
FRACTIONAL WHITE -NOISE LIMIT AND PARAXIAL

APPROXIMATION FOR WAVES IN RANDOM MEDIA

CHRISTOPHE GOMEZ AND OLIVIER PINAUD

Abstract. This work is devoted to the asymptotic analysis of high frequency wave propa-
gation in random media with long-range dependence. We are interested in two asymptotic
regimes, that we investigate simultaneously: the paraxial approximation, where the wave is
collimated and propagates along a privileged direction of propagation, and the white-noise
limit, where random �uctuations in the background are well approximated in a statistical
sense by a fractional white noise. The fractional nature of the �uctuations is reminiscent
of the long-range correlations in the underlying random medium. A typical physical setting
is laser beam propagation in turbulent atmosphere. Starting from the high frequency wave
equation with fast non-Gaussian random oscillations in the velocity �eld, we derive the frac-
tional Itô-Schrödinger equation, that is a Schrödinger equation with potential equal to a
fractional white noise. The proof involves a �ne analysis of the backscattering and of the
coupling between the propagating and evanescent modes. Because of the long-range depen-
dence, classical di�usion-approximation theorems for equations with random coe�cients do
not apply, and we therefore use moment techniques to study the convergence.

1. Introduction

Problems related to wave propagation in randommedia are encountered in many applications
that range from imaging the earth's crust in geophysics [10], to communication in underwater
acoustics [35] or laser beam propagation in the atmosphere [13, 32]. The random medium
often models a complex medium for which only partial information is known. Typically, the
large-scale variations of the medium (i.e. the background) are known, while the small-scale
�uctuations (i.e. the heterogeneities) might be too di�cult to estimate and are considered as
random.

In these applications, waves are generally in a high frequency regime, with frequencies
su�ciently high so that the interaction of the wave with the �ne structures of the medium
cannot be ignored. From both the theoretical and numerical perspectives, describing the
cumulative e�ects of this interaction is a very challenging task. There is therefore a need for
an approximate, but still accurate, description of the wave propagation. The main objective of
this work is then to derive such reduced models rigorously. The common strategy to attack the
problem relies on the high frequency assumption and on asymptotic theories of random ODEs
or PDEs. There is now a vast literature on this matter, and we refer to [14] and the references
therein for more details.

In this work, we are interested in two particular asymptotic limits, that we intend to per-
form at once. The �rst one is the paraxial (parabolic) approximation, which is valid when
the wave has a privileged direction of propagation and is su�ciently collimated. In the fre-
quency domain, the d−dimensional Helmholtz equation is reduced to the (d− 1)-dimensional
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Schrödinger equation where the time variable plays the role of the variable along the axis of
propagation. There is a signi�cant gain since a boundary value problem is replaced by an
evolution problem with lower spatial dimensions. In homogenous media, the derivation of the
paraxial wave equation is relatively straightforward, and is based on an asymptotic expansion
of the principal symbol of the operator describing the propagation (here the one of the scalar
wave equation). The situation is much more complex when the medium is heterogeneous since
the interaction with the medium generates some backscattering. In order to justify the paraxial
approximation, one has then to resort to some particular features of the medium, for instance
small amplitude of the �uctuations [5], or oscillatory behavior [1, 17].

The second type of limit is of probabilistic nature, and the limiting behavior depends on the
correlation structure of the �uctuations. After the high frequency wave has propagated over
su�ciently large distances in the random medium, it is natural to expect some sort of universal
statistical behavior to describe the multiple scattering on the wave�eld. We are naturally
thinking here of applications of the (non-)central limit theorem. There is also a vast literature
on this subject, see for instance [14, 33, 34]. In our context of the paraxial approximation, the
random medium �uctuations are then asymptotically statistically equivalent to a white noise
in the main direction of propagation (say z). This holds when the medium has su�ciently fast
decaying correlations. The resulting limiting model, known as the Itô-Schrodinger equation, is
studied mathematically in [11].

When the starting point is the wave equation, or equivalently the Helmholtz equation, there
are, to the best of our knowledge, only two references on the coupled paraxial-white noise limit:
in [1], the authors consider the random Helmholtz equation in layered media and derive the
Itô-Schrodinger equation. Layered media are a nice setting since the dynamics is essentially
one-dimensional and the transverse variables play little role. In this latter work, �uctuations
of the medium in the transverse direction are too slow to have a signi�cant e�ect, and the
resulting white noise only depends on z. The cumulative e�ect of the random �uctuations on
the wave is then a random phase shift driven by a Brownian motion. In [17], the medium is
more general, and su�ciently complex to lead to a white noise in z with transverse dependence.
The cumulative e�ect is then more complicated and not just a phase shift.

These two references assume that the medium has short-range correlations. It is not always
the case in practice, as is pointed out in [12, 23, 31] for geophysical problems, wave propagation
in turbulent atmosphere, or medical imaging. This has then stimulated recent mathematical
works on wave propagation in random media with long-range dependence [2, 18, 20, 21, 22,
25, 26]. It is shown there that the wave dynamics in such media can be in great contrast with
that of waves in media with rapidly decaying correlations. For instance, anomalous di�usion
phenomena were exhibited in [18, 20, 21].

The goal of this paper is to derive rigorously and simultaneously the paraxial and the white
noise approximations in the context of random media with slowly decaying correlations in the z
direction. Heuristically, the limiting classical white noise is replaced by a fractional white noise,
leading to the fractional Itô-Schrödinger equation. From the mathematical viewpoint, this is
a signi�cantly more di�cult problem than the ones addressed in [1, 17]. Indeed, in the long-
range case, the martingale techniques of [1, 17] and standard di�usion-approximation theorems
for ODEs with random coe�cients do not apply. There is essentially no general theory in this
long-range setting, and we are thus restricted to the use of moments techniques which are fairly
involved analytically. Note as well that the existence theory for the fractional Itô-Schrödinger
equation is not trivial, and leads to some additional di�culties in the asymptotic theory.

The paper is organized as follows. In Section 2 we introduce the wave propagation model
under consideration and describe formally the main result of this paper. In Section 3, we
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Figure 1. Illustration of the wave propagation model.

introduce various assumptions, de�ne the stochastic integral as well as the notion of solution
for the fractional Itô-Schrödinger equation, and �nally state precisely the main result. In
Section 4, we give an outline of the proof. The proof is then broken down into the subsequent
sections. Section 5 concerns the derivation of some important estimates. Section 6 is devoted to
central technical results about expectation and limits of iterated integrals. Section 7 addresses
the treatment of the evanescent modes and Section 8 the backscattering. Section 9 is devoted
to the convergence to the fractional Itô-Schrödinger equation. Section 10 �nalizes the proof of
the main theorems, and Section 11 addresses an estimate introduced in Section 3.

2. The random wave equation.

Let us be more speci�c now and introduce the scalar wave equation in the physical space
R3 (the setting could be extended to Rd, d ≥ 2, since the techniques used in the paper are
independent of the dimension) :

(2.1) ∆P − 1

c2(z, x)
∂2
t P = ∇ · F (t, z, x) ∈ (0,+∞)× R× R2,

equipped with initial conditions

P (t = 0, z, x) = ∂tP (t = 0, z, x) = 0 ∀(z, x) ∈ R× R2,

and where P represents the acoustic pressure �eld. Above, the z-direction will play the role of
the main propagation axis, ∆ = ∂2

z + ∆x is the Laplacian, and ∆x the Laplacian with respect
to the transverse variable x. Here, the forcing term F(t, z, x) has the form

F(t, z, x) := f0

( t

λ0
,
x

r0

)
δ(z − LS)ez,

where δ is the Dirac measure, ez is the unit vector pointing in the z-direction. F models a
source located in the plane z = LS < 0, emitting a pulse in the z-direction with pro�le f0 (see
Figure 1), central wavelength λ0, and transverse width r0. The divergence form of the source
term is standard in linear acoustics where P represents the pressure wave, see [17] for instance.
Other types of sources could be considered with minor modi�cations. In (2.1), the velocity
�eld veri�es
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1

c2(z, x)
:=

{
1
c20

[
1 + σV

(
z
lc
, xlc

)]
if z ∈ [0, Lz]

1
c20

if z ∈ (−∞, 0) ∪ (Lz,+∞)
and x ∈ R2,

where c0 is the background velocity (constant for simplicity), and where the random �eld
V (z, x) models �uctuations around c0 in the slab (0, Lz)×R2 and has a stationary covariance.
The parameter σ represents the amplitude of the �uctuations, and lc will be referred to as their
�correlation length�. This is the standard terminology in the short-range case where lc is de�ned
as the integral of the autocorrelation, but an abuse of language in the long-range situation since
the integral is not �nite (see below) and the random medium is multiscale. Here, l−1

c is probably
best seen as the largest frequency of oscillation of the medium. The main assumption on V is
that it presents long-range dependence in the z-direction. This is expressed mathematically by a
bounded, non-integrable autocorrelation function which decreases at in�nity only algebraically
as

E[V (z + s, x)V (s, y)] ∼
z→+∞

cH
zH

with H ∈ (0, 1).

This implies that

(2.2)

∫ +∞

0

∣∣E[V (z + s, x)V (s, y)]
∣∣dz = +∞.

Scalings. We introduce now the scalings, which are similar to these of [17] where �uctuations
with rapidly decaying correlations are considered. We assume �rst that the correlation length
lc is small compared to the overall distance of propagation in the random medium Lz, and we
denote their ratio by

ε :=
lc
Lz
� 1.

Second, we assume that the transverse width r0 of the source and the correlation length lc are
of the same order,

r0 ∼ lc.
This assumption allows for a full interaction of the wave with the transverse �uctuations of
the medium, leading to a non-trivial transverse behavior. Third, we assume that the central
wavelength λ0 is small compared to Lz by taking

ε2 ∼ λ0

Lz
.

This corresponds to a high frequency regime. With these choices, the Rayleigh length of the
beam is of order of the propagation distance Lz. The Rayleigh length is de�ned as the distance
from the beam waist to the place where its cross-section is doubled by di�raction. Hence, the
beam is still collimated at the exit of the random slab, which is a crucial assumption for the
validity of the paraxial approximation. In homogeneous media, the Rayleigh length is of order
r2
0/λ0. Therefore, we have for our problem

λ0

Lz
∼ λ0

r2
0

r2
0

Lz
∼ r2

0

L2
z

∼ ε2.

This is a parabolic scaling, where the wave oscillations in the z direction are much faster than in
the transverse direction, which leads to the paraxial wave equation. From now on, we consider
the propagation distance Lz as our reference scale of order 1, and rescale parameters as

Lz = L, λ0 = ε2 lc = ε, and r0 = ε.

Finally, we consider

σ = εs with s = 2− H/2, H ∈ (0, 1),
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where H is related to the decay of the correlation function of V in the variable z as de�ned
before. This speci�c choice of s leads to a nontrivial asymptotic regime in the limit ε goes to
0. As a result, the wave equation (2.1) becomes

(2.3) ∆P − 1

c20

(
1 + εsV

(z
ε
,
x

ε

)
1(0,L)(z)

)
∂2
t P = f0

( t
ε2
,
x

ε

)
δ′(z − LS).

The main result of the paper is the asymptotic description of the pulse front exiting, around
the expected arrival time, from the random section at z = L. It is de�ned by

(2.4) P εL(t, x) = P
(
λ0t+

Lz − LS
c0

, Lz, r0x
)

= P
(
ε2t+

L− LS
c0

, L, εx
)
.

Here, the solution is rescaled around the arrival time, and at the transverse scale of the source
pro�le.

The fractional Itô-Schrödinger equation. We will show that the process P εL converges in law
in C0((0,+∞), L2(R2)) to a process

p0
L(t, x) :=

∫
e−iωtΨω(L, x)dω,

where Ψω satis�es the following fractional Itô-Schrödinger equation

(2.5) dΨω(z, x) =
i

2kω
∆xΨω(z, x) + ikωΨω(z, x)dWH(z, x) = 0.

Above, kω := ω/c0 is the wavenumber, and the initial condition veri�es

Ψω(0, x) :=
1

2
e−i∆xLS/(2kω)f̌0(ω, x),

where e−iLS∆x/(2kω) is the semigroup of the free Schrödinger equation and we used the con-
vention

(2.6) f̌(ω) =
1

2π

∫
f(t)eiωtdt and f(t) =

∫
f̌(ω)e−iωtdω.

In (2.5), WH is a fractional �eld in the variable z, with Hurst index

H := 1− H/2 ∈ (1/2, 1),

that will be de�ned further, along with the nature of the stochastic integral. This latter integral
is of pathwise type, and can be seen as a fractional equivalent to the Itô-Stratonovich integral
for standard Brownian motions. The function Ψω describes the pulse deformation, in the
paraxial approximation, due to the interaction of the wave with the random medium in the
section (0, L). The initial condition Ψω(0) is simply the free propagation of the source from
z = LS to z = 0 in the paraxial approximation. In (2.5), backscattering is neglected, leading to
an initial value problem. As was already observed in di�erent contexts in [2, 25] for instance,
the long-range nature thus leads to a di�erent statistical description of the wave than in the
classical mixing case of [17]. In the latter reference, waves are in the regime of the central limit
theorem, and the resulting Schrödinger equation is driven by a standard Brownian �eld. Here,
we are in a di�erent regime where ε−H/2

∫ z
0
V (u/ε, x)du converges in law to a fractional �eld

in z with Hurst index H = 1− H/2 ∈ (1/2, 1). An important di�culty in this work is then to
justify that a similar type of limit holds for solutions to (2.3). There are in addition two other
main technical points: showing that the coupling with the evanescent modes is negligible (see
Section 7); these modes exist because of the non-trivial transverse frequency content of the
random medium; and showing that backscattering can be ignored (see Section 8).
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3. Preliminaries and main results

Throughout this work, we will use the following conventions for the Fourier transform: f̌

denotes the Fourier transform w.r.t. the variable t as in (2.6), and f̂ that w.r.t. t and x,

f̂(ω, κ) =
1

(2π)3

∫
f(t, x)ei(ωt+κ·x)dtdx with f(t, x) =

∫
f̂(ω, κ)e−i(ωt+κ·x)dωdκ.

3.1. Assumptions. The source term. We suppose that f̂0(ω, κ) is a bounded function with
compact support in both variables, and even in the variable ω. We assume moreover that it is
supported away from zero w.r.t. ω, that is there exists ωc > 0 such that

(3.1) (−ωc, ωc) ∩ suppω f̂0(ω, κ) = ∅, ∀κ ∈ R2.

The latter assumption essentially means that the source is shortband. Larger bandwidths could
be included by direct modi�cations of the proofs.

The random �eld. We construct the random �eld on a probability space (Ω, T ,P) and in the

Fourier space as follows: the �eld V is the Fourier transform of a random measure Ṽ (z, dq),
i.e.

V (z, x) =

∫
R2

e−iq·xṼ (z, dq).

We de�ne Ṽ (z, dq) su�ciently explicitly in order to be able to carry on the calculations. Let
then S ⊂ R2 be a bounded domain, symmetric around the origin (S = −S), included in a

ball B(0, rS). The domain S is the support of Ṽ , and as a consequence the largest transverse
frequency is at most of order ε−1 (after rescaling). Let also BH be a real-valued mean-zero
Gaussian random �eld on [0,+∞)×S, continuous and stationary with respect to the variable
z, and such that BH(z, q) = BH(z,−q). Its covariance function is given by

E[BH(z + z0, q1)BH(z0, q2)] := rH(z)R̂(q1, q2),

where R̂ is a continuous positive symmetric and bounded function such that

(3.2) 0 < R̂(q1, q2) ≤ R̂(q, q) = 1, ∀(q, q1, q2) ∈ S × S × S.

Besides, rH is a continuous even function bounded by rH(0) = 1 and

(3.3) rH(z) ∼
z→+∞

cH
zH

with H ∈ (0, 1).

Hence, rH is not integrable at the in�nity. Let then Θ be a smooth odd function satisfying for
all l ∈ N,

(3.4) sup
u∈R
|Θ(l)(u)| ≤ ClΘ,

where Θ(l) stands for the l-th derivative of Θ, and consider Θ(BH(z, q)), which is not a Gaussian
variable. Introducing a random measure m(dq), supported on S, independent of the random

�eld BH, and whose properties are de�ned below, we write Ṽ as Ṽ (z, dq) := m(dq)Θ(BH(z, q)),
so that

(3.5) V (z, x) =

∫
S
m(dq)e−iq·xΘ

(
BH(z, q)

)
.

We suppose that m∗(dq) = m(−dq), with bounded associated total variation measure |m|, that
is, almost surely,

(3.6) |m|(S) ≤ Cm,
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for some deterministic constant Cm > 0. This yields in particular that V is real and bounded,
and therefore that the velocity �eld cannot take negative values for ε su�ciently small. We
suppose moreover that m is stationary,

E[m(ϕ1)m∗(ϕ2)] =

∫
S
m(dq)ϕ1(q)ϕ2(q),

where m is a positive measure on S with �nite mass and where the ϕi are smooth functions.
This construction yields a potential V with a stationary covariance in both z and x, which is
a common assumption in applications. An example of measure m is the following:

(3.7) m(dq) =
∑
j≥0

aj(Ujδqj + Ujδ−qj ),

where (aj)j≥0 ∈ l1(N,R) is deterministic, (Uj)j≥0 ∈ CN and (qj)j≥0 ∈ SN are independent iid
sequences of random variables with appropriate distributions, and the Uj have zero mean.

Note that E[V (z, x)] = 0 by symmetry, and in the same spirit as [25, Lemma 1], we show in
Proposition 6.1 of Section 6 that V itself satis�es the long-range property

E[V (z + z0, x)V (z0, y)] ∼
z→+∞

CH

zH
R0(x− y) with CH :=

cH
2π

(∫ +∞

−∞
Θ(u)ue−u

2/2du
)2

,

and

(3.8) R0(x) :=

∫
S
m(dq)R̂(q, q)e−iq·x =

∫
S
m(dq)e−iq·x.

This implies in particular that (2.2) is satis�ed. Examples of realizations of V are given in
Figure 2.

The limiting �eld WH in (2.5) is heuristically obtained as follows: the scalings in V and the
long-range behavior act in a such a way that only the linear part in Θ is not negligible, and such
that ε−H/2

∫ z
0
BH(u/ε, q)du is well approximated (in distribution) by a fractional Brownian �eld

in z. Hence, WH is a random �eld with covariance operator given by

(3.9) E[WH(z1, x)WH(z2, y)] =
CH

2H(2H − 1)

(
z2H

1 + z2H
2 − |z1 − z2|2H

)
R0(x− y)

for all (z1, z2) ∈ [0,+∞) × [0,+∞) and (x, y) ∈ R2 × R2. The construction of WH and the
de�nition of the stochastic integral are given in the next section.

3.2. Stochastic integral and fractional Itô-Schrödinger equation. The stochastic in-
tegral with respect to a fractional Brownian motion obtained here in the limiting process is
of pathwise type, and is de�ned according to the work of Zähle [36]. We start this section
with the construction of the fractional �eld WH with covariance operator (3.9), which is used
thereafter to de�ne the stochastic integral. Finally, we give the de�nition of a solution of (2.5)
before stating the main results of the paper.

The fractional �eld. A one dimensional standard fractional Brownian motion with Hurst
index H, on a probability space (Ω̃, T̃ , P̃), is a centered Gaussian process bH with covariance

E[bH(u)bH(v)] =
1

2
(u2H + v2H − |u− v|2H), ∀(u, v) ∈ [0,+∞)× [0,+∞).

Moreover, such a process admits the following spectral representation

(3.10) bH(u) = C
1/2
H

∫
eiru − 1

ir|r|H−1/2
w(dr),
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Figure 2. Examples of realizations of V . Here, V is obtained via (3.5) with
Θ(x) = sin(10x) and S = [−15, 15]. The measurem is as in (3.7), where the Uj
are uniform in [−1, 1], the qj are chosen with a discrete uniform distribution
among the points of a uniform discretization of S, and aj = 1 for j ≤ 100
and zero otherwise. The �eld BH is obtained via a similar formula as (3.11)
where the en are cosines, the βn behave like n−2 and WH,n is replaced by a
Gaussian process with autocorrelation rH(z) de�ned as the Fourier transform
of 1(−15,15)(k)/|k|1−H. From left to right, H = 0.9, 0.5, 0.1. Observe the arising
of long-range correlations in the z direction as H decreases, that is as rH
decreases slower at the in�nity.

with CH = HΓ(2H) sin(πH)/π, and where w(dr) is a complex Gaussian random measure such
that w∗(dr) = w(−dr) and

E[w(dr)w∗(ds)] = δ(r − s)drds.
The construction of the fractional �eld with covariance operator (3.9) is done in the Fourier
domain. Let (WH,n)n≥1 be a sequence of independent standard fractional Brownian motions

with Hurst index H on the probability space (Ω̃, T̃ , P̃). Using the fact that

Q : L2(S) −→ L2(S)

ϕ 7−→
∫
S dqR̂(p, q)ϕ(q)

is a positive self-adjoint trace class operator [8, Corollary 4.4], their exist a sequence (en)n≥1

of orthonormal eigenvectors and a sequence (βn)n≥1 of positive eigenvalues for Q. Therefore,
the Gaussian random �eld

(3.11) BH(z, q) :=
∑
n≥1

√
βnen(q)WH,n(z)

de�nes a in�nite-dimensional standard fractional Brownian motion on L2(S), and then

(3.12) WH(z, x) := σH

∫
S
m(dq)e−iq·xBH(z, q) with σ2

H =
CH

H(2H − 1)
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de�nes a random mixture of fractional Brownian �elds with Hurst index H and with covariance
operator given by (3.9). Note that our asymptotic noise model is not Gaussian. This is due
to the random measure m, which was introduced for the purpose of deriving a potential with
a stationary covariance. When the medium �uctuations satisfy some mixing properties, the
asymptotic noise is however always Gaussian [1, 14, 17]. However, for medium perturbations
with slowly decaying correlations, it is not necessarily the case. In a one-dimensional wave
propagation setting, it has been observed in [26] that the asymptotic noise model is not neces-
sarily Gaussian if the initial medium �uctuations have non-Gaussian statistics. Nevertheless,
the form of WH allows the use of the Gaussian properties, and then the use of [36] to de�ne
the stochastic integral in (2.5).

The stochastic integral. We follow here the approach of [27, 28]. Let us consider the Banach
space

Wα(0, L,B) :=
{
ψ ∈ C0([0, L], B) such that ‖ψ‖α,B < +∞

}
,

with

‖φ‖α,B := sup
z∈[0,L]

[
‖φ(z)‖B +

∫ z

0

‖φ(z)− φ(u)‖B
(z − u)α+1

du
]
,

and where B is a given Banach space. For β ∈ (0, 1), we denote by Cβ([0, L], B) the Banach
space of β-Hölder functions on [0, L] with values in B, equipped with

‖φ‖β,C,B := sup
z∈[0,L]

‖φ(z)‖B + sup
0≤v<u≤L

‖φ(u)− φ(v)‖B
(u− v)β

.

Remark that for α ∈ (0, 1/2)

(3.13) ‖φ‖α,B ≤
(

1 +
L1−2α

1− 2α

)
‖φ‖1−α,C,B so that C1−α([0, L], B) ⊂Wα(0, L,B).

