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Chapter

Introduction

Le travail présenté dans cette these porte sur la propagation et le retournement temporel
des ondes dans des guides d’ondes aléatoirement perturbés. Dans cette introduction, nous
rappellerons dans un premier temps quelques aspects de la propagation d’ondes en milieu
aléatoire, et dans un second temps nous présenterons un résumé des résultats exposés dans
les trois principaux chapitres de ce manuscrit.

1.1 Propagation des ondes en milieux aléatoires

L’étude mathématique de la propagation d’ondes en milieu complexe est indispensable a la
compréhension de certains phénomeénes observés expérimentalement et au développement
de nouvelles applications. La description exacte des perturbations présentes dans un milieu
n’étant quasiment jamais possible, il devient tres difficile de pouvoir résoudre certains prob-
lémes de maniere analytique ou numérique. En générale, on ne dispose que d’une description
statistique des milieux complexes. Ainsi, 'approche consistant & considérer un milieu inho-
mogene comme aléatoirement perturbé apparait beaucoup mieux adaptée, et permet une
description statistique des effets produits sur des ondes se propageant dans un tel milieu.

Les perturbations d’un milieu peuvent avoir différentes origines : la présence d’impuretés,
des différences de salinités, des imperfections géométriques, etc. Généralement, ces perturba-
tions sont petites. Cependant, sur de longues distances de propagation, I'effet cumulé de ces
imperfections peut devenir significatif.

A Taide de considérations physiques, il est possible d’appréhender les échelles caractéris-
tiques d’un probléme et d’émettre des hypotheses sur leurs ordres de grandeurs. L’intérét est
de mettre en évidence les rapports d’échelles qui peuvent mener a des régimes asymptotiques
remarquables. Cette technique de séparation d’échelles introduite par G. Papanicolaou et
al [5], permet de développer une analyse asymptotique basée sur des théorémes limites de
solutions d’équations différentielles a coefficients aléatoires [48, 5, 25, 50, 33]. Le principal
travail est d’arriver a caractériser les quantités physiques intéressantes a ’aide d’équations
effectives, afin de pouvoir décrire 'allure des ondes apres qu’elles se soient propagées dans le
milieu aléatoire.

Les échelles de longueur que nous considérerons dans cette theése, et qui sont aussi
largement utilisées dans la littérature [5, 25, 9] sont : la longueur de propagation dans le
milieu inhomogéne, la longueur d’onde typique d’une onde, et les longueurs de corrélations
spatiales des inhomogénéités. Nous considérons aussi 'amplitude des inhomogénéités, ainsi
que la largeur du spectre de la source.

Les phénomeénes de propagation d’ondes en milieux aléatoires, a travers la séparation
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d’échelles, ont été largement étudiés que se soit pour des milieux de dimension 1 (voir [5, 25]
et leurs références), de dimension 3 stratifiés (voir [25] et ses références) ou en considérant
Papproximation parabolique de I’équation des ondes [7, 8, 9, 13]. Pour des milieux de dimen-
sion 1, le phénomene de localisation des ondes, observé en premier par P.W. Anderson [4],
a lieu méme si les inhomogénéités sont faibles [32]. Pour les milieux stratifiés cela se passe
essentiellement comme en dimension 1. En dimension 3 sous 'approximation parabolique,
I’amplitude de ’onde cohérente décroit avec la distance de propagation et son énergie se
transforme en fluctuations incohérentes. Fn revanche, I’énergie moyenne se propage de maniere
diffusive ou par transfert radiatif. Pour ’étude de ces phénoménes d’un point de vue physique,
on peut se référer a [34].

Les modeles aléatoires de dimension 1 ne possedent qu’un axe de propagation et aucune
diversité spatiale, ce qui limite le réalisme de ces modeéles. Les modeles ouverts de dimension 2
ou 3 possedent une diversité spatiale mais n’ont pas de direction de propagation privilégiée, ce
qui rend l'utilisation des outils de calcul stochastique difficile. Les modeles de guides d’ondes
aléatoires sont donc a la fois physiquement pertinents et mathématiquement traitables.

En outre, I’étude de la propagation dans les guides d’ondes aléatoires est devenue in-
dispensable face au grand nombre de situations pouvant se modéliser de cette maniere :
comme par exemple en télécommunication, en acoustique sous-marine ou en géophysique.
Contrairement aux modeles de propagation de dimension un, ainsi qu’aux modeéles ouverts de
dimension supérieure, les guides d’ondes possedent une diversité spatiale ainsi qu’un axe de
propagation privilégié, ce qui permet aux ondes de ce propager sur de tres longues distances
(voir Figure 1.2). Il s’agit donc d’une situation intermédiaire qui permet de modéliser des
phénomenes spatiaux échappant aux modeles ouverts.

Dans un guide d’onde idéal, la structure géométrique peut avoir une forme tres générale.
Les parameétres du milieu peuvent, eux aussi, avoir une forme générale mais restent constants
le long de ’axe du guide d’onde. Il y a deux types de guide d’onde idéal : ceux qui entourent
une région homogene avec des conditions aux bords entrainant le confinement des ondes, et
ceux dont le confinement est assuré par les variations transverses de 'indice de réfraction.
Dans les guides d’ondes, il y a deux types de dispersion. Tout d’abord, il y a la dispersion
modale. Les modes propagatifs voyagent a travers le guide d’onde a des vitesses différentes, ce
qui provoque un étalement de ’onde dans le temps et ’espace. Ensuite, les nombres d’ondes
modaux ne sont pas linéaires par rapport a la fréquence, ce qui implique une dispersion
supplémentaire liée au spectre des fréquences de 1'onde [30, 25]. L’étude des phénomenes
de propagation d’ondes dans des guides d’ondes aléatoires a fait ’objet de multiples études
(38, 44, 54, 52, 39, 30, 25, 31, 29], dans lesquelles 'analyse du couplage des modes produit
par les inhomogénéités du milieu est le point central.

L’amplitude de 'onde cohérente se propageant dans un guide d’onde décroit avec la
distance de propagation, et se transforme alors en fluctuations incohérentes. Pour des ondes
monochromatiques ou de spectre de fréquences étroit, I’énergie, par contre, se propage diffu-
sivement [30, 25]. En revanche, dans le cas d’ondes a spectre de fréquences large, comme dans
le cas des milieux de dimension 1, I’amplitude de ’onde cohérente décroit avec la distance
de propagation. Cependant, dans ce cas, ’énergie est déterministe et décroit aussi avec la
distance de propagation. L’énergie se transforme alors en fluctuations incohérentes de faible
amplitude [25].

Le concept de retournement temporel des ondes a été introduit par M. Fink. Le principe
de l'expérience de retournement temporel se compose de deux étapes. Dans un premier temps
(voir Figure 1.1 (a)), une source émet un signal. Une onde se propage dans le milieu et est
enregistrée par le miroir a retournement temporel. Un miroir a retournement temporel se
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Figure 1.1: Ilustration de I'expérience de retournement temporel dans un guide d’onde d’axe
de propagation z et de section transverse X. Une source est placée dans le plan z = Lg et
Dy C X représente le miroir a retournement temporel placé dans le plan z = Ly,. La figure
(a) représente la premiere étape de l'expérience. Une source émet un signal, 'onde se propage
dans le milieu et est enregistrée par le miroir a retournement temporel. Ce miroir retourne
en temps le signal enregistré. La figure (b) représente la deuxiéme étape de I'expérience. Le
miroir & retournement temporel réémet le signal retourné en temps dans le milieu en direction
inverse. Ce qui a été enregistré en dernier repart en premier. L’onde émise par le miroir se
propage en sens inverse et a la propriété de refocaliser au voisinage de la source d’origine.

compose de matrices de transducteurs piézoélectriques ayant la capacité de recevoir un signal,
de Penregistrer et de réémettre ce signal renversé en temps. Ce miroir retourne alors en temps
le signal enregistré et le réémet dans le milieu en direction inverse. Ce qui a été enregistré en
dernier repart en premier. Dans un second temps (voir Figure 1.1 (a)), l'onde émise par le
miroir a retournement temporel se propage en sens inverse et a la propriété de refocaliser au
voisinage de la source d’origine. De plus, des études théoriques et expérimentales [19, 22, 42]
ont montré que les imperfections présentes dans le milieu améliorent la refocalisation de ’'onde
retournée en temps. Des recherches sur ce sujet ainsi que des applications sont présentées
dans [21]. Des expériences de retournement temporel ont aussi été effectuées en mer a l'aide
de réseaux de sonars par W. Kuperman et son équipe de San Diego [40, 57].

Les propriétés de refocalisation en milieu inhomogéne du procédé de retournement temporel
permettent de multiple applications, comme par exemple : la détection en contréle non
destructif, délivrer de I’énergie sur des petites cibles en lithotritie (destruction des calculs
rénaux), la réduction des interférences en télécommunication sans fil.

Une étude mathématique est indispensable a la compréhension des phénomenes de refocal-
isation lors de ’expérience de retournement temporel et pour le développement de nouvelles
applications. Les phénomenes de refocalisation ont été étudiés dans différents contextes : dans
des milieux inhomogenes de dimension 1 [18, 25|, de dimension 3 stratifiés aléatoirement [26],
de dimension 3 sous I’approximation parabolique [15, 10, 49], ainsi que dans les guides d’ondes
aléatoires [30, 25]. Dans les cas multidimensionnels, la taille de la tache focale principale,
obtenue avec des milieux aléatoires est plus petite que la formule de Rayleigh A\L/D (ou
A est la longueur d’onde principale, L est la distance de propagation et D le diametre du
miroir), qui donne la taille de la tache focale principale obtenue dans un milieu homogene. La
tache focale obtenue en milieu homogéne a typiquement la forme d’un sinus cardinal. Les
inhomogénéités du milieu permettent aussi la suppression des lobes latéraux. M. Fink et son
groupe de 'ESPCI ont méme proposé un dispositif avec un miroir a retournement temporel
en champ lointain permettant de refocaliser sous la limite de diffraction A/2 (ot A est la
longueur d’onde principale). Ce dispositif consiste & ajouter un "peigne" de diffuseurs proche
de la source.
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Figure 1.2: Illustration of a planar waveguide, with propagation axis in the z-direction,
cross-section X', and a source localized in the plane z = Lg.

La stabilité statistique est une autre propriété importante du retournement temporel des
ondes. L’onde refocalisée ne dépend pas de la réalisation particuliere du milieu. Dans le
cas d’ondes a large bande de fréquences, la stabilité statistique a été étudiée dans différents
contextes : dans des milieux de dimension 1 [18, 25], de dimension 3 aléatoirement stratifiés
[24, 25], de dimension 3 sous 'approximation parabolique [15, 49], ainsi que dans les guides
d’ondes [30, 25].

Les phénomenes intéressants, produits par le retournement temporel des ondes, sont
intiment liés au fait de faire revivre, a ’'onde enregistrée par le miroir a retournement temporel,
sa "vie passée". Quelles sont alors les conséquences sur ’onde refocalisée, lorsqu’elle n’a pas
exactement revécu sa "vie passée"? La question de 'influence d’un milieu changeant entre les
deux étapes de I'expérience de retournement temporel a été étudiée dans plusieurs contextes :
dans des milieux de dimension 1 [3], de dimension 3 sous ’approximation parabolique [12, 11].
Pour des milieux de dimension 1, 'influence du milieu entre les deux étapes de ’expérience
entraine une perte de stabilité statistique de ’onde refocalisée reliée au degré de corrélation
des deux réalisations du milieu. Dans des milieux de dimension 3 sous l'approximation
parabolique [12, 11], onde refocalisée reste statistiquement stable contrairement aux cas
unidimensionnels.

1.2 Presentation of the results

This section is an overview of the main results obtained in this thesis and presented in detail
in the three following chapters. This presentation is in two parts. In the first part, we present
the results obtained about wave propagation in random waveguides. In the second part, we
present the results about time reversal of waves in random waveguides.

The present thesis is devoted to the study of the wave propagation and time reversal
in randomly perturbed waveguides. However, throughout this manuscript, for the sake of
simplicity, we consider planar waveguides. In this case a waveguide has a propagation axis
with coordinate z € R, and a transverse section X which is an interval with coordinate z € X
(see Figure 1.2). Furthermore, the analysis developed in this manuscript can be extended to
more general waveguides.

We consider acoustic wave propagation using the linearized equations of momentum and
mass conservation for the pressure p and the velocity u:

ou
‘= —F
pl,2) 5 + Vp=F,

1 Op
K(x,z) 0t +Vu=0,

10
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where p is the density of the medium, and K is the bulk modulus. The source is modeled by
the forcing term
F(t,z,z) = ¥(t,x)d(z — Lg)e,,

which is a source that emits a signal in the z-direction and localized in the plane z = Lg.
U(t, z) represents the profile of the source and e, is the unit vector pointing in the z-direction.
In this thesis, we are interested in phenomena which occur when the propagation distance
Ly is large compared to the typical wavelength of the source g, and large compared to the
length scales [, . and [, ., which are the correlation lengths of the random perturbations in
the transverse and longitudinal directions. Moreover, the typical amplitude o of the random
perturbations of the medium parameters is small, and in Chapters 2 and 3 we consider the
case where the orders of I, ., l. ., and Ao are comparable. More precisely, we consider the
regime in which . l l
0 T,c z,C
)\0>>1, )\ON)\ONL
In the terminology of [25] this regime corresponds to the so-called weakly heterogeneous
regime. Let 0 < € < 1 be the ratio of Ag to the propagation distance. Then, we consider

L
LO = )\0 ~ la:,c ~ lzyc ~1 and o= \/E
€

and o< 1.

