\IJM)(2)’ ¢>L2(]R2) = (277)2<IC+00(‘110J)(Z)7 $>L2(R2)
where, for A € [1, +oc] and the notations W™ = Wy,
I@A(w)(z,m) = ikw/ w(uw)dWﬁ‘(u,x), Wf}‘(zya:) = O'H/ m(dq)e_iq‘mBé(u, q)-
0 S

To this end, we prove that for all n > 0
P((KT(W0)(2), 6) o ey — (M) (KT (00)(2),6) o g0y > 1) = 0.



FRACTIONAL WHITE - NOISE LIMIT AND PARAXIAL APPROXIMATION FOR WAVES IN RANDOM MEDBES

The proof consists in approximating Wy by W;}‘ with A < 400 in order to have sufficient
regularity to justify the calculations. We thus write

(R (W) (), 8) gy — 212 (0)(2), ) 12 g
= (K = K*) () (), 6) o gy + (KA () (), 6) o
= m2 (™ = KN (8)(2), ) o oy + (A () (2), 6
with, using the Markov’s inequality,

P(IK7(0)(2) = KAL) ()| 12(e2) > ')

—

>L2(R2))

<P (Ca||\llw||a7L2(R2) suﬂg)2 AWy (z) = Wi (2)) > 77)
TE

< IEJ>(Coz||\Ilou||oc,L2(]R2) > M) + Cn,a,SMsugE{Aa(BXOO(Q))}a
qe

where the second term on the r.h.s converges to 0 as A — 400 according to Lemma 9.6. Hence,
using that P(|| ¥, ||, r2(r2) < +00) = 1, we obtain

Jim P2 (0,)(2) = KAL) () 2y > 1) =0,

and following the same lines we also have

Jim B (0,)(2) = KA (80)(2) 2y > ) = 0.

Finally, according (9.5) and the fact that ¥, € C°([0, L], H*(R?)) for all k € N, we can write,

z
KA (2, 2) = ikwaH/ m(dq)/ du¥,(u, z)e "I (u, ),
S 0
and thus use the Fubini and Fourier-Plancherel theorems to arrive at
<I€A(\Ilw)(z)a ¢>L2(R2) = (27T)2<ICA(¢I¢0)(Z)¢ é>L2(R2)’

with probability one, which concludes the proof.

9.2. Convergence of X;;. We investigate in this section the limit in law of (X3 (2),..., &5 (2))e.
The tightness of this family is addressed in Proposition 9.4 below and is the straightforward
consequence of the conservation of the L? norm of X5. The characterization of the limit in
distribution of the family requires more work. We will use for this a moment method and the
regularized process X4 for which formal calculations are justified. In order to fix the ideas,
we will investigate first the moment of order one in Proposition 9.5, and then generalize to
moments of any order in Proposition 9.6. The various results are put together in a conclusion
at the end of the section.

9.2.1. Tightness. This section is devoted to the tightness of the family (X7 (2),..., &5, (2))e.
We have the following result:

Proposition 9.4. For all z € [0,L], the family (X5 (2),..., X5, (2))e is tight in L?(R?)
equipped with the weak topology.
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Proof. 1t suffices to show that the family of complex-valued random variable ({ X2 ,(2), 85 Nejeft,... M}
is tight on CM for all ¢; € L*(R?) (j € {1,..., M}), which amounts to prove that

M
Ynp >0, 3Ju>0 such that limsupIP’(Z\ |>u) 7.

e—0 j=1

This is a direct consequence of the following lemma:

Lemma 9.7. We have, for all z € [0, L],

X5 ()l 22y = 19511 L2 (r2)-
The proof of the lemma is left to the reader. Since A has sufficient regularity (i.e. at least

CY([0, L], L*(R?)) almost surely), it suffices to adapt the proof of (9.7) to obtain the result. [J

9.2.2. Moment of order one.

Proposition 9.5. For all z € [0, L] and ¢ € C§°(R?), we have

gl_r)r(l)E[<X£(Z)’¢>L2(R2)] Al_l)IEOOEKX ( ) ¢>L2(R2)]'