Now, for α ∈ (0, 1) and z ∈ (0, L), we introduce, for a real-valued function f , the so-called
Weyl's derivative given by

Dα
0+f(z) :=

1

Γ(1− α)

[f(z)

zα
+ α

∫ z

0

f(z)− f(u)

(z − u)α+1
du
]
,

Dα
L−f(z) :=

(−1)α

Γ(1− α)

[ f(z)

(L− z)α
+ α

∫ L

z

f(z)− f(u)

(u− z)α+1
du
]
,(3.14)

whenever these quantities are well-de�ned, and where Γ(u) =
∫ +∞

0
ru−1e−rdr is the gamma

function. Following [36], the generalized Stieljes integral of a function f ∈ Cν([0, L],R) with
respect to g ∈ Cµ([0, L],R), with ν + µ > 1, ν > α, and µ > 1− α is de�ned by

(3.15)

∫ L

0

fdg := (−1)α
∫ L

0

Dα
0+f(u)D1−α

L− gL−(u)du,

where

(3.16) gL−(u) := g(u)− g(L−).

The de�nition does not depend on α, and we have∫ z

0

fdg =

∫ L

0

f1(0,z)dg.

Moreover, according to [28], this integral can be extended to more general classes of functions
thanks to the relation ∣∣∣ ∫ L

0

fdg
∣∣∣ ≤ ‖f‖α,1Λα(g),
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where

‖f‖α,1 :=

∫ L

0

( |f(u)|
uα

+

∫ u

0

|f(u)− f(v)|
(u− v)α+1

dv
)
du,

and

Λα(g) :=
1

Γ(1− α)Γ(α)
sup

0<u<z<L
|D1−α

t− gt−(u)|.

Consequently, this integral is well-de�ned as soon as f ∈Wα(0, L,R) and Λα(g) < +∞.
As a result, for a random function F ∈Wα(0, L, L2(R2)), the stochastic integral with respect

to the fractional �eld WH , ∫ z

0

F (u, x)dWH(u, x),

is de�ned by (3.15) almost everywhere in x and P-almost surely. In fact, we have for α ∈
(1−H, 1/2) and for all z ∈ [0, L],∥∥∥ ∫ z

0

F (u)dWH(u)
∥∥∥
L2(R2)

≤ C‖F‖Wα(0,L,L2(R2)) sup
x∈R2

Λα(WH(x)),

with

E
[

sup
x∈R2

Λα(WH(x))
]
≤
∫
S
E[|m|(dq)]E[Λα(BH(q))] ≤ Cm sup

q∈S
E[Λα(BH(q))] <∞,

as will be proved later in Lemma 9.1.
The fractional Itô-Schrödinger equation. The notion of solution for the Itô-Schrödinger equa-

tion (2.5) is made precise in the following de�nition. First, let us introduce some additional
notations. Let k ∈ N∗, and let us denote by Hk(R2) the k-th Sobolev space on R2. Con-
sider moreover Wα

k (0, L) := Wα(0, L,Hk(R2)), equipped with the norm ‖ · ‖α,Hk(R2), and the
complete metric space

Wα
∞(0, L) :=

⋂
k∈N∗

Wα
k (0, L),

equipped with

dα,∞(φ, ψ) :=
∑
k≥1

1

2k
(
1 ∧ ‖φ− ψ‖α,Hk(R2)

)
.

De�nition 3.1. Let H ∈ (1/2, 1), α ∈ (1−H, 1/2), and WH be the fractional �eld de�ned by
(3.12). We say that Ψω ∈Wα

∞(0, L) is a pathwise solution of (2.5) if, with probability one, for
all (z, x) ∈ [0, L]× R2, we have

Ψω(z, x) = Ψω(0, x) +
i

2kω

∫ z

0

∆xΨω(u, x)du+ ikω

∫ z

0

Ψω(u, x)dWH(u, x).

In other words, a solution to (2.5) is a pointwise solution of this equation for almost all
realizations of the randomness. We will see later that a solution to (2.5) has automatically
Hölder regularity

Ψω ∈ CH−θ∞ (0, L) :=
⋂
k∈N∗

CH−θ([0, L], Hk(R2)) with θ = H + α− 1.

Here, CH−θ∞ (0, L) is a complete metric space equipped with

dH−θ,C,∞(φ, ψ) :=
∑
k≥1

1

2k
(
1 ∧ ‖φ− ψ‖H−θ,C,Hk(R2)

)
,

so that CH−θ∞ (0, L) ⊂Wα
∞(0, L) according to (3.13). The solutions we de�ne here are classical

solutions in the standard terminology. It is not completely trivial to construct less regular
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solutions to (2.5), which is required for non-linear problems, see [29]. Indeed, the standard
technique is to use the mild formulation, and then treat a term of the form∫ z

0

S(z − u)Ψω(u, x)dWH(u, x),

where S is the Schrödinger semigroup. As explained before, some Hölder regularity in u is
needed in order to make sense of the integral. Since the semigroup is not su�ciently regular-
izing, this regularity in u has to be exchanged for some regularity in x on Ψω, and the �xed
point procedure cannot be closed. This is not a problem in our linear setting where we can
iterate the stochastic integrals and suppose that the initial condition is C∞ in x. A di�erent
strategy has to be adopted in the non-linear case [29].

Note that the stochastic integral here is the fractional equivalent to the Itô-Stratonovich
integral for standard Brownian motions, and as such satis�es the classical integration by parts
formula. This then formally yields the conservation relation, for all z ∈ [0, L],

‖Ψω(z)‖L2(R2) = ‖Ψω(0)‖L2(R2) =
1

2
‖f̌0(ω)‖L2(R2).

3.3. Main results. We will actually not work directly with the process P εL given by (2.4), but
rather with an approximate process pεL de�ned by

(3.17) pεL(t, x) := p
(
ε2t+

L− LS
c0

, L, εx
)
,

where p solves the wave equation (2.3) with a regularization parameter αε > 0,

(3.18) ∆p− 1

c20

(
1 + εsV

(z
ε
,
x

ε

)
1(0,L)(z)

)
∂2
t p+ iαεp = f0

( t
ε2
,
x

ε

)
δ′(z − LS),

and vanishing initial conditions. Thanks to the estimate below, proved in Section 11,

(3.19) sup
(t,z)∈(0,T )×R

‖P (t, z, ε·)− p(t, z, ε·)‖L2(R2) ≤
CTα

1/2
ε

ε
∀T > 0,

it is equivalent, from the viewpoint of convergence in law (see [6, Theorem 3.1 pp. 27]), to
consider pεL instead of P εL by choosing αε = o(ε2). The main theorem will be hence stated in
terms of pεL. The introduction of p is an important point since the regularization term provides
us with straightforward estimates in L2((0, L)×R2), that would require much more work with
the nonregularized process P . These estimates are not uniform in ε, but su�ciently tamed,
and are exploited throughout the paper.

We will mostly work in the frequency domain, and in order to take Fourier transforms in
time, we extend p to negative times by setting p(−t, z, x) = p(t, z, x), for all t > 0.

The main result of this paper is the following theorem, that concerns the convergence of the
pulse (3.17).

Theorem 3.1 (Convergence result). The family (pεL)ε∈(0,1), de�ned by (3.17), converges in

law in the space C0((−∞,+∞), L2(R2)) ∩ L2((−∞,+∞)× R2) to a limit given by

p0
L(t, x) =

∫
e−iωtΨω(L, x)dω,

where Ψω is the unique pathwise solution to the fractional Itô-Schrödinger equation (2.5).

The second theorem below is a by-product of the proof of the main theorem, and provides
us with some interesting properties of the solutions of the fractional Itô-Schrödinger equation:
existence and uniqueness, conservation of the energy, approximation by a smooth process which
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can be expanded in terms of scattering events, and approximate formulas for moments of any
order.

Theorem 3.2 (Properties of the fractional Itô-Schrödinger equation). We have the three fol-
lowing statements:

(1) The fractional Itô-Schrödinger equation (2.5) admits a unique pathwise solution Ψω for
all α ∈ (1−H, 1/2), which satis�es

(3.20) ‖Ψω(z)‖L2(R2) =
1

2
‖f̌0(ω)‖L2(R2) ∀z ∈ [0, L].

Moreover, Ψω ∈ CH−θ∞ (0, L) for all θ ∈ (0, H − 1/2).
(2) For all θ ∈ (0, H − 1/2), the process Ψω can be approximated by

Ψω(z) = lim
A→+∞

ΨA
ω (z) with ΨA

ω (z) = f̌0(ω, ·) +
∑
n≥1

ΨA,n
ω (z),

where the limit holds in CH−θ∞ (0, L) in probability. Here, we have in the Fourier domain

Ψ̂n,A
ω (z, κ) := (ikω)n

∫
Sn

m(dq(n))

∫
∆n(z)

du(n)e−i|κ|
2z/(2kω)eiGn(u(n),Q(n))f̂0(ω,Qn)

×
n∏

m=1

∫ A

−A

eirmum

|rm|H−1/2
w(drm, qm),

where u(n) := (u1, . . . , un), q(n) := (q1, . . . , qn), m(dq(n)) = m(dq1) . . .m(dqn), Q(n) :=
(Q0, . . . , Qn), with Qm := κ− q1 − · · · − qm, and

Gn(u(n),Q(n)) :=
1

2kω

n∑
m=1

(
|Qm−1|2 − |Qm|2

)
um.

Moreover,

∆n(z) :=
{

(u1, . . . , un) ∈ [0, z]n, s.t. 0 ≤ uj ≤ uj−1 ∀j ∈ {2, . . . , n}
}
,

and (w(dr, q))q∈S is a family of complex Gaussian random measure de�ned by

(3.21) w(dr, q) :=
∑
n≥1

√
βnCHΓ(2H − 1) sin(πH)

π
en(q)wn(dr),

where (wn(dr))n≥1 is the family of independent complex Gaussian random measure in
the spectral representation (3.10) of the family (Wn,H)n≥1 introduced in (3.12).

(3) We have for all (M1,M2) ∈ N2, distinct frequencies (ωi,ji)(i,ji)∈{1,2}×{1,...,Mi}, and

ϕ ∈ L2(R2(M1+M2))

E
[〈 M1∏

j1=1

Ψω1,j1
(z)

M2∏
j2=1

Ψω2,j2
(z), ϕ

〉
L2(R2(M1+M2))

]

= lim
A→+∞

E
[〈 M1∏

j1=1

ΨA
ω1,j1

(z)

M2∏
j2=1

ΨA
ω2,j2

(z), ϕ
〉
L2(R2(M1+M2))

]
.

Here, Ψωi,ji
is the unique pathwise solution of the fractional Itô-Schrödinger equation

(2.5) with frequency ωi,ji .
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The conservation relation (3.20) is a consequence of a negligible backscattering and shows
that the energy of the pulse is conserved at the end of the random section, that is

‖p0
L‖L2((−∞,+∞)×R2) =

1

2
‖f0‖L2((−∞,+∞)×R2).

Note also that the convergence in the second point holds in Wα
∞(0, L) with α = 1 − H + θ

according to (3.13), and that Ψω becomes smoother in z as H increases, which is expected
since the regularity of the fractional brownian motion improves with H. Moreover, we will
see further that the process ΨA

ω is the solution to a fractional Itô-Schrödinger equation with a
regularized fractional white noise, and as such enjoys some regularity properties (w.r.t. z) that
are convenient in justifying formal computations, in particular the calculation of the moments
as in item (3) above. Moments are important for instance in imaging applications, where they
help quantify the stability of reconstructions with respect to changes in the random medium,
see e.g. [7, 3, 4, 19]. The series expansion in item (2) is the classical Born series, see e.g. [24,
Section 17.2].

Note �nally that Ψω satis�es various formulations of (2.5), for instance

Ψ̂ω(z, κ) = Ψ̂ω(0, κ)− i|κ|2

2kω

∫ z

0

Ψ̂ω(u, κ)du+ ikωσH

∫
S
m(dq)

∫ z

0

Ψ̂ω(u, κ− q)dBH(u, q)

in the Fourier domain, or the mild formulation

Ψ̂ω(z, κ) = e−i|κ|
2z/(2kω)Ψ̂ω(0, κ)+ikωσH

∫
S
m(dq)

∫ z

0

e−i|κ|
2(z−u)/(2kω)Ψ̂ω(u, κ−q)dBH(u, q)du,

where the relation between WH and BH is given by (3.12).
The rest of the paper is dedicated to the proofs of the theorems. We will focus on Theorem

3.1 as its proof contains that of Theorem 3.2. Since the proof is fairly long and involved, we
begin with an outline that describes the main steps.

4. Outline of the proof

The random Helmholtz equation. The proof starts by recasting the wave equation in the
Fourier domain in all variables, except z. De�ning for this the Fourier transform in time

ǧε(ω) =
1

2πε2

∫
g(t)eiωt/ε

2

dt with g(t) =

∫
ǧε(ω)e−iωt/ε

2

dω,

that accounts for the high frequencies generated by the source, we obtain from (3.18) the
Helmholtz equation

∂2
z p̌
ε
ω(z, x) + ∆xp̌

ε
ω(z, x) +

k2
ω

ε4

(
1 + εsV

(z
ε
,
x

ε

)
1(0,L/ε)(z)

)
p̌εω(z, x) + iαεp̌

ε
ω(z, x)

= f̌0

(
ω,
x

ε

)
δ′(z − LS).(4.1)

We will construct solutions to (4.1) in Section 5, and show that p̌εω satis�es the required
regularity to justify all the calculations. Taking the Fourier transform w.r.t. to x of the
wave�eld rescaled around the propagation axis p̌εω(z, εx), that is

p̂εω(z, κ) :=
1

(2π)2

∫
p̌εω(z, εx)eiκxdx,
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Figure 3. Illustration of the right- and left going mode amplitudes.

we �nd

∂2
z p̂
ε
ω(z, κ) +

k2
ω

ε4

(
1− ε2|κ|2

k2
ω

)
p̂εω(z, κ) + iαεp̂

ε
ω(z, κ)

+ εs−4k2
ω

∫
S
m(dq)V̂

(z
ε
, q
)
p̂εω(z, κ− q) = f̂0(ω, κ)δ′(z − LS),

(4.2)

where kω = ω/c0 is the wavenumber, and V̂ = Θ(BH) according to (3.5). Following the
standard terminology in absence of the regularization parameter (αε = 0), when the wavevector
κ satis�es |κ| < |kω|/ε, we will refer to the corresponding mode as a propagating mode. These
modes can propagate over large distances. When the wavevector satis�es |κ| > |kω|/ε, we refer
to an evanescent mode.

Left-going and right-going waves. The proof is based on a decomposition of p̂εω into right-

and left-going propagating modes, see Figure 3, with amplitudes âεω and b̂εω, respectively. These
amplitudes are de�ned as the solutions to

p̂εω(z, κ) =
1√

λε,ω(κ)

(
âεω(z, κ)eikωλε,ω(κ)z/ε2 + b̂εω(z, κ)e−ikωλε,ω(κ)z/ε2

)
(4.3)

∂z p̂
ε
ω(z, κ) =

ikω
√
λε,ω(κ)

ε2

(
âεω(z, κ)eikωλε,ω(κ)z/ε2 − b̂εω(z, κ)e−ikωλε,ω(κ)z/ε2

)
,(4.4)

for |κ| < |kω|/ε, and where

(4.5) λε,ω(κ) :=
√

1− ε2|κ|2/k2
ω + iαω,ε, with αω,ε =

αεε
4

k2
ω

.

We consider here the principal square root for complex numbers, namely the square root with
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positive imaginary part. Using (4.2) we �nd the following coupled-mode equations

∂z

[
âεω(z, κ)

b̂εω(z, κ)

]
=

∫
{|κ−q|<|kω|/ε}∩S

m(dq)Hε
ω(z, κ, q)

[
âεω(z, κ− q)
b̂εω(z, κ− q)

]
+ εs−2 ikω

2
√
λε,ω(κ)

∫
{|κ−q|>|kω|/ε}∩S

m(dq)V̂ (z/ε, q)

[
e−ikωλε,ω(κ)z/ε2

−eikωλε,ω(κ)z/ε2

]
p̂ω(z, κ− q),

(4.6)

for |κ| < |kω|/ε, where

Hε
ω(z, κ, q) = εs−2 ikω

2
√
λε,ω(κ)λε,ω(q)

V̂ (z/ε, q)

×

[
eikω(λε,ω(q)−λε,ω(κ))z/ε2 e−ikω(λε,ω(q)+λε,ω(κ))z/ε2

−eikω(λε,ω(q)+λε,ω(κ))z/ε2 −e−ikω(λε,ω(q)−λε,ω(κ))z/ε2

]
.

(4.7)

The system (4.6) is equipped with the boundary conditions

(4.8) âεω(0, κ) =

√
λε,ω(κ)

2
e−ikωλε,ωLS/ε

2

f̂0(ω, κ) and b̂εω(L, κ) = 0,

where the �rst condition represents the (known) amplitude of the wave incoming from the
left-homogeneous half-space and entering the slab (0, L), and the second condition implements
the fact that no wave is entering the right-hand side of the slab. These conditions will be
investigated in more details in Section 5. Despite its formulation, the system (4.6) is not an
initial value problem (IVP), but rather a boundary value problem. The limiting problem will
nevertheless be shown to be an IVP.

Note that in the homogeneous case where V = 0, the justi�cation of the paraxial approxi-
mation is straightforward. Indeed, in that case âεω(z, κ) is constant for z > LS and therefore
equal to âεω(0, κ) de�ned in (4.8), so that the right-going wave (2.4) is given by

pεz(t, x) = p
(
ε2t+

z − LS
c0

, z, εx
)

=
1

2

∫∫
e−iωte−iκxeikω(λε,ω(κ)−1)(z−LS)/ε2 f̂0(ω, κ)dωdκ,

and therefore, pointwise in (t, x),

lim
ε→0

pεz(t, x) =
1

2

∫∫
e−iωte−iκxe−i

|κ|2
2kω

(z−LS)f̂0(ω, κ)dωdκ

=
1

2

∫
e−iωt

[
e

i
2kω

(z−LS)∆x f̌0(ω, ·)
]
(x)dω,

where eiz∆x/(2kω) is the semigroup of the free Schrödinger equation.
Iterated integrals. When V is random, the core of the proof is an asymptotic analysis of

the amplitudes âεω and b̂εω solutions to (4.6). There are several steps, most of which involve
computing moments of the form

(4.9) E
[ n∏
j=1

Θ
(
BH
(uj
ε
, pj
))]

,

which arise when iterating (4.6). The random variables Θ(BH(u/ε, q)) are not Gaussian, but
we will see in Section 6 that they asymptotically behave as Gaussian variables. This is based
on the ideas of [34]: suppose that n is even; the even function Θ is then projected on the basis
of the Hermite polynomials, which gives rise to a series of terms in (4.9). The leading one
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corresponds to the product of the �rst order terms in the Hermite expansions, and consists of
the product of n/2 moments of order 2 of BH. Any other term involves at least n/2+1 moments
of order 2 which, after integration, the use of the scaling uj/ε and of the long-range dependance
property, leads to negligible contributions. The fact that a fractional Brownian �eld is obtained
at the limit is a direct consequence of the asymptotic behavior of the correlation function (3.3).

Evanescent modes. With the technical results for terms of the form (4.9) at hand, we can

then proceed to the analysis of âεω and b̂εω. The �rst step is to show that the coupling between
propagating and evanescent modes can be neglected. This is actually a fairly subtle point.
The fact that evanescent modes are expected to decrease exponentially as z increases in (0, L)
cannot be exploited close to the transition propagating/evanescent modes. Indeed, in this case,
λε,ω is of order ε2 at the transition, which yields exponentials in (4.3) with arguments of order
one. Note also that more technical di�culties arise at the transition since λε,ω appears in the
denominator in the de�nition of Hε

ω.
Our strategy to handle the evanescent modes then goes as follows: we start from (4.6)

with wavevectors κ satisfying |κ| < |kε|/ε, which means that we only consider the propagating

modes. This is not a limitation since we will prove the convergence of (âεω, b̂
ε
ω) in the distribution

sense, which will restrict |κ| to some bounded domain independent of ε, say |κ| < R. The �rst
term in the r.h.s. of (4.6) corresponds to propagating modes with momentum κ−p scattered to
propagating modes with momentum κ after interaction with the random medium; the second
term corresponds to evanescent modes with momentum κ− p scattered to propagating modes
with momentum κ. When |κ| < R the second term is zero, since only propagating modes
with large wavenumbers of order |kω|/ε (which is of order ε−1 since kω is bounded from below
independently of ε according to assumption (3.1)) are coupled to the evanescent modes. This
naturally does not mean that evanescent modes have no in�uence on the propagating modes,
the coupling appears in the �rst term of the r.h.s. via modes with wavenumbers close to the
transition.

We then de�ne the following approximate system, that only describes the propagating
modes, for all |κ| < |kω|/ε,[

Âεω(z, κ)

B̂εω(z, κ)

]
=

[
âεω(0, κ)

b̂εω(0, κ)

]
+

∫ z

0

du

∫
{|κ−q|<|kω|/ε}∩S

m(dq)H̃ε
ω(u, κ, q)

[
Âεω(u, κ− q)
B̂εω(u, κ− q)

]
.(4.10)

Above, we extended Âεω and B̂εω to 0 for |κ| > |kω|/ε (since we will prove convergence in the
distribution sense), and we have introduced

H̃ε
ω(z, κ, q) =

iεs−2kω
2

V̂ (z/ε, κ− q)

[
eikω(λrε,ω(q)−λrε,ω(κ))z/ε2 e−ikω(λrε,ω(q)+λrε,ω(κ))z/ε2

−eikω(λrε,ω(q)+λrε,ω(κ))z/ε2 −e−ikω(λrε,ω(q)−λrε,ω(κ))z/ε2

](4.11)

with
λrε,ω(q) :=

√
1− ε2|q|2/k2

ω.

The important fact is that evanescent modes are absent in the system above, the second term
in the r.h.s. in (4.6) was removed. A minor point is that Hε

ω is approximated by H̃ε
ω, where

the regularization term αε is set to zero and the λε,ω in the denominator in Hε
ω are set to

one. We want then to show that (Âεω, B̂
ε
ω) is a good approximation of (âεω, b̂

ε
ω). For the sake

of clarity, let us assume that H̃ε
ω is replaced by Hε

ω in (4.10) since the approximation of Hε
ω

is not the main issue here. Integrating (4.6) in z and taking the di�erence with (4.10), we
need to prove that two homogeneous solutions to (4.10) for |κ| < R, that is solutions with
the �rst term in the r.h.s. set to zero, are close to each other as ε → 0. The solutions are
not equal for ε �xed, otherwise there would not be any evanescent modes in (4.6), which is
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clearly wrong. The main di�culty is that the system is not closed: even if we only consider
modes with |κ| < R in the l.h.s. of (4.6), modes with larger wavenumbers are involved in
the r.h.s.. We will then use the following observation to overcome this issue: two modes
with very di�erent wavenumbers, say one with |κ| < R and the other with |κ′| � R, are
related to each other only after a large number of interactions with the medium; since, in
average, there is some loss of amplitude at each interaction (due to scattering and not the
regularization parameter αε), the coupling between the |κ| and the |κ′| modes is expected to
be small. This idea can be seen as a form of asymptotic closure of the non-closed system.
However, technical di�culties in the iterated integrals arise when κ′ crosses the transition
propagative-evanescent modes, which leads us to consider large κ′, but not su�ciently large to
reach the transition. The remaining very large wavenumbers |κ′′| > |κ′| are treated as follows:
after introducing appropriate boundary conditions as explained in Section 5, the amplitude
of these wavenumbers can easily be controlled by some negative powers of ε without using
iterated integrals and dealing with the transition. This non-uniform bound would not be
available without the regularization parameter αε, and this is what motivated its introduction.
Then, if κ′ is chosen appropriately, the wave has lost su�cient energy when scattered from κ
to κ′′ (with |κ′′| > |κ′|) to compensate the previous non-uniform bound. We have then the
following proposition, proved in Section 7:

Proposition 4.1 (Coupling with evanescent modes is negligible). For all z ∈ [0, L], for all
µ > 0, and for all test function φ ∈ C∞0 (R2)× C∞0 (R2), we have

lim
ε→0

P
(∣∣∣〈 [âεω(z)

b̂εω(z)

]
−
[
Âεω(z)

B̂εω(z)

]
, φ
〉
L2(R2)×L2(R2)

∣∣∣ > µ
)

= 0.