The scaling used in Chapter 4 is somewhat different, and it is described below.

1.2.1 Wave Propagation

Results of Chapter 2 First of all, we are interested in the wave propagation in a shallow-
water acoustic waveguide model. The waveguide model that we consider can also be used for
electromagnetic wave propagation in dielectric waveguides and optical fibers [43, 44, 52, 54, 62].
In shallow-water waveguides the transverse section X can be considered as being the semi-
infinite interval [0 4+ co). In this context, we assume that the medium parameters are given
by

% (n?(z) + eV (z,2)) if xz€[0,d], z€][0,L/é
1 x € [0,+00), z € (—00,0) U (L/e, +00)
K(z,z) %nQ (x) if or

z € (d,+00), z € (—00, +00),
plx,z)=p if x€]0,+0), z€R,

and where the index of refraction n(z) is given by

(z) = ny>1 if z€]0,d)
M= if xe€[d,+00).

See Figure 1.3 for an illustration of this model. Here, n(z) correspond to the Pekeris
waveguide model with ocean depths d, and the random process V(x, z) models the spatial
inhomogeneities. Throughout this manuscript the process V is a continuous real-valued
zero-mean Gaussian field with a covariance function given by

E[V(z,t)V(y,s)] = yolz,y)e 5 V(z,y) € [0,d]* and V(s,t) € [0, +00).

Here a > 0 and v : [0,d] x [0,d] — R is a function which is the kernel of a nonnegative
operator. The properties of the random process V' are described in Section 2.6.1.

In underwater acoustics the density of air is very small compared to the density of water,
then it is natural to use a pressure-release boundary condition. The pressure is very weak

11
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Source

L
; Ty

Ocean

Bottom

Figure 1.3: Illustration of the shallow-water random waveguide model with propagation axis
in the z-direction, transverse section [0, +00), and ocean depth d. The transverse index of
refraction is the Pekeris profile n(z), and a perturbed section is localized in the ocean section
[0, d] between the plane z = 0 and the plane z = L/e.

outside the waveguide, and by continuity, the pressure is zero at the free surface = 0. This
consideration leads us to the Dirichlet boundary conditions:

p(t,0,2) =0 Y(t,2) € [0,400) x R.

As we study linear models of propagation the pressure p(t,x, z) can be expressed as the
superposition of monochromatic waves by taking its Fourier transform:

Plwna,z) = [ plta.2)edt.

With such a model, a wave field can be decomposed into three kinds of modes:

w k?(w
Pw,x, 2) Z i(w, 2)¢j(w, x) +/ Dy (w, 2) Py (w, x)dr,

where (¢s(w,.))se(1,....N(w)U(—ook2(w)) 15 & basis of the Hilbert space L?(0,+00) defined in
Section 2.2.1. We have N(w) discrete propagating modes which propagate over long distances,
a continuum (—o0,0) of evanescent modes which decrease exponentially with the propagation
distance, and a continuum (0, k%(w)) of radiating modes representing modes which penetrate

under the bottom of the water. Here, k(w) = w/c is the wavenumber and ¢ = /K /p is the
effective sound speed of the medium.

In this chapter, we essentially revisit in detail the paper of W. Kohler and G. Papanicolaou
[39], but we take into account the three kinds of modes (see Sections 2.3).

According to the modal decomposition, we consider the profile ¥(¢,z) given in the
frequency domain by

N(w)

¥ (w, x) w, T wx—i—/ w,T w,x)d
( Z ¢J 0 ¢J S, gu(gk:?(w))%( 0)‘157( )dry

where zg € (0,d). AThe bound S in the spectral decomposition of the source profile is
introduced to have W(w,.) € L?(0,+00), and & > 0 is introduced for technical reasons. Note
that S can be arbitrarily large and £ can be arbitrarily small. Therefore, the spatial profile of

12
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the source is an approximation of a Dirac distribution at xy, which models a point source at
zo. We consider solutions of the form

pw,z,z) = pi(w,2)pi(w,x P~y (w, 2 w,z)d

plw,z,2) ; p]( ) )¢J( ;) + (—oo,—f)U(&,kQ(w))p’y( ) )‘bv( ,x)dry
for technical reasons and this assumption leads us to simplified algebra. In such a decom-
position, the radiating and the evanescent modes are separated by the small band (—¢,¢)
with ¢ < 1. The goal is to isolate the transition mode 0 between the radiating and the
evanescent modes in the continuum of modes (—o0, k?(w)). Moreover, we assume that ¢ < &
and therefore we have two distinct scales. Let us remark that in Chapters 2 and 3, we consider
in a first step the asymptotic € goes to 0 and in a second step the asymptotic ¢ goes to 0.

Throughout this manuscript, we consider the forward scattering approximation discussed

in Section 2.3.4, and which is widely used in underwater acoustics and in fiber optics. In this
approximation the coupling between forward- and backward-propagating modes is assumed
to be negligible compared to the coupling between the forward-propagating modes. After a
long propagation distance the pressure field is essentially of the form

(e lﬁ N T8 (w, L) (@o(w))

91 g, (w0, )

p =) >
et A Bj(w)
K (w) TS (w, L) (do(w)) . ~L
Hf T T e

where (j(w) are the modal wavenumbers. Here, Té’e(w,L) is the transfer operator, from
CNW x L2(€, k%(w)) to itself, solution of a differential equation with random coefficients of
the form

d e 1
@TS (w,z) = 7
with T%¢(w,0) = Id. The transfer operator T¢(w, L) describes the coupling between the
three kinds of modes. H*, defined by (2.30)-(2.33) page 45, describes the coupling between
the propagating and radiating modes with themselves, while G*®, defined by (2.34)-(2.37)
page 45, describes the coupling between the evanescent modes with the propagating and
radiating modes. Moreover, the asymptotic behavior of Ts’e(w, L),as e — 0 in first and £ — 0
in second, is described precisely in Section 2.4.1, and can be described in terms of a diffusion
process with an infinitesimal generator which can be split into three parts and depends only
on the N(w)-discrete propagating modes:

LY+ L8+ L8

H* (w, z) T (w, z) + G (w, Z) T (w, 2)
€ €

The first operator £4 describes the coupling between the N (w)-propagating modes. This part
is of the form of the infinitesimal generator obtained in [25, 30], from which the total energy
is conserved. The second operator £4 describes the coupling between the propagating modes
with the radiating modes. This part implies a mode-dependent and frequency-dependant
attenuation on the N (w)-propagating modes, and a mode-dependent and frequency-dependent
phase modulation. The third operator £% describes the coupling between the propagating
and the evanescent modes, and implies a mode-dependent and frequency-dependent phase
modulation. The frequency-dependent phase modulation does not remove energy from the
propagating modes but gives an effective dispersion.

Then, in Section 2.5, we are interested in the study of the asymptotic mean mode powers
of the propagating modes

. . € 2
T (w, L) = lim Ty E || T5“(w, ) (4')] ],
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Figure 1.4: Illustration of the radiative loss in the shallow-water random waveguide model
with propagation axis in the z-direction, transverse section [0, +00), and ocean depth d.

where yé = dj;, and yt = 0 for v € (0,k*(w)). The initial condition ' means that an impulse
equal to one charges only the Ith propagating mode. ’Z}l (w, L) is the expected power of the
jth propagating mode at the propagation distance z = L, when at z = 0 the energy is
concentrated on the [th propagating mode. The expected powers ’Z}l (w, L) are solution of the
following coupled power equations:

N(w)
T w,2) = —AS@)T (@, 2) + Y Do) (Th(w,2) = TH(w,2))

n=1
with initial conditions 7;! (w,0) = &, and where I'j;(w) is defined in Theorem 2.1 page 51.
These equations describe the transfer of energy between the propagating modes and I'“(w)
is the energy transport matrix. The initial condition means that an impulse equal to one
charges only the [th propagating mode. In our context, we have the coefficients A; (w) given
by the coupling between the propagating modes with the radiating modes. These coefficients,
defined in Theorem 2.2 page 52, are responsible for the radiative loss of energy in the ocean
bottom (see Figure 1.4). This loss of energy is described more precisely by the following result
of Section 2.5.1.

Theorem Let us assume that the energy transport matrix I'“(w) is irreducible. Then, we
have V1l € {1,...,N(w)}

1 N(w) l
LEI-sI—loo Zln ]2 T/ (w, L) | = —Axc(w)
with
M) = inf (= T) + AG) X, Xgco
xes?

which is positive as soon as one of the coefficients A;(w) is positive. Here,

N

STV ={xeRNW, X; > 0¥je{l,...,N)} and | X[3 pre = (X, X)gniw =1}

with
AG(w) = diag(A] (W), - .., Ay (W),

and (X,Y)pne = S0 X;Y; for (X,Y) € (RVE))2,
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This result means that the total energy carried by the expected powers of the propagating
modes decay exponentially with the propagation distance, and the decay rate can be expressed
in terms of a variational formula over a finite-dimensional space.

In Section 2.5.2, we show that under the assumption that nearest neighbor coupling is the
main power transfer mechanism, the evolution of the mean mode powers of the propagating
modes can be described, in the limit of a large number of propagating modes N(w) > 1, by a
diffusion model. Let us note that the limit of a large number of propagating modes N (w) > 1
corresponds to the high-frequency regime w — +oo. This diffusive continuous model is
equipped with boundary conditions which take into account the effect of the radiating modes
at the bottom and the free surface of the waveguide (see Figure 1.4). Let, Vo € C°([0,1]),
Vu € [0,1], and z > 0,

N(w) .
N(w) _ Nl — J [N(w)u]
7, (z,u)—’Z;, (2) = ]Zl SO(N w))7; (w, 2),

where ¢ — ’ZZPN(w) (z,.) can be extended into an operator from L?(0,1) to itself.
Theorem We have
1. Vo € L*(0,1) and Vz > 0,
lim ']ZPN(W)(Z,U) =T,(z,u) in L*(0,1),

w—+00
where T,(z,u) satisfies the partial differential equation : V(z,u) € (0,+00) x (0,1),
0 0 0
S Tole) = o () 5T, ) (2,
with the boundary conditions

%%(2,0) =0, 7,(21)=0, and 7,(0,u) = p(u),

Vz > 0.
2. Yu € [0,1], V2 > 0, and Vo € C°([0,1]) such that ¢(1) =0, we have
lim 7V®(z,u) = To(z,u).

w——+00 ¥

Here,
ao

1o (1- Z2) (w2

with ag = 2(1’;11%, 0 =/1-1/n2 Sy = fod fgyo(xl,xg) cos (§x1) cos (Gag)dridry. ny is
the index of refraction in the ocean section [0,d], 1/a = 1., is the correlation length of the
random inhomogeneities in the longitudinal direction, and g is the covariance function of the
random inhomogeneities in the transverse direction.

(oo (1)

This approximation gives us, in the high-frequency regime, a diffusion model for the transfer
of energy between the N (w)-discrete propagating modes, with a reflecting boundary condition
at u = 0 (the top of the waveguide in Figure 1.3) and an absorbing boundary condition at
u =1 (the bottom of the waveguide in Figure 1.3) which represents the radiative loss (see
Figure 1.4). In this high-frequency regime, we also observe in Section 2.5.2 that the energy
carried by the continuum of propagating modes decays exponentially with the propagation
distance.
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Figure 1.5: Illustration of negligible radiation losses in the shallow-water random waveguide
model with propagation axis in the z-direction, transverse section [0, +00), and ocean depth
d.

Theorem Vo € L?(0,1) \ {0} such that ¢ >0, and Yu € [0, 1),

lim %m To(Ly )] = —Aw,

L—+4o00
where .
Aso = inf [ ac(v)¢' (v)%dv >0
»€D Jo
and

p={pec=O.). lelon =1 2e0)=0. w1)=0}.

This result means that the energy carried by each propagating modes decays exponentially
with the propagation distance, and the decay rate can be expressed in terms of a variational
formula. Consequently, the spatial inhomogeneities of the medium and the geometry of the
shallow-water waveguide lead us to an exponential decay phenomenon caused by the radiative
loss into the ocean bottom.

In the case of negligible radiation losses, we also get in Section 2.5.3 a continuous diffusive
model for the coupled power equations in the high-frequency regime or in the limit of a large
number of propagating modes N(w) > 1. This diffusive continuous model is equipped with
boundary conditions which take into account the negligible effect of the radiation losses at
the bottom and the free surface of the waveguide (see Figure 1.5).

Theorem We have
1. Yo € L*(0,1) and Vz > 0,

lim %N(“’)(z, u) = T,(z,u) in L*(0,1),

w——+00
where T,(z,u) satisfies the partial differential equation : ¥(z,u) € (0,400) x (0,1),
d 0 0
—7, = 5 oo\’ —7, ) )
STz = o (ae() 5T ) ()

with the boundary conditions

91 (z0)=0,

2 ST 1) =0, and To(0,u) = p(w),

ov
Vz > 0.
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2. Yu € [0,1), V2 >0, and Vi € C°([0,1]) such that ¢(1) = 0, we have

lim TN(“’)(z u) = T,(2,u).

w—+00

Here,
ao

1= (1= Z2) (w2
with ag = W’ 0 =y/1-1/n? Sy = fgl féim)(:vl,xg) cos (§x1) cos (Faz)dzidrs. ny is

the index of refmctwn in the ocean section [0,d], 1/a =1, , is the correlation length of the

random inhomogeneities in the longitudinal direction, and ~yy is the covariance function of the
random inhomogeneities in the transverse direction.