Proof. According to Lemma 8.1, it suffices to show the term by term convergence of the series
defining X2. Moreover, since the integrand in (8.4) is L! in all variables, we can invoke Fubini
Theorem to permute order of integration. Using the second point of Proposition 6.2, we have
for n = 2n’ (if n is odd the limit is 0),

im €,2n = (i "’ ko (k) u?")E[m(dq®)
lig B (2),0)) = k)™ [ i) [ [ o Efmidg )

iG (u™ g™ . R(qarqp)
oA Qe Y [ dets)

a9
Fons (,B)EF g [ua — g

where the sum runs over the pairings Fa,,s of {1,...,2n'} and G,, is defined by (9.3). We want
to relate now the term above with X42". We use first for this the Gaussianity of the measures
w to find

eir(ua —ug)

n R(QOnQB) _ : » /A
dr I p2pmim X I R | S

Font (@,B)EF o, Fans (0‘ B)EF 2

A—+o0 H /A |T

where we recall that H = 1 — $/2 € (1/2,1). Moreover, since on the one hand, for A large
enough

“‘nz Um,

|H 1/2 (drman)}»

I
g
i<l

(9.28) < Clug — up "2,

s T g (dr, )

m=1 A |T
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and on the other hand that the integrand in (9.10) is L' in all variables, we can invoke both
the Fubini Theorem and dominated convergence to obtain, for all n > 1

lim E[(X5"(2), ¢)] = (ikw)”/d/@W/A ( )du(">/nE[m(dq<n>)}ei a™a™) g0 ()

n

l’I"JUJ

XAETOOE H/A ‘7" |H 1/2 (dTﬁQj)

= lm E[(X}"(2), 0)).

Above, ¢¥ = lim. ¢¢, is given by (4.14). It just remains to show that limit and expectation can
be taken term by term in the series defining X“. This is the object of the next lemma.

Lemma 9.8. We have for all z € [0, L]
. A _ . An
Jim E[(X0(2), 6)] = §Ag$wE[<Xw (2).¢)] < o0
Proof. This result is just a consequence of the fact that

> limsup E[ A" (2) [ 2ze)]'/? < +oo,

n>1 —+00
As in Lemma 8.1, we have using (3.6) and the Fatou’s lemma,

limsupE HX:"”(Z) ||%2(R2)}

A—+oo
<u [an [ Elmial)midal) [ [ )
nxSn An(2) An(2)
ewmum A eirz u2
. 11 " 2 2
X ’ALITOO]E H / -2 (drm’qm)/_A |rgn\H71/2“)(drm’qm)] ’
X \fo(wan,n)fo(MQz,nﬂ
< (nrs+ry, )2%(271 - 1! [/ |uy — u2|2H72du1du2}n
0 (TL) (0,2)2
Cn
< (rns g 2
Above, we used (9.28), the term (2n — 1)!l = (2n)!/(2"n!) is the number of pairings of {1, 2} x
{1,...,n}, and the term (n!)? is a consequence of (6.1). O
This concludes the proof of Proposition 9.5. 0

9.2.3. Arbitrary Order Moments. In the forthcoming computations, all indices with the sub-
script 2 correspond to the complex conjugate terms.

Proposition 9.6. We have for all z € [0, L], frequencies (w11, ..., w10, W215---,W2,M,), aNd
test functions (¢1 1y---y ¢1 M17¢2 1y--+» ¢2 M2) in C(()XJ(RQ)7
M,
glj)%E[ H < w151 ( ) ?1.5, LQ(R2) H b 2 )’¢2’j2>L2(R2):|
j1=1 J2=1
M, Mo
= AETOOE{ H < w5 ¢1731>L2(R2) H wz ,2 ¢2732>L2(R2)] < +00.

Jji=1 p2=1
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Proof. Using (8.3), we have

M, My “+o0

H< w1]1 ¢1,j1 L2(R2?) H< w2j2 ¢2,j2 L2(R?) Z Z Z Z XE' fou
JIn

Ji=1 J2=1 Jj1=1j2=1n1,;, =0n2,;,=0
where

jr—ne M,

e _

Xn= En(sfl/Q)/ / H driy 5, k. 1] 1 ¢17J1 K1,5,) H drg j, k. s, 2 2 02,5 (K2,5)

M,

<11 @) [l
sm1 Jl sJ1 A »J1
=1 (F1,51) n1 gy (%)

(7L2,j2) (n2ﬁj2)
/ " m(dqy ;,"*") duy,j,
2,92 (ko i2) Angij (2)
(ng 5, (n2 55)

iGe (u( 1,51) ( 1,51) I 1GS (u ) q )
1 1 . B 2,3 72,5 Q
X | I e s ) e 3 @gina ) I | e e 205, (Q2ama )

Ji=1 Jjo=1
My M1, Mz M2,55
X H H V(ul’jl,mm‘l /57Q1,j1,m1,j1) H H V(u2,j2,m2,]‘2 /57Q2,j27m2,j2)7
Ji=1my ;=1 Jz=1ma j,=1
with
My 2
ny = E 14,5 Nng 1= E 12 js 5 and n:=ny + ns.