An easy consequence of this result is that for all µ > 0, T > 0, and test function φ with

φ̂ ∈ C∞0 (R2), we have

(4.12) lim
ε→0

P
(

sup
t∈[−T,T ]

|
〈
pεL(t)− pε1,L(t), φ

〉
L2(R2)

| > µ
)

= 0,

where pεL is given by (2.4) and

pε1,L(t, x) :=

∫∫
dωdκe−iωte−iκ·x

e−ikω(L−LS)/ε2

2
√
λε,ω(κ)

Âεω(L, κ)eikωλε,ω(κ)L/ε2 .

Let us remark that the left-going mode amplitude is not involved in pε1,L because of the bound-

ary condition b̂εω(L) = 0 (no wave is coming from the right homogeneous space). Since pεL−pε1,L
converges in probability to 0, it is then enough to investigate the limit in law of pε1,L to prove

Theorem 3.1 (see [6, Theorem 3.1 pp. 27]). Even if this latter convergence only holds in a
weak sense, energy estimates given in Section 5 will allow us to obtain the strong convergence
in L2(R2).

Backscattering. The second step of the proof is to study pε1,L and therefore the couple

(Âεω, B̂
ε
ω). The system (4.10) is closed, but the backscattered mode amplitude b̂εω(0) is unknown

and cannot be considered as an initial condition. This issue is corrected by introducing the
propagator Pεω, de�ned as the solution to, for all |κ| < |kω|/ε,

Pεω(z, κ, r) =

[
δ(κ− r) 0

0 δ(κ− r)

]
+

∫ z

0

du

∫
{|κ−q|<|kω|/ε}∩S

m(dq)H̃ε
ω(u, κ, q)Pεω(u, κ− q, r),
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where the initial condition is the identity operator. The propagator is extended to zero for
|κ| > |kω|/ε. According to symmetries in H̃ε

ω, the propagator can be decomposed as follows

Pεω(z, κ, r) =

[
Pa,εω (z, κ, r) Pb,εω (z, κ, r)

Pb,εω (z, κ, r) Pa,εω (z, κ, r)

]
,

where (Pa,εω ,Pb,εω ) is the solution to
(4.13)[
Pa,εω (z, κ, r)
Pb,εω (z, κ, r)

]
=

[
δ(κ− r)

0

]
+

∫ z

0

du

∫
{|κ−q|<|kω|/ε}∩S

m(dq)H̃ε
ω(u, κ, q)

[
Pa,εω (u, κ− q, r)
Pb,εω (u, κ− q, r)

]
.

The term Pa,εω describes scattering to the same direction of propagation, while Pb,εω describes
scattering to the opposite direction. We then �nd the following relation between the right and
left going modes in terms of the propagator:[

Âεω(z, κ)

B̂εω(z, κ)

]
=

∫
Pεω(z, κ, r)

[
âεω(0, r)

b̂εω(0, r)

]
dr, ∀z ∈ [0, L].

The expression of the wave exiting the random section is thus, after integration against a test
function φ ∈ C∞0 (R2), 〈

pε1,L(t), φ
〉

:= pεa,L(t, φ) + pεb,L(t, φ),

with

pεa,L(t, φ) :=

∫∫
dωdκe−iωtψεω(κ)φ̂(κ)

∫
drPa,εω (L, κ, r)φεω(r)

pεb,L(t, φ) :=

∫∫
dωdre−iωteikωLS/ε

2

b̂εω(0, r)

∫
dκPb,εω (L, κ, r)ψεω(κ)φ̂(κ).

Here, we have de�ned the following functions,

φεω(r) :=

√
λε,ω(r)

2
f̂0(ω, r)e−ikω(λε,ω(r)−1)LS/ε

2

, ψεω(κ) :=
eikω(λε,ω(κ)−1)L/ε2

2
√
λε,ω(κ)

.

Before describing the asymptotic behavior of the propagator, we need to introduce a few more
notations:

Pa,εω,φεω (L, κ) :=

∫
Pa,εω (L, κ, r)φεω(r)dr, P∗,b,εω,ψεω

(L, r) :=

∫
Pb,εω (L, κ, r)ψεω(κ)φ̂(κ)dκ

φ0
ω(r) := f̂0(ω, r)ei|r|

2LS/kω .

(4.14)

The next result shows that the backscattering is negligible and provides us with the leading
term in the propagator.

Proposition 4.2 (Backscattering is negligible). We have the following two statements:

(1) For all η > 0, we have

lim
ε→0

P
(∫
‖P∗,b,εω,ψεω

(L)‖L2(R2)dω > η
)

= 0,

where P∗,b,εω,ψεω
is extended by 0 for |κ| > |kω|/ε.

(2) For all η > 0, we have

lim
ε→0

P
(∫
‖Pa,εω,φεω (L)−X εω(L)‖L2(R2)dω > η

)
= 0,
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where X εω is the solution to

(4.15) ∂zX εω(z, κ) =

∫
{|κ−q|<|kω|/ε}∩S

m(dq)H̃ε
ω,1,1(z, κ, q)X εω(z, κ− q) with X εω(0) = φεω,

for |κ| < |kω|/ε, and H̃ε
ω is de�ned by (4.11) (H̃ε

ω,1,1 is the (1, 1) entry of H̃ε
ω). Here,

Pa,εω,φεω and X εω are extended by 0 for |κ| > |kω|/ε.

Proposition 4.2 is proved in Section 8. The proof is based on a series expansion of the
propagator and on the fact that the coupling between right and left going modes appears via
an oscillatory integral. Note also that neglecting the backscattering leads to an IVP on X εω.

Convergence to the Itô-Schrödinger equation. The last step is to characterize the limit of X εω.
With the same arguments as before, we only need to investigate the convergence in law of X εω
to prove Theorem 3.1. The proof, given in Section 9, is also based on a series expansion of X εω
and on the computation of the limiting moments of X εω. We will need the following functional
spaces: for k ∈ N∗, let us denote by

Hk :=
{
φ = ψ̂ with ψ ∈ Hk(R2)

}
with ‖φ‖2Hk :=

∫
(1 + |κ|2)k/2|φ(κ)|2dκ.

Consider also Ŵα
k (0, L) := Wα(0, L,Hk), equipped with the norm ‖ · ‖α,k := ‖ · ‖α,Hk , and the

complete metric space

Ŵα
∞(0, L) :=

⋂
k∈N∗

Ŵα
k (0, L) equipped with d̂α,∞(φ, ψ) :=

∑
k≥1

1

2k
(1 ∧ ‖φ− ψ‖α,k) .

We �nally introduce the complete metric space of Hk-valued functions with Hölder regularity

ĈH−θ∞ (0, L) :=
⋂
k∈N∗

CH−θ([0, L],Hk),

equipped with

d̂H−θ,C,∞(φ, ψ) :=
∑
k≥1

1

2k
(1 ∧ ‖φ− ψ‖H−θ,C,Hk) ,

as well as the spaces Ĉ0
∞(0, L) and Ĉ∞∞(0, L) with immediate de�nitions. Let us recall that

according to (3.13), we have ĈH−θ∞ (0, L) ⊂ Ŵα
∞(0, L) for θ = H+α−1. The convergence result

is the following:

Proposition 4.3 (Convergence to the fractional Itô-Schrödinger equation). We have the three
statements below:

(1) For all M ∈ N∗ and frequencies (ω1, . . . , ωM ), the family (X εω1
(L), . . . ,X εωM (L)) con-

verges in law in L2(R2M ) to (Xω1
(L), . . . ,XωM (L)). Here, Xω is the unique pathwise

solution in Ŵα
∞(0, L), for all α ∈ (1−H, 1/2), of

(4.16) Xω(z, κ) = φ0
ω(κ) + ikωσH

∫
S
m(dq)

∫ z

0

due−i(|κ−q|
2−|κ|2)u/(2kω)Xω(u, κ− q)dBH(u, q),

where BH is de�ned by (3.11) and σH by (3.12). Here, the stochastic integral is de�ned

P-almost surely pointwise in κ and q. Moreover, Xω ∈ ĈH−θ∞ (0, L) for all θ ∈ (0, H −
1/2), and

(4.17) ‖Xω(z)‖L2(R2) = ‖Xω(0)‖L2(R2) =
1

2
‖f̂0(ω, ·)‖L2(R2).
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(2) We have for all (M1,M2) ∈ N2, all frequencies (ωij)(i,j)∈{1,2}×{1,...,Mi}, and test func-

tion ϕ ∈ L2(R2(M1+M2)),

lim
ε→0

E
[〈 M1∏

j1=1

X εω1,j1
(L)

M2∏
j2=1

X εω2,j2
(L), ϕ

〉
L2(R2(M1+M2))

]

= E
[〈 M1∏

j1=1

Xω1,j1
(L)

M2∏
j2=1

Xω2,j2
(L), ϕ

〉
L2(R2(M1+M2))

]
.

(3) Therefore, the process de�ned in the Fourier domain by

Ψ̂ω(z, κ) := e−i|κ|
2z/(2kω)Xω(z, κ)

satis�es all the requirements of Theorem 3.2 with WH de�ned by (3.12).

In order to identify the moments of Xω with the limits of those of X εω, we will identify
the moments of each term in a Duhamel expansion of Xω. The main technical di�culty is to
handle the fractional stochastic integral and to justify the calculations, in particular exchange
of expectation, limit, and integration. We will for this proceed by regularization, and start by
constructing an approximate solution XAω that solves (4.16) with BH replaced by BAH de�ned
by, for q ∈ S,

BAH(u, q) := C
1/2
H

∑
n≥1

√
βnen(q)

∫ A

−A

eiru − 1

ir|r|H−1/2
wn(dr),

with CH = HΓ(2H) sin(πH)/π, and where (wn(dr))n≥1 is the family of independent complex
Gaussian random measure given in the spectral representation (3.10). Since BAH is C∞ w.r.t.
to u, the integral in (4.16) is now simply a Lebesgue integral, and computations can be easily
justi�ed. We then pass to the limit A→ +∞ in order to construct and characterize solutions
to (4.16). These points are addressed in the proof of Proposition 4.3 in Section 9, and the
proofs of Theorems 3.1 and 3.2 are then straightforward owing to the previous propositions.

5. Existence theory and estimates

This section is devoted to the existence of solutions to (4.1), their regularity, and to the
derivation of some important estimates that will be used throughout the proof.

Existence. We introduce �rst the Green's function

Gεω(z, x) =
eik

ε
ω|x|

4π|x|
, with x = (z, x) and kεω = kω

√
1 + iαεε4/k2

ω.

We then recast (4.1) into the integral form

(5.1) p̌εω − Tεp̌εω = u0,ε,

where

Tεu(z, x) =
k2
ωε
s−4

4π

∫
(0,L)×R2

Gεω(z − z′, x− x′)V
(z′
ε
,
x′

ε

)
u(z′, x′)dz′dx′

u0,ε(ω, z, x) =

∫
R2

L0,ε(ω, z, x, x
′)f̌0

(
ω,
x′

ε

)
dx′

and

L0,ε(ω, z, x, x
′) = (z − LS)

eik
ε
ω

√
|z−LS |2+|x−x′|2

4π(|z − LS |2 + |x− x′|2)
3
2

(
ikεω

(
|z − LS |2 + |x− x′|2

) 1
2 − 1

)
.

We have then the following lemma, whose proof is standard and is just sketched:
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Lemma 5.1. For all ε > 0 and all kω ∈ R, (5.1) admits a unique solution p̌εω in the Sobolev
spaces

W 2,p((−∞, LS)× R2) ∩W 2,p((LS ,∞)× R2), 1 ≤ p <∞,
that satis�es (4.1) in the distribution sense and almost surely.

Proof. First of all, since the potential V is bounded, it follows from Riesz compactness criterion
(see [30, Theorem XIII.66 pp. 248]) that the operator Tε is compact in Lp(R3), 1 ≤ p < ∞.
Moreover, application of the Young inequality show that u0,ε ∈ Lq((0, L) × R2), 1 ≤ q ≤ ∞.
The existence and uniqueness of a solution to (5.1) in Lp((0, L) × R2) for 1 ≤ p < ∞ is then
a consequence of the Fredholm alternative. Remarking further that u0,ε ∈ Lp((−∞, LS) ×
R2) ∩ Lp((LS ,∞) × R2), the solution p̌εω belongs to the latter space and satis�es (4.1) in the
distribution sense. Standard elliptic regularity �nally yields p̌εω ∈ W 2,p((−∞, LS) × R2) ∩
W 2,p((LS ,∞)× R2). �

A �rst consequence of the latter lemma is that the Helmholtz equation is satis�ed almost
everywhere for z > LS and z < LS . A second consequence is that p̂εω and ∂z p̂

ε
ω both admit

limits as z → L±S . The Helmholtz equation then yields the following jump conditions across
the plane z = LS ,

(5.2) p̂εω(L+
S , κ)− p̂εω(L−S , κ) = f̂0(ω, κ) and ∂z p̂

ε
ω(L+

S , κ)− ∂z p̂εω(L−S , κ) = 0.

We then use these relations to solve the Helmholtz equation for z < LS , for z ∈ (LS , 0), and
for z > L. This will allow us to derive boundary conditions at z = 0 and z = L that will lead
to some estimates on p̂εω.

Open boundary conditions. We need �rst some properties of the λε,ω de�ned in (4.5), which
follows from some of the principal square root. For a complex number z = u+ iv, with v 6= 0,
the principal square root admits the expression

(5.3)
√
z =

1√
2

(√√
u2 + v2 + u+ i sign(v)

√√
u2 + v2 − u

)
.

As a consequence,

(5.4) Re(λε,ω(κ)) ≥ 0, ∀κ ∈ R2, and Im(λε,ω(κ)) ≤ C√αω,ε, for 1− ε2|κ|2/k2
ω ≥ 0.

For the second inequality above, we used the fact that the square root is of Hölder regularity
1/2. We will also need the following expressions, that are consequences of (4.3)-(4.4):

(5.5) âεω(z, κ) =

√
λε,ω(κ)e−ikωλε,ω(κ)z/ε2

2

[
p̂εω(z, κ) +

ε2

ikωλε,ω(κ)
∂z p̂

ε
ω(z, κ)

]
and

(5.6) b̂εω(z, κ) =

√
λε,ω(κ)eikωλε,ω(κ)z/ε2

2

[
p̂εω(z, κ)− ε2

ikωλε,ω(κ)
∂z p̂

ε
ω(z, κ)

]
.

The boundary conditions are derived below:

• Solution of the Helmholtz equation for z ∈ (−∞, LS) ∪ (LS , 0). Since there are no
sources at z = −∞, there are no right-traveling waves in z < LS and therefore
âεω(z, κ) = 0 for z < LS . Moreover, since the medium is homogeneous in (−∞, 0),

the coe�cients âεω(z, κ) and b̂εω(z, κ) are constant in (−∞, LS) ∪ (LS , 0). Using the
jump conditions (5.2), we �nd

(5.7) âεω(L+
S , κ) =

√
λε,ω(κ)

2
f̂0(ω, κ)e−ikωλε,ω(κ)LS/ε

2

.
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The coe�cient b̂εω is unknown at this point in (LS , 0). We then eliminate it in the
expression of p̂εω(z, κ), which leads after direct manipulations to the following boundary
condition at z = 0:

(5.8) ∂z p̂
ε
ω(0, κ) +

ikωλε,ω(κ)

ε2
p̂εω(0, κ) =

2ikω
√
λε,ω(κ)

ε2
âεω(L+

S , κ), ∀κ ∈ R2.

Note that we used here the fact that ∂z p̂
ε
ω(z, κ) and p̂εω(z, κ) are continuous in z, κ

a.e., according to the regularity of Lemma 5.1.
• Solution for z ∈ (L,+∞). As in the previous case, there are no sources at z = +∞, and

therefore b̂εω(z, κ) = 0 for z ≥ L. Since âεω(z, κ) is constant in (L,+∞) and unknown,
we can eliminate it in the same fashion as above to obtain the following boundary
condition at z = L:

(5.9) ∂z p̂
ε
ω(L, κ) =

ikωλε,ω(κ)

ε2
p̂εω(L, κ), ∀κ ∈ R2.

We then use the boundary conditions (5.8)�(5.9) to arrive at the following result:

Lemma 5.2. The wave�eld p̂εω satis�es the following estimates:∫
R2

Re(λε,ω(κ))|p̂εω(L, κ)|2dκ+

∫
R2

Re(λε,ω(κ))|p̂εω(0, κ)|2dκ+
αεε

2

kω
‖p̌εω‖2L2((0,L)×R2)(5.10)

≤ C‖f̂0(ω, ·)‖2L2(R2),∫
R2

Im(λε,ω(κ))|p̂εω(L, κ)|2dκ+

∫
R2

Im(λε,ω(κ))|p̂εω(0, κ)|2dκ+
ε2

kω
‖∇p̌εω‖2L2((0,L)×R2)(5.11)

≤ C‖f̂0(ω, ·)‖2L2(R2)

(
1 +

k2
ω

αεε4

)
,

‖p̂εω(L, ·)‖L2(R2) + ‖p̂εω(0, ·)‖L2(R2) ≤ C‖f̂0(ω, ·)‖L2(R2).(5.12)

Above we use the notation ∇ = (∂z,∇x) for the gradient of the whole physical space R3. We
have moreover

(5.13) lim sup
ε→0

‖p̂εω(L, ·)‖L2(R2) ≤
1

2
‖f̂0(ω, ·)‖L2(R2).

Proof. We start by multiplying (4.2) by p̂εω(z, κ). Integrating in (z, κ) over [0, L] × R2, using
boundary conditions (5.8)�(5.9), and taking �rst the imaginary part leads to∫

R2

Re(λε,ω(κ))|p̂εω(L, κ)|2dκ+

∫
R2

Re(λε,ω(κ))|p̂εω(0, κ)|2dκ+
αεε

2

kω
‖p̌εω‖2L2((0,L)×R2)

= 2Re

(∫
R2

√
λε,ω(κ)âεω(L+

S , κ)p̂εω(0, κ)dκ

)
.

Since Re(λε,ω(κ)) ≥ 0 for all κ according to (5.4), we then �nd∫
K

Re(λε,ω(κ))|p̂εω(0, κ)|2dκ ≤ 2

(∫
K

|λε,ω(κ)||âεω(L+
S , κ)|2dκ

)1/2(∫
K

|p̂εω(0, κ)|2dκ
)1/2

,

where K is the support in the κ variable of f̂0. Since there are constants C1, C2 and C3 such
that (the last inequality follows from (5.4)),

0 < C1 ≤ Re(λε,ω(κ)), |λε,ω(κ)| ≤ C2, e|kω|Im(λε,ω(κ))LS/ε
2

≤ C3, ∀κ ∈ K,
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we deduce from (5.7) that

(5.14)

∫
K

|p̂εω(0, κ)|2dκ ≤ C
∫
R2

|f̂0(ω, κ)|2dκ,

and therefore (5.10). For the second estimate, we take now the real part, and obtain

ε2

kω

∫
(0,L)×R2

‖∇p̌εω(z, x)‖2dzdx+

∫
R2

Im(λε,ω(κ))|p̂εω(L, κ)|2dκ+

∫
R2

Im(λε,ω(κ))|p̂εω(0, κ)|2dκ

=
kω
ε2

∫
(0,L)×R2

(
1 + εsV

(z
ε
,
x

ε

))
|p̌εω(z, x)|2dzdx+ 2Im

(∫
R2

√
λε,ω(κ)âεω(L+

S , κ)p̂εω(0, κ)dκ

)
.

Using the fact that Im(λε,ω(κ)) ≥ 0, that V is bounded uniformly in (z, x), expression (5.7),
estimates (5.14) and (5.10), the estimate (5.11) follows directly. Estimates (5.12) and (5.13)

are obtained in a similar manner as (5.10), we instead multiply (4.2) by p̂εω(z, κ)λε,ω(κ)−1. In
that case, we obtain

‖p̂εω(L, ·)‖2L2(R2) + ‖p̂εω(0, ·)‖2L2(R2) ≤ ‖f̂0(ω, ·)e|kω|Im(λε,ω(·))LS/ε2‖L2(R2)‖p̂εω(0, ·)‖L2(R2),

and we conclude using Young's inequality. This ends the proof. �

Following de�nitions (5.5)-(5.6), it is then direct to estimates âεω and b̂εω from Lemma 5.2:

Corollary 5.1. The following estimates are satis�ed:∫
(0,L)×{|κ|<|kω|/ε}

dzdκ |âεω(z, κ)|2 + |b̂εω(z, κ)|2 ≤ C

α
3/2
ε ε4

‖f̂0(ω, ·)‖2L2(R2)(5.15) ∫
{|κ|<|kω|/ε}

dκ|b̂εω(0, κ)|2 ≤ C‖f̂0(ω, ·)‖2L2(R2).(5.16)

Proof. The bound (5.15) is a consequence of (5.5)-(5.6)-(5.10)-(5.11) and the relation

√
αω,ε ≤ |λε,ω(κ)| ≤ 1

2
(1 + |λε,ω(κ)|2) ≤ 1

2
(1 + αω,ε + 1− ε2|κ|2/k2

ω) ≤ 1 + αω,ε/2.

since the real and imaginary parts of λε,ω(κ) are positive. In fact, we have∫
(0,L)×{|κ|<|kω|/ε}

dzdκ |âεω(z, κ)|2 + |b̂εω(z, κ)|2

≤ 2

∫
(0,L)×{|κ|<|kω|/ε}

dzdκ|λε,ω(κ)||p̂εω(z, κ)|2 +
ε4

k2
ω|λε,ω(κ)|

|∂z p̂εω(z, κ)|2

≤ 2
(

(1 + αω,ε/2)‖p̌εω‖2L2((0,L)×R2) +
ε4

k2
ω
√
αω,ε
‖∂z p̌εω‖2L2((0,L)×R2)

)
≤ C‖f̂0(ω, ·)‖2L2(R2)

( 1

αεε2
+

1

α
3/2
ε ε4

)
.

For (5.16), we use (4.3) at z = 0, together with (5.10), along with the fact that
√

2Re(λε,ω(κ)) ≥
|λε,ω(κ)| when |κ| ≤ kω/ε, and the calculation below:∫
{|κ|<|kω|/ε}

|bεω(0, κ)|2dzdκ ≤ C1

∫
{|κ|<|kω|/ε}

dκ|λε,ω(κ)|
(
|p̂εω(0, κ)|2 + |f̂0(ω, κ)|2

)
≤ C2

∫
{|κ|<|kω|/ε}

dκRe(λε,ω(κ))|p̂εω(0, κ)|2 + C2‖f̂0(ω, ·)‖2L2(R2)

≤ C3‖f̂0(ω, ·)‖2L2(R2).
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This ends the proof. �

Let us remark that the regularization term αε is introduced precisely in order to obtain

(5.15), which allows us to control âεω and b̂εω on (0, L) and not just at z = 0 and z = L. The
estimate is used in the proof of the fact that the coupling with evanescent modes in negligible,
see Section 7.

6. Technical results on iterated integrals

This section is devoted to crucial technical results that will be used throughout the paper.
The following fact is of importance: for f(u1, . . . , un) an integrable function, invariant with
respect to any permutation σ, that is

f(u1, . . . , un) = f(uσ(1), . . . , uσ(n)),

we have

(6.1)

∫
∆n(z)

f(u1, . . . , un)du1 . . . dun =
1

n!