(oo (u) =

This approximation gives us, in the high-frequency regime, a diffusion model for the transfer of
energy between the N (w)-discrete propagating modes, with two reflecting boundary conditions
at u = 0 (the top of the waveguide in Figure 1.3) and u = 1 (the bottom of the waveguide
in Figure 1.3). Here, the two reflecting boundary conditions mean that there is no radiative
loss anymore (see Figure 1.5). As a result, the energy is conserved and the modal energy
distribution converges to a uniform distribution as L — +o0. This result was already obtained
in [25, Chapter 20] and [30].

Theorem Ve € L%(0,1) and Yu € [0, 1],

1
lim 7,(L,u) = d
Jlim Ty(L,u) /0 p(v)dv
that is, the energy carried by the continuum of propagating modes converges exponentially fast
to the uniform distribution over [0,1] as L — +oo.

Results of Chapter 3 In Chapter 3, we extend the analysis of Chapter 2 to the propagation
and the time-reversal of broadband pulses in the same waveguide model. In this chapter, the
source profile W (¢, z) is given, in the frequency domain, by

by = 17(42)

ed

N(w
[Z ¢j(w, 0)¢;j(w, ) +/ Oy (W, 0) Py (w, ) dry
S,—EU(&:k? (w))
with ¢ > 0, and where the family (¢s(w,.))se(1, .., N(w)}u(—ook?(w)) i @ basis of the Hilbert
space L2(0, +00) defined in Section 2.2.1. The restriction ¢ > 0 allows us to freeze the number
of propagatlng and radiating modes, and gives simpler expressions of the transmitted wave.
The term L f (“’ £0) is the Fourier transform of f(et)e~ 0! which is a pulse with bandwidth
of order €? and carrier frequency wg. In this chapter, we study the broadband case, that is
€ (0,1). However, for the sake of simplicity we shall consider the case ¢ = 1/2 but the

analysis can be carried out for any ¢ € (0,1).

In order to simplify the analysis of pulse propagation and time reversal, we assume that
the source location Lg < 0 is sufficiently far away from 0 so that the evanescent modes
generated by the source are negligible. However, according to Proposition 2.2 in Section
2.4, this assumption is not restrictive and all the results of this chapter are also valid for
any Lg < 0. In fact, Proposition 2.2 means that, in the asymptotic € — 0, the information
about the evanescent part of the source profile is lost during the propagation in the random
section [0, L/¢], and therefore it plays no role in the pulse propagation and in the time-reversal
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experiment. Moreover, in order to simplify the study of the pulse propagation and the
time-reversal experiment, we assume in Chapter 3 that the coupling mechanism between the
propagating and radiating modes with the evanescent modes is negligible. Furthermore, as
it has been observed in Chapter 2 or in [25], this mechanism implies mode-dependent and
frequency-dependent phase modulations, that is dispersion, but does not remove any energy
from the propagating modes in the pulse propagation. Dispersion is compensated by the
time-reversal mechanism and therefore plays no role in this experiment [25].

We observe the transmitted wave in a time window of order 1/4/€, which is comparable
to the pulse width, and centered at time tgp/e, which is of the order the travel time for a
distance of order 1/e. The statistics of the transmitted wave is described in Section 3.3.2.
The transmitted wave can be decomposed into two parts:

t t LY\ wo( 2+t
Dtr (0 + =T, 6) eu”JO( ‘ ﬁ) = p,}fﬁ(to,t,x, L) +pt27:£76(t07t7x7 L)a

€ e

where i (to, t, 2, L) and p2&(to, t,z, L) are defined by (3.13) page 116. pi><(to, t, 2, L) is
the projection of the transmitted wave over the propagating modes, and p?;g’e (to,t,x, L) is
the projection of the transmitted wave over the radiating modes.

First, we have E[pi’ﬁ’e(to, t,z,L)] = O(y/€) uniformly in ¢, and uniformly in = on each
bounded subset of [0, +00). Consequently, the amplitude of the radiating part of the trans-
mitted wave is very small and it does not play any role in the pulse propagation. Second,
in the broadband case the pulse width is of order 1/4/€, which is much smaller that the
propagation distance, and therefore the propagating modes are separated in time by modal
dispersion. As a result, we show in Section 3.3.2 that the transmitted wave can be decomposed
into a sequence of modal waves with different arrival times and different modal speeds. Let
tj = Bj(wo) L, where f3i(wo) is the derivative of the jth modal wavenumber with respect to
the frequency, and let us consider

e‘iﬁj(WO)(_LS“‘%)ptlf’e(tj,t, x,L) = pg’fj(t,x, L),
which is the transmitted wave observed in a time window of order 1/4/€, which is comparable
to the pulse width, and centered at time t;/e, which is of the order the travel time for a
distance of order 1/e.

Proposition The jth-transmitted wave, observed around time t;, pf;fj (t,xz, L) converges in
distribution as € — 0 and as a continuous process in the three variables (t,x,L) to

1 N
D82, L) = 5 5(wo, )5 (wo, z0)e™ERTYS % £ (1),

where

= 7 1(pe TS ACyﬁ -AS7§ L+ig!" 2L
R (w) = o3 (15 (@0) TS (w0) = A5 (wo) =i € (wo) ) L+ (wo)w? §

I

and (W7); is a N (wq)-dimensional Brownian motion with covariance matriz T (wo). Moreover,

pfm(t,x, L) converges almost surely and uniformly in (t,z,L) as & — 0 to

1 g~
ptT,j(ta xz, L) = §¢j(w07 x)d)j(wOa xO)eZWZK;j% * f(t)a

where - 1 L
K}U%(w) = €§(F§j(w0)+iF§j(WO)_A;%(WO)_U\;(WO))L+iﬁ;’(w0)w25.

Here, I';(wo), T'5;(wo), A% (wp), A;’E(wo), A¢(wo), and Aj(wo) are defined in Section 2.4.1.
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As in [25, Chpater 20], it is possible to observe coherent transmitted waves only around
times t;, j € {1,...,N(wo)}. The transmitted wave is composed of a sequence of transmitted
waves which are separated from each other. Each pulse corresponds to a single mode.
Vj € {1,...,N(wo)}, the jth modal wave travels with the group velocity 1/} (wo). This result
means that we have stabilization of the transmitted wave up to a random phase; that is one
can observe deterministic intensity around the arrival times tg =t; Vj € {1,..., N(wo)}. The
random phase is characterized in terms of a Brownian motion. The pulse intensities decrease
exponentially with the propagation distance and the pulses spread dispersively through IN(;"OL
Moreover, there is no diffusion for the deterministic pulse profile.

In order to analyze the incoherent wave fluctuations at time ¢y # t; Vj € {1,..., N(wo)},
we study in Section 3.3.3 the statistics as € — 0 and £ — 0 of the product of two transfer
operators T (w + es) ® T (w) at two nearby frequencies. This analysis was already carried
out for waveguides with bounded cross-section in [30]. In our context, this leads to the system
of transport equations which takes into account the radiation losses:

0

%Wl(w 7, 2)+ 55 (w ) 0 Wl(w T, 2)

N(w)
= —AS(w)Wh(w,r,2) + Z T¢ i (w) WL (w,r,2) = Wh(w,r, 2)),

with initial conditions le (w,.,0) = d0(.)d;1. The system of transport equations describes
the coupling between the N (w)-propagating modes. These equations are a generalization of
the coupled power equations affected by the modal dispersion. In other words it is a space
and time version of the coupled power equations with transport velocity equal to the group
velocity 1/}(w) for the jth mode.

Consequently, we can apply this result to the study of the incoherent wave fluctuations.
For large propagation distance L/7 and small radiation losses 7A%(w), with 7 < 1, we get in
Section 3.3.3 that the limit mean transmitted intensity is given by

1 g (o LN Z Aok TR
}_li%%l_ril) lgr(l) T\[EHp (?,t,x, ;)‘ } =e H,(wo,x)d(to — ' (wo)L).

Here, the effective velocity of the incoherent wave fluctuations is the harmonic average of the
modal group velocities 1/8'(wp), with

N (wo)

> Bi(wo),

j=

1
N(wo)

B'(wo) =

[y

and the effective radiative damping rate is the arithmetic average of the modal radiative
damping rates

- 1 N(wo) .
A(wg) = N(wo) jZ::l A (wp)

As a result, the transmitted wave has also an incoherent part whose typical amplitude is of
order /4. Moreover, for the transverse profile H,,(wo,x), we have in the high-frequency
regime or in the limit of large number of propagating modes N(wg) > 1,

1 arcsin(9) {E — arccos(f) + %sin(Q arccos(@))},

Hyy(wo,x) =~ 5

wo>1 4\ ,ed 0

niwo
[0, d] of the waveguide. Consequently, the mean intensity becomes uniform over the ocean

Vz € [0,d]. Here, = /1 — 1/n? and A\, = 2nc_ g the carrier wavelength in the ocean section
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Figure 1.6: Illustration of the time-reversal experiment in a waveguide with propagation axis
in the z-direction and cross-section X. A source is localized in the plane z = Lg and Dy; C X
represents a time-reversal mirror located in the plane z = Ljs. In (a) we illustrate the first
step of the experiment. A source sends a pulse into a medium. The wave propagates and is
recorded by the time-reversal mirror. The recorded signal is reversed in time by the mirror.
In (b) we illustrate the second step of the experiment. The time-reversal mirror sends back
the time-reversed wave. The part of the signal that is recorded first is sent back last. The
back-propagating wave refocuses approximately at the source location.

cross-section [0,d]. The arrival time '(wp)L of the incoherent fluctuations takes a simple
form in the high-frequency regime:
- in(6
lim 7oyl = ML)

wo—+00 C 0

1.2.2 Time reversal

The time-reversal experiment is carried out in two steps. In a first step (see Figure 1.6 (a)), a
source sends a broadband pulse into the medium. The wave propagates and is recorded by a
device called a time-reversal mirror located in the plane z = Ly /e, and for a time interval
[%0, %] We have chosen such a time window because it is of the order the travel time for
a distance of order 1/e. We assume that the time-reversal mirror occupies the transverse
subdomain Dj; C [0,d]. A time-reversal mirror is a device that can receive a signal, record it,
and resend it time-reversed into the medium. In other words, what is recorded in first is send
in last. In a second step (see Figure 1.6 (b)), the wave emitted by the time-reversal mirror
has the property of refocusing near the original source location, and it has been observed

experimentally that random inhomogeneities enhance refocusing [19, 22, 42].

Results of Chapter 3 In this chapter we consider the shallow-water waveguide model
introduced in Chapter 2. Here Ljy; = L, that is the time-reversal mirror is located at the
end of the random section. However, the properties of the fluctuations of the medium may
have changed between the two steps of the experiment. This situation is studied in detail
in Section 3.4.5. We study the refocused wave in a time window of order 1/,/¢, which is
comparable to the pulse width, and centered at time t,ps/€, which is of the order the total
travel time for a distance of order 1/e. In the following proposition we observe the refocused
wave at time typs = t1, in which all propagating modes contribute to it. Let us note that we
cannot observe the recompression of the radiating part of the recorded wave by time reversal,
because it holds on a set with null Lebesgue measure.
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ot
Proposition The refocused wave pTR<% + ﬁ,az,LS> e Ve converges in distribution as

e — 0 as a continuous process in (t,z) € R x [0,4+00) to

N(wo)
1
Prati,t o, Ls) = f(=t) -5 7 Mij(wo) X5 (wo, L)du(wo, 20)dn(wo, ).
Jl=1

Moreover, pgTR(tl,t,x, Lg) converges in distribution as & — 0 as a continuous process in (t,x)

to
N(wo)

prr(ti,t,x, Ls) = f(—1) - i > Mjj(wo) X (wo, L)di(wo, )i (wo, z),
Ji=1

where (Xl(wo, '))je{l,‘..,N(wo)} s the unique solution of the system of coupled Stratonovich

stochastic differential equations
dXé(wo, 2) = LM X w0, 2)) (j)dz 4+ iy/2(1 — p) X]l-(wo, z) o dZj(wo, 2),
with X]l-(wo,O) = 0j, and

N (wo)
LFO(j) = =A5(w0)o () + (1 = wT5;(w0)o(F) + 1 Y Thj(wo)(¢(n) — (4))-
n=1

Here (¢s(wo, -))sef1,....N(w)}U(=o0,k2(w)) 18 @ basis of the Hilbert space L?(0,+00) defined in
Section 2.2.1. Consequently, the spatial profile of the refocused wave at the source location
is the superposition of the N (wp)-discrete propagating modes with random weights which
depend on:

1. the time-reversal mirror through the coefficients Mj;;(wo) = Jp,, qﬁ? (wo, x)dx,

2. the solution of a stochastic differential equation driven by the family of Brownian
motions Z(wp,.) with covariance matrix T'! (wp).

Here, p € [0,1] is a parameter which describes the degree of correlation between the two
realizations of the random medium (see Section 3.4 and (3.23) page 137). Then, we can
observe that the quality and the loss of statistical stability in the time-reversal experiment is
related to the degree of correlation between the two realizations of the random medium.

In the case u = 1, which corresponds to the case of two realizations of the random medium
that are fully correlated, we observe the stabilization phenomenon of time-reversal refocusing.
This means that the profile of the refocused wave is deterministic. The case p = 1 is also
the case in which the quality of the refocusing is maximal. In the other cases (u € [0,1)),
even if the radiation losses are negligible, we show in Section 3.4.5 that the amplitude of
the refocused wave decays exponentially with the propagation distance. In fact the mean
refocused wave is given by

. . t1 3 iwo =
a0 Ve = f(—t)HOM
%H%llr%E{pTR(e + ,x,LS)}e f(=t)H M (wo, z, L).