Jji=1 J2=1

As before, we need to show that limit and expectation can be taken term by term.

Lemma 9.9. The series ) _; Xj, is well-defined, and we have

]V[l M2
E{ H <X51,j1 (Z)7¢1,j1>L2(R2) H <X52,j2 (Z)7¢27j2>L2(R2):| = ZE[X;L
Jji=1 Jj2=1 JIn
as well as
M1 M2
;I_I%E{ H <X£1J ( )’¢1’j1>L2(R2) H <X£2,j2( ) ¢27J2>L2 R2 } ZignEXE],
ji=1 J2=1

Proof. As usual, it suffices to show that

(9.29) Z sup E[|XE %2 < +oo.
1. €€(0,1)

Adapting once more Lemma 8.1 and the first point of Proposition 6.2, we have for s = 2— /2,

Mo
\ / / H dm,ﬁl{\m“l«n arstri} H dk2, j, 1{|k,, dal<nagyrstrs )
J2=1
M omag, M2 oma g,
o I Bl | ey
ji=1 nlapl' — n27j2

which gives (9.29). O
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The latter lemma can be directly generalized to moments of X* using the fact that the
measures are Gaussian. Using now the second point of Proposition 6.2, we obtain for n = 2n/,

E _ n1 na

lim B[X5] = / /H dra gy ko 7 01 g, (51,5, H drg j, ks 2 02,5, (K2,5,)
J2=1

M1

1,71 2,52

x]E[

J1=1jo= 1/8 171(”1J1)X‘Sn2 72(52J2)

(n1,5,) (n1 5,)
(nlg ) an(u 1 qy 7)) 0
x / du 1,51 ! Lo 171 ¢w(Q17jlanl=j1)
A7L1J (z)

2,50)  (n2,55)

(n2,55) —iGn(u ( Ao Yo
x / du27]2 € 2 J2 92 ¢w (Q27j2,n2,32 )
Dy, (2)

qou (Iﬁ
x> I [te — ugl®’
Fn (a,8)€Fn
where the sum runs over the pairings F;, of

I, = {(’L'7ji,m7;$ji) < {1,2} X {].,,M,L} X {L...,ni,ji}}.

Moreover, in the same way as in Proposition 9.5,

n’ é((]7(]
sy I ﬁ

Fn (,8)€EFn
ni Jl 171 J1ma, gy Yhit,ma gy
. IE / w(dry q1,5 )
. H—1/2 J1ma gy dhgima gy
A—+oo |7‘1;]17m1~‘71‘ /

]1 17711 Jl_l

n2,jy

2 A i, ,my j, U2,52,ma
X H H [H-1/2 W(dra,joms jy > 42,52.mo 5, ) |

J2=1mag j,=1 —A |T2,j2,m2,j2

so that the proof is concluded by dominated convergence and the Fubini Theorem. 0

9.2.4. Conclusion. We have now everything needed to conclude the proof of convergence of
XE. Consider first the limiting process X, solution to (4.16). Thanks to (4.17), the moment
generating function of the random variable Y (z) = ijil(/'\,’wj (2),¢;) is perfectly defined for
z fixed in [0, L], so that the law of Y(z) is uniquely defined by its moments. Then, since

X4 converges in probability to X,, according to Proposition 9.2, and since all moments of
YA(2) := Z?iﬂ?(fj(z),gzﬁj) (test functions ¢; in C§3°(R?) are sufficient by density) converge
according to Proposition 9.6, they necessarily converge to those of Y (z). Furthermore, since the
limits of the moments of Y¢(z) := ZjAL(Xij (2), ¢;) are the same as those of Y4(z) according
to Proposition 9.6, we conclude that the moments of Y#(z) converge to the moments of Y'(z).
Proposition 9.4 finally implies that (X5 (2),..., X5, (2))- converges in law in L?(R?) equipped
with the weak topology to (X, (2),...,Xw,y, (z))

Finally, convergence in law in L?(R?) for the strong topology is obtained thanks to Lemma

9.7, the Skorohod’s representation theorem [6, Theorem 6.7 pp.70], and the following relation

. . 1,2
T (165 (2) 2 ey = i 165 = 5o, ) zagesy = 1 () ages.

This concludes the proof of Proposition 4.3.
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10. PROOF OF THEOREM 3.1

The proof is a direct application of Propositions 4.1 and 4.2 and Theorem 3.2. As already
mentioned in Section 4, owing the convergence results of Propositions 4.1 and 4.2, it is enough
to check the convergence in law of

Pratia)i= [ [ty ()5 (L, o,

Note that we cannot directly use here any continuity arguments of the map (X3)., — (p5.1)t,e
for the appropriate topology since we only previously obtained pointwise information about
XS in the variable w.