∫
[0,z]n

f(u1, . . . , un)du1 . . . dun,

where ∆n(z) is the simplex de�ned by

(6.2) ∆n(z) :=
{

(u1, . . . , un) ∈ [0, z]n, s.t. 0 ≤ uj ≤ uj−1 ∀j ∈ {2, . . . , n}
}
.

The next proposition shows that the random �eld V satis�es a long-range property in the z
direction.

Proposition 6.1. For all z0 ∈ R and (x, y) ∈ R2 × R2, we have

E[V (z + z0, x)V (z0, y)] ∼
z→+∞

CH

zH
R0(x− y) with CH :=

cH
2π

(∫ +∞

−∞
uΘ(u)e−u

2/2du
)2

.

The correlation function R0 is de�ned in (3.8).

The proof of this proposition follows the lines of [25, Lemma 1]. We give its proof below as
a preliminary to the proof of Proposition 6.2 further.

Proof. Let us �rst note that

E[V (z + z0, x)V (z0, y)] =

∫
S
m(dq)e−iq·(x−y)E[Θ(BH(z + z0, q))Θ(BH(z0, q))],

so that we just need to investigate the term E[Θ(BH(z + z0, q))Θ(BH(z0, q))]. The analysis is
based on the Hermite polynomials de�ned by

(6.3) Hl(u) := (−1)l
g(l)(u)

g(u)
, with g(u) :=

e−u
2/2

√
2π

,

which form an orthogonal basis of L2(R, g(u)du):

(6.4)
〈
Hl, Hm

〉
L2(R,g(u)du)

= l!δlm.

Decomposing Θ with respect to this basis, we have

Θ(u) =
∑
l≥1

Θl

l!
Hl(u) where Θl :=

〈
Hl,Θ

〉
L2(R,g(u)du)

.

We will also use Mehler's formula which, for two centered Gaussian random variables such that
E[X2

1 ] = E[X2
2 ] = 1, yields

E[Hl(X1)Hm(X2)] = l!E[X1X2]lδlm.
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Then, we obtain

E[Θ
(
BH(z + z0, q)

)
Θ
(
BH(z0, q)

)
] =

∑
l,m≥1

ΘlΘm

l!m!
E[Hl(BH(z + z0, q))Hm(BH(z0, q))]

=
∑
l≥1

Θ2
l

l!
rlH(z)R̂l(q, q)

= Θ2
1rH(z) +

∑
l≥2

Θ2
l

l!
rlH(z).

Moreover, following (3.3), we have zHrlH(z)→ 0 as z → +∞ for l ≥ 2, and also∑
l≥2

∣∣∣Θ2
l

l!
rlH(z)

∣∣∣ ≤ C∑
l≥2

Θ2
l

l!
≤ C

〈
Θ,Θ

〉
L2(R,g(u)du)

< +∞,

for z large enough. As a result, using dominated convergence for series, we obtain

zHE[Θ
(
BH(z + z0, q)

)
Θ
(
BH(z0, q)

)
] ∼
z→+∞

cHΘ2
1,

which concludes the proof of Proposition 6.1. �

Since the proof of Theorem 4.3 is based on a moment technique, we will be required to
compute moments of the form

1

εn(2−s)

∫
∆n(z)

E
[ n∏
j=1

Θ
(
BH
(uj
ε
, pj
))]

ϕε(z, u1, . . . , un)du1 . . . dun,

where n is an even number (otherwise this moment is 0 by symmetry), and ϕε is a bounded
function. The following result is extensively used in the forthcoming sections up to simple
modi�cations. It provides us with crucial uniform (in ε) bounds as well as with an important
convergence result.

Proposition 6.2. For all even number n ≥ 2 and s = 2− H/2, there exists a constant C > 0
such that

sup
ε∈(0,1)

sup
p1,...,pn

1

εn(2−s)

∫
[0,z]n

∣∣∣E[ n∏
j=1

Θ
(
BH
(uj
ε
, pj

))]∣∣∣du1 . . . dun ≤ Cnnn/2,

and, for the CH of Proposition 6.1,

lim
ε→0

1

εn(2−s)

∫
∆n(z)

E
[ n∏
j=1

Θ
(
BH
(uj
ε
, pj

))]
ϕε(z, u1, . . . , un)du1 . . . dun

= lim
ε→0

C
n/2
H

∫
∆n(z)

∑
F

∏
(α,β)∈F

R̂(pα, pβ)

|uα − uβ |H
ϕε(z, u1, . . . , un)du1 . . . dun,

where ϕε is a uniformly bounded function in ε. Here, the sum runs over the pairings F of
{1, . . . , n}, and the limit ε→ 0 is uniform with respect to (p1, . . . , pn). A pairing over vertices
of {1, . . . , n} is a partition of this set made of n/2 pairs of couples (α, β), for which α < β and
such that all the elements of {1, . . . , n} appear in only one of the pairs. Note that the number

of pairings behaves like nn/2, which appears in the estimate above.
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Proof. The proof follows some of the ideas of [34]. For the �rst result of the proposition, we
decompose Θ(λ−1

n ·) over the Hermite polynomials (with resulting coe�cients Θn,l), and obtain

E
[ n∏
j=1

Θ
(
BH
(uj
ε
, pj

))]
= E

[ n∏
j=1

Θ
( 1

λn
λnBH

(uj
ε
, pj

))]

=
∑
lβ≥1

β∈{1,...,n}

 n∏
j=1

Θn,lj

lj !

E
[ n∏
j=1

Hlj

(
λnBH

(uj
ε
, pj

))]
.

Note that we introduce the factor

λn :=
1

(n− 2)1/2

in order to force the convergence of a series, as will be explicit further. This is a key point of the
proof. We want to use now [34, Lemma 3.2], which states that for n ≥ 2, and a (X1, . . . , Xn)
mean zero Gaussian vector such that

E[X2
j ] = 1 and |E[XjXl]| ≤ 1 ∀(j, l) ∈ {1, . . . , n}2 with j 6= l,

we have

(6.5) E
[ n∏
j=1

Hlj (Xj)
]

=


l1! · · · ln!

2q(q!)

∑
I(l1,...,ln)

ri1j1ri2j2 · · · riqjq

if l1 + · · ·+ ln = 2q and 0 ≤ l1, . . . , ln ≤ q
0 otherwise

where rij = E[XiXj ], and

I(l1, . . . , ln) =
{

(i1, j1, . . . , iq, jq) ∈ {1, . . . , n}2q, s.t. iβ 6= jβ ∀β ∈ {1, . . . , q}
and all index r ∈ {1, . . . , n} appears lr times

}
.

Above such a Gaussian vector is said to be standard. Nevertheless, because of the factor λn we
cannot apply (6.5) directly, we �rst have to make use of the following multiplication theorem
[15]:

Hl(λnu) = λln

[l/2]∑
k=0

(1− λ−2
n )k

l!

2k(l − 2k)! k!
Hl−2k(u).

Specializing (6.5) to our case, we �nd

E
[ n∏
j=1

Hlj−2kj

(
BH
(uj
ε
, pj

))]

=


l̃1! · · · l̃n!

2qq!

∑
I(l̃1,...,l̃n)

q∏
β=1

rH

(uiβ − ujβ
ε

)
R̂(piβ , pjβ )

if l̃1 + · · ·+ l̃n = 2q and 0 ≤ l̃1, . . . , l̃n ≤ q with l̃j := lj − 2kj ,
0 otherwise.

Let us remark that all the indices l are odd since Θ is assumed to be odd (Θn,l = 0 for l even).

Hence, l̃j = lj − 2kj ≥ 1 for all j = 1, . . . , n, so that q ≥ n/2. Consider now the term

Aq,n :=

∫
[0,z]n

∣∣∣∣∣
q∏

m=1

rH

(uim − ujm
ε

)
R̂(pim , pjm)

∣∣∣∣∣ du1 . . . dun.
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We deduce from the de�nition of I(l̃1, . . . , l̃n) that each of the u1, . . . , un appear at least
once in the product above. Keeping n/2 of them for integrating rH, and bounding rH by
supu |rH(u)| = 1 for the others, and using the fact that rH(u) is even, we �nd

(6.6) Aq,n ≤ (2z)n/2
(

sup
u
|rH(u)|

)q−n/2 (
sup
p1,p2

|R̂(p1, p2)|︸ ︷︷ ︸
≤1

)q (∫ z

0

∣∣∣rH(u
ε

)∣∣∣du)n/2 .
We now need to estimate the cardinal of I(l̃1, . . . , l̃n). For this, we use again (6.5) with X1 =
· · · = Xn = X where X ∼ N (0, 1), and �nd, with now rimjm = 1, together with (6.6),∫

[0,z]n

∣∣∣E[ n∏
j=1

Hlj−2kj

(
BH
(uj
ε
, pj

))]∣∣∣du1 . . . dun

≤ Cn
(∫ z

0

∣∣∣rH(u
ε

)∣∣∣du)n/2 E[∣∣∣ n∏
j=1

Hlj−2kj (X)
∣∣∣].

Moreover, we have

(6.7) E
[∣∣∣ n∏
j=1

Hrj (X)
∣∣∣] ≤ n∏

j=1

(n− 1)rj/2
√
rj !,

according to [34, Lemma 3.1], which yields∫
[0,z]n

E
[ n∏
j=1

Hlj

(
λnBH

(uj
ε
,pj

))]
du1 . . . dun

≤ Cn
(∫ z

0

∣∣∣rH(u
ε

)∣∣∣du)n/2 n∏
j=1

λ
lj
n lj !

[lj/2]!

×
∑

j=1,...,n
kj=0,...,[lj/2]

n∏
j=1

(n− 1)lj/2−kj (λ−2
n − 1)kj

[lj/2]!

2kjkj !
√

(lj − 2kj)!
.

After standard computations, we �nd for lj odd,√
(lj − 2kj)! ≥ 2[lj/2]−kj ([lj/2]− kj)!, and (n− 1)lj/2−kj ≤ n1/2(n− 1)[lj/2]−kj ,

and then, with the binomial theorem,

[lj/2]∑
kj=0

(n− 1)lj/2−kj (λ−2
n − 1)kj

[lj/2]!

2kjkj !
√

(lj − 2kj)!

≤ n1/2

2[lj/2]

[lj/2]∑
kj=0

(n− 1)[lj/2]−kj (λ−2
n − 1)kj

[lj/2]!

kj !([lj/2]− kj)!

≤ n1/2

2[lj/2]
(n+ λ−2

n − 2)[lj/2].
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Hence, using again that all the indices lj are odds, we obtain∫
[0,z]n

E
[ n∏
j=1

Θ
(
BH
(uj
ε
, pj

))]
du1 . . . dun

≤ nn/2Cn
(∫ z

0

∣∣∣rH(u
ε

)∣∣∣du)n/2 ∑
lβ≥1

β∈{1,...,n}

n∏
j=1

λ
lj
n |Θn,lj |

2[lj/2][lj/2]!
(n+ λ−2

n − 2)[lj/2]

≤ (λnn
1/2)nCn

(∫ z

0

∣∣∣rH(u
ε

)∣∣∣du)n/2
∑
l≥0

|Θn,2l+1|
l!

n

.

Now, let us consider ∑
l≥0

|Θn,2l+1|
l!

=

[nM ]−1∑
l=0

+

+∞∑
l=[nM ]

 |Θn,2l+1|
l!

:= I + II,

where M is independent of n and will be speci�ed later. In what follows, we just work with
l ≥ 1 since the bound is direct for l = 0 . For the �rst term, we perform an integration by
parts in Θn,2l+1 using de�nition (6.3), and obtain

Θn,2l+1 = λ−1
n (−1)2l

∫
Θ(1)(λ−1

n u)g(2l)(u) = λ−1
n Θ

(1)
n,2l,

and according to (6.4), we have

|Θn,2l+1| ≤ λ−1
n ‖Θ(1)(u)‖L2(R,g(u)du)‖H2l‖L2(R,g(u)du) ≤ λ−1

n sup
u
|Θ(1)(u)|

√
(2l)!.

As a result, using that (2l)! ≤ 22l(l!)2 we obtain

I ≤ C1 + C2n
1/2

[nM ]−1∑
l=1

2l ≤ C1 + n1/2CnM .

For the second term II, we have after 2l integration by parts,

Θn,2l+1 = λ−2l
n (−1)1

∫
Θ(2l)(λ−1

n u)g(1)(u)du,

and therefore, according to (3.4), using that l! ≥ e(l/e)l,∑
l≥[nM ]

|Θn,2l+1|
l!

≤ C
∑

l≥[nM ]

λ−2l
n

l!
C2l

Θ ≤ C
∑

l≥[nM ]

(n
l

)l
(eC2

Θ)l.

Then, setting M > eC2
Θ, we have II ≤ C. Hence,∫

[0,z]n
E
[ n∏
j=1

Θ
(
BH
(uj
ε
, pj

))]
du1 . . . dun ≤ nn/2Cn

(∫ z

0

∣∣∣rH(u
ε

)∣∣∣du)n/2 .
We �nally conclude by estimating the term involving rH: following (3.3), there exists ze > 0
such that for all z′ > ze, we have |rH(z′)| ≤ C|z′|−H, and therefore, for all z > εze,

(6.8)

∫ z

0

∣∣∣rH(u
ε

)∣∣∣du ≤ C(ε+ εH
∫ z

εze

u−Hdu
)
≤ Cε2(2−s),

since s = 2− H/2.
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For the second result of the proposition, we decompose Θ itself over the Hermite polynomials
to obtain

E
[ n∏
j=1

Θ
(
BH
(uj
ε
, pj

))]
=

∑
lα≥1

α∈{1,...,n}

 n∏
j=1

Θlj

lj !

E
[ n∏
j=1

Hlj

(
BH
(uj
ε
, pj

))]

= Θn
1

∑
F

∏
(α,β)∈F

rH

(uα − uβ
ε

)
R̂(pα, pβ) +Rεn(u1, . . . , un),

with

Rεn(u1, . . . , un) =

n∑
j=1

∑
Sj(l1,...,ln)

 n∏
j=1

Θlj

lj !

E
[ n∏
j=1

Hlj

(
BH
(uj
ε
, pj

))]
.

and

Sj(l1, . . . , ln) = {lk = 1 for k < j; lj ∈ {2, . . . , n}, lk ∈ {1, . . . , n} for k > j}.

According to (6.5), Rεn can be recast as

Rεn(u1, . . . , un) =

n∑
j=1

∑
q≥n/2+1

∑
S̃j,q(l1,...,ln)

n∏
m=1

(
Θlm

lm!

)
E
[ n∏
m=1

Hlm

(
BH
(um
ε
, pm

))]
,

where S̃j,q(l1, . . . , ln) = Sj(l1, . . . , ln) ∩ {l1 + · · · + ln = 2q}. Let us emphasize the fact that
q ≥ n/2 + 1 since there is at least one index lj greater than 2 and n is even. This is what will
allow us to gain some extra powers of ε to obtain the convergence to the leading term. We
need to estimate for this the term Aq,n for q ≥ n/2 + 1 in the same way as before. Since rH
and R̂ are bounded by one, we directly �nd, for all (i1, j1, . . . , iq, jq) ∈ I(l1, . . . , ln),∫

[0,z]n

q∏
m=1

∣∣rH(uim − ujm
ε

)
R̂(pim , pjm)

∣∣du1 . . . dun ≤
∫

[0,z]n

n/2+1∏
m=1

∣∣rH(ui′m − uj′m
ε

)∣∣du1 . . . dun,

where (i′1, j
′
1, . . . , i

′
n/2+1, j

′
n/2+1) repeat j twice. Since n/2 + 1 is odd, only one other index,

denoted by j′, appears twice. In that context, two cases are possible. In the �rst case, we have
a term of the form r2

H((uj − uj′)/ε) (if any there is only one), and∫ z

0

duj

∫ z

0

duj′r
2
H

(uj − uj′
ε

)
≤

 C1ε
2H if H ∈ (0, 1/2),

C ′1ε log(1/ε) if H = 1/2,
C ′′1 ε if H ∈ (1/2, 1).

Using then (6.8),∫
[0,z]n

n/2+1∏
m=1

∣∣rH(ui′m − uj′m
ε

)∣∣du1 . . . dun =

(∫ z

0

du

∫ z

0

dv
∣∣rH(u− v

ε

)∣∣dudv)n/2−1

×
∫ z

0

du

∫ z

0

dv r2
H

(u− v
ε

)
dudv

≤ CεHn/2εH∧(1−H) log(1/ε).

If we are not in the �rst case, we have a term of the form rH((uj − uj′)/ε)rH((uj − uk)/ε),
k 6= j′. Using then the Cauchy-Schwarz' inequality with respect to uj , a change of variable,
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the fact that rH is even, and again (6.8) leads to∫
[0,z]n

n/2+1∏
m=1

∣∣rH(ui′m − uj′m
ε

)∣∣du1 . . . dun ≤ C
(∫ z

0

du

∫ z

0

dv
∣∣rH(u− v

ε

)∣∣dudv)n/2−1

×
∫ 2z

0

du r2
H

(u
ε

)
≤ CεHn/2εH∧(1−H) log(1/ε).

As a result, bounding the cardinal of I(l1, . . . , ln) in the same way as before, we obtain∫
[0,z]n

sup
p1,...,pn

∣∣∣E[ n∏
m=1

Hlm

(
BH
(um
ε
, pm

))]∣∣∣du1 . . . dun

≤ CεHn/2εH∧(1−H) log(1/ε)
∣∣∣E[ n∏

m=1

Hlm(X)
]∣∣∣

and therefore, using (6.7),

1

εn(2−s)

∫
[0,z]n

sup
p1,...,pn

∣∣∣E[Rεn(u1, . . . , un)
]∣∣∣du1 . . . dun

≤ CεH∧(1−H) log(1/ε)

n∑
j=1

∑
q≥n/2+1

∑
S̃j,q(l1,··· ,ln)

n∏
m=1

|Θlm |(n− 1)lm√
lm!

≤ εH∧(1−H) log(1/ε)nCn

∑
l≥1

|Θl|(n− 1)l√
l!

n

.

According to (3.4), we have

|Θl| =
∣∣∣ ∫ Θ(l)(u)g(u)du

∣∣∣ ≤ CClΘ̃,
so that the sum above is �nite, and which shows that for n �xed, the error term Rεn converges
to zero as ε→ 0. It remains to treat the leading term. For this, we write∑

F

1

εn(2−s)

∫
∆n(z)

∏
(α,β)∈F

∣∣∣rH(uα − uβ
ε

)
− εHcH
|uα − uβ |H

∣∣∣du1 . . . dun

≤ (n− 1)!!

n!

[ 1

ε2(2−s)

∫ z

0

∫ z

0

∣∣∣rH(u− v
ε

)
− εHcH
|u− v|H

∣∣∣dudv]n/2,
where (n − 1)!! = n!/(2n/2(n/2)!) is the number of pairings of {1, . . . , n}. According to (3.3),
for any η > 0 and ze such that z > ze, we have |rH(z)− cH|z|−H| ≤ ηcH|z|−H, and as a result,

1

ε2(2−s)

∫ z

0

∫ z

0

∣∣∣rH(u− v
ε

)
− εHcH
|u− v|H

∣∣∣dudv ≤ ηcH ∫
|u−v|>εze

|u− v|−Hdudv

+ ε

∫
|u−v|≤ze

rH(u− v)dudv

+ cH

∫
|u−v|≤εze

|u− v|−Hdudv,
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This �nally yields, for all η > 0,

lim sup
ε→0

1

ε2(2−s)

∫ z

0

∫ z

0

∣∣∣rH(u− v
ε

)
− εHcH
|u− v|H

∣∣∣dudv ≤ ηcH ∫ z

0

∫ z

0

|u− v|−Hdudv.

The proof of the proposition is complete. �

7. Proof of Proposition 4.1

Let φ = (φ1, φ2) ∈ C∞0 (R2) × C∞0 (R2) be a test function such that supp(φ) ⊂ B(0, rφ). In
order to control the transition between propagating and evanescent modes, we introduce the
following integer

nε := inf
(
n ≥ 0 s.t. {Qn ∈ Qnω,ε s.t. 1 < ε|Qn|2/k2

ω} 6= ∅
)

where Qnω,ε is the set

Qnω,ε = {Qn = κ− q1 − · · · − qn s.t. (κ, q1, . . . , qn) ∈ B(0, rφ)× Snω,ε(κ)}.

Above, Snω,ε(κ) is de�ned by

(7.1) Snω,ε(κ) :=
{

(q1, . . . , qn) ∈ Sn s.t. |Ql| < |kω|/ε ∀l ∈ {1, . . . , n}
}
.

Let us remark that with this de�nition, we have, for all ε ≤ ε0,

(7.2) nε >
1

rS

( |kω|√
ε
− rφ

)
and |λε,ω(Qn)| > η :=

√
1− ε0,

for all Qn ∈ Qnω,ε with n < nε. The integer nε measures the number of iterations it takes for

the momentum Qn to be at least of order 1/
√
ε. Note that this order is arbitrary, any order

of the form ε−α, α > 0 would work just �ne. Integrating then (4.6) in z and iterating nε − 1
times this relation, we obtain[

âεω(z, κ)

b̂εω(z, κ)

]
=

nε−1∑
n=0

∫
∆n(z)

du(n)

∫
Snω,ε(κ)

m(dq(n))

n∏
j=1

Hε
ω(uj , Qj−1, Qj)

[
âεω(0, Qn)

b̂εω(0, Qn)

]

+

∫
∆nε (z)

du(nε)

∫
Snεω,ε(κ)

m(dq(nε))

nε∏
j=1

Hε
ω(uj , Qj−1, Qj)

[
âεω(unε , Qnε)

b̂εω(unε , Qnε)

]
:= Iε(z, κ) + Jε(z, κ),

where Hε
ω and ∆n(z) are de�ned by (4.7) and (6.2), m(dq(n)) := m(dq1) . . .m(dqn), and

Qj := κ − q1 − · · · − qj , and Q0 := κ, . Let us point out the important fact that iterations
are stopped before evanescent modes appear in the series (that is before the second term in
the r.h.s. of (4.6) enters the expansion), and this gives rise to only the two terms Iε(z, κ)
and Jε(z, κ). The �rst one is the driving term, and the second one is a reminder. The latter
will be shown to be negligible, the main argument being that it is essentially of order 1/nε!
after integration over the simplex ∆nε(z). Writing a complete series expansion, i.e. choosing
nε = +∞ (which then sets Jε to zero), requires to handle the transition propagative-evanescent
modes which is more di�cult than treating the reminder Jε. Note also that in Proposition

4.1, we are only interested in the convergence of âεω(z, κ) and b̂εω(z, κ) for κ in the support
of φ, and we can therefore only consider the above equation for |κ| < |kω|/ε. Thus, we set
Iε(z, κ) = Jε(z, κ) = 0 for |κ| > |kω|/ε. We then have the following two lemmas, whose proofs
are postponed to the end of the section.
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Lemma 7.1. For all z ∈ [0, L], we have, for all µ > 0,

lim
ε→0

P
(∣∣〈Jε(z), φ〉

L2(R2)×L2(R2)

∣∣ > µ
)

= 0.

This �rst lemma shows that Jε gives a negligible contribution, and therefore that Iε is
the leading term. In the second lemma below, we introduce an auxiliary process Ĩε that
approximates Iε by letting the regularization term αε vanish in the complex exponentials and
by replacing the λε,ω in the denominator by one.