Ve

Here,
1 N(wo) 5
H;:XOM(wO’va) = Z Z ij(wo)’Z}l(wo,L)qﬁl(wo,J;g)gbl(wo,x),
=1
where

T . . 1., 2,
’Z}l(wo,L) = %%E%E[Tj’g’ (wO,L)(yl)ij (wO,L)(yl)},
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with yé = dj;, and yfy =0 for v € (0, k*(w)). Here, T1%€ is the transfer operator for the first
step of the time-reversal experiment, and T>%€ is the transfer operator for the second step
of the experiment. ’Z;l (wo, L) is the asymptotic covariance for the jth propagating mode of
the transfer operators at distance z = L, with respect to the two steps of the time-reversal
experiment.The initial condition y' means that an impulse equal to one charges the [th
propagating mode at z = 0. ’j}l (wo, z) are the solutions of the coupled power equations:

d - c c T
L7 w0, 2) = = [A5(w0) + (1 — (T (wo) — T (o)) (o, 2)
N(wo) ~ ~
+u Y Toi(wo)(Z(wo, 2) — T} (wo, 2))
n=1
and ’j}l(wo,O) = 0;1. These equations permit us to study the influence of the degree of

correlation, between the two realizations of the random medium, on the amplitude of the
refocused wave. We have the following result on the asymptotic covariances ’]}l (wo, L).

Theorem Let us assume that the energy transport matrix T'°(wg) is irreducible. Then, we

have
1 N(w) - B

i | X T )| = —Aten)

with 3
AOO(WO) - H]l\f <( - IU'FC(WO) + Dd(WO))Xa X>RN(wO) > 07

X€S+ (WO)
and where

D(wo) = diag(D1(wo), - - -, D(u) (o)),
with

Dj(wo) = Af(wo) + (1 = p)[Lj;(wo) — I'§;(wo)].

This result means that if the two realizations of the random medium are not fully correlated
(1 €0,1)), the amplitude of the refocused wave decays exponentially with the propagation
distance even if the radiation losses are negligible.

In the case u = 1, we study in Section 3.4.7 the transverse profile of the deterministic
refocused wave field using the continuous diffusive model introduced in Chapter 2. We
consider a time-reversal mirror Dys = [dy, d2] with a size of order A3, where ays € [0, 1]

and Ay = 71217250 is the carrier wavelength in the ocean section [0, d] of the waveguide. In the

case of a homogeneous waveguide, we get in Section 3.4.3 that the width of the focal spot is
diffraction limited.

Proposition Forays € [0, 1), the transverse profile of the refocused wave in the high-frequency
regime wo — 400 s given by

0 d2 — d1 . T — X0
HoM (wo, x, L) w02>>1 e d smc<27r - 9).

The width of the focal spot is given by Ao/ (20), where Ao is the carrier wavelength in the
ocean section [0, d].

In the case of a random waveguide with radiation losses, we have in Section 3.4.7 the following
result.
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Proposition The transverse profile of the refocused wave in the high-frequency regime wy —
+o0 is given by

HE (w0, L) = f da ; d H(“’ ;“”0 0.L),

where

1
H(# L) = / To(L, u) cos(2rui)du,
0

and T1(L,u) is the solution of

0 0 0

—T = — | asc(")=—T1 ),

82: 1(2,'[1/) 8u (CL ()au 1) (Z U)
with the boundary conditions:

aauTl(z,O):O, Ti(2,1) =0 and T1(0,u) =1,

Vz > 0. Here,
ao

T- (k%) (6u)?’

. 2 .
with ay = m?f{%’ 0 =4/1-1/n2 Sy = fod fod'yo(xl,xg) cos (§x1) cos (Zag)dridrs. ny is
the index of refraction in the ocean section [0,d], 1/a = 1,4 is the correlation length of the

random inhomogeneities in the longitudinal direction, and g is the covariance function of the
random inhomogeneities in the transverse direction.

oo (1)

The transverse profile of the refocused wave can be expressed in terms of the diffusive
continuous model introduced in Section 2.5.2, with a reflecting boundary condition at u = 0
(the top of the waveguide) and an absorbing boundary condition at u = 1 (the bottom of the
waveguide) which represents the radiative loss (see Figure 1.4). As it is illustrated in Figures
1.7 and 1.8 the radiation losses degrade the quality of the refocusing: the amplitude of the
refocused wave decays exponentially with the propagation distance (see Section 2.5.2), and
the width of the focal spot increases and converges to an asymptotic value that is significantly
larger than the diffraction limit A\,./(260), where A, is the carrier wavelength in the ocean
section [0, d].

In the case of a random waveguide, if we assume that the radiation losses are negligible,
we have in Section 3.4.7 the following result.

Proposition For ays € [0,1], with negligible radiation losses, the transverse profile of the
refocused wave in the high-frequency regime wg — 400 is given by

0 do—d T —
0,0 ~ 7 2 1 . 0
H,. (wo,:n, L) =S v sinc (277 o 9).

In the case of negligible radiation losses (see Figure 1.5) the energy is conserved (see Section
2.5.3). The sinc profile obtained in Proposition 3.13 page 147 is the best transverse profile
that we can obtained.

Let us remark that, in the case of a random waveguide, the order of magnitude a;j; of the
time-reversal mirror plays no role in the transverse profile compared to the homogeneous case
(see Section 3.4.7).
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amplitude (a.u)
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Figure 1.7: Normalized transverse profile. In (a) and (b) the dashed curves are the transverse
profiles in the case where the radiation losses are negligible sinc(27Z), and the solid curves
represent the transverse profile H(Z, L) in the presence of radiative loss. In (a) we represent
H(z,L) with L =75, and in (b) we represent H (Z, L) with L = 250.
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Figure 1.8: Representation of the evolution of the resolution with respect to the propagation
distance L. Here ap =1, a =1, ny = 2, and d = 20.
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0 L/F,l o

Figure 1.9: Representation of the waveguide model with propagation axis in the z-direction,
bounded cross-section [0, d], and two sections (—oo, L/e!=%) and (L/e!=%, +00).

Results of Chapter 4 For the sake of simplicity, we do not consider in this chapter the
same waveguide model as in Chapters 2 and 3. The waveguide considered in this chapter
is the same as in [25, Chapter 20] and [30], that is, the transverse section X is a bounded
interval [0, d]. Consequently, in this chapter we do not consider the influence of the radiative
loss on the time-reversal experiment.

In [25, Chapter 20] and [30] the authors show that the size of the focal spot in the time-
reversal experiment is limited by the diffraction limit A\g/2 (where )¢ is the carrier wavelength).
We show in Chapter 4 that the main focal spot can be smaller than the diffraction limit by
inserting a random section in the vicinity of the source.

In this chapter the medium parameters are given by

| L (L VeV (2, 5) i e (0,d), ze[0,L/e]
_ 2ax L : -
Ke(z,2z) ‘ fK ?f v€(0,d), =€ 0017—0)
’ F if T e (O,d), A (L/E a,-|—OO)’
(o.2) = e2%p5 if z€(0,d), z€ (—o0,L/e]
px,2) = 5 if ze(0,d), ze(L/e® +o0),

where «, and o are such that o, — ag = o € (0,1] (see Figure 1.9). The random process
V', described more precisely in Section 2.6.1, models the spatial inhomogeneities. We consider
a broadband source localized in the plane z = 0:

F(t,z,2) = f(t)¥(z)d(z)e,, where f€(t) = %f(ept)e_iwot with p € (0,1),

and W(x) is the transverse profile of the source. The source amplitude is large, of order
1/€%, because transmission coefficients at the interface z = L/e'~® are small, of order €*/2.
However, in Section 4.4.6, we show that the transmission coefficients can be made of order one
by inserting a quarter wavelength plate. In this Chapter, the two realizations of the random
medium during the time-reversal experiment are the same, and as in Chapter 3 the condition
p € (0,1) (broadband case) ensures the statistical stability property (see Section 4.4.5).
The important parameter is «, because it determines the order of magnitude of the
sound speed ¢ of the first section (—oo, L/e!'~®). This configuration means that the order
of magnitude of the sound speed ¢; ~ €“ is small compared to that ¢y ~ 1 of the section
(L/€'=% +00). The first section can represent a solid with random inhomogeneities, and the
second can represent a homogeneous gas or liquid. The particular case @ = 0 is equivalent
to that studied in [30] and [25, Chapter 20], in which no superresolution effect can be
detected. The parameter « represents a possible configuration of the waveguide model, but in
order to apply an asymptotic analysis we take a € (0,1/4). The regime of the first section
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(—o0o, L/e'=®) is given by

LO 1(1 lz c Ga lx C 1(3
= = —_—~ ]_ = = 1 d — .
o . " 22 S Vs > and o =+/e

This regime is somewhat different from the weakly heterogeneous regime dicussed at the
begining of this presentation. However, in the z-direction, which is the main propagation axis,
this regime corresponds to the weakly heterogeneous regime.

As we study linear models of propagation the pressure p(t,z, z) can be expressed as the
superposition of monochromatic waves by taking its Fourier transform:

plw,z,z) = /p(t,m,z)ei‘Utdt.
Moreover, a wave field can be decomposed as follows:

p(w,x, 2) ijwzqﬁj

j>1

where (¢;(.));>1 is the basis of the Hilbert space L?(0,d) defined by

2 . .2 2
oj(x) = \/;sin (j;rx> with \; = jdg for j > 1,

and corresponds to the eigenvectors and eigenvalues of the unperturbed waveguide.

e In the second section (L/e!=® +o0): for j < N(w) = [;’—C‘é], the modes ¢;(z) are the
propagating modes for the waveguide with homogeneous parameters K (z,z) = K and
p(z,z) = p, and we call these modes low modes; for j > N(w), these modes are the
evanescent modes for the waveguide, and we call these modes high modes.

e In the first section (—oo, L/e!=®): for j < N (w) = [moea] the modes ¢;(z) are the

propagating modes for the waveguide with homogeneous parameters K (z, z) = K /e2®K
and p(z, z) = p/e®; for j > N.(w), these modes are the evanescent modes for the same
waveguide.

We know that for the waveguide with homogeneous parameters K (r, z) = K and p(z,z) =
p the information on the small-scale features (position and shape) of the source, which are
carried by the high modes, is lost [30]. Let us remark that in Chapter 2, with a randomly
perturbed waveguide, we show in Proposition 2.2 page 50, that the information on the small-
scale features of the source is lost because of a low coupling mechanism between the high
modes and the low modes. Let us remark that the number of propagating modes of the first
section (—oo, L/e!=%) goes to +00 as € — 0. This implies that high modes are propagating
modes of the first section. By adding random inhomogeneities in the first section, we get an
efficient coupling between high modes and low modes.

In this chapter the source profile is given by

¢
.73) = Z¢]($0)¢]($) Vz € [Ovd]’
j=1

with ¢ > N(wp) to have a large number of high modes. This profile is an approximation of a
Dirac distribution which models a point source at x.

In order to study the refocused wave around the original source location (see Sections
4.4.3 and 4.4.4), and under the assumption that nearest neighbor coupling is the main
power transfer mechanism, we analyze the asymptotic behavior of the product of two transfer
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matrices U5, (w, z) = T§(w, 2)T},, (w, 2) at the same frequency. Here, T“(w, 2) is the solution
of the N (w) x N¢(w) system of differential equations with random coefficients of the form:

d 1

iTg(w,z) = \fHa’E (w, i) T(w,z) with T¢w,0)=1

Here H*¢ is defined by (4.10) page 158 and represents the coupling of the N (w)-propagating
modes of the first section (—oo, L/€) due to the random heterogeneities. The asymptotic
behavior as € — 0 of the statistical properties of the matrix U€ is described in Section 4.3 in
terms of the diffusion model given by the infinite-dimensional stochastic differential equation:

dU(w, z) = J*(U(w, 2))dz + 9§ (U(w, 2))(dB;) + ¢§ (U(w, 2))(dB2),

with Uj,(w,0) = 8;16mn, where (B;?m)n 1,2 is a family of independent one-dimensional
]m>1

standard Brownian motions, and J“, ¢{ and ¢4 are defined in Theorem 4.1 page 160. As
a result, the transverse profile of the refocused wave in the asymptotic € — 0 is essentially

given by
N (wo

o
HZM wo, T

Hwo, L) M () i),

l>1 j=1
up to an error which decays exponentially to 0 in the high-frequency regime (see Section 4.4.4).
Here, Mjj = [p, . ¢; 3(z)dz, k(wo) = wo/co is the carrier wavenumber of the second section

(L/e'=2, +00) of the waveguide, and 3;j(wo) = 1/k2(wo) — A;j is the jth modal wavenumber of
the second section of the waveguide.

Consequently, we are interested in the study of the asymptotic mean mode powers of the
propagating modes
T}(w, L) = lim E|| T, (w, L)[*].