The proof is then done in three steps. First, we prove the tightness of p5 ; in the space
Co([-T,T), L% /(R?)) for all T > 0, where L2 (R?) stands for the space L?(R?) equipped with
the weak topology. Second, we characterize all the accumulation points using the convergence
of the moments of X5. Finally, we obtain the convergence in L?((—oo, +o0) x R?) and then in
CO([-T,T), L*(R?)), where L?(IR?) is equipped with the strong topology.

We will use the notation

pS,L(t’ ¢) = <p§,L(t7 ')7 ¢> = (27T)2<ﬁ§,L(t7 ')7 ¢>’
with
Pator) = [ € s (0L R
According to [6, Theorem 7.3 pp. 70], tightness is a consequence of the following lemma:
Lemma 10.1. We have, for all ¢ € L*(R?),

lim limsupIE”( sup |p5 . (t, @)| > M) =0,
M—=+00  £—0 te[-T,7)
and for all m > 0,

lim limsupP( sup |p3 1 (t1,9) — 05, 1 (t2, 9)| > 17) =0.

=0 ¢50 [t1—ta|<T

Proof. This lemma is a direct consequence of Lemma 9.7. Let indeed ¢ € L?(R?). For the first
point, we have

limsupE[ sup |p5 1 (¢ 0)]] < ClIdleeea) / duw Timsup E[[| X5(L)] 22y < +oc,
e—0 te[—T,T) e—0

and the conclusion follows from the Markov inequality. In the same way, we have for the second
point, for all 7 > 0,

limsupE | sup  |pb(t10) — ph(te, 0)l| < OF / deoleo| i sup B [l A5 (L) | 12 e2)]
e—0 Jur —ua|<T e—0
which concludes the proof of Lemma 10.1. O

In order to identify the accumulation points, we consider the finite-dimensional distributions
of p5 ;. We remark first that thanks to Lemma 9.7,

sup ] 15, (B 22 (r2)
t —

s

is uniformly bounded in € by a deterministic constant, and therefore that the finite-dimensional
distributions are uniquely characterized by their moments. Using once again Lemma 9.7 in
order to justify the use of the Fubini Theorem and dominated convergence, it follows from



FRACTIONAL WHITE - NOISE LIMIT AND PARAXIAL APPROXIMATION FOR WAVES IN RANDOM MEDBA

Proposition 4.3 that, for all M € N*, (t,,)meq1,... 0y € [T M, (Am)mequ,...m} € (L2(R?))M,
we have

e—0

M M
lim]E{ H p;L(tm,%)} = IE[ H p%(tm,ém)]

In order to go back to the original pulse p5 defined by (3.17), we remark first that (4.12) holds
for all ¢ € L?(R?) thanks to the bound (5.12) and the density of Cg°(R?) in L?(R?). Hence,
using Proposition 4.2, we obtain the convergence in law of p$ to p? in C([-T,T], L% (R?)). To
conclude, we use the Skorohod’s representation theorem [6, Theorem 6.7 pp.70]: there exist a
probability space (Q, T, Iﬁ’) and random variables p5 and p?, with the same laws as p5 and p9,
respectively, and such that

lim sup [p7(t,¢) —p1(t,0)| =0 P—as,
e=04e[—T,1]

for all ¢ € L?(R?). A direct consequence is that p5 converges P-a.s. to p) in L2 ((—oc, +00) x
R?), since using (5.13) one has

. 1
lim sup [[pZ || L2 (00, +00) xB2) < 5 [ foll 22((—00,+00) xR2),
e—0 2

and the unit ball of L?((—o0,+00) x R?) is weakly compact. Moreover, this convergence also
holds in L?((—o0, +00) x R?) with the strong topology because of the conservation relation

1 0 .

3 1 follz2((—oo 400 xr2) = IPLII L2 (00, 00)xm2) = H [[PE |22 (00, +00) x2)

As a result, using the Plancherel theorem

L= [ dedalfi.0) - Bu(Loo)? 0 Boas

e—0

where

~c 1 iwt,. € T, 1 iwt .0

pS(L,x) = vl I p (¢, z)dt and U, (L,x) = oyl I py(t, z)dt.
Since fo(w, k) has a compact support with respect to w, so do p¢, and 0, according to (5.12)
and (3.20). The Jensen’s inequality then yields

sup ||pi(t7 ) - p%(tv ')”Lz(Rz) < CI&
te[—T,T)

This proves the convergence in CO([—T,T], L?*(R?)) and concludes the proof of Theorem 3.1
since almost sure convergence implies convergence in law.