Lemma 7.2. For all z ∈ [0, L], we have, for all µ > 0

lim
ε→0

P
(∣∣〈Iε(z)− Ĩε(z), φ〉

L2(R2)×L2(R2)

∣∣ > µ
)

= 0,

where

Ĩε(z, κ) :=

nε−1∑
n=0

∫
∆n(z)

du(n)

∫
Snω,ε(κ)

m(dq(n))

n∏
j=1

H̃ε
ω(uj , Qj−1, Qj)

[
âεω(0, Qn)

b̂εω(0, Qn)

]
,

where H̃ε
ω is de�ned by (4.11), and Ĩε(z, κ) = 0 for |κ| > |kω|/ε.

Now, with the notation

Lε(z, κ) :=

[
Âεω(z, κ)

B̂εω(z, κ)

]
with Lε(z, κ) = 0 for |κ| > |kω|/ε,

we have

P
(∣∣∣〈 [âεω(z)

b̂εω(z)

]
−
[
Âεω(z)

B̂εω(z)

]
, φ
〉
L2(R2)×L2(R2)

∣∣∣ > µ
)

≤ P
(∣∣〈Iε(z)− Ĩε(z), φ〉

L2(R2)×L2(R2)

∣∣ > µ/3
)

+ P
(∣∣〈Ĩε(z)− Lε(z), φ〉

L2(R2)×L2(R2)

∣∣ > µ/3
)

+ P
(∣∣〈Jε(z), φ〉

L2(R2)×L2(R2)

∣∣ > µ/3
)

and owing to Lemmas 7.1 and 7.2, it just remains to prove that, for all µ′ > 0,

(7.3) lim
ε→0

P
(∣∣〈Ĩε(z)− Lε(z), φ〉

L2(R2)×L2(R2)

∣∣ > µ′
)

= 0.

This follows from the calculation below. After straightforward algebra and the change of
variable κ→ κ+ q1 + · · ·+ qn, we have〈

Ĩε(z)− Lε(z), φ
〉
L2(R2)×L2(R2)

=
∑
n≥nε

〈[âεω(0)

b̂εω(0)

]
, R̃εn

〉
L2(R2)×L2(R2)

,

where R̃εn(κ′) = 0 for |κ′| > |kω|/ε, and is given by, for |κ′| < |kω|/ε,

R̃εn(κ′) :=

∫
∆n(z)

du(n)

∫
S̃nω,ε(κ′)

m(dq(n))

n∏
j=1

H̃ε
ω(uj , Q̃j−1, Q̃j)

[
φ1(Q̃0)

φ2(Q̃0)

]
,

where Q̃j = κ′ + qn + · · ·+ qj+1, and

S̃nω,ε(κ′) :=
{

(q1, . . . , qn) ∈ Sn s.t. |Q̃l| < |kω|/ε, ∀l ∈ {1, . . . , n}
}
.
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We need now to bound Rεn. For this, the following estimate, which is a consequence of the �rst
result of Proposition 6.2, will be used several times in the course of the proof of the proposition:
(7.4)

Tn,ε :=
1

ε2n(2−s) sup
q
(n)
1 ,q

(n)
2

∫
[0,L]2n

du(2n)
∣∣∣E[ n∏

j=1

V̂
(u1,j

ε
, q1,j

)
V̂
(u2,j

ε
, q2,j

)]∣∣∣ ≤ (n1/2C)2n.

Since Q̃0 ∈ supp(φ), the support of Rεn is included in Kn = {|κ′| ≤ nrS + rφ}, and then,
according to (6.1),

E
[
‖R̃εn‖2L2(Kn)×L2(Kn)

]
≤ C2nE[|m(S)|2n] |Kn| ( sup

j=1,2
u∈R2

|φj(u)|)2 Tn,ε/(n!)2

≤ (n1/2C)2n

(n!)2
(nrS + rφ)2.

Using �nally (5.7) and estimate (5.16) in order to bound âεω(0) and b̂εω(0), as well as the Markov'
and Cauchy-Schwarz' inequalities, we �nd,

P
(∣∣〈Ĩε(z)−Lε(z), φ〉

L2(R2)×L2(R2)

∣∣ > µ′
)

≤ C
‖f̂0(ω, ·)‖L2(R2)

µ′

∑
n≥nε

(
E
[
‖R̃εn‖2L2(Kn)×L2(Kn)

])1/2

≤
∑
n≥nε

Cn√
n!

(nrS + rφ),

which concludes the proof of Proposition 4.1. We end this section with the proofs of Lemmas
7.1 and 7.2.

Proof of Lemma 7.1. The proof is very similar to the one above, and we only detail the di�er-
ences. The main ingredient is the fact that Jε is proportional to 1/nε! after integration. After
the change of variable κ→ κ+ q1 + · · ·+ qn, we have〈

Jε(z), φ
〉
L2(R2)×L2(R2)

=

∫ z

0

dunε

〈[âεω(unε)

b̂εω(unε)

]
, H̃nε(unε)

〉
L2(R2)×L2(R2)

with H̃n(un, κ
′) = 0 for |κ′| > |kω|/ε, and for |κ′| < |kω|/ε,

H̃n(un, κ
′) :=

∫
∆̃n(z,un)

du(n−1)

∫
S̃nω,ε(κ′)

m(dq(n))

n∏
j=1

Hε
ω(uj , Q̃j−1, Q̃j)

[
φ1(Q̃0)

φ2(Q̃0)

]
.

Here, Q̃j is as before, and

∆̃n(z, un) :=
{

(u1, . . . , un−1) ∈ [0, z]n−1, s.t. uj+1 ≤ uj ∀j ∈ {1, . . . , n− 1}
}
.

As a result, using the Cauchy-Schwarz' inequality, (7.4) with n = nε − 1, as well as estimate
(5.15), we �nd

E
[∣∣∣〈Jε(z),φ〉

L2(R2)×L2(R2)

∣∣∣]
≤ ε(s−2)Cnε−1√

(nε − 1)!
E

(∫ L

0

du

∫
{|κ|<|kω|/ε}

dκ(|âεω(u, κ)|2 + |b̂εω(u, κ)|2)

)1/2


≤ ε(s−2)−2

α
3/4
ε

√
(nε − 1)!

Cnε .
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According to the bound from below for nε given in (7.2), and the fact that n! > Cnn+1/2e−n,
we �nd

εs−4

α
3/4
ε

√
(nε − 1)!

≤ Cenε

α
3/4
ε

e(8+1/2−2s−nε/2) log(nε).

This concludes the proof of the lemma. �

Proof of Lemma 7.2. The proof simply consists in sending the regularization parameter αε to
zero and using the fact that ε2|Qn|2/k2

ω → 0 as ε → 0 for n < nε. Let us for this introduce,
for l ∈ {0, . . . , n},

Ĩεl,n(z, κ) :=

∫
∆n(z)

du(n)

∫
Snω,ε(κ)

m(dq(n))

×
l∏

j=1

H̃ε
ω(uj , Qj−1, Qj)

n∏
j=l+1

Hε
ω(uj , Qj−1, Qj)

[
âεω(0, Qn)

b̂εω(0, Qn)

]
,

so that

Iε(z, κ)− Ĩε(z, κ) =

nε−1∑
n=1

n−1∑
l=0

(
Ĩεl,n(z, κ)− Ĩεl+1,n(z, κ)

)
.

After the usual change of variable κ→ κ+ q1 + · · ·+ qn, we have〈
Ĩεl,n(z)− Ĩεl+1,n(z), φ

〉
L2(R2)×L2(R2)

=
〈[âεω(0)

b̂εω(0)

]
, Iεl,n

〉
L2(R2)×L2(R2)

,

with Iεl,n(κ′) = 0 for |κ′| > |kω|/ε, and for |κ′| < |kω|/ε,

Iεl,n(κ′) =

∫
∆n(z)

du(n)

∫
S̃nω,ε(κ′)

m(dq(n))

l∏
j=1

H̃ε
ω(uj , Q̃j−1, Q̃j)

× [Hε
ω(ul+1, Q̃l, Q̃l+1)− H̃ε

ω(ul+1, Q̃l, Q̃l+1)]

n∏
j=l+2

Hε
ω(uj , Q̃j−1, Q̃j)

[
φ1(Q̃0)

φ2(Q̃0)

]
,

where Q̃j = κ′ + qn + · · ·+ qj+1. Now, we deduce from (5.3) and the fact that the square root
is of Hölder regularity 1/2, that for all |q| < |kω|/ε,

(7.5) |Re(λε,ω(q))− λrε,ω(q)|2 ≤ 1

2

(√
(1− ε2|q|2/k2

ω)2 + α2
ω,ε − (1− ε2|q|2/k2

ω)
)
≤ 1

2
αω,ε.

With (7.5), (5.4), the de�nition of nε and (7.2), we then �nd, for l < nε,∣∣∣∣∣ 1

λε,ω(Q̃l)
− 1

∣∣∣∣∣ ≤
∣∣∣∣∣λrε,ω(Q̃l)− λε,ω(Q̃l)

λε,ω(Q̃l)λrε,ω(Q̃l)

∣∣∣∣∣+

∣∣∣∣∣λrε,ω(Q̃l)− 1

λrε,ω(Q̃l)

∣∣∣∣∣ ≤ Cα
1/2
ε,ω

η2
+
C
√
ε

η
:= γε,

and∣∣∣eikω(λε,ω(Q̃l)−λε,ω(Q̃l−1))ul/ε
2

− ei(λ
r
ε,ω(Q̃l)−λrε,ω(Q̃l−1))ul/(2kω)

∣∣∣
=
∣∣∣eikω(λε,ω(Q̃l)−λrε,ω(Q̃l)−(λε,ω(Q̃l−1)−λrε,ω(Q̃l−1)))ul/ε

2

− 1
∣∣∣

≤ C
∣∣∣eikω(Re(λε,ω(Q̃l))−λrε,ω(Q̃l)−(Re(λε,ω(Q̃l−1))−λrε,ω(Q̃l−1)))ul/ε

2

− 1
∣∣∣

+
∣∣∣e−kωIm(λε,ω(Q̃l)−λε,ω(Q̃l−1))ul/ε

2

− 1
∣∣∣

≤ Cα1/2
ε .
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The rest of the proof is now classical and follows from the same techniques as (7.3): we �rst
apply (7.4) to obtain

E
[
‖Iεl,n‖2L2(Kn)×L2(Kn)

]
≤ (γ2

ε + αε) C
2nE[|m|(S)2n] |Kn| ( sup

j=1,2
u∈R2

|φj(u)|)2 Tn,ε/((n!)2 η2(n−l−1))

≤ (γ2
ε + αε)C

2n

n!
(nrS + rφ)2.

and then use (5.7) and estimate (5.16) in order to bound âεω(0) and b̂εω(0), as well as the
Markov' and Cauchy-Schwarz' inequalities to arrive at

P
(∣∣〈Iε(z)− Ĩε(z), φ〉

L2(R2)×L2(R2)

∣∣ > µ
)

≤ γεC

µ

nε−1∑
n=1

n−1∑
l=0

(
E
[
‖Iεl,n‖2L2(Kn)×L2(Kn)

])1/2

≤ γε
µ

nε−1∑
n=1

Cn√
n!
n(nrS + rφ)

This concludes the proof. �

8. Proof of Proposition 4.2

The proof is based on iteration techniques. We only prove the second point of the proposition
since it is the most interesting one and the �rst point follows from similar calculations. We
start by writing Pa,εω,φεω as an in�nite series obtained by iterating (4.13), that is

(8.1) Pa,εω,φεω (z, κ) =
∑
n≥0

T n,εω (z, κ), with T 0,ε
ω (z, κ) := φεω(κ),

where, for n ≥ 1,

T ε,nω (z, κ) :=

∫
∆n(z)

du(n)

∫
Snω,ε(κ)

m(dq(n))Hε
ω,1,1

(
u(n),q(n)

)
φεω(Qn),

and

(8.2) Hε
ω(u(n),q(n)) :=

n∏
j=1

H̃ε
ω(uj , Qj−1, Qj).

Here, Snω,ε(κ) is de�ned by (7.1), H̃ε
ω by (4.11), and Hε

ω,1,1 denotes the (1, 1) entry of the
matrix Hε

ω. As we will see, the leading term in T n,εω is the one obtained by the product of the

diagonal elements of the matrices H̃ε
ω(uj , Qj−1, Qj). Any other term involving an o� diagonal

component introduces an oscillatory integral leading to a vanishing limit as ε → 0. This will
be proved further. The leading term is therefore

(8.3) X εω(z, κ) :=
∑
n≥0

X ε,nω (z, κ), X 0,ε
ω (z, κ) := φεω(κ),

where, for n ≥ 1,
(8.4)

X ε,nω (z, κ) :=
( ikω
ε2−s

)n ∫
∆n(z)

du(n)

∫
Snω,ε(κ)

m(dq(n))
( n∏
j=1

V̂ (uj/ε, qj)
)
eiG

ε
n(u(n),q(n))φεω(Qn),
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with

Gεn(u(n),q(n)) :=
kω
ε2

n∑
j=1

(λrε,ω(Qj)− λrε,ω(Qj−1))uj .

Before getting to the core of the proof, we present some technical results that show that the
two series above are well-de�ned, and that expectation and limits can be taken term by term.

Lemma 8.1. The series (8.1) is well-de�ned, and we have, for all φ ∈ L2(R2),

E
[〈
Pa,εω,φεω (z), φ

〉
L2(R2)

]
= E

[ +∞∑
n=0

〈
T n,εω (z), φ

〉
L2(R2)

]
=

+∞∑
n=0

E
[〈
T n,εω (z), φ

〉
L2(R2)

]
,

and

lim
ε→0

E
[〈
Pa,εω,φεω (z), φ

〉
L2(R2)

]
=

+∞∑
n=0

lim
ε→0

E
[〈
T n,εω (z), φ

〉
L2(R2)

]
.

Similar properties hold for (8.3).

Proof. We only consider (8.1), and just need to show that∑
n≥1

sup
ε∈(0,1)

(
E
[∥∥T n,εω (z)

∥∥2

L2(R2)

])1/2

< +∞.

This follows from a direct adaptation of the estimate on R̃εn in the proof of (7.3) in Proposition
4.1, which yields

E
[∥∥T n,εω (z)

∥∥2

L2(R2)

]
≤ C2n

n!
(nrS + rf̂0)2,

where rf̂0 is such that suppf̂0 ⊂ B(0, rf̂0). This concludes the proof. �

Owing to Lemma 8.1, it is not di�cult to show that X εω is the unique solution to (4.15) such
that

E
[∥∥X εω(z)

∥∥2

L2(R2)

]
≤ C‖f̂0(ω, ·)‖2L2(R2).

We now proceed to the proof itself and write

Pa,εω,φεω (z, κ)−X εω(z, κ) =
∑
n≥1

T̃ n,εω (z, κ),

where

T̃ n,εω (z, κ) :=
∑

(l1,...,ln−1)∈Ln

∫
∆n(z)

du(n)

∫
Snω,ε(κ)

m(dq(n))

n∏
m=1

H̃ε
ω,lm−1,lm(um, Qm−1, Qm)φεω(Qn)

with l0 = ln := 1, and

Ln :=
{
l(n) = (l1, . . . , ln−1) ∈ {1, 2}n−1, s.t. ∃m0 ∈ {2, . . . , n− 1}

with lm0 = 1 and lm0−1 = 2
}
.

(8.5)

The set Ln is such that there is at least one contribution of the o�-diagonal of H̃ε
ω. Following

Lemma 8.1, we can study the series above term by term, and in particular,

lim
ε→0

E
[
‖Pa,εω,φεω (z)−X εω(z)‖L2(R2)

]
≤
∑
n≥1

lim
ε→0

E
[
‖T̃ n,εω (z)‖2L2(R2)

]1/2
,
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where, using the second point of Proposition 6.2,

E
[
‖T̃ n,εω (z)‖2L2(R2)

]
∼
ε→0

(kωC1/2
H

2

)2n
∫
{|κ|≤nrS+rf̂0

}
dκ

∫
Sn×Sn

E[m(dq
(n)
1 )m(dq

(n)
2 )]φ0

ω(Q1,n)φ0
ω(Q2,n)

×
∑

(l1,1,...,l1,n−1)∈Ln
(l2,1,...,l2,n−1)∈Ln

∑
F2,n

IF2,n
(l

(n)
1 , l

(n)
2 ,q

(n)
1 ,q

(n)
2 )

∏
(α,β)∈F2,n

R̂(qα, qβ).

We will show that the limit of the r.h.s is actually zero. Above, rf̂0 is as in the proof of

Lemma 8.1 and φ0
ω is de�ned by (4.14). The second sum is taken over all the pairings F2,n of

Sn = {1, 2}×{1, . . . , n}. Here, a pairing over vertices of Sn is a partition of this set made of n
pairs of couples (α, β) ∈ Sn × Sn, such that all the elements of Sn appears in only one of the
pairs. We have also introduced the notations

IF2,n(l
(n)
1 ,l

(n)
2 ,q

(n)
1 ,q

(n)
2 ) = lim

ε→0

∫
∆n(z)

du
(n)
1

∫
∆n(z)

du
(n)
2

∏
(α,β)∈F2,n

Eεlα−(0,1),lα
(α(1), uα, Qα−(0,1), Qα)Eεlβ−(0,1),lβ

(β(1), uβ , Qβ−(0,1), Qβ)

|uα − uβ |H

with

Eεj,l(1, u, p, q) :=


eikω(λε,ω(q)−λε,ω(p))u/ε2 if (j, l) = (1, 1)

e−ikω(λε,ω(q)+λε,ω(p))u/ε2 if (j, l) = (1, 2)

−eikω(λε,ω(q)+λε,ω(p))u/ε2 if (j, l) = (2, 1)

−e−ikω(λε,ω(q)−λε,ω(p))u/ε2 if (j, l) = (2, 2),

and Eεj,l(2, u, p, q) := Eεj,l(1, u, p, q). Note that in the de�nition of IF2,n
the shift (0, 1) comes

form the de�nition (8.2). Now, let us consider a pairing F2,n and l
(n)
1 ∈ Ln. Using the notation

of (8.5), take also a couple (α0, β0) such that α0(1) = 1 and α0(2) = m0 for instance. The
other cases follow exactly the same lines and are omitted. Using the following relation

|u− v|−H = c̃H

∫
eir(u−v)

|r|1−H
dr,

where c̃H := Γ(2H − 1) sin(πH)/π with H = (2− H)/2, we single out the pairing (α0, β0) and
obtain

IF2,n
(l

(n)
1 , l

(n)
2 ,q

(n)
1 ,q

(n)
2 ) = c̃H lim

ε→0

∫
dr

|r|1−H

∫
∆n(z)

du
(n)
1

∫
∆n(z)

du
(n)
2

×
∏

(α,β)∈F2,n

(α,β)6=(α0,β0)

Eεlα−(0,1),lα
(α(1), uα, Qα−(0,1), Qα)Eεlβ−(0,1),lβ

(β(1), uβ , Qβ−(0,1), Qβ)

|uα − vβ |H

× eiruα0Eεlα0−(0,1),lα0
(α0(1), uα0 , Qα0−(0,1), Qα0)

× e−iruβ0Eεlβ0−(0,1),lβ0
(β0(1), uβ0

, Qβ0−(0,1), Qβ0
).

Integrating by parts (with respect to the variable uα0
) the function eiuα0

(r+kω(λε,ω(Qα0
)+λε,ω(Qα0−(0,1)))/ε

2),
with antiderivative

eiuα0
(r+kω(λε,ω(Qα0

)+λε,ω(Qα0−(0,1)))/ε
2) − 1

i(r + kω(λε,ω(Qα0) + λε,ω(Qα0−(0,1)))/ε2)
,
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we �nd, using dominated convergence,

|IF2,n(l
(n)
1 , l

(n)
2 ,q

(n)
1 ,q

(n)
2 )|

≤ C1

∫
∆n−1(z)

du(n)
α0

∫
∆n(z)

du
(n)
2

∏
(α,β)∈F2,n

(α,β) 6=(α0,β0)

|uα − uβ |−H

× lim
ε→0

∫ ∣∣∣eiuα0−(0,1)(r+kω(λε,ω(Qα0
)+λε,ω(Qα0−(0,1)))/ε

2) − 1

i(r + kω(λε,ω(Qα0
) + λε,ω(Qα0−(0,1)))/ε2)

∣∣∣ dr

|r|1−H

+ C2

∫
∆n−1(z)

du
(n)
α0+(0,1)

∫
∆n(z)

du
(n)
2

∏
(α,β)∈F2,n

(α,β)6=(α0+(0,1),β0)

|uα − uβ |−H

× lim
ε→0

∫ ∣∣∣eiuα0
(r+kω(λε,ω(Qα0

)+λε,ω(Qα0−(0,1)))/ε
2) − 1

i(r + kω(λε,ω(Qα0
) + λε,ω(Qα0−(0,1)))/ε2)

∣∣∣ dr

|r|1−H

with u
(n)
α0 := (u1,1, . . . , u1,m0−1, u1,m0+1, . . . , u1,n), and where ∆n−1(z) is the same simplex as

(6.2) with now n − 1 elements. Let us remark that we are working here with �xed q
(n)
1 and

q
(n)
2 , so that

lim
ε→0

λε,ω(Qα0
) + λε,ω(Qα0−(0,1)) = 2.

Therefore, together with the Markov inequality and dominated convergence, the following
lemma concludes the proof of Proposition 4.2.

Lemma 8.2. For all a 6= 0 and u 6= 0, we have

lim
ε→0

∫
|eiu(r−a/εs) − 1|
|r − a/εs||r|1−H

dr = 0,

where s = 2− H/2.

Proof. Let µ > 0 and η > 0 be small parameters, and let us decompose the integral into three
parts as follows:∫
|eiu(r−a/εs) − 1|
|r − a/εs||r|1−H

dr =
(∫
|r−a/εs|>µ/εs

+

∫
η<|r−a/εs|<µ/εs

+

∫
|r−a/εs|<η

) |eiu(r−a/εs) − 1|
|r − a/εs||r|1−H

dr.

We treat the last integral �rst and make the change of variable r → r + a/εsr to obtain∫
|r−a/εs|<η

|eiu(r−a/εs) − 1|
|r − a/εs||r|1−H

dr =

∫
|r|<η

|eiur − 1|
|r||r + a/εs|1−H

dr

≤ |u|
∫
|r|<η

dr

|r + a/εs|1−H

≤ |u|εs(1−H)

∫
|r|<η

dr

||a| − εsη|1−H

≤ Cεs(1−H).
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For the second integral, we have, with the change of variable r → r/εs,∫
η<|r−a/εs|<µ/εs

|eiu(r−a/εs) − 1|
|r − a/εs||r|1−H

dr = εs
∫
εsη<|εsr−a|<µ

|eiu(εsr−a)/εs − 1|
|εsr − a||r|1−H

dr

≤ εs(1−H)

(|a| − εsη)1−H

∫
εsη<|r−a|<µ

dr

|r − a|

≤ Cεs(1−H) log(1/ε).

For the last term, we �nd, after the change of variable r → r/εs,∫
|r−a/εs|>µ/εs

|eiu(r−a/εs) − 1|
|r − a/εs||r|1−H

dr = εs(1−H)

∫
|r−a|>µ

|eiu(r−a)/εs − 1|
|r − a||r|1−H

dr

≤ εs(1−H)

∫
|r−a|>µ

dr

|r − a||r|1−H
,

which concludes the proof of Lemma 8.2. �

9. Proof of Proposition 4.3

The proof is split into two steps. We start by constructing solutions to the fractional Itô-
Schrödinger equation (4.16) in the Fourier form. We prove the announced pathwise regularity

in Ŵα
∞(0, L) and in ĈH−θ∞ (0, L), and show that, up to a phase shift, the obtained solution is

the Fourier transform of the solution in the sense of De�nition 1.1. The second step is to prove
the convergence of the process X εω. We will show for this the convergence of the moments of
X εω and use a regularized process.