J e—0

’]}l(w, L) is the expected power of the jth propagating mode at the propagation distance
z = L, when at z = 0 the energy is concentrated on the /th propagating mode. The expected

powers le (w, L) are solution of the following coupled power equations:

—THw, 2) = Aw) [’Z}lﬂ(w,z) + ’]}l_l(w,z) — 27}l(w, z)} , j>1,

Hw,2) = AW) [ B (@,2) - T(w,2)]

with ’Z}l(w, 0) = d;1. These equations describe the transfer of energy between the propagating
modes and A(w) is the energy transport coefficient. The initial condition means that an
impulse equal to one charges only the Ith propagating mode. As in Chapter 2, the evolution
of the mean mode powers is described in the high-frequency regime by a continuous diffusive
model (see Section 4.3). Moreover, as in Chapter 3, this continuous diffusive model can be used
to study the refocused transverse profile (see Section 4.4.4). In the high-frequency regime, we
can consider (7'(w, L));>1 as a family of probability measures on R;. Let Vi € C2([0, +00)),
Vu € [0,4+00), and z > 0,

N(w) [N( w)u] J N(W)“]
T, (2,u) =T (w, 2) Zw(N(wQ (2).
j>1
Theorem Vu > 0, Vz > 0, and Vo € CP([0, +00)), we have
lim ’TN(“’)(Z u) =T (z,u) = o(v)W(z,u,v)dv,

w—+400 Ry
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(a)
Time reversal o Time reversal
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' High modes J « High modes J
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Figure 1.10: Representation of mode propagation in the time reversal experiment. The
pictures on the left-hand side illustrate the first step of the experiment. A source sends a
pulse into a medium. The wave propagates and is recorded by the time-reversal mirror. The
recorded signal is reversed in time by the mirror. The pictures on the right-hand side illustrate
the second step of the experiment. The time-reversal mirror sends back the time-reversed
wave. The part of the signal that is recorded first is sent back last. The back-propagating
wave refocuses approximately at the source location. In (a) we represent a homogeneous
waveguide, in (b) we add a homogeneous section with low speed propagation, and in (c) we
add a randomly heterogeneous section with low background propagation speed.

where Vz > 0 and (u,v) € [0,4+00)?,

0 % 0?
&W(%Uﬂ)) = ?WW(ZJZL?'U%
with 5
%W(z,o,v) =0 and W(0,u,v) = 0(u — v).
Here, 0% = d”TQaS(l, 1) and S(1,1) = l;% fod fg’}/(](ﬂjl,l’g)COS (1) cos (§xo)dx1dzy. Moreover,

1/a =1, 5 is the correlation length of the random inhomogeneities in the longitudinal direction,
and 7y is the covariance function of the random inhomogeneities in the transverse direction.

Let us note that W(z,u,v) can be computed. We have, Vz > 0 and V(u,v) € [0, +00)?,

W(z,u,v) = o (e_(g;;f + e_(;:;f)
Y V2ro?z .

As in Chapter 3, this result is used to study the refocused transverse profile. Now, let us

describe the important mechanisms which lead us to the superresolution effect.

First, the case of a waveguide with homogeneous sound speed ¢y (see Figure 1.10 (a)) is
well known; see for instance [25], where the authors obtain the classical diffraction limit A\ /2.
In this case, the small-scale features (position and shape) of the source are carried by the
high modes that decay exponentially fast with the propagation distance. Consequently, these
modes do not reach the time-reversal mirror, which is located in the far field. Only low modes
are recorded by the time-reversal mirror. In the second step of the time-reversal experiment,
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the mirror sends back the recorded low modes that carry only the large-scale features of the
original source. This loss of information is responsible for the diffraction-limited transverse
profile, and is described by the following result of Section 4.4.3. We consider a time-reversal
mirror Dyy = [dy, da] with a size of order \g™, where aps € [0,1] and Ao = 27? is the carrier

wavelength in the second section (L/el =% +00) of the waveguide.

Proposition For ap € [0,1), the spatial profile in the high-frequency regime is given by

do —d xT—z
Hatcloltilo section (WO, :L‘) w0§>1 2)\Od = sinc (27T )\0 2 ) .

In this chapter, we are interested in comparing the two following cases with the previous
one. First, we assume that a homogeneous section with low sound speed ¢; < 1 is inserted in
the vicinity of the source, as illustrated in Figure 1.10 (b), such that some high modes of the
previous case are propagating modes in this first section. However, we assume that the major
part of the waveguide has sound speed ¢y so the high modes and the small-scale features of
the source do not reach the time-reversal mirror. Therefore, as in the homogeneous case, only
low modes are recorded by the time-reversal mirror and the small-scale features of the source
are lost. Then, we get in Section 4.4.3 the following result.

Proposition Forays € [0,1), the transverse profile of the refocused wave in the high-frequency
regime is given by
d2 — d1 r — X
oM ~ §2480)
where

1
HY (§) = / V1 —wu?cos (2miu) du.
0

Second, if the additional section has low sound speed and is randomly perturbed, then
coupling mechanisms, between all the propagating modes of the first section, allow small-scale
features of the source, which are carried by the high modes, to be transferred to low modes.
Even if the high modes do not propagate over large distances in the second part of the
waveguide and are not recorded by the time-reversal mirror, a part of the small-scale features
of the source reaches the time-reversal mirror since they are carried by the low modes which
are recorded by the time-reversal mirror. This fact is illustrated in Figure 1.10 (c). These low
modes, time-reversed, come back to the randomly perturbed section in the second step of the
time-reversal experiment, and by coupling mechanisms they regenerate high modes with the
small-scale features of the source. This regeneration of small-scale features of the source is
responsible for the superresolution effect and we get in Section 4.4.4 the following result.

Proposition For ays € [0,1], in the high-frequency regime, we have

o _dg—dl (2) Tr — X
HgM (wo, ) = Nod H ( o ,L),
where .
H® (% L) = esz/rgH(l)(:i) = e /e / V1 —u?cos (2mzu) du,
0
with

. _d) o
rov2L w2\ 2LS(1,1)’

Te =
and S(1,1) = ;—zfod f()Cl’yo($1,$2) cos (§x1) cos (Fag)dxydus. Moreover, 1/a = ., is the
correlation length of the random inhomogeneities in the longitudinal direction, and g s the

covariance function of the random inhomogeneities in the transverse direction.
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Figure 1.11: Normalized transverse profiles in a random waveguide. Here L = 1. In (a) and
(b) we illustrate the case where aps € [0,1). The dashed curves are the transverse profiles in
the case where the section is missing, and the solid curves are the transverse profiles H (%) (z,L)
in the case where we add a random section, with 0 = 0.5 in (a), and 0 = 7 in (b).
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Figure 1.12: Ratio between the FWHM (Full Width at Half Maximum) of the profile H®) (&, L)
obtained when we add a random section and that of the profile obtained when this section is missing
sinc(27Z), in terms of the standard deviation o of the random fluctuations. Here L = 1. The solid
curve represents the case where aps € [0, 1), and the dashed curve represents the case where ap; = 1.

Moreover, let us remark that, in the case where the additional section is randomly perturbed,
the order of magnitude s of the time-reversal mirror plays no role in the transverse profile
compared to the homogeneous cases (see Section 4.4.4).
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Chapter

Wave Propagation in Shallow-Water
Acoustic Random Waveguides

Introduction

Acoustic wave propagation in shallow-water waveguides has been studied for a long time
because of its numerous domains of applications. One of the most important applications
is submarine detection with active or passive sonars, but it can also be used in underwater
communication, mines or archaeological artifacts detection, and to study the ocean’s structure
or ocean biology. Shallow-waters are complicated media because they have indices of refraction
with spatial and time dependences. However, the sound speed in water, which is about 1500
m/s, is sufficiently large with respect to the motions of water masses that we can consider
this medium as being time independent. Moreover, the presence of spatial inhomogeneities in
the water produces a mode coupling and can induce significant effects over large propagation
distances.

In shallow-water waveguides the transverse section can be represented as a semi-infinite
interval (see Figure 2.1) and then a wave field can be decomposed over three kinds of modes:
the propagating modes which propagate over long distances, the evanescent modes which
decrease exponentially with the propagation distance, and the radiating modes representing
modes which penetrate under the bottom of the water. The main purpose of this chapter is
to analyze how the propagating mode powers are affected by the radiating and evanescent
modes. This analysis is carried out using an asymptotic analysis based on a separation of scale
technique, where the wavelength and the correlation lengths of the inhomogeneities, which
are of the same order, are small compared to the propagation distance, and the fluctuations
of the medium are small compared to the wavelength. In the terminology of [25] this is the
so-called weakly heterogeneous regime.

Wave propagation in random waveguides with a bounded cross-section and Dirichlet
boundary conditions (see Figure 2.1) has been studied in [25, Chapter 20] or [30] for instance.
In this case we have only two kinds of modes, the propagating and the evanescent modes. In
such a model an asymptotic analysis of the mode powers show total energy conservation and
a uniform distribution of the energy carried by the propagating modes. In [30] coupled power
equations are derived under the assumption that evanescent modes are negligible. In [29] the
role of evanescent modes is studied in absence of radiating modes. In this chapter we take
into account the influence of the radiating and the evanescent modes on the coupled power
equations. In this case we show a mode-dependent and frequency-dependent attenuation on
the propagating modes in Theorem 2.3, that is, the total energy carried by the propagating
modes decreases exponentially with the size of the random section and we give an expression
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Figure 2.1: Illustration of two kinds of waveguides. In (a) we represent a shallow-water
waveguide model with an unbounded cross-section. In (b) we represent a waveguide with a
bounded cross-section.

of the decay rate. Moreover, in the high-frequency regime, we show in Theorems 2.4 and
2.6 that the propagating mode powers converge to the solution of a diffusion equation. All
the results of this chapter are also valid for electromagnetic wave propagation in dielectric
waveguides and optical fibers [43, 44, 52, 54, 62].

The organization of this chapter is as follows. In Section 2.1 we present the waveguide
model that we consider in Chapter 2 and Chapter 3, and in Section 2.2 we present the mode
decomposition associated to that model and studied in detail in [61]. In Section 2.3 we study
the mode coupling when there are the three kinds of modes. In the same spirit as in [25,
chapter 20], we derive the coupled mode equation, we study the energy flux for the propagating
and the radiating modes, and the influence of the evanescent modes on the two other kinds of
modes. In Section 2.4, under the forward scattering approximation, we study the asymptotic
form of the joint distribution of the propagating and radiating mode amplitudes. We apply
this result in Section 2.5 to derive the coupled power equations for the propagating modes,
which was already obtained in [39] or [44] for instance. In this section, we study the influence
of the radiating and evanescent modes on the mean propagating mode powers. We show that
the total energy carried by the propagating modes decreases exponentially with the size of
the random section and we give an expression of the decay rate. In other words, the radiating
modes induce a mode-dependent attenuation on the propagating modes, that is why these
modes are sometimes called dissipative modes. Moreover, under the assumption that nearest
neighbor coupling is the main power transfer mechanism, we show, in the high-frequency
regime or in the limit of large number of propagating modes, that the mean propagating
mode powers converge to the solution of a diffusion equation. We can refer to [39, 44] for
further references and discussions about diffusion models. In that regime, we can also observe
the exponential decay behavior caused by the radiative loss.

2.1 Waveguide Model

We consider a two-dimensional linear acoustic wave model. The conservation equations of
mass and linear momentum are given by

p(z,2) 22+ Vp = F,
ot
. (2.1)
K(m,z)a+ u=0

where p is the acoustic pressure, u is the acoustic velocity, p is the density of the medium,
K is the bulk modulus, and the source is modeled by the forcing term F(¢, x, z). The third
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Figure 2.2: Illustration of the shallow-water waveguide model.

coordinate z represents the propagation axis along the waveguide. The transverse section of
the waveguide is the semi-infinite interval [0, +00), and x € [0, 400) represents the transverse
coordinate. Let d > 0, we assume that the medium parameters are given by
= (nP(x) +VeV(x,2)) if xe(0,d], ze[0,L/€
1 z € [0,400), z € (—00,0) U (L/e, +0)
K(z,z) %rﬂ(az) if or
z € (d,+00), z € (—00, +00).

plr,z)=p if z€[0,+0), z€R.

In Chapters 2 and 3, we consider the Pekeris waveguide model. This kind of model has been
studied for half a century [51] and in this model the index of refraction n(z) is given by

(2) = ny>1 if z€]0,d)
M= if ze€[d,+00).

This profile can model an ocean with a constant sound speed. Such conditions can be
found during the winter in Earth’s mid latitudes and in water shallower than about 30 meters.
The Pekeris profile leads us to simplified algebra but it underestimates the complexity of the
medium. However, the analysis that we present in Chapters 2 and 3 can be extended to more
general profiles n(z) with general boundary conditions. In the Pekeris model that we consider
ny represents the index of refraction of the ocean section [0, d], where d is the depth of the
ocean, and we consider that the index of refraction of the bottom of the ocean is equal to 1.
This model can also be used to study the propagation of electromagnetic waves in a dielectric
slab with randomly perturbed index of refraction and optical fiber [43, 44, 54, 62].

We consider a source that emits a signal in the z-direction, which is localized in the plane
Z = LS.

F(t,z,z) = ¥(t,x)d(z — Lg)e,. (2.2)

U(t, z) represents the profile of the source and e, is the unit vector pointing in the z-direction.
Lg < 0 is the location of the source on the propagating axis.

The random process (V(z,z),z € [0,d],z > 0) that we consider, and which represents
the spatial inhomogeneities is presented in Section 2.6.1. However, one can remark that the
process V' is unbounded. This fact implies that the bulk modulus can take negative values.
In order to avoid this situation, we can work on the event

(V(2,2) € [0,d] x [0, L/e], 1 + VeV (,2) > 0).
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In fact, the property (2.55) implies

%P(a(m, 2) € [0,d] x [0, L/ : ny + VeV (x,2) <0)
V(:c,i)' an) =0.

2.2 Wave Propagation in a Homogeneous Waveguide

< lim]P’(ﬁ sup sup
=0 2€[0,L] z€[0,d]

In this section, we assume that the medium parameters are given by
K
n?(z)’

p(z,z) =pand K(x,z) = V(z,z) € [0,+00) x R.