11. PROOF OF ESTIMATE (3.19)
We use here the notation of sections 1 and 4. The core of the proof is the following lemma:

Lemma 11.1. We have the estimate,
19511 22 3y < © ”fO(wa‘)HLZ(]R2)~
“ ~ ey/a;
Proof. We already have an estimate on (0, L) according to Lemma 5.2, which is

c .
1951122 (0,2) xr2) < %”fO(wa N2 w2y,
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so that it remains to treat the domain z ¢ (0,L). Counsider first the case z > L. Plugging
z = L into (5.5) and (5.6), and using the fact that b (L, k) = 0, we find that p¢ reads

P (2, k) = eferew WG/ g (1 ey 2> L

We need to split the domain of integration in x in order to obtain appropriate estimates.
Suppose first that £?|x[?/k2 > 1 (evanescent modes), then Im(\. ,(k)) > C. /-, by (5.3).
Together with (5.12), this yields

o0 C R
az / A, (2, W2 < | folw, ) [Zagn-
/L {e2|r|2/k2>1} V& ’ P

When €2|k|?/k2 < 1 (propagative modes), consider the strictly decreasing function fy(z) =
Va2 + 0% — z, for x > 0. It satisfies fy(z) > fo(1) > Cb? for z € [0,1], 0 < b < 1 and some
constant C. This then yields Im (. ., (k)) > Cae, for ¥ = 1 —&?|k|?/k2. Together with (5.12),

we find -
/ dz/ dk|p;, (2, ®)]? <
L e?|r|?/k2 <1}

We turn now to the case z € (Lg,0). We have
1 . N )
Pam) = 5= (a5, (L5, m)eeraw =/ 4 G (0, ) tReden (277,
e,w

Owing (5.7), the first term of the r.h.s is direct and yields a control by C/|| fo(w, N 2 ®2). For
the second one, we write

i (wv')”%%RQ)'

b(0,5) .. as,(Ls, K
( ) _ pw (O, :‘ﬁ) _ ( S )
A w(K) Aew (k)

and obtain, thanks to (5.12), again a control by C||fo(w, )|lz2(r2). Consider finally the case
z < Lg, for which

(11.1)

b

pAZ(Z“lq}):ek Ae,w(r)(Ls— Z)/E As(LS, )’ Z<LS

The jump condition (5.2) yields p,(Lg, k) = pS(LE, k) — fo(w, k), which, together with (5.7)
and (11.1), gives the expression

p\z(Lg,[g‘/) = _M (1 + e—Qikwkg,w(K)LS/EZ) +]’)\Z<O7/Q)e_ikwAE,W(H)LS/Ezl

2
Using again (5.12), we then proceed as in the case z > L and obtain the same estimate. Putting
together all previous estimates ends the proof of the lemma. O

Owing the previous lemma, we can proceed to the proof. Let v = P — p, which satisfies

1
Av— — (1 + ESV(E, E)1(0’L)(Z))8t2v = 0P, (t,z,2) € (0,400) x R x R?,
g e e

equipped with v(0,-) = 9;v(0,-) = 0. Since V is uniformly bounded by a deterministic constant,
and p € C°((0, +oo), L? (R‘S)) according to Lemma 11.1, it is a classical problem to construct
solutions to the above equation which satisfies the energy conservation relation

1d 9 1 s, (2 T 9
2q% (||Vv( Mizm@sy + C%/}R@ (1 +e V(g, E)I(O’L)(z))wtv(t,z,xﬂ dzdz)

=Re (ioze/ p(t,z,x)@w(t,z,x)dxdz) i
R3
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After integration and the use of the Cauchy-Schwarz and Young inequalities, it follows that

t t
IV ) + 100022 ) < Ca / 10(5) 2z, ds + C / 1000(5)]12 g s

Since v(t = 0,-) = 0, we can use the Poincaré inequality (w.r.t. ¢), which together with the
Gronwall’s lemma yield

t
()21 gy + 1000 ()2 oy < Ca? / 19(5) 22 g -

In order to apply Lemma 11.1, we notice that

10(5) | 22 ey = llp(s, ) z2qey < € / 165, 2 oy o

Above, we used the fact that p¢, has compact support according to the aforementioned lemma
since fo does. Standard Sobolev embeddings then yield

sup lv(t, 2, )| L2r2) < Coz;m,
(t,2)€(0,T) xR

which concludes the proof after rescaling x by ex.
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