9.1. Existence theory for the fractional Itô-Schrödinger equation (4.16). As explained
in the outline, we construct solutions via a regularization procedure. The solutions will be
written in terms of Duhamel expansions, since, as in the proof of Proposition 4.2, it will be
enough to check the term by term convergence to obtain the convergence of the whole series.
We then introduce the process XAω , de�ned formally as

(9.1) XAω (z, κ) = φ0
ω(κ) +

∑
n≥1

XA,nω (z, κ),

where

XA,nω (z, κ) = (ikω)n
∫

∆n(z)

du(n)

∫
Sn

m(dq(n))eiGn(u(n),q(n))φ0
ω(Qn)

×
∫

(−A,A)n
dr(n)

n∏
m=1

eirmum

|rm|H−1/2
w(drm, qm),

(9.2)

with

(9.3) Gn(u(n),q(n)) = − 1

2kω

n∑
m=1

(|Qm|2 − |Qm−1|2)um.

Here, we use the same notation as in Section 8. Moreover, (w(dr, q))q∈S is the family of complex
Gaussian random measures, independent of m(dq), de�ned by (3.21), such that w∗(du, q) =
w(−du, q), and with covariance function

(9.4) E[w(du, q1)w∗(dv, q2)] =
CHΓ(2H − 1) sin(πH)

π
R̂(q1, q2)δ(u− v)dudv.



40 CHRISTOPHE GOMEZ AND OLIVIER PINAUD

We introduce as well the regularized standard fractional Brownian �eld BAH and its k−th
derivative bA,kH := ∂kuB

A
H (bAH := bA,1H ), for q ∈ S,

BAH(u, q) :=

√
H(2H − 1)

CH

∫ A

−A

eiru − 1

ir|r|H−1/2
w(dr, q),

bA,kH (u, q) :=

√
H(2H − 1)

CH

∫ A

−A

(ir)k−1eiru

|r|H−1/2
w(dr, q).

Note that bA,kH is well-de�ned since
(9.5)

E
[∫ z

0

du

∫
S
|m|(dq)|bA,kH (u, q)|2

]
≤ CE

[∫
S
|m|(dq)R̂(q, q)

] ∫ z

0

du

∫ A

−A

|r|2k−2dr

|r|2H−1
≤ CA.

We will use the notation B+∞
H = BH , with BH de�ned by (3.11). Let �nally

IA(ψ)(z, κ) := ikωσH

∫
S
m(dq)

∫ z

0

due−i(|κ−q|
2−|κ|2)u/(2kω)ψ(u, κ− q)dBAH(u, q),

for A ∈ [1,+∞], whenever it is well-de�ned, and let us remind the reader about the following
notation

Λα(BAH(q)) :=
1

Γ(1− α)
sup

0≤s≤t≤L
|D1−α

t− [BAH ]t−(s, q)|.

When A < +∞, we wrote IA in terms of the fractional integral de�ned in (3.15). Since BAH
has smooth trajectories, it follows from [36, Theorem 2.4] that the fractional integral is equal
to the usual Lebesgue integral.

Our goals are then to show that (XAω )A≥1 forms a Cauchy sequence in the appropriate metric
space, and to show that the limit satis�es (4.16). We start by addressing the path regularity
of XAω , and by characterizing it as a mild solution to a regularized fractional Itô-Schrödinger
equation.

Proposition 9.1. The series XAω de�ned by (9.1) converges in Ĉ0
∞(0, L), and we have

XAω (z, κ) = φ0
ω(κ) + ikωσH

∫
S
m(dq)

∫ z

0

e−i(|κ−q|
2−|κ|2)u/(2kω)XAω (u, κ− q)dBAH(u, q),(9.6)

with σ2
H = CH/(H(2H − 1)). Moreover, the trajectories of XAω belong to Ĉ∞∞(0, L), and for all

z ≥ 0,

(9.7) ‖XAω (z)‖L2(R2) = ‖XAω (0)‖L2(R2) =
1

2
‖f̂0(ω, ·)‖L2(R2).

The path regularity of XAω will be useful to justify future calculations. The proposition is
proved in Section 9.1.1. The next step is to recover the mild formulation of (2.5) in the Fourier
domain by passing to the limit A → +∞ in (9.6). We need for this uniform estimates in A.
They are consequences of next two technical lemmas that follow the ideas of [28]. The �rst
one (Lemma 9.1) is based on the Garsia-Rademich-Rumsey inequality [16] below:

Garsia-Rademich-Rumsey inequality: Let p̃ ≥ 1 and α̃ > 1/p̃. Then, there exists a
constant Cα̃,p̃ > 0 such that, for any continuous function f on [0, L], we have

|f(t)− f(s)|p̃ ≤ Cα̃,p̃|t− s|α̃p̃−1

∫ L

0

∫ L

0

|f(u)− f(v)|p̃

|u− v|α̃p̃+1
dudv,
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for all (t, s) ∈ [0, L], and with the convention 0/0 = 0.

Owing the inequality above, the increments (in time) of BAH(t, q) can be estimated as follows:

Lemma 9.1. Let θ ∈ (0, H) and A ∈ [1,+∞]. There exist positive random variables (ZAθ (q))q∈S ,
such that for all q ∈ S,

|BAH(t, q)−BAH(s, q)| ≤ ZAθ (q)|t− s|H−θ

with probability one, and for all p ≥ 1,

sup
A≥1

sup
q∈S

E[|ZAθ (q)|p] < +∞.

Therefore, the trajectories of BAH belong to ĈH−θ∞ (0, L) for all θ ∈ (0, H), and we also have

sup
A≥1

sup
q∈S

E
[
Λpα(BAH(q))

]
< +∞,

for α ∈ (1−H, 1/2), and all p ≥ 1.

The second lemma we need consists in adapting [28, Proposition 4.1] to our context, and
provides us with estimates on IA(ψ).

Lemma 9.2. Let A ∈ [1,+∞], k ≥ 0, α ∈ (1 −H, 1/2), and ψ ∈ Ŵα
k+2α(0, L). We have the

following relations:

(1) For all 0 ≤ s < t ≤ L,

‖IA(ψ)(t)− IA(ψ)(s)‖Hk ≤ K1,α,k

∫
S
|m|(dq)Λα(BAH(q))

×
∫ t

s

dr
[
‖ψ(r)‖Hk+2α

+
‖ψ(r)‖Hk
(r − s)α

+

∫ r

s

dy
‖ψ(r)− ψ(y)‖Hk

(r − y)α+1

]
.

(2) For all t ∈ [0, L],

‖IA(ψ)(t)‖Hk +

∫ t

0

‖IA(ψ)(t)− IA(ψ)(s)‖Hk
(t− s)α+1

ds ≤ K2,α,k

∫
S
|m|(dq)Λα(BAH(q))

×
∫ t

0

dr((t− r)−2α + r−α)
[
‖ψ(r)‖Hk+2α

+ ‖ψ(r)‖Hk +

∫ r

0

dy
‖ψ(r)− ψ(y)‖Hk

(r − y)α+1

]
.

(3) The following estimate holds:

‖IA(ψ)‖1−α,C,Hk ≤ K3,α,k

∫
S
|m|(dq)Λα(BAH(q))

[
‖ψ‖α,k + sup

r∈[0,L]

‖ψ(r)‖Hk+2α

]
.

Here, (Kj,α,k)j∈{1,2,3} are non random positive constants.

Note that there is a loss of regularity in the q variable since estimates on IA(ψ) in Hk
require ψ ∈ Hk+2α. This is due to the lack of regularizing e�ects of the Schrödinger semigroup:
regularity in time has to be exchanged for some regularity in space. The proofs of the last two
lemmas are o�ered below.

Proof of Lemma 9.1. Let θ ∈ (0, H) and p ≥ 1 such that p/θ ∈ N∗. According to the Garsia-
Rademich-Rumsey inequality with α̃ = H − θ/2 and p̃ = 2/θ, we have for all 0 ≤ s < t ≤ L,

|BAH(t, q)−BAH(s, q)| ≤ |t− s|H−θ C
[ ∫ L

0

∫ L

0

|BAH(u, q)−BAH(v, q)|2/θ

|u− v|2H/θ
dudv

]θ/2
︸ ︷︷ ︸

:=ZAθ (q)

a.s.,



42 CHRISTOPHE GOMEZ AND OLIVIER PINAUD

where C is a deterministic constant. Moreover,

E
[
|ZAθ (q)|p

]
≤ CpL(p−1)θ

[ ∫ L

0

∫ L

0

E[|BAH(u, q)−BAH(v, q)|2p/θ]
|u− v|2Hp/θ

dudv
]θ/2

,

thanks to the Jensen's inequality applied with r ∈ R+ 7→ rp on the double integral, and the
Hölder's inequality for the expectation. Using that BAH(u, q)−BAH(v, q) is a mean zero Gaussian
random variable, we �nd

E[|BAH(u, q)−BAH(v, q)|2p/θ] ≤ Cp,θE[|BAH(u, q)−BAH(v, q)|2]p/θ

with

BAH(u, q)−BAH(v, q) =

√
H(2H − 1)

CH

∫ A

−A

(eir(u−v) − 1)eirv

ir|r|H−1/2
w(dr, q).

Hence, using (9.4)

E[|BAH(u, q)−BAH(v, q)|2] = C

∫ A

−A

|eir(u−v) − 1|2

|r|2H+1
drR̂(q, q)

≤ C|u− v|2H
∫ ∞
−∞

|eir − 1|2

|r|2H+1
drR̂(q, q),

after the change of variable r → r/(u− v). This then yields

E[|BAH(u, q)−BAH(v, q)|2p/θ] ≤ C̃p,θ|u− v|2Hp/θR̂p/θ(q, q) ≤ C̃p,θ|u− v|2Hp/θ,
and gives the �rst point of the lemma. Now, remembering (3.14) and (3.16) we have

|D1−α
t− [BAH ]t−(s, q)| ≤ 1

Γ(α)

[ |BAH(t, q)−BAH(s, q)|
(t− s)1−α

+ (1− α)

∫ t

s

|BAH(y, q)−BAH(s, q)|
(y − s)2−α dy

]
,

and following the same lines as above, with now using a θ̃ ∈ (0, H +α− 1) such that p/θ̃ ∈ N∗,
we have

E
[
Λpα(BAH(q))

]
≤ Cp,θ̃,αE[|ZAθ (q)|p] ≤ C̃p,θ̃,αR̂

p/2(q, q),

which concludes the proof of the lemma. �

Proof of Lemma 9.2. According to the �rst item of [28, Proposition 4.1] and the fact that∫ r

s

dy
|1− ei(|κ|2−|κ−q|2)(r−y)/(2kω)|

(r − y)α+1
≤
∫ L

0

dy
|1− ei(|κ|2−|κ−q|2)y/(2kω)|

yα+1

≤ C(||κ|2 − |κ− q|2|)α
∫ ∞

0

dy
|1− eiy|
yα+1

≤ C̃|q|α|2κ− q|α,

with the change of variable y → 2kωy/(|κ|2 − |κ− q|2), we have

‖IA(ψ)(t)−IA(ψ)(s)‖Hk ≤ C
∫
S
|m|(dq)Λα(BAH(q))

∫ t

s

dr
[
‖|2 · −q|αψ(r, · − q)‖Hk

+
‖ψ(r, · − q)‖Hk

(r − s)α
+ α

∫ r

s

dy
‖ψ(r, · − q)− ψ(y, · − q)‖Hk

(r − y)α+1

]
,

which gives the �rst point of the lemma after the change of variable κ → κ + q and basic
computations. The second point follows closely the proof of the �rst item of [28, Proposition
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4.1]. The last point is a direct consequence of the �rst one. In fact, taking s = 0 in the �rst
relation yields

‖IA(ψ)(t)‖Hk ≤ C1,α,k

[
sup
t∈[0,L]

‖ψ(t)‖Hk+2α
+ sup
t∈[0,L]

[
‖ψ(t)‖Hk +

∫ t

0

‖ψ(t)− ψ(s)‖Hk
(t− s)α+1

ds
]]
,

and also

‖IA(ψ)(t)− IA(ψ)(s)‖Hk

≤ C2,α,k(t− s)1−α
[

sup
t∈[0,L]

‖ψ(t)‖Hk+2α
+ sup
t∈[0,L]

[
‖ψ(t)‖Hk +

∫ t

0

‖ψ(t)− ψ(s)‖Hk
(t− s)α+1

ds
]]
.

This concludes the proof of the lemma. �

Now, using the previous two technical lemmas and Proposition 9.1, we have the following
result proved in Section 9.1.2.

Proposition 9.2. Let θ ∈ (0, H − 1/2). The family (XAω )A≥1 converges in probability as

A→ +∞ in ĈH−θ∞ (0, L), to a limit denoted by Xω, which is the unique pathwise solution to

Xω(z, κ) = φ0
ω(κ) + ikωσH

∫
S
m(dq)

∫ z

0

e−i(|κ−q|
2−|κ|2)u/(2kω)Xω(u, κ− q)dBH(u, q).(9.8)

A corollary (proved in Section 9.1.3) of this convergence result is the following.

Corollary 9.1. The process de�ned by Ψ̂A
ω (z, κ) = e−i|κ|

2z/(2kω)XAω (z, κ) converges in prob-

ability as A → +∞ in ĈH−θ∞ (0, L) to Ψ̂ω(z, κ) = e−i|κ|
2z/(2kω)Xω(z, κ), which is the unique

pathwise solution to

(9.9) Ψ̂ω(z, κ) = Ψ̂ω(0, κ)− i|κ|
2

2kω

∫ z

0

Ψ̂ω(u, κ)du+ ikωσH

∫
S
m(dq)

∫ z

0

Ψ̂ω(u, κ−q)dBH(u, q).

It remains to address the last point of Proposition 4.3, and to show that we can Fourier
transform Ψ̂ω to recover the fractional Schrödinger equation of De�nition 1.1. It is just a
matter of switching order of integration. The proof is given in section 9.1.3 for the sake of
completeness.

Proposition 9.3. The Fourier transform realize a one-to-one correspondence between the
solution of (9.9) and the ones of (2.5).

9.1.1. Proof of Proposition 9.1. The �rst step consists in studying the regularity of each term
Xn,Aω in the series (9.1). This is straightforward: since φ0

ω ∈ Hk, for all k ∈ N, recasting then
XA,nω in terms of bAH as

XA,nω (z, κ) = (ikω)n
∫

∆n(z)

du(n)

∫
Sn

m(dq(n))eiGn(u(n),q(n))
n∏

m=1

bAH(um, qm)φ0
ω(Qn),(9.10)

it is a direct consequence of (9.5), the Jensen inequality and the Fubini theorem that XA,nω ∈
C1([0, L],Hk). We also obtain the recursive formula below by permuting order of integration,

(9.11) Xn,Aω (z, κ) = ikωσH

∫
S
m(dq)

∫ z

0

due−i(|κ−q|
2−|κ|2)u/(2kω)Xn−1,A

ω (u, κ− q)dBAH(u, q).

Introducing, for A ≥ 1 and N ∈ N∗,

(9.12) XAω,N :=

N∑
n=0

Xn,Aω ,
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which then satis�es
(9.13)

XAω,N (z, κ) = φ0
ω(κ) + ikωσH

∫
S
m(dq)

∫ z

0

due−i(|κ−q|
2−|κ|2)u/(2kω)XAω,N−1(u, κ− q)dBAH(u, q),

we show now that (XAω,N )N is a Cauchy sequence in probability in C0([0, L],Hk) for all k ≥ 1

and A ≥ 1. We will use the following result (see [9, Theorem 3.9 pp. 104]).

Theorem 9.1. Let (E, d) be a complete metric space. A sequence (Xn)n≥0 of E-valued random
variable converges in probability if and only if

∀η > 0 and ν > 0, ∃n0 > 0 s.t. ∀n,m ≥ n0, P(d(Xn, Xm) > η) ≤ ν,
that is (Xn)n≥0 is a Cauchy sequence in probability.

Let us �rst remark that it is enough to work on the event

E =

(∫
S
|m|(dq)

(∫ L

0

|bA,2H (u, q)|du+ |bA,1H (0, q)|

)
≤M

)
,

where M > 0 is arbitrary. Indeed, using the Markov and Cauchy-Schwarz inequalities,

P
(∫ L

0

du

∫
S
|m|(dq)|bA,2H (u, q)| > M

)
≤ C

M

(
E

[∫ L

0

du

∫
S
|m|(dq)|bA,2H (u, q)|2

])1/2

≤ CA
M

,

according to (9.5), and a similar estimate holds for the term involving bA,1H (0, q) after an easy
adaptation of (9.5). Hence, on the event E, we have for all u ∈ [0, L]

(9.14)

∫
S
|m|(dq)|bA,1H (u, q)| ≤

∫
S
|m|(dq)

(∫ u

0

|bA,2H (v, q)|dv + |bA,1H (0, q)|
)
≤M.

It then follows from (9.2) and the latter bound, that

|XA,nω (z, κ)| ≤ Cn
∫

∆n(z)

du(n)
n∏
j=1

∫
S
|m|(dqj)|bA,1H (uj , qj)||f̂0(ω,Qn)|

≤ Cn

n!

∫
[0,z]n

du(n)
n∏
j=1

∫
S
|m|(dqj)|bA,1H (uj , qj)||f̂0(ω,Qn)|,

where the division by n! comes from the integration over ∆n(z) as in (6.1). Now, from the
de�nition (9.2) of Xn,Aω , the weight in the Hk-norm can be simpli�ed using that

|κ| ≤ |κ− q1 − · · · − qn|+ |q1 + · · ·+ qn| ≤ rf̂0 + nrS ,

as long as Qn = κ− q1 − · · · − qn ∈ Suppf̂0 and q1, . . . , qn ∈ S. As a result, we have

‖Xn,Aω ‖2C0([0,L],Hk) = sup
z∈[0,L]

∫
(1 + |κ|2)k/2|Xn,Aω (z, κ)|2dκ

≤ (CLM)2n

(n!)2

∫
(1 + (|κ|+ n · rS)2)k/2|f̂0(ω, κ)|2dκ

≤ (CLM)2n

(n!)2
(1 + (rf̂0 + n · rS)2)k/2‖f̂0(ω, ·)‖2H0

,

yielding the desired Cauchy property of the partial sum (XAω,N )N . Now, using

‖IA(XAω −XAω,N )‖C0([0,L],Hk) ≤ C
∫ L

0

du

∫
S
|m|(dq)|bAH(u, q)|‖XAω −XAω,N‖C0([0,L],Hk),
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it su�ces to pass to the limit N → +∞ in (9.13) to obtain (9.6). The fact that ∂pzXAω ∈
C0([0, L],Hk) for all p ≥ 0 is a consequence of (9.5) and of (9.6). It remains to obtain the
conservation of the L2 norm. Since we just proved that XAω ∈ C1([0, L],Hk), we can write

(9.15) ∂zXAω (z, κ) = ikωσH

∫
S
m(dq)e−i(|κ−q|

2−|κ|2)z/(2kω)bAH(z, q)XAω (z, κ− q),

so that 〈
∂zXAω (z),XAω (z)

〉
L2(R2)

= ikωσH

∫∫
dκm(dq)e−i(|κ−q|

2−|κ|2)z/(2kω)bAH(z, q)

×XAω (z, κ− q)XAω (z, κ) ∈ iR,

since S, m and w(dr, ·) are assumed to be symmetric. As a result, we obtain

d

dz
‖XAω (z)‖2L2(R2) = 2Re

(〈 d
dz
XAω (z),XAω (z)

〉
L2(R2)

)
= 0,

which concludes the proof of Proposition 9.1.

9.1.2. Proof of Proposition 9.2. The �rst step of the proof starts with the following lemma,
proved further in this section.

Lemma 9.3. The family (XAω )A≥1 is Cauchy in probability on the complete metric space

(Ŵα
∞(0, L), d̂α,∞).

Owing the latter lemma, let us denote by Xω the limit of (XAω )A≥1 in probability in

(Ŵα
∞(0, L), d̂α,∞), and let us prove that this limit satis�es (9.8). Note that the last point

of Lemma 9.2 implies that (XAω )A≥1 is also Cauchy in probability in ĈH−θ∞ (0, L). According to
the second point of Lemma 9.2, we have

‖I+∞(Xω −XAω )‖α,k ≤ Kα,ω,k

∫
S
|m|(dq)Λα(BH(q))‖Xω −XAω ‖α,k+2

and

‖I+∞(XAω )− IA(XAω )‖α,k ≤ K̃α,ω,k

∫
S
|m|(dq)Λα(BH(q)−BAH(q))‖XAω ‖α,k+2.

For the �rst term, we have for all η and M > 0,

P
(
‖I+∞(Xω −XAω )‖α,k > η

)
≤ P

(
‖Xω −XAω ‖α,k+2 > η/(MKα,k)

)
+ P

(∫
S
m(dq)Λα(BH(q)) ≥M

)
,

so that according to Lemmas 9.1 and 9.3,

(9.16) lim
A→+∞

P
(
‖I+∞(Xω −XAω )‖α,k > η

)
= 0.

For the second term, we �nd in the same way,

P
(
‖I+∞(XAω )− IA(XAω )‖α,k > η

)
≤ P

(
‖XAω ‖α,k+2 ≥M

)
+ P

(∫
S
|m|(dq)Λα(BH(q)−BAH(q)) > η/(MKα,k)

)
.
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Here, for the �rst term on the right hand side, using that the convergence in probability implies
the convergence in law, the mapping theorem [6, Theorem 2.7 pp. 21], and the Portmanteau
Theorem [6, Theorem 2.1 pp. 16], we have

lim sup
A→+∞

P
(
‖XAω ‖α,k+2 ≥M

)
≤ P

(
‖Xω‖α,k+2 ≥M

)
,

and

lim
M→+∞

P
(
‖Xω‖α,k+2 ≥M

)
= 0, since P(‖Xω‖α,k+2 < +∞) = 1.

Second, we have

(9.17) lim
A→+∞

P
(∫
S
|m|(dq)Λα(BH(q)−BAH(q)) > η/(MKα,k)

)
= 0,

following the proof of Lemma 9.6 below. As a result, combining (9.16) and (9.17) we obtain
that Xω is a solution of (9.8). The next lemma addresses the conservation relation and the
pathwise uniqueness of solutions to (9.8), and concludes the proof of Proposition 9.2.

Lemma 9.4. Equation (9.8) admits a unique pathwise solution in Ŵα
∞(0, L) for any α ∈

(1−H, 1/2). Denoting by Xω this solution, we have the conservation relation:

‖Xω(z)‖L2(R2) =
1

2
‖f̂0(ω, ·)‖2L2(R2) ∀z ∈ [0, L].

From this relation, we immediately deduce the conservation of the L2-norm for Ψ̂ω and Ψω.

Proof. Uniqueness follows directly from the conservation relation and the linearity of the
Schrödinger equation. We prove the relation as follows. Let us consider a solutions Xω of
(9.8) in Ŵα

∞(0, L). Using the last point of Lemma 9.2, this solution belongs to ĈH−θ∞ (0, L) for
any θ ∈ (0, H − 1/2). Then, according to the change of variable formula [36, Theorem 4.3.1],
we obtain

‖Xω(z)‖2L2(R2) − ‖Xω(0)‖2L2(R2) = 2Re
(∫

dκ

∫ z

0

Xω(u, κ)dXω(u, κ)
)

= 2kωσHRe
(
i

∫
dκ

∫
S
m(dq)

∫ z

0

dBH(u, q)ei(|κ−q|
2−|κ|2)u/(2kω)Xω(z, κ)Xω(z, κ− q)

)
= 0,

since m, S, and w(dr, ·) are symmetric. �

The section is ended by the proofs of Lemmas 9.3.