From the conservation equations (2.1), we can derive the wave equation for the pressure field,

1 9%
Ap — W@ =V.F, (2.3)
where ¢(z) = ¢/n(x) with ¢ = \/%, and A = 92 + 92
In underwater acoustics the density of air is very small compared to the density of water,
then it is natural to use a pressure-release condition. The pressure is very weak outside the
waveguide, and by continuity, the pressure is zero at the free surface x = 0. This consideration
leads us to consider the Dirichlet boundary conditions

p(t,0,z) =0 V(t,2) € [0,+0) x R.

Throughout this manuscript, we consider linear models of propagation. Therefore, the
pressure p(t,x, z) can be expressed as the superposition of monochromatic waves by taking
its Fourier transform. Here, the Fourier transform and the inverse Fourier transform, with
respect to time, are defined by

Flw) = / Ft)e“tdt,  f(t) = % / Flw)e “dw,

In the half-space z > Lg (resp., z < Lg), taking the Fourier transform in (2.3), we get
that p(w, x, z) satisfies the time harmonic wave equation without source term

8z2ﬁ(w, x,z) + (ﬁﬁ(w, x,z)+ kz(w)nQ(x)ﬁ(w, x,z) =0, (2.4)

where k(w) = % is the wavenumber, and with Dirichlet boundary conditions p(w,0,2) = 0
Vz € R. The source term implies the following jump conditions for the pressure field across
the plane z = Lg

ﬁ(wvva;)_ﬁ(w7x7L§> =

(w, ),
9:p(w, z, LJSF) - 0.p(w,x,Lg) = (2.5)

S e

2.2.1 Spectral Decomposition in Unperturbed Waveguides

This section is devoted to the presentation of the spectral decomposition of the Pekeris operator
02 + k?(w)n?(z). The spectral analysis of this operator is carried out in [61]. Throughout
Chapters 2 and 3, we shall be interested in solutions of (2.4) such that

(@, ) (15 400)(2) € C°((Ls, +00), H (0, +00) N H(0,+00)) N C2((Ls, +00), H),

B, s ) (—o016)(2) € C°((=00, Ls), H} (0, +00) N H(0,+00)) N C2( (=00, Ls), H),
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where H = L?(0, +o0). H is equipped with the inner product defined by

+o0
V(hl, hg) € HxH, <h1,h2>H = /0 hl(x)hg(x)dac

Consequently, in the half-space z > Lg (resp., z < Lg), we can consider (2.4) as the operational

differential equation
> N
@p(w, 5 2) + Rw)(pw,.,z)) =0 (2.6)

in H, where R(w) is an unbounded operator on H with domain
D(R(w)) = Hy (0, +00) N H*(0, +00),

and defined by
2

R@)(5) = gy + K@)y Yy € D(R(W)).

According to [61], R(w) is a self-adjoint operator on the Hilbert space H, and its spectrum is
given by

Sp(R()) = (=00, ()| U {B(y (@), -, B2 (w)}- (2.7)
More precisely, we have (;(w) > 0Vj € {1,...,N(w)}, and

K (w) < B (W) <+ < B(w) < nik?(w).

Moreover, there exists a resolution of the identity II,, of R(w) such that Yy € H, Vr € R,

T (r, +00) (y Z (9,65, ) 05 (@, 2) 15 o0) (B5(@)?)

kQ
+ / (0 (0,) 102 (0 )Y L) ()

and Vy € D(R(w)), Vr € R,
I (r, +00) (R(w Z B (@), 8w, ) 63w, )1 100) (B5()?)

k2 (w
+/ y) Qb’y w 93)>ng5,y(w :E)d’)/].( ookQ(w))( )

Let us describe these decompositions.

Discrete part of the decomposition Vj € {1,...,N(w)}, the jth eigenvector is given

by [61]
‘ B Aj(w)sin(oj(w)z/d) if 0<z<d

%(w’x)_{ Aj(w) sin(oj(w)e 6@ T i d<a,
where

0j(w) = dy/n3k2(w) — BA(w), (i(w) = dy/B;(w)? — k2(w),
and

2/d
Aj(w) = \J Sin?(0; (@) sin(205 (@) (2.8)
1+ 20— T
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According to [61], 01(w), . .., 0 n(w)(w) are the solutions on (0,n1k(w)df) of the equation
Y
t = — , 2.9
i) = (29

such that 0 < 01(w) < -+ < oy (W) < nik(w)dd, and with = (/1 —1/n}. This last
equation admits exactly one solution over each interval of the form (7/2+ (j — 1)m,7/2 + j7)
for j € {1,...,N(w)}, where

nik(w)d }
—0].
7r

Nw = |

From (2.9), we get the following results about the localization of the solutions which is used
to show the main result of Section 2.5.2.

Lemma 2.1 Let a > 1/3, we have as N(w) — +00

sup ’Uj.;_l(w) — O'j(w) — 7[" =0 (N(w)%fga) )
je{l,...,N(w)—[N(w)a]_l}

sup |Oj+200)‘*20j+1QU)%*Oj(w))|::C)(pJOU)1—3a).
jE{l,...,N(w)—[N(w)a]_2}

Continuous part of the decomposition For v € (—o00, k?(w)), we have [61]

¢’Y(w’ x) =
{ Ay (w) sin(n(w)z/d) if 0<z<d
A (w) (sin(n(w)) cos (&(w) 5% 4) "éwg cos(n(w)) sin (f(w)%ﬁ)) if d<aux,
where
nw) = dy\nik2(w) =7, &w)=dy/k(w) —7,
and
) ()
le) = \/ (@) st (1(@) + 1P (@) co? (1)) (210)
It is easy to check that the function v — A, (w) is continuous on ( — oo, k*(w)) and
A (w) ! (2.11)

e VAT

We can remark that ¢, (w,.) does not belong to H. Then, (y, ¢ (w, )>H is not defined in the
classical way. In fact,

(s 0n Ny = Jim [yl (e)de on L2( o0, (@),
Moreover, we have Vy € H
N(w) 1w
ot = 3 10560 [ ) P
Then,
O, H — HY

y — (8@ D) o v (0@ D ) se o)

is an isometry, from H onto H¥ = CN®) x L2( — oo, k?(w)).

36



Chapter 2 Section 2.2.2

2.2.2 Modal Decomposition

In this section we apply the spectral decomposition introduced in Section 2.2.1 on a solution
p(w, x, z) of the equation (2.6). Consequently, we get the modal decomposition for p(w, z, 2)
in the half-space z > Lg,

k2
plw,z, 2) Z pj(w, 2)p;(w, z) +/ (w, 2) Py (w, z)dr,
7j=1

where p(w, z) = O, (p(w, ., 2)). For j € {1,...,N(w)}, O, o IL,({j}) represents the projection
over the jth propagating mode, and p;(w, z) is the amplitude of the jth propagating mode.
O, o I1,(0, k*(w)) represents the projection over the radiating modes, and p,(w, 2) is the
amplitude of the yth radiating mode for almost every v € (0, k?(w)). Finally, ©,, o II,,(—oc, 0)
represents the projection over the evanescent modes and p(w, z) is the amplitude of the yth
evanescent mode for almost every v € (—00,0).

Consequently, p(w, z) satisfies

d? -

@pj(wv Z) + ﬂ?(w)pj(w, Z) =0,
d2
@p’y(wv Z) + Y p’y(w, Z) =0

in ‘H“ and the pressure field can be written as an expansion over the complete set of modes

(@)

plw,x,z) = [Z

aJ()( ) zﬁj (w)z + )a70< ) POVEE d
(w) ¢ (.U x / 1/4 ¢’Y(w7x) Fy

o~

0 ¢
+/ 7”1/4 \/72¢7(w,x)d’y} 1(L5,+oo)(z)

Nw) 7

e

(2.12)

k2
D) g+ [ B 0

+/ ikl ’1/4 W “y(w, iﬁ)dV] L(—s0,L)(2);

under the assumption that (¢y(w)e WLS/MWL) and (dyo(w)e WLS/|7|1/4) belong to

L*(—00,0). Here, 3;(w) are the modal Wavenumbers

In the previous decomposition, @;o(w) (resp., Ejp (w)) is the amplitude of the jth right-
going (resp., left-going) mode propagating in the right half-space z > Lg (resp., left half-space
z < Lg), @y o(w) (resp., E%O(w)) is the amplitude of the vth right-going (resp., left-going)
mode radiating in the right half-space z > Lg (resp., left half-space z < Lg), and ¢,,9(w)
(resp., c?%g (w)) is the amplitude of the «th right-going (resp., left-going) evanescent mode in
the right half-space z > Lg (resp., left half-space z < Lg).

We assume that the profile (¢, x) of the source term (2.2) is given, in the frequency
domain, by

N(w)

¥(w,) )| 32 st amiesfonn) + / sy P EIB @D (213

where 2o € (0,d). The bound S in the spectral decomposition of the source profile was
introduced to have ¥(w,.) € H, and £ was introduced for technical reasons. Note that S can
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be arbitrarily large and £ can be arbitrarily small. Therefore, the spatial profile in (2.13) is
an approximation of a Dirac distribution at xg, which models a point source at xg.
Applying ©,, on (2.5) and using (2.12), we get

Biw) |
2( Flo)is(onza)e O e (1. N,
L

ajo(w) = —bjo(w) =

dyo(w) = —byo(w) = {

o~

(W) (w, xg)e™ Vs for almost every v € (£, k?*(w))
0 for almost every 7 € (0,§),

1/4 ~ 1/4
20(w) = =L fl@)n @,a0)eVIIEs, - d,o(w) = L= flw)y (w,ao)eVhIEs
for almost every v € (=S5, —¢), and

~

& 0(w) = dyo(w) =0

for almost every v € (—o0, —S) U (=¢£,0).

2.3 Mode Coupling in Random Waveguides

In this section we study the expansion of p(w, x, z) when a random section [0, L /€] is inserted
between two homogeneous waveguides (see Figure 2.2). In this section the medium parameters
are given by

% (n?(z) + eV (z,2)) if z€[0,d], z€][0,L/e
1 x € [0,+00), z € (—00,0) U (L/e,4+00)
n?(x) if or
z € (d,+), z € (—00, +00).

plx,z)=p if z€][0,+0), z€R.

In the perturbed section, the pressure field can be decomposed using the resolution of the
identity II,, of the unperturbed waveguide.

N(w) k2(w
P(w,zx, 2) Z Pj(w, z)j(w, x) +/ (w, 2) ¢y (w, x)dr,
7j=1

where p(w, z) = O, (p(w, ., 2)). In what follows, we shall consider solutions of the form

pw,z, 2) Z Dj(w, 2)¢j(w, x) —l—/ N, ))ﬁy(%z)d)y(w,a:)d’y

for technical reasons. This assumption lead us to simplified algebra in the proof of Theorem
2.1. In such a decomposition, the radiating and the evanescent part are separated by the
small band (—¢,¢) with £ < 1. The goal is to isolate the transition mode 0 between the
radiating and the evanescent part of the spectrum Sp(R(w)) given by (2.7). Moreover, we
assume that € < £ and therefore we have two distinct scales. Let us remark that in Chapters
2 and 3, we shall consider in a first time the asymptotic € goes to 0 and in a second time the
asymptotic £ goes to 0.
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2.3.1 Coupled Mode Equations

In this section we give the coupled mode equations, which describes the coupling mechanism
between the amplitudes of the three kinds of modes.

In the random section [0, L/€] the pressure field p(w, z) satisfies the following coupled
equations in H".

2
& i 2) + B 2) + Ve (w z il )
T VaR(w) / CE (P (w.2)dy =0,
( 00,—&)U(&,k?(w)) (2.14)
2
deW(w z)+’yp7(wz+\f/<:2 Z 2)pi(w, 2)
2 w ~ !/
+ ek (w) /( ooy S B2 =0,
where
() = (95, ), 41w, IV / 8)(w,2)01(w, )V (2, 2)d,
Ci(2) = Cyj(2) = (¢5(w, ), Py (w, )V ( / ¢ (w, )y (w, )V (z, 2)dz,  (2.15)
C(2) = (9 (@, ),y (3 )V / 0w 2)by (0, 2)V (2, 2)da.

We recall that p(w, .,.) € C((0,+00), H3(0, +00) N H%(0, +00)) N C%((0, +oc), H), then

TIR 2
| 2w, 2Py < +oo. (2.16)

In the previous coupled equation the coefficients C*(z) represent the coupling between the
three kinds of modes, which are the propagating, radiating and evanescent modes.

Next, we introduce the amplitudes of the generalized right- and left-going modes a(w, z)
and b(w, z), which are given by

1 (0,) = e (@, )P 45, 2)e ),
Bj(w)
d iBj(w)z _ 7 —if;(w)z
dz pj(w Z) 5](00)(@]((,() Z) Bi(w) —bj(wjz)@ Bj(w) )7
D. 1 a OVATAIEN —iy/z
Prl0,2) = 75 (A, 2)eVT7 By, 2)e V),

d . _ o 1/4 (= WYz _ ] —i\/Yz
£pﬂ,(w, z) =1y (av(w, z)e —by(w, 2)e )
Vj € {l,...,N(w)} and almost every v € (£, k*(w)). Let

He = CN@ x L2(€, k% (w)).

From (2.14), we obtain the coupled mode equation in HE X HE % L?(—o00, —¢) for the amplitudes
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sz /k2 w’ &) <av’ (w, z)ei(ﬁ—ﬁj)z + by (w, z)e_i(ﬁwj)z) dy' (2.17)

L) [0 <>

+ Ve 5 \rpvwz)dye

d ik2(w) ") Cy(z) o - »
—0y(w,2) = Ve 0 a(w, 2 ez(ﬁl VA)z +y(w, 2)e z(ﬁl—l—\ﬁ)z
e Y T ) () )

ih2(w) ) Conlz) (o iV —vA)* o T (A2 2.18
+ Ve 2( )/E W (a,yl(w,z)e (V7' =vA) + by (w, 2)e (VA +vA) )d'y’ (2.18)
Ve

+ eikﬂ(w) /—g C%Jw’( 2)

2 B 71/4 p'Y (w Z)d"}// 7Z’YZ
d -~ 12 () Y@ vz A ~ A
@bj(w,z) = —\/EZ z(w) ]é ﬁ) (al(w,z)ez(ﬁlJrﬂj)Z + bl(w,z)e_z(ﬁl_ﬂj)z>
= I

1
zk:2 W) C%,(2)

¢ BivyY
7,]{}2( ) _§ C;u,y/(z)/\ ! —iBs
Dy (w, )y~ "%,

—o VB

- Ve

ay (w, z)ei(ﬁ+5j)z —1—57/@), z)e_i(ﬁ_ﬁj)z) dy (2.19)

G

d > ik*(w) & C5(2)
—b (wvz) = —Ve -
dz" ‘ Nl

e (w ) Oyl a i ')z T —i(+/7y' — z / .
ﬁk2( )/‘5 M(avl(w,z)e (VD)2 4 5 (w, 2)e  (VI=v) )d7 (2.20)
ik?(w C

) [ G,

(a1, ) VD2 4By (w, 2)e V)3

p‘Y' (wv Z)d7/€_iﬁza

2 oo 71/4
2
@ﬁ’y(wv Z) + v ﬁ’y(wa Z) + \/Eg’y(w’ Z) = 07 (221)

where

9r(0,2) =K (w) 3=~ (@, 2)e ™ +bulw, 2)e7 )

=1

k‘2(w) Cw ( ) ' . R y ;
* k2(w)/ 771/4 (a’Y/(wv )V b (w, 2)e VY ) /' (2.22)
+ E(w / 2)py (w, 2)dy'.

Let us note that in absence of random perturbations, the amplitudes d(w, z) and b(w, z) are
constant.
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We assume that a pulse is emitted at the source location Lg and propagates toward the
randomly perturbed slab [0, L/€]. Using the previous section, the form of this incident field
at z = 0 is given by

ﬂ%%@ZEI%p
= /Biw) (2.23)

Consequently, by the continuity of the pressure field across the interfaces z = 0 and z = L/e,
the coupled mode system is complemented with the boundary conditions

~ L
a(w,0) =ap(w) and b (u), ) =0
€

in Hg¢. For j € {1,...,N(w)}, @j0(w) represents the initial amplitude of the jth propagating
mode, and for v € (£, k?(w)), dy,0(w) represents the initial amplitude of the yth radiating
mode at z = 0. Moreover, for v € (=5, —§), ¢y,0(w) represents the initial amplitude of the
~vth evanescent mode at z = 0. The second condition implies that no wave comes from the
right homogeneous waveguide.

2.3.2 Energy Flux for the Propagating and Radiating Modes

In this section we study the energy flux for the propagating and radiating modes, and the
influence of the evanescent modes on this flux.
We begin this section by introducing the radiation condition for the evanescent modes

lim [T, (—o00, =€) ((w, -, 2)) |3, = 0

zZ—400

This condition means that the energy carried by the evanescent modes decay as the propagation
distance becomes large. From the radiation condition and (2.21), we get for almost every

e (—OO, —5)

z/\L/e
Py, 2) = w,w)eVPI=2) gy

2. /
+ ¢y (w, xo)e_m(z_LS)l(—s,—g) (7)

L/e
Ve Gy (w, u)e\/m(z_“)du
2y z/\L/e (2.24)

Vz € [0,4+00). According to (2.12), the relation (2.24) can be viewed as a perturbation of the
form of the evanescent mode without a random perturbation. Using the same arguments as
in [25, Chapter 20|, we get Vz € [0, L /€],

~ £
%(Ha(wz)\\%{g - Hb(wvz)H%{g> = _ﬁjm </—oo gv(w7z)ﬁ7(wvz)d7> ’

and

A - N A e
50 2R = 1B )y = o)l = Vo)l = 5 [ Ty
£ £ £ 3 N (2.25)

—\/E/_: <Z>7(w,xo)e\/mLS/0 Im(gy(w,u))e_\/m“dud’y,

where

z rL/e
Gy (w, 2) :/0 / Im(gv(w,u)gy(w,v))em(“_”)dvdu.
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Consequently, for z = L/e, we get
la(w, L/e)l3e + [Ib(w, 0)l[3 = l[do(w) 13

- \/E/_j ¢7(w,x0)e\mLS /L 6Im(gw(u} u))e ~Vhlugy dry.

0

The second term on the right side of the previous relation has the factor ¢, (w, xo)emLS
which is the form of the evanescent mode at z = 0 without a random perturbation. Therefore,
if Lg is far away from 0 and whatever the source (evanescent modes decay exponentially from
Lg to 0) or if there is no excitation of modes v € (—oo0, —¢) by the source (that is when S = &),
we can get the conservation of the global energy flux for the propagating and radiating modes:

~ 2 T 2 ~ 2

8w, L/e) By + 5w, 0) ey = 170 (w) Bz
However, from (2.25) and even if there is no evanescent modes in (2.23), the local energy flux
is not conserved. The energy related to the evanescent modes is given by the last two terms
on the right side in (2.25). Let us estimate these two quantities. First,

—¢
/ Gy (w, Z)d7 v (x Z>
- V1l €

2

sup < K(§,d) sup sup
z€[0,L/¢] z€[0,L] z€[0,d]
x Sup }Ha(w  2) e + [b(w, e + 15w, 2) 11 (—oo,—e)-
Second,
sup / 6y, 20)eVIE [ (g, (o a)e VT duds|
z€[0,L /€]

K(§,d) sup sup
z€[0,L] z€[0,d]

x sup |[a(w, 2)[lne + [16(w, 2)[lne + 1P(w, 2) 21 (—o0,—g)-
z€[0,L/€]

In the two previous inequalities K (§, d) represents a constant which can change between the
different relations. However, it is difficult to get good a priori estimates about

sup Ha(w,z)H%g + Hb(w,z)\ﬁ{g +[1Pw, 271 (oo —e): (2.26)
z€[0,L/¢€]

For this reason, let us introduce the stopping "time"

€ _: ~ 2 n 2 = 2 1
L = inf (L >0, mp [ )i + 102y + 19 s e, > ﬁ) |
The role of this stopping "time" is to limit the size of the random section to ensure that the
quantity (2.26) is not too large. Consequently, the energy carried by the evanescent modes
over the section [0, L/e] for L < L€, is at most of order O (e!/* SUP.c0,L/e] SUPze0,q)|V (2, 2)?),
and according to (2.55) the local energy flux for the propagating and the radiating modes is
conserved in the asymptotic € — 0. More precisely, we can show that ¥n > 0,

lim P ( sup
e—0 2€[0,L/¢€]

a(w, 2)[Be — b, 2) Iy — 180(w) e + Bo(@) 3| > 0, I < L€> 0.

(2.27)
In Section 2.4, we shall see, under the forward scattering approximation, that the condition
L < L€ is satisfied in the limit ¢ — 0, that is we have lim,_oP(L¢ < L) = 0.
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2.3.3 Influence of the Evanescent Modes on the Propagating and Radiat-
ing Modes

We analyze, in this section, the influence of the evanescent modes on the coupling mechanism
between the propagating and the radiating modes.

First of all, we recall that ©,, o IT,(—o0, —&) (p(w, ., 2)) represents the evanescent part of
the pressure field p(w, ., z), where ©,, and 11, are defined in Section 2.2.1. In this section we
consider F' = L'(—o0, —¢) equipped with the norm

lolle = [l
which is a Banach space. Substituting (2.22) into (2.24), we get
(Id = v/e®*)(O, 0 Ty(~00, —€) (B(w, -,-)) ) = Vep(w, ) + Fo(w, .). (2.28)
This equation holds in the Banach space (C([0,400), F), ||.||cc.F), Where

1lloe,r = sup [ly(2) |7 ¥y & C([0, +00), F).

In (2.28), ®“ is a linear bounded operator, from (C ([0, +00), F'), ||.|lco,r) to itself, defined by

zAL/e
//\ / / (w)dy V=2 gy,

2\/
L/e
dr eV (=) g
g Loy [ o /=

Vz € [0, +00), and for almost every v € (—oo, —&)

D (y)(

) zAL/e N<°” 4 (u)

p’Y(w? 2\/7 \/E

(.L)

k2 (w A : ~ | /
* / /1/4 a7/ (w, u)ezﬁu + by (w, U)e_“/;u)}d’)’/e\/mw—z)du

(ar(w, u)ew’“ + gl(w, u)e*iﬁl“)

k2(w) [L/e (w) (w)
NN ; VA

K (w) CY., SIS i/
- / v () (@ (w, w)etVru by (w, U)eﬂﬁu)]dy@m(z*u)du
3

7/1/4

(@ (w, w)e™ + by(w, u)e 1)

Vz € [0,+00). Finally, for almost every v € (—o0, —¢) and Vz € [0, +00),

Bro(w, 2) = by (w, zo)e VIIELL o ().

We remark that ©,, o I, (—oc0, —&) (p(w, ., .)) € C([0, +00), F) thanks to (2.16). Moreover,
p(w,.) € C([0,400), F) since [~ 5 A‘,Y(| )d'y < 400, where A,(w) is defined by (2.10) and
satisfies (2.11). We can check that the norm of the operator ®“ is bounded by

|®¥]| < K(&,d) sup  sup |V (z,2)].
z€[0,L/€] z€[0,d]
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Consequently, using (2.55), lim.,oP(Id — /e ®* is invertible) = 1. Then, the condition
(Id — /e ¥ is invertible) is satisfied in the asymptotic € — 0. On the event (Id — /e ¥ is
invertible), we have

Oy 0 I,(—00, —&) (Blw, .,.)) = (Id — Ve ) (Vep(w,.) + po(w,.))
= Vep(w,.) + po(w,.) + Ved“(Po(w, .))

+o00
+ 2 _(Ved?) (Vep(w, ) + Ve®” (o(w, .))).

Jj=1

(2.29)

Moreover,
104 0 Ty (=00, =) (P(w; -, ) — Vep(w, .) — Po(w; .) — V@ (Po(w; -))lloc,F
< 2€]| 0| |B(w, - )lloo,F + 26|21 [Bo(w, )lloo, F

<K€ de s swp [V(nE s Jaw e + 1B, )b,
2€[0,L/€] z€[0,d) z€[0,L/€]

and therefore
@w o Hw<—OO, _5) (ﬁ(w, ) )) = \Eﬁ(wa ) + ﬁﬂ(w7 ) + \E(I)w(ﬁO(wv ))

+0(e sup sup |V (z,2)] sup [[a(w, 2l + [b(w, )l )
z€[0,L/€] z€[0,d] z€[0,L/€]

in C([0,+00), F'). Now, we consider

K (w) AL S O)

ﬁw(w,z)ZQ\/m ; [521 NG

kQ(w) Co(u = : T -~ —q um u—2z
* lﬁfﬁ(aww,zm/e)e%ﬁ by (w2 A Lfe)e V) dyeV DIy

(@1(w, 2 A L)€)e ™ 4 by(w, z A Lfe)e™ )

N(w)

]62 (w) Lfe Cvl (’LL)
NN ZAL/E[; VA

kQ(w) Co(u N ; 7 ~ . ’ _
+ /{: ;71/(4 ) (@y (w, 2 A L/e)el\ﬁ“ +by(w, 2N Lfe)e “ﬁ“)}d’y’e\m(z W du

(al(w, z N\ L/e)eiﬁzu _‘_Zl(w? 2 A L/e)e—iﬁlu)

Vz € [0, +00). Using (2.17), (2.18), (2.19), (2.20), and (2.29), we get

I5(w,.) = Pa(w, Voo < K(£,d) Ve sup  sup |V (x,2)[
2€[0,L/€] z€[0,d)

< (sup aw, e + I8, g + 15 )
z€[0,L/€]

and then
(SRS Hw(_oov _f) (ﬁ(w, . )) = \@ﬁQ(w’ ) +ﬁ0(w7 ) + ﬁ@w(ﬁo(w, ))

+0(e sup sup |V (z,2)]* sup [a(w,2)llng + [Bw, 2)llng + [P, 2)]r)
z€[0,L/e] €[0,d] z€[0,L/€]

in C([0, 4+00), F'). Consequently, we can rewrite (2.17), (2.18), (2.19), and (2.20) in a closed
form in H¢ x H¢. Vz € [0, L/e], we get

dijzii(w, 2) = VeH (W, 2) (@(w, 2)) + VeH™ (w, 2) (b(w, 2)) + Ve R¥"S (w, 2)

+€GY(w, 2)(A(w, 2)) + € GP(w, 2) (g(w, z)) +€ R (w, 2)

+0(2 sup sup |V (z,2)]* sup [[a(w, 2)llwg + (B, )l + [P, 2)]r),
z€[0,L/€] z€[0,d] z€[0,L /€]
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ig(w, 2) = VeH" (w, 2) (@(w, 2)) + VeH® (W, 2) (b(w, 2)) + VeRYES (w, 2)

dz

+eG"(w, 2)(A(w, 2)) + e G (w, 2) (b(w, 2)) + RS (w, 2)

+0(e2 sup sup [V(@, ) sup [, 2)lng + 15w, 2z + 15w, 2)lr).

z€[0,L/€] z€[0,d] z€[0,L/¢]