Proof of Lemma 9.3. Let η > 0, ν > 0, N > 0, and let us write

P(d̂α,∞(XA+B
ω ,XAω ) > η) ≤ P(d̂α,∞(XA+B

ω ,XA+B
ω,N ) > η/3)

+ P(d̂α,∞(XA+B
ω,N ,XAω,N ) > η/3)

+ P(d̂α,∞(XAω,N ,XAω ) > η/3),

(9.18)
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where XAω,N is de�ned by (9.12). First, let M > 0 and kη such that
∑
k≥kη 2−k ≤ η/6, and so

that

P(d̂α,∞(XAω,N ,XAω ) > η/3) ≤ P
( kη∑
k=0

‖XAω,N −XAω ‖α,k > η/6
)

≤ P
( kη∑
k=0

‖XAω,N −XAω ‖α,k > η/6,

∫
S
|m|(dq)Λα(BAH(q)) ≤M

)
+ P

(∫
S
|m|(dq)Λα(BAH(q)) > M

)
.

(9.19)

In order to treat the �rst term in the r.h.s, we use that

‖XAω,N −XAω ‖α,k ≤
∑
n≥N

‖Xn+1,A
ω ‖α,k,

which yields, together with the Markov's inequality

P
( kη∑
k=0

‖XAω,N −XAω ‖α,k > η/6,

∫
S
|m|(dq)Λα(BAH(q)) ≤M

)

≤ 6

η

kη∑
k=0

∑
n≥N

E
[
‖Xn+1,A

ω ‖α,k1( ∫
S |m|(dq)Λα(BAH(q))≤M

)].
In order to take care of the expectation above, we have, according to (9.11) and the �rst point
of Lemma 9.2,

‖Xn+1,A
ω ‖α,k = ‖IA(Xn,Aω )‖α,k ≤ Kα,kM sup

z∈[0,L]

(∫ z

0

ds
(
J An,k(s, 0) +

1

(z − s)α+1

∫ z

s

drJ An,k(r, s)
))

≤ Kα,kM
(∫ L

0

J An,k(s, 0)ds+ sup
z∈[0,L]

∫ z

0

ds

(z − s)α+1

∫ z

s

drJ An,k(r, s)
)
,

where we have introduced the notation

J An,k(u, v) := ‖Xn,Aω (u)‖Hk+2α
+
‖Xn,Aω (u)‖Hk

(u− v)α
+

∫ u

v

dy
‖Xn,Aω (u)−Xn,Aω (y)‖Hk

(u− y)α+1
.

In the latter inequality above, we need to get ride of the supz∈[0,L] in order to interchange
expectation and time integrals. To this end, using the Cauchy-Schwarz inequality and that
α ∈ (1−H, 1/2), we have

‖Xn+1,A
ω ‖α,k ≤ Kα,kM

(∫ L

0

J An,k(s, 0)ds+ sup
z∈[0,L]

∫ z

0

ds

(z − s)α+1/2

(∫ z

s

(J An,k(r, s))2dr
)1/2)

≤ Kα,kM
(∫ L

0

J An,k(s, 0)ds+
(∫ L

0

ds

sα+1/2

(∫ L

0

(J An,k(r, s))2dr
)1/2)

.

Using once again the Cauchy-Schwarz inequality, we obtain

E
[
‖Xn+1,A

ω ‖α,k1( ∫
S |m|(dq)Λα(BAH(q))≤M

)]
≤ K ′α,kM

(∫ L

0

E[J An,k(s, 0)]ds+ sup
s∈[0,L]

(∫ L

0

E[(J An,k(r, s))2]dr
)1/2)

.
(9.20)
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We now need the following technical lemma that we prove at the end of this section.

Lemma 9.5. For all (k, n) ∈ N× N∗ and 0 ≤ v ≤ u ≤ L, we have

lim sup
A→+∞

E[‖Xn,Aω (u)−Xn,Aω (v)‖2Hk ] ≤ Ck,H,f̂0
n2kC2n

n!
((u− v)2H + u2H − v2H),

for some positive constants C and Ck,H,f̂0 .

From this result, and using that |u2H − v2H | ≤ CH,L|u− v|, it is direct to see that

lim sup
A→+∞

∫ L

0

E[J An,k(s, 0)]ds ≤ Kα,H,f̂0

nkCn

(n!)1/2

(
1 +

∫ L

0

1

rα
+

1

rα+1/2
dr
)
,

and the same type of bound holds for sups∈[0,L](
∫ L

0
E[(J An,k(r, s))2]dr)1/2. Then, going back to

(9.20), we have

(9.21) E
[
‖Xn+1,A

ω ‖α,k1( ∫
S |m|(dq)Λα(BAH(q))≤M

)] ≤ K ′
α,H,f̂0

M
nkCn

(n!)1/2
.

Injecting this relation in (9.19), we �nally obtain using Lemma 9.1, together with the Markov's
inequality

(9.22) lim sup
A→+∞

P(d̂α,∞(XAω,N ,XAω ) > η/3) ≤ C1

M
+ C1,η,α,H,f̂0

M
∑
n≥N

nkηCn

(n!)1/2
.

In the same way, we obtain

(9.23) lim sup
A→+∞

sup
B≥0

P(d̂α,∞,0(XA+B
ω,N ,XA+B

ω ) > η/3) ≤ C2

M
+ C2,η,α,H,f̂0

M
∑
n≥N

nkCn

(n!)1/2
.

For the remaining term of (9.18), we have �rst

P(d̂α,∞(XA+B
ω,N ,XAω,N ) > η/3) ≤ P

( kη∑
k=0

‖XA+B
ω,N −XAω,N‖α,k > η/6

)

≤
kη∑
k=0

P
(
‖XA+B

ω,N −XAω,N‖α,k > η/(6(kη + 1))
)
.

Second, according to (9.11), we have for all n ∈ {0, . . . , N − 1},

(Xn+1,A+B
ω −Xn+1,A

ω )(z, κ) = IA+B(Xn,A+B
ω −Xn,Aω )(z, κ)

+ ikωσH

∫
S
m(dq)

∫ z

0

due−i(|κ−q|
2−|κ|2)u/(2kω)Xn,Aω (u, κ− q)d(BA+B

H −BAH)(u, q).
(9.24)

To treat this relation, we make use inductively of the second point of Lemma 9.2. In order
to deal with the second part on the r.h.s of (9.24), we will use this result with BA+B

H − BAH
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instead of BAH . We then have,

‖Xn+1,A+B
ω −Xn+1,A

ω ‖α,k ≤ C1,α,k

∫
S
|m|(dq)Λα(BA+B

H (q)−BAH(q))‖Xn,Aω ‖α,k+2α

+ C2,α,k

∫
S
|m|(dq)Λα(BA+B

H (q))‖Xn,A+B
ω −Xn,Aω ‖α,k+2α

≤ Cn,α,k
∫
S
|m|(dq)Λα(BA+B

H (q)−BAH(q))

n∑
m=0

‖Xm,Aω ‖α,k+2α(n+1−m)

×
[ ∫
S
|m|(dq)Λα(BA+B

H (q))
]n−m

.

(9.25)

since X 0,A+B
ω = X 0,A

ω = φ0
ω. Now, using the facts that

P
(
‖XA+B

ω,N −XAω,N‖α,k > η/(6(kη + 1))
)

≤
N∑
n=0

P
(
‖Xn,A+B

ω −Xn,Aω ‖α,k > η/(6(kη + 1)(N + 1))
)
,

as well as

P
(
‖Xn,A+B

ω −Xn,Aω ‖α,k > C1

)
≤ P

(
‖Xn,A+B

ω −Xn,Aω ‖α,k > C1,

∫
S
|m|(dq)Λα(BAH(q)) ≤M,

∫
S
|m|(dq)Λα(BA+B

H (q)) ≤M
)

+ P
(∫
S
|m|(dq)Λα(BA+B

H (q)) > M
)

+ P
(∫
S
|m|(dq)Λα(BAH(q)) > M

)
,

we have, according to Lemma 9.1, the Markov's inequality, and the second inequality of (9.25)
together with (9.21),

P
(
‖Xn,A+B

ω −Xn,Aω ‖α,k > C1

)
≤ C2

M
+ P

(∫
S
|m|(dq)Λα(BA+B

H (q)−BAH(q)) ≥ C1,n,M

)
≤ C2

M
+ E

[ ∫
S
|m|(dq)Λα(BA+B

H (q)−BAH(q))
]
/C1,n,M

for all M > 0, and where C1, C2, and C1,n,M are positive constant independent of A and B.
Note that the growth of C1,n,M as a function of n does not matter here since the term above is
summed for n ≤ N . Gathering all the previous estimates, we �nd, combining (9.22) and (9.23)
in (9.18)

lim sup
A→+∞

sup
B≥0

P
(
d̂α,∞(XA+B

ω ,XAω ) > η
)

≤ C ′

M
+ Cη,α,H,f̂0M

∑
n≥N

nkCn

(n!)1/2

+ CM,N lim sup
A→+∞

sup
B≥0

E
[ ∫
S
|m|(dq)Λα(BA+B

H (q)−BAH(q))
]

for anyM > 0 and N large enough. Then, the following lemma allows us to conclude the proof
of Lemma 9.3.
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Lemma 9.6. Let α ∈ (1−H, 1/2), and

BA+B
A (u, q) := BA+B

H (u, q)−BAH(u, q) =

∫
{A<|r|<A+B}

eiru − 1

ir|r|H−1/2
w(dr, q).

We have

lim
A→+∞

sup
B≥0

sup
q∈S

E
[
Λα(BA+B

A (q))
]

= 0.

As a result, we �nally obtain

lim sup
A→+∞

sup
B≥0

P
(
d̂α,∞(XA+B

ω ,XAω ) > η
)
≤ C ′

M
+ Cη,α,H,f̂0M

∑
n≥N

nkCn

(n!)1/2
,

for any M > 0 and N large enough. Passing to the limit in N �rst, and then in M in the
above inequality ends the proof of Lemma 9.3. �

Proof of Lemma 9.6. Following exactly the proof of Lemma 9.1, we have for θ̃ ∈ (0, H+α− 1)

such that 1/θ̃ ∈ N∗,

E
[
Λα(BA+B

A (q))
]
≤ Kθ̃,αL

H+α−1−θ̃[1 + 1/(H + α− 1− θ̃)
]

×
[ ∫ L

0

∫ L

0

E[|BA+B
A (u, q)−BA+B

A (v, q)|2/θ̃]
|u− v|2H/θ̃

dudv
]θ̃/2

,

and since BA+B
A (u, q)−BA+B

A (v, q) is a Gaussian random variable, one has

sup
q∈S

E
[
Λα(BA+B

A (q))
]
≤ K̃θ̃,α sup

q∈S
R̂1/θ̃(q, q)

×
[ ∫ L

0

∫ L

0

(∫
{A<|r|<A+B}

|eir(u−v) − 1|2

|r|2H+1
dr
)1/θ̃ dudv

|u− v|2H/θ̃
]θ̃/2

,

The proof is ended using the dominated convergence owing that∫
{|r|>A}

|eir(u−v) − 1|2

|r|2H+1
dr ≤ dH |u− v|2H .

�

We end the section with the proof of Lemma 9.5.

Proof of Lemma 9.5. Let us start with the following remark. Reminding the de�nition (9.2)
of Xn,Aω , and using that

|κ| ≤ |κ− q1 − · · · − qn|+ |q1 + · · ·+ qn| ≤ rf̂0 + nrS ,

as long as Qn = κ− q1 − · · · − qn ∈ Suppf̂0 and q1, . . . , qn ∈ S, the weight of the Hk-norm can
be simpli�ed as follows :

‖Xn,Aω (u)−Xn,Aω (v)‖2Hk ≤ (1 + (rf̂0 + nrS)2)k/2‖Xn,Aω (u)−Xn,Aω (v)‖2L2(R2).

Moreover, we also have

XA,nω (u, κ)−XA,nω (v, κ) = (ikω)n
∫

∆n(u,v)

du(n)

∫
Sn

m(dq(n))eiGn(u(n),q(n))φ0
ω(Qn)

×
∫

(−A,A)n
dr(n)

n∏
m=1

eirmum

|rm|H−1/2
w(drm, qm),

(9.26)
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where

∆n(u, v) := {u(n) = (u1, . . . , un) ∈ [0, L]n, s.t. 0 ≤ un ≤ · · · ≤ u1 and v ≤ u1 ≤ u}.
As a result, taking the L2 norm and then the expectation of (9.26), we have using the Fatou's
lemma

lim sup
A→+∞

E
[
‖Xn,Aω (u)−Xn,Aω (v)‖2L2(R2)

]
≤ ‖f̂0(ω, ·)‖2L2(R2)C

2n

∫
dκ

∫
∆n(u,v)

du
(n)
1

∫
∆n(u,v)

du
(n)
2

∫∫
E[|m|(dq(n)

1 )|m|(dq(n)
2 )]

× lim sup
A→+∞

∣∣∣E[ n∏
m=1

∫ A

−A

eir1,mu1,m

|r1,m|H−1/2
w(dr1,m, q1,m)

∫ A

−A

eir2,mu2,m

|r2,m|H−1/2
w(dr2,m, q2,m)

]∣∣∣.
Using the symmetry of the variables u

(n−1)
1 := (u12, u13, . . . , u1n) and u

(n−1)
2 := (u22, u23, . . . , u2n)

in the above expectation, the integrals
∫

∆n(u,v)
du

(n)
1

∫
∆n(u,v)

du
(n)
2 can be replaced by

1

((n− 1)!)2

∫ u

v

du11

∫
[0,u11]n−1

du
(n−1)
1

∫ u

v

du21

∫
[0,u21]n−1

du
(n−1)
2 .

Moreover, we have with (3.2) and (3.6),

lim
A→+∞

E
[ n∏
m=1

∫ A

−A

eir1,mu1,m

|r1,m|H−1/2
w(dr1,m, q1,m)

∫ A

−A

eir2,mu2,m

|r2,m|H−1/2
w(dr2,m, q2,m)

]
= CH

∑
F2,n

∏
(α,β)∈F2,n

|uα − uβ |2H−2 R̂(qα, qβ)︸ ︷︷ ︸
≤1

,

where the sum is taken over all the pairings F2,n of {1, 2} × {1, . . . , n}. Now, in order to
integrate with respect to the u-variables, we have to distinguish three cases on the pairings
F2,n. The three cases are the following :

(1) (1, 1) and (2, 1) are paired in F2,n;
(2) (1, 1) is paired in F2,n with an element of the form (1, j) where j ∈ {2, . . . , n};
(3) (1, 1) is paired in F2,n with an element of the form (2, j) where j ∈ {2, . . . , n}.
Now, setting

Iu,v :=

∫ u

v

du11

∫
[0,u11]n−1

du
(n−1)
1

∫ u

v

du21

∫
[0,u21]n−1

du
(n−1)
2

∏
(α,β)∈F2,n

|uα − uβ |2H−2,

we have for point (1)

Iu,v ≤
∫ u

v

∫ u

v

du11du21|u11 − u21|2H−2
(∫

[0,L]2
|w − w′|2H−2dwdw′

)n−1

≤ Kn
1,H(u− v)2H ,

and for point (2)

Iu,v ≤
∫ u

v

∫ u11

0

du11du1j |u11 − u1j |2H−2
(∫

[0,L]2
|w − w′|2H−2dwdw′

)n−1

≤ Kn
2,H(u2H − v2H).

In the third case, we have to distinguish in Iu,v the two cases u21 ≤ u11 and u11 ≤ u21. For the
�rst one u21 ≤ u11, we follow the same strategy as for point (2) and we obtain the same result.
For the second case u21 ≤ u11, we rather work with u21, and we have two possibilities. If (2, 1)
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is paired in F2,n with an element of the form (2, j) with j ∈ {2, . . . , n}, we proceed as in point
(2) above, and if (2, 1) is paired in F2,n with an element of the form (1, j) with j ∈ {2, . . . , n},
we proceed as in the case u21 ≤ u11 by exchanging the role of u11 and u22.

Finally, using that the number of pairing of {1, 2} × {1, . . . , n} is (2n− 1)!! = (2n)!/(2nn!)
we have

E
[
‖Xn,Aω (u)−Xn,Aω (v)‖2L2(R2)

]
≤ ‖f̂0(ω, ·)‖2L2(R2)

C2n
H (2n− 1)!!

((n− 1)!)2
((u− v)2H + u2H − v2H)

≤ ‖f̂0(ω, ·)‖2L2(R2)

C2n
1,H

n!
((u− v)2H + u2H − v2H),

which concludes the proof of Lemma 9.5. �

9.1.3. Proof of Corollary 9.1. First, it is clear that Ψ̂A converges in probability as A → +∞
in ĈH−θ∞ (0, L) to Ψ̂ω. Moreover according to (9.15), we obtain

Ψ̂A
ω (z, κ) = Ψ̂A

ω (0, κ)− i|κ|2

2kω

∫ z

0

Ψ̂A
ω (u, κ)du+ ikωσH

∫
S
m(dq)

∫ z

0

Ψ̂A
ω (u, κ− q)dBAH(u, q)

(9.27)

and we only need to address the convergence of the last term. Introducing

KA(ψ)(z, κ) = ikωσH

∫
S
m(dq)

∫ z

0

ψ(u, κ− q)dBAH(u, q),

for A ∈ [1,+∞] where B+∞
H = BH , we have

‖KA(Ψ̂A
ω )−K+∞(Ψ̂ω)‖α,k ≤ ‖(KA −K+∞)(Ψ̂ω)‖α,k + ‖KA(Ψ̂A

ω − Ψ̂ω)‖α,k

≤ |kω|σH
∫
S
|m|(dq)Λα(B+∞

A (q))‖Ψ̂ω‖α,k

+ |kω|σH
∫
S
|m|(dq)Λα(BAH(q))‖Ψ̂A

ω − Ψ̂ω‖α,k,

so that proceeding as in the proof of Proposition 9.2, we obtain that, for all η > 0

lim
A→+∞

P
(
‖KA(Ψ̂A

ω )−K+∞(Ψ̂ω)‖α,k > η
)

= 0.

Therefore, we can pass to the limit A→ +∞ in (9.27) and obtain that Ψ̂ω satis�es the desired
equation. Uniqueness follows from the one-to-one correspondence between (9.8) and (9.9) via

Ψ̂ω and Xω.

9.1.4. Proof of Proposition 9.3. With the notations of the previous section, we just need to
show that for all φ ∈ L2(R2)〈

K̃+∞(Ψω)(z), φ
〉
L2(R2)

= (2π)2
〈
K+∞(Ψ̂ω)(z), φ̂

〉
L2(R2)

where, for A ∈ [1,+∞] and the notations W+∞
H = WH ,

K̃A(ψ)(z, x) = ikω

∫ z

0

ψ(u, x)dWA
H (u, x), WA

H (z, x) = σH

∫
S
m(dq)e−iq·xBAH(u, q).

To this end, we prove that for all η > 0

P
(
|
〈
K̃+∞(Ψω)(z), φ

〉
L2(R2)

− (2π)2
〈
K+∞(Ψ̂ω)(z), φ̂

〉
L2(R2)

| > η
)

= 0.
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The proof consists in approximating WH by WA
H with A < +∞ in order to have su�cient

regularity to justify the calculations. We thus write〈
K̃+∞(Ψω)(z), φ

〉
L2(R2)

− (2π)2
〈
K+∞(Ψ̂ω)(z), φ̂

〉
L2(R2)

=
〈
(K̃+∞ − K̃A)(Ψω)(z), φ

〉
L2(R2)

+
〈
K̃A(Ψω)(z), φ

〉
L2(R2)

− (2π)2
(〈

(K+∞ −KA)(Ψ̂ω)(z), φ̂
〉
L2(R2)

+
〈
KA(Ψ̂ω)(z), φ̂

〉
L2(R2)

)
with, using the Markov's inequality,

P
(
‖K̃+∞(Ψω)(z)− K̃A(Ψω)(z)‖L2(R2) > η′

)
≤ P

(
cα‖Ψω‖α,L2(R2) sup

x∈R2

Λα(WH(x)−WA
H (x)) > η

)
≤ P

(
cα‖Ψω‖α,L2(R2) > M

)
+ Cη,α,SM sup

q∈S
E
[
Λα(B+∞

A (q))
]
,

where the second term on the r.h.s converges to 0 as A→ +∞ according to Lemma 9.6. Hence,
using that P(‖Ψω‖α,L2(R2) < +∞) = 1, we obtain

lim
A→+∞

P
(
‖K̃+∞(Ψω)(z)− K̃A(Ψω)(z)‖L2(R2) > η′

)
= 0,

and following the same lines we also have

lim
A→+∞

P
(
‖K+∞(Ψ̂ω)(z)−KA(Ψ̂ω)(z)‖L2(R2) > η′

)
= 0.

Finally, according (9.5) and the fact that Ψω ∈ C0([0, L], Hk(R2)) for all k ∈ N, we can write,

K̃A(Ψ)(z, x) = ikωσH

∫
S
m(dq)

∫ z

0

duΨω(u, x)e−iq·xbAH(u, q),

and thus use the Fubini and Fourier-Plancherel theorems to arrive at〈
K̃A(Ψω)(z), φ

〉
L2(R2)

= (2π)2
〈
KA(Ψ̂ω)(z), φ̂

〉
L2(R2)

,

with probability one, which concludes the proof.

9.2. Convergence of X εω. We investigate in this section the limit in law of (X εω1
(z), . . . ,X εωM (z))ε.

The tightness of this family is addressed in Proposition 9.4 below and is the straightforward
consequence of the conservation of the L2 norm of X εω. The characterization of the limit in
distribution of the family requires more work. We will use for this a moment method and the
regularized process XAω for which formal calculations are justi�ed. In order to �x the ideas,
we will investigate �rst the moment of order one in Proposition 9.5, and then generalize to
moments of any order in Proposition 9.6. The various results are put together in a conclusion
at the end of the section.

9.2.1. Tightness. This section is devoted to the tightness of the family (X εω1
(z), . . . ,X εωM (z))ε.

We have the following result:

Proposition 9.4. For all z ∈ [0, L], the family (X εω1
(z), . . . ,X εωM (z))ε is tight in L2(R2)

equipped with the weak topology.



54 CHRISTOPHE GOMEZ AND OLIVIER PINAUD

Proof. It su�ces to show that the family of complex-valued random variable (
〈
X εωj (z), φj

〉
)ε,j∈{1,...,M}

is tight on CM for all φj ∈ L2(R2) (j ∈ {1, . . . ,M}), which amounts to prove that

∀η > 0, ∃µ > 0 such that lim sup
ε→0

P
( M∑
j=1

|
〈
X εωj (z), φj

〉
|2 > µ

)
≤ η.

This is a direct consequence of the following lemma:

Lemma 9.7. We have, for all z ∈ [0, L],

‖X εω(z)‖L2(R2) = ‖φεω‖L2(R2).

The proof of the lemma is left to the reader. Since X εω has su�cient regularity (i.e. at least
C1([0, L], L2(R2)) almost surely), it su�ces to adapt the proof of (9.7) to obtain the result. �

9.2.2. Moment of order one.

Proposition 9.5. For all z ∈ [0, L] and φ ∈ C∞0 (R2), we have

lim
ε→0

E
[〈
X εω(z), φ

〉
L2(R2)

]
= lim
A→+∞

E
[〈
XAω (z), φ

〉
L2(R2)

]
.

Proof. According to Lemma 8.1, it su�ces to show the term by term convergence of the series
de�ning X εω. Moreover, since the integrand in (8.4) is L1 in all variables, we can invoke Fubini
Theorem to permute order of integration. Using the second point of Proposition 6.2, we have
for n = 2n′ (if n is odd the limit is 0),

lim
ε→0

E[
〈
X ε,2n

′

ω (z), φ
〉
] = (ikω)2n′

∫
dκφ(κ)

∫
∆2n′ (z)

∫
Sn
du(2n′)E[m(dq(2n′))]

× eiGn(u(n),q(n))φ0
ω(Qn)Cn

′

H

∑
F2n′

∏
(α,β)∈F2n′

R̂(qα, qβ)

|uα − uβ |H
,

where the sum runs over the pairings F2n′ of {1, . . . , 2n′} and Gn is de�ned by (9.3). We want

to relate now the term above with XA,2n′ω . We use �rst for this the Gaussianity of the measures
w to �nd

Cn
′

H

∑
F2n′

∏
(α,β)∈F2n′

R̂(qα, qβ)

|uα − uβ |H
= lim
A→+∞

∑
F2n′

∏
(α,β)∈F2n′

R̂(qα, qβ)

∫ A

−A

eir(uα−uβ)

|r|2H−1
dr

= lim
A→+∞

E
[ 2n′∏
m=1

∫ A

−A

eirmum

|rm|H−1/2
w(drm, qm)

]
,

where we recall that H = 1 − H/2 ∈ (1/2, 1). Moreover, since on the one hand, for A large
enough

(9.28)

∣∣∣∣∣E[
2∏

m=1

∫ A

−A

eirmum

|rm|H−1/2
w(drm, qm)

]∣∣∣∣∣ ≤ C|u1 − u2|2H−2,
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and on the other hand that the integrand in (9.10) is L1 in all variables, we can invoke both
the Fubini Theorem and dominated convergence to obtain, for all n ≥ 1

lim
ε→0

E[
〈
X ε,nω (z), φ

〉
] = (ikω)n

∫
dκφ(κ)

∫
∆n(z)

du(n)

∫
Sn

E[m(dq(n))]eiGn(u(n),q(n))φ0
ω(Qn)

× lim
A→+∞

E
[ n∏
j=1

∫ A

−A

eirjuj

|rj |H−1/2
w(drj , qj)

]
= lim
A→+∞

E[
〈
XA,nω (z), φ

〉
].

Above, φ0
ω = limε φ

ε
ω is given by (4.14). It just remains to show that limit and expectation can

be taken term by term in the series de�ning XAω . This is the object of the next lemma.

Lemma 9.8. We have for all z ∈ [0, L]

lim
A→+∞

E[
〈
XAω (z), φ

〉
] =

∑
n≥0

lim
A→+∞

E[
〈
XA,nω (z), φ

〉
] <∞.

Proof. This result is just a consequence of the fact that∑
n≥1

lim sup
A→+∞

E[‖XA,nω (z)‖2L2(R2)]
1/2 < +∞,

As in Lemma 8.1, we have using (3.6) and the Fatou's lemma,

lim sup
A→+∞

E
[
‖XA,nω (z)‖2L2(R2)

]
≤ k2n

ω

∫
dκ

∫
Sn×Sn

E[|m|(dq(n)
1 )|m|(dq(n)

2 )]

∫
∆n(z)

du
(n)
1

∫
∆n(z)

du
(n)
2

×
∣∣∣ lim
A→+∞

E
[ n∏
m=1

∫ A

−A

eir
1
mu

1
m

|r1
m|H−1/2

w(dr1
m, q

1
m)

∫ A

−A

eir
2
mu

2
m

|r2
m|H−1/2

w(dr2
m, q

2
m)
]∣∣∣

× |f̂0(ω,Q1,n)f̂0(ω,Q2,n)|

≤ (nrS + rf̂0)2 C
2n

(n!)2
(2n− 1)!!

[ ∫
(0,z)2

|u1 − u2|2H−2du1du2

]n
≤ (nrS + rf̂0)2C

n

n!
.

Above, we used (9.28), the term (2n− 1)!! = (2n)!/(2nn!) is the number of pairings of {1, 2}×
{1, . . . , n}, and the term (n!)2 is a consequence of (6.1). �

This concludes the proof of Proposition 9.5. �

9.2.3. Arbitrary Order Moments. In the forthcoming computations, all indices with the sub-
script 2 correspond to the complex conjugate terms.

Proposition 9.6. We have for all z ∈ [0, L], frequencies (ω1,1, . . . , ω1,M1
, ω2,1, . . . , ω2,M2

), and
test functions (φ1,1, . . . , φ1,M1 , φ2,1, . . . , φ2,M2) in C∞0 (R2),

lim
ε→0

E
[ M1∏
j1=1

〈
X εω1,j1

(z), φ1,j1

〉
L2(R2)

M2∏
j2=1

〈
X εω2,j2

(z), φ2,j2

〉
L2(R2)

]

= lim
A→+∞

E
[ M1∏
j1=1

〈
XAω1,j1

(z), φ1,j1

〉
L2(R2)

M2∏
p2=1

〈
XAω2,j2

(z), φ2,j2

〉
L2(R2)

]
< +∞.
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Proof. Using (8.3), we have

M1∏
j1=1

〈
X εω1,j1

(z), φ1,j1

〉
L2(R2)

M2∏
j2=1

〈
X εω2,j2

(z), φ2,j2

〉
L2(R2)

=

M1∑
j1=1

M2∑
j2=1

+∞∑
n1,j1

=0

+∞∑
n2,j2=0

Xε
n :=

∑
Jn

Xε
n,

where

Xε
n =

in1−n2

εn(s−1/2)

∫
· · ·
∫ M1∏

j1=1

dκ1,j1k
n1,j1
ω1,j1

φ1,j1(κ1,j1)

M2∏
j2=1

dκ2,j2k
n2,j2
ω2,j2

φ2,j2(κ2,j2)

×
M1∏
j1=1

∫
Sn1,j1 (κ1,j1 )

m(dq
(n1,j1

)
1,j1

)

∫
∆n1,j1

(z)

du
(n1,j1

)
1,j1

×
M2∏
j2=1

∫
Sn2,j2 (κ2,j2

)

m(dq
(n2,j2

)
2,j2

)

∫
∆n2,j2

(z)

du
(n2,j2

)
2,j2

×
M1∏
j1=1

eiG
ε
n(u

(n1,j1
)

1,j1
,q

(n1,j1
)

1,j1
)φεω1,j1

(Q1,j1,n1,j1
)

M2∏
j2=1

e−iG
ε
n(u

(n2,j2
)

2,j2
,q

(n2,j2
)

2,j2
)φεω2,j2

(Q2,j2,n2,j2
)

×
M1∏
j1=1

n1,j1∏
m1,j1=1

V̂ (u1,j1,m1,j1
/ε, q1,j1,m1,j1

)

M2∏
j2=1

n2,j2∏
m2,j2=1

V̂ (u2,j2,m2,j2
/ε, q2,j2,m2,j2

),

with

n1 :=

M1∑
j1=1

n1,j1 , n2 :=

M2∑
j2=1

n2,j2 , and n := n1 + n2.

As before, we need to show that limit and expectation can be taken term by term.

Lemma 9.9. The series
∑

Jn
Xε

n is well-de�ned, and we have

E
[ M1∏
j1=1

〈
X εω1,j1

(z), φ1,j1

〉
L2(R2)

M2∏
j2=1

〈
X εω2,j2

(z), φ2,j2

〉
L2(R2)

]
=
∑
Jn

E[Xε
n],

as well as

lim
ε→0

E
[ M1∏
j1=1

〈
X εω1,j1

(z), φ1,j1

〉
L2(R2)

M2∏
j2=1

〈
X εω2,j2

(z), φ2,j2

〉
L2(R2)

]
=
∑
Jn

lim
ε→0

E[Xε
n],

Proof. As usual, it su�ces to show that

(9.29)
∑
Jn

sup
ε∈(0,1)

E[|Xε
n|2]1/2 < +∞.

Adapting once more Lemma 8.1 and the �rst point of Proposition 6.2, we have for s = 2−H/2,

E[|Xε
n|2] ≤

∫
· · ·
∫ M1∏

j1=1

dκ1,j11{|κ1,j1
|<n1,j1

rS+rf̂0
}

M2∏
j2=1

dκ2,j21{|κ2,j2
|<n2,j2

rS+rf̂0
}

×
M1∏
j1=1

Cn1,j1

n1,p1 !

M2∏
j2=1

Cn2,j2

n2,j2 !
,

which gives (9.29). �
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The latter lemma can be directly generalized to moments of XAω using the fact that the
measures are Gaussian. Using now the second point of Proposition 6.2, we obtain for n = 2n′,

lim
ε→0

E[Xε
n] = in1−n2

∫
· · ·
∫ M1∏

j1=1

dκ1,j1k
n1,j1
ω1,j1

φ1,j1(κ1,j1)

M2∏
j2=1

dκ2,j2k
n2,j2
ω2,j2

φ2,j2(κ2,j2)

× E
[ M1∏
j1=1

M2∏
j2=1

∫
Sn1,j1 (κ1,j1

)×Sn2,j2 (κ2,j2
)

m(dq
(n1,j1

)
1,j1

)m(dq
(n2,j2

)
2,j2

)
]

×
∫

∆n1,j1
(z)

du
(n1,j1 )
1,j1

eiGn(u
(n1,j1

)

1,j1
,q

(n1,j1
)

1,j1
)φ0
ω(Q1,j1,n1,j1

)

×
∫

∆n2,j2
(z)

du
(n2,j2 )
2,j2

e−iGn(u
(n2,j2

)

2,j2
,q

(n2,j2
)

2,j2
)φ0
ω(Q2,j2,n2,j2

)

× Cn
′

H

∑
Fn

∏
(α,β)∈Fn

R̂(qα, qβ)

|uα − uβ |H
,

where the sum runs over the pairings Fn of

In :=
{

(i, ji,mi,ji) ∈ {1, 2} × {1, . . . ,Mi} × {1, . . . , ni,ji}
}
.

Moreover, in the same way as in Proposition 9.5,

Cn
′

H

∑
Fn

∏
(α,β)∈Fn

R̂(qα, qqβ)

|uα − uβ |H

= lim
A→+∞

E
[ M1∏
j1=1

n1,j1∏
m1,j1

=1

∫ A

−A

e
ir1,j1,m1,j1

u1,j1,m1,j1

|r1,j1,m1,j1
|H−1/2

w(dr1,j1,m1,j1
, q1,j1,m1,j1

)

×
M2∏
j2=1

n2,j2∏
m2,j2=1

∫ A

−A

e
ir2,j2,m2,j2

u2,j2,m2,j2

|r2,j2,m2,j2
|H−1/2

w(dr2,j2,m2,j2
, q2,j2,m2,j2

)
]
,

so that the proof is concluded by dominated convergence and the Fubini Theorem. �

9.2.4. Conclusion. We have now everything needed to conclude the proof of convergence of
X εω. Consider �rst the limiting process Xω solution to (4.16). Thanks to (4.17), the moment

generating function of the random variable Y (z) =
∑M
j=1〈Xωj (z), φj〉 is perfectly de�ned for

z �xed in [0, L], so that the law of Y (z) is uniquely de�ned by its moments. Then, since
XAω converges in probability to Xω according to Proposition 9.2, and since all moments of

Y A(z) :=
∑M
j=1〈XAωj (z), φj〉 (test functions φj in C∞0 (R2) are su�cient by density) converge

according to Proposition 9.6, they necessarily converge to those of Y (z). Furthermore, since the

limits of the moments of Y ε(z) :=
∑M
j=1〈X εωj (z), φj〉 are the same as those of Y A(z) according

to Proposition 9.6, we conclude that the moments of Y ε(z) converge to the moments of Y (z).
Proposition 9.4 �nally implies that (X εω1

(z), . . . ,X εωM (z))ε converges in law in L2(R2) equipped
with the weak topology to (Xω1

(z), . . . ,XωM (z)).
Finally, convergence in law in L2(R2) for the strong topology is obtained thanks to Lemma

9.7, the Skorohod's representation theorem [6, Theorem 6.7 pp.70], and the following relation

lim
ε→0
‖X εω(z)‖L2(R2) = lim

ε→0
‖φεω‖ =

1

2
‖f̂0(ω, ·)‖L2(R2) = ‖Xω(z)‖L2(R2).

This concludes the proof of Proposition 4.3.
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10. Proof of Theorem 3.1

The proof is a direct application of Propositions 4.1 and 4.2 and Theorem 3.2. As already
mentioned in Section 4, owing the convergence results of Propositions 4.1 and 4.2, it is enough
to check the convergence in law of

pε2,L(t, x) :=

∫∫
e−iωteiκ·xψεω(κ)X εω(L, κ)dωdκ.

Note that we cannot directly use here any continuity arguments of the map (X εω)ω 7→ (pε2,L)t,x
for the appropriate topology since we only previously obtained pointwise information about
X εω in the variable ω.

The proof is then done in three steps. First, we prove the tightness of pε2,L in the space

C0([−T, T ], L2
w(R2)) for all T > 0, where L2

w(R2) stands for the space L2(R2) equipped with
the weak topology. Second, we characterize all the accumulation points using the convergence
of the moments of X εω. Finally, we obtain the convergence in L2((−∞,+∞)×R2) and then in
C0([−T, T ], L2(R2)), where L2(R2) is equipped with the strong topology.

We will use the notation

pε2,L(t, φ) := 〈pε2,L(t, ·), φ〉 = (2π)2〈p̃ε2,L(t, ·), φ̂〉,
with

p̃ε2,L(t, κ) =

∫
e−iωtψεω(κ)X εω(L, κ)dω.

According to [6, Theorem 7.3 pp. 70], tightness is a consequence of the following lemma:

Lemma 10.1. We have, for all φ ∈ L2(R2),

lim
M→+∞

lim sup
ε→0

P
(

sup
t∈[−T,T ]

|pε2,L(t, φ)| > M
)

= 0,

and for all η > 0,

lim
τ→0

lim sup
ε→0

P
(

sup
|t1−t2|≤τ

|pε2,L(t1, φ)− pε2,L(t2, φ)| > η
)

= 0.

Proof. This lemma is a direct consequence of Lemma 9.7. Let indeed φ ∈ L2(R2). For the �rst
point, we have

lim sup
ε→0

E
[

sup
t∈[−T,T ]

∣∣pε2,L(t, φ)
∣∣] ≤ C‖φ̂‖L2(R2)

∫
dω lim sup

ε→0
E
[
‖X εω(L)‖L2(R2)

]
< +∞,

and the conclusion follows from the Markov inequality. In the same way, we have for the second
point, for all τ > 0,

lim sup
ε→0

E

[
sup

|u1−u2|≤τ
|pε2,L(t1, φ)− pε2,L(t2, φ)|

]
≤ Cτ

∫
dω|ω| lim sup

ε→0
E
[
‖X εω(L)‖L2(R2)

]
,

which concludes the proof of Lemma 10.1. �

In order to identify the accumulation points, we consider the �nite-dimensional distributions
of pε2,L. We remark �rst that thanks to Lemma 9.7,

sup
t∈[−T,T ]

‖pε2,L(t)‖L2(R2)

is uniformly bounded in ε by a deterministic constant, and therefore that the �nite-dimensional
distributions are uniquely characterized by their moments. Using once again Lemma 9.7 in
order to justify the use of the Fubini Theorem and dominated convergence, it follows from
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Proposition 4.3 that, for allM ∈ N∗, (tm)m∈{1,...,M} ∈ [−T, T ]M , (φm)m∈{1,...,M} ∈ (L2(R2))M ,
we have

lim
ε→0

E
[ M∏
m=1

pε2,L(tm, φm)
]

= E
[ M∏
m=1

p0
L(tm, φm)

]
.

In order to go back to the original pulse pεL de�ned by (3.17), we remark �rst that (4.12) holds
for all φ ∈ L2(R2) thanks to the bound (5.12) and the density of C∞0 (R2) in L2(R2). Hence,
using Proposition 4.2, we obtain the convergence in law of pεL to p0

L in C0([−T, T ], L2
w(R2)). To

conclude, we use the Skorohod's representation theorem [6, Theorem 6.7 pp.70]: there exist a

probability space (Ω̃, T̃ , P̃) and random variables pεL and p0
L, with the same laws as pεL and p0

L,
respectively, and such that

lim
ε→0

sup
t∈[−T,T ]

|pεL(t, φ)− p0
L(t, φ)| = 0 P̃− a.s,

for all φ ∈ L2(R2). A direct consequence is that pεL converges P̃-a.s. to p0
L in L2

w((−∞,+∞)×
R2), since using (5.13) one has

lim sup
ε→0

‖pεL‖L2((∞,+∞)×R2) ≤
1

2
‖f0‖L2((−∞,+∞)×R2),

and the unit ball of L2((−∞,+∞)× R2) is weakly compact. Moreover, this convergence also
holds in L2((−∞,+∞)× R2) with the strong topology because of the conservation relation

1

2
‖f0‖L2((−∞,+∞)×R2) = ‖p0

L‖L2((−∞,+∞)×R2) = lim
ε→0
‖pεL‖L2((∞,+∞)×R2).

As a result, using the Plancherel theorem

Iε :=

∫
dωdx|p̃εL(ω, x)− Ψ̃ω(L, x)|2 −→

ε→0
0 P̃− a.s

where

p̃εω(L, x) =
1

2π

∫
eiωtpεL(t, x)dt and Ψ̃ω(L, x) =

1

2π

∫
eiωtp0

L(t, x)dt.

Since f̂0(ω, κ) has a compact support with respect to ω, so do p̃εω and Ψ̃ω according to (5.12)
and (3.20). The Jensen's inequality then yields

sup
t∈[−T,T ]

‖pεL(t, ·)− p0
L(t, ·)‖L2(R2) ≤ CIε.

This proves the convergence in C0([−T, T ], L2(R2)) and concludes the proof of Theorem 3.1
since almost sure convergence implies convergence in law.

11. Proof of estimate (3.19)

We use here the notation of sections 1 and 4. The core of the proof is the following lemma:

Lemma 11.1. We have the estimate,

‖p̂εω‖L2(R3) ≤
C

ε
√
αε
‖f̂0(ω, ·)‖L2(R2).

Proof. We already have an estimate on (0, L) according to Lemma 5.2, which is

‖p̂εω‖L2((0,L)×R2) ≤
C

ε
√
αε
‖f̂0(ω, ·)‖L2(R2),
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so that it remains to treat the domain z /∈ (0, L). Consider �rst the case z > L. Plugging

z = L into (5.5) and (5.6), and using the fact that b̂εω(L, κ) = 0, we �nd that p̂εω reads

p̂εω(z, κ) = eikωλε,ω(κ)(z−L)/ε2 p̂εω(L, κ), z > L.

We need to split the domain of integration in κ in order to obtain appropriate estimates.
Suppose �rst that ε2|κ|2/k2

ω ≥ 1 (evanescent modes), then Im(λε,ω(κ)) ≥ C
√
αε,ω by (5.3).

Together with (5.12), this yields∫ ∞
L

dz

∫
{ε2|κ|2/k2ω≥1}

dκ|p̂εω(z, κ)|2 ≤ C
√
αε
‖f̂0(ω, ·)‖2L2(R2).

When ε2|κ|2/k2
ω ≤ 1 (propagative modes), consider the strictly decreasing function fb(x) =√

x2 + b2 − x, for x ≥ 0. It satis�es fb(x) ≥ fb(1) ≥ Cb2 for x ∈ [0, 1], 0 < b � 1 and some
constant C. This then yields Im(λε,ω(κ)) ≥ Cαε,ω for x = 1−ε2|κ|2/k2

ω. Together with (5.12),
we �nd ∫ ∞

L

dz

∫
{ε2|κ|2/k2ω≤1}

dκ|p̂εω(z, κ)|2 ≤ C

ε2αε
‖f̂0(ω, ·)‖2L2(R2).

We turn now to the case z ∈ (LS , 0). We have

p̂εω(z, κ) =
1√

λε,ω(κ)

(
âεω(L+

S , κ)eikωλε,ω(κ)z/ε2 + b̂εω(0, κ)e−ikωλε,ω(κ)z/ε2
)
.

Owing (5.7), the �rst term of the r.h.s is direct and yields a control by C‖f̂0(ω, ·)‖L2(R2). For
the second one, we write

(11.1)
b̂εω(0, κ)√
λε,ω(κ)

= p̂εω(0, κ)−
âεω(L+

S , κ)√
λε,ω(κ)

,

and obtain, thanks to (5.12), again a control by C‖f̂0(ω, ·)‖L2(R2). Consider �nally the case
z < LS , for which

p̂εω(z, κ) = eikωλε,ω(κ)(LS−z)/ε2 p̂εω(L−S , κ), z < LS .

The jump condition (5.2) yields p̂εω(L−S , κ) = p̂εω(L+
S , κ) − f̂0(ω, κ), which, together with (5.7)

and (11.1), gives the expression

p̂εω(L−S , κ) = − f̂0(ω, κ)

2

(
1 + e−2ikωλε,ω(κ)LS/ε

2
)

+ p̂εω(0, κ)e−ikωλε,ω(κ)LS/ε
2

.

Using again (5.12), we then proceed as in the case z > L and obtain the same estimate. Putting
together all previous estimates ends the proof of the lemma. �

Owing the previous lemma, we can proceed to the proof. Let v = P − p, which satis�es

∆v − 1

c20

(
1 + εsV

(z
ε
,
x

ε

)
1(0,L)(z)

)
∂2
t v = iαεp, (t, z, x) ∈ (0,+∞)× R× R2,

equipped with v(0, ·) = ∂tv(0, ·) = 0. Since V is uniformly bounded by a deterministic constant,
and p ∈ C0((0,+∞), L2(R3)) according to Lemma 11.1, it is a classical problem to construct
solutions to the above equation which satis�es the energy conservation relation

1

2

d

dt

(
‖∇v(t)‖2L2(R3) +

1

c20

∫
R2

(
1 + εsV

(z
ε
,
x

ε

)
1(0,L)(z)

)
|∂tv(t, z, x)|2dzdx

)
= Re

(
iαε

∫
R3

p(t, z, x)∂tv(t, z, x)dxdz

)
.



FRACTIONAL WHITE -NOISE LIMIT AND PARAXIAL APPROXIMATION FOR WAVES IN RANDOM MEDIA61

After integration and the use of the Cauchy-Schwarz and Young inequalities, it follows that

‖∇v(t)‖2L2(R3) + ‖∂tv(t)‖2L2(R3) ≤ Cα
2
ε

∫ t

0

‖p(s)‖2L2(R3)ds+ C

∫ t

0

‖∂tv(s)‖2L2(R3)ds.

Since v(t = 0, ·) = 0, we can use the Poincaré inequality (w.r.t. t), which together with the
Gronwall's lemma yield

‖v(t)‖2H1(R3) + ‖∂tv(t)‖2L2(R3) ≤ Cα
2
ε

∫ t

0

‖p(s)‖2L2(R3)ds.

In order to apply Lemma 11.1, we notice that

‖p(s)‖L2(R3) = ε‖p(s, ε·)‖L2(R3) ≤ ε
∫
R
‖p̂εω‖L2(R3)dω.

Above, we used the fact that p̂εω has compact support according to the aforementioned lemma
since f0 does. Standard Sobolev embeddings then yield

sup
(t,z)∈(0,T )×R

‖v(t, z, ·)‖L2(R2) ≤ Cα1/2
ε ,

which concludes the proof after rescaling x by εx.
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