Let us recall that these equations hold on the event (Id — /e ®* is invertible) which satisfies
lime_oP(Id — \/e ®* is invertible) = 1. In these equations, H*(w, z), H®(w, z), H*(w, 2),
H”(w, 2), G*w,z2), G®w,z), G"(w,z) and G"(w, z) are operators from H¢ to itself
defined by:

- @O GO s
H (0. 2)(5) = B )y) = T2 [ 3 Iy

2 Bj(w) B (2.30)
W)  CY,(2) '
+/ I Yyre VY =B Zd'y}
§ ﬁg(w)\/’?
——— iKW C4HE) -
B (on2)) = B2 = 5 [ 3 e
=1 I%ACY (231)
W) C2(2)
e G VATV ER W
+/£ 71/47/1/4'%6 TV dﬂ’
ik? ) C4(2)
H (w, 2)(y) = HY(w, 2)(y) = 2( ){Z il yre— BH@)+6;(w))2
=1 y/Bj(w)B(w) (2.32)
G y,yle—l(\/?Jrﬁj(W))Zd,/},
¢ Bi(w)vAy
— Zk’z w N(W) CUJ (Z) —q w z
HE? (0, )(y) = F (0, () = ) Zmy G
— (W
(2.33)
k’2
+/ 1/4 /1/4y7 (\/’7+ﬁ)zd7/},
G (w,2)(y) = GP(w,2)(y) =
. N(w) ,_ P w w
Zk‘A(w) [ Z / ¢ [/ CjV'(z)C’Y'l(u) ei,@l(w)u—\/m(z—u)du
NS S o JBi(w) B (w)
N /L/E c;;,(z)cgv,,(u) 02 gy ey
z (@) Bi ) (2.34)

4 2 w
Zk /k ) / / O’Y ol (u) ei 'y”u—\/W(z—u)du
VB W)Y VYT
e C¥
N /L/ Cj’)’,(z)c'y/’y"( )ei A — o /"yl‘(u—z)du} d,y/e—iﬁj (w)zy,y”d,yl/}
A\ Bilw) VA"

)
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G(w, 2)(y) = GP(w, 2)(y) =
N(w)

ik (w) - 2 C,‘;’,Y,(Z)Cw/ (u) i@y 1= g
Db/ e

/L/€ CW ( ) Zﬁl(w)u /h/‘(u_z)du} dv'e_iﬁzyl}

\f”y |/8l (2.35)
2
Zk4 /k / / C',},,y ( )ei 'Y//U'*\/W(Z*u)du
VI VAT
L/6 Cw . " / ;
+ / (u) eV “‘\m(“—z)dﬂ dy'e™ Wywdvﬂ},
|V I\ﬁ
G (w, Z)(y) Gb“(w Z)(y) =
Z’f‘* (@) / / () fiﬁz(W)u*m(Z*U)du
/Bj h’ |ﬁl
L/e Cf,y/(z)C,y/l( ) _iﬁl(w)u_m(u—z) ! —iB;(w)z
+ e du|dv'e Yl
=B 15w ) (2.36)
2 w
zk4 /k( / / Cv 7”( )e i v”u*M(Z*U)du
(@)Y VY
+ /L/6 O (2) T3 (u)e—"' 7”u—m(u—z)du] d’y'e_iﬁj(“)zyw'/dVN],
z Bi(@) ' VA"
G2(w, Z)(y) = Gb“(w Z)(y) =
2k4 (w) / / () —ip(uy/ W g,
W
Lje C¥(
/ ( ) —zﬂl(w)u—\/m(u Z)du:|d,_ye Zfzyl:|
\fh |ﬁz (2.37)

zkA / / / C” ) oty g,

Lie (W w
+/ / C’Y’Y/(Z>C’Y/’YN( )e_i ,Y//u_m(u_z)du} d’yle—i\ﬁzy’y”d,y/l}.
z VI VA"

The operators H(w, z) and H®(w, ) represent the coupling between the propagating and
the radiating modes with themselves, while the operators G*(w, z) and G*®(w, z) represent
the coupling between the evanescent modes with the propagating and the radiating modes.
Moreover, R4Ls (w, 2), RY"S (w,z), R®S(w, 2), and R"'S (w, z) represent the influence of
the evanescent modes produced by the source term on the propagating and the radiating
modes. These terms are defined by

_ 2 .
RO (0, 2) = REFS (0, 2) :““ / yr(w, mo)eVIVIEL) g/ =iz (3 38)

a,L _ pblL _ 2k2(w) = C’Y’Y/(Z) —/|V'(z=Lg) g ! ,—i\/7%
ROLS (w, 2) = REES (w, 2) = [s D o zo)e VI By, (2.39)
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RIS (w z):Rb-LS(w,z):

4
Zk / / / )C%JIVN (U) gb,y// (w’ Jjo)eim(quS)ef\/m(zfu)du

Bi(w)ly|
/L/E C ’y»y u(u ) o (w, zo)e W(u—Ls)e—ﬁ(u—z)du] dy"d~/ e—iﬁj(w)27

VB (@)Y

- ~5 1
Rf';’LS(w,z) =R, w, 2) =

4 - r—=¢ z CY, CY 7 /
ik 4(00) / / / Sy () C5 (1) %,,(w’m)e—\/h l(u=Ls) o=V I7'I(z=w) g,
o0 J—8 \/,?|,y/| (241)

- /L/e CW,(Z)C"Y/T(U) %n(w,xo)e*m(“*LS)e*\m(“’z)du dy"dy eV,
z ﬁ ,.)/

(2.40)

2.3.4 Forward Scattering Approximation

In this section we introduce the forward scattering approximation, which is widely used in the
literature. In this approximation the coupling between forward- and backward-propagating
modes is assumed to be negligible compared to the coupling between the forward-propagating
modes. We refer to [30, 33] for justifications on the validity of this approximation.

The physical explanation is as follows. The coupling between a right-going propagating
mode and a left-going propagating mode involves a coefficient of the form

| ECHOCH ) cos () + ()

and the coupling between two right-going propagating modes or two left-going propagating
modes involves a coefficient of the form

/[)+O°E[ ﬁ(o) W( )] cos ((Bi(w) — Bj(w))z)dz

V(5,0 e {1,..., N(w)}2. Therefore, if we assume that

| BICHOCs ) cos (51) + i)z =0 VD) € {1 N,

There is no coupling between right-going and left-going propagating modes, which justifies the
forward scattering approximation, but there is still coupling between right-going propagating
modes which will be described in Section 2.4.

In our context the operator R(w), introduced in Section 2.2.1, has a continuous spec-
trum and it becomes technically complex to apply a limit theorem for the rescaled process
(@(w, z/€),b(w, z/€)). The reason is the following. This process is not bounded and the
stopping times which are the first exit times of closed balls are not lower semicontinuous for
the topology of C([0, L], ng), where H¢ , stands for H¢ equipped with the weak topology.
In our context the continuous part (¢, k%(w)) of the spectrum imposes us to use the norm
HHHg’ to control some quantities. Moreover, according to Theorem 2.1, in which the energy
of the limit process is not conserved, it seems not possible to show a limit theorem on
C([o, L], (Hg, HHHg’)) in view of (2.27). In [25] and [30] there is a finite number of propagating
modes, then the weak topology and the strong topology are the same. In [33] or in Chapter 4
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the number of propagating modes increases as € goes to 0. However, in this last case, the
problem can be corrected by considering the first exit times of a closed ball related to the
weak topology and by considering the process in an appropriate finite-dimensional dual space.
In our context if we forget these technical problems, according to [25, 30] the forward
scattering approximation should be valid in the asymptotic € — 0 under the assumption that
the power spectral density of the process V, i.e. the Fourier transform of its z-autocorrelation
function, possesses a cut-off wavenumber. In other words, we can consider the case where

/;OOE[ 1(0)C51(2)] cos (Bi(w) + Bj(w))z)dz=0 V(4,1) € {1,...,N(w)}2.

Let us remark that the continuous part (0, k?(w)) of the spectrum, which corresponds to
the radiating modes, does not play any role in the previous assumption. The reason is that
the radiating part of the process plays no role in the coupling mechanism as we can see in
Theorems 2.1 and 2.2 below and therefore remains constant.

Finally, we shall consider the simplified equation on [0, L/€],

d%a(w, 2) = VEH" (w0, 2) (d(w, 2)) + Ve RYES (w, 2)
+eG"w, 2) (a(w,2)) + € R (w, 2)

+0(2 sup swp V(@2 sup [a(w, )l + 5w, 2)lIr)
2€[0,L /€] z€]0,d] z€[0,L /€]

in H¢. We shall see in Section 2.4, under the forward scattering approximation, that

imP(L°< L) =0 VL>0,
€—>

where .
L =inf (L >0, sup  ||a(w, 2)||3e + [|pw, 2) |7 > —= ).
( z€[0,L/€] 7t E \/E)

Consequently, we can show that V7 > 0

limP( sup
=0 (zE[O,L/e]

la(w, 2)ll3ge — lao@)le| > n) =o0.

This result means that the local energy flux for the propagating and the radiating modes is
conserved in the asymptotic € — 0.

2.4 Coupled Mode Processes

In this section, we study the asymptotic behavior, as € — 0 in first and £ — 0 in second, of
the statistical properties of the coupling mechanism in terms of a diffusion process.
Let us define the rescaled process

a‘(w,2) =a (w, Z) Vz € [0,L].
€

This scaling corresponds to the size of the random section [0, L/¢€]. This process satisfies the
rescaled coupled mode equations on [0, L]

d/\e _ 1 aa z ~¢ 1 a,Lg z
-8 (w,2) = \EH (w, e) (@“(w,2)) + \/ER (w, e)
z ~ ~a,Lg z
+ G <w, ) (@“(w,2)) + R (w, ) (2.42)
€ €
+0(Ve sup sup [V(2,2) sup [[a(w, 2)|me + [, 2/€) | )
z€[0,L /€] z€[0,d] z€[0,L]
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in HY, with the initial condition a°(w,0) = a@p(w). We shall see that under the forward
scattering approximation the condition L€ > L is readily fulfilled in the asymptotic € goes to
0.

Proposition 2.1 VL > 0,
limP (L < L)=0,

e—0
where
Lr=inf (>0,  sup [a(w) + 5w, 2)F = —=).
2€[0,L/¢] ¢ Ve
and

o g, e ) o

This result means that the amplitude a“(w, z) is asymptotically uniformly bounded in the
limit € — 0 on [0, L]. More precisely, according to Section 2.3.2, we have V7 > 0

1@]}])( Sup | ‘”ae(w7z)H%? — HZL\O(LQ)H%_{ZJ > 7]) = 07

2€[0,L

that is the local energy flux for the propagating and the radiating modes is conserved in the
asymptotic € — 0.

Proof Using Gronwall’s inequality, VL > 0 we get

lim Tim P a(w, 2) |20 > M, L<L| =0.
Moo (Zg}g{g”a i 2 M L < )

This result means that the process a(w,.) is asymptotically uniformly bounded on [0, L] and
then L€ is large compared to L in the asymptotic € — 0. In fact, VL > 0 and VM > 0

P(LE<L)<P(L<L, sup [a%(w,2)|}e <M
#€[0,LALE] ¢

+P( sup @ (w, 2B > M) .
2€[0,LAL¢] ¢

Moreover,

P(L<L, sup [a(w,2)|3e<M|=0
2€[0,LAL¢] ¢

for € small enough, since for L€ < L

12 < sup ]Haf(w,z)u%g +Ip(w, )F

z€[0,L¢
<M+ K(£d)e sup sup ]V(x,z)|2M+2”150(0),.)\\(2)0’1;
2€[0,1/e] z€[0,d]

according to (2.29). W

Let us introduce af(w,.) the unique solution of the differential equation on [0, L]

iw2) = 22l (0. 2) @ . 2) + @ (w7 @) (2.43)
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in H¢, with initial condition af(w,0) = @o(w). Using Gronwall’s inequality and (2.54) we can
state that

lim limP|( s a$ (w, w>M]|=0.
i, lim <Ze}(l)l,)u a1 (w, 2)[lne = )

The relation between the solution of the full system (2.42) and the one of the simplified
system (2.43) is given by the following proposition.

Proposition 2.2

Vn >0 and Vu >0, limP| sup ||a“(w,z)—af(w,z)||ne >n] =0.
0 \eeln.L] ‘

Proposition 2.2 means that the information about the evanescent part of the source profile
is lost in the asymptotic € goes to 0. In fact, the coupling mechanism described by the
system (2.42) implies that the information about the evanescent part of the source profile is

transmitted to the propagating modes through the coefficients R4S (w, z) and RS (w, 2)
defined by (2.38), (2.39), (2.40) and (2.41) page 46. In these expressions we have the term

by (w, x)ef\/m(szS) which comes from the right-hand side of (2.24) page 41 and which is
the form of evanescent modes without a random perturbation. This term is responsible for the
loss of information about the evanescent part of the source profile because of its exponentially
decreasing behavior.

Proof We begin by proving that VL > 0, Vn > 0 and Yu > 0
mP ([ sup [|a%(w,2) —a$(w,2)||3e >n, L <L) =0.
e—0 z€[p,L) 3

In fact, R%1S(w, ) decreases exponentially fast with the propagation distance. Moreover,

~a,L o
R""¥(w, z) can be treated as G in the proof of Theorem 2.1 because e~ VI"I(#=Ls) cannot

be compensated by e~ (@)% nor by e~7%. Moreover, using Proposition 2.1 we get the result.
|

Finally, we introduce the transfer operator TS’E(w, z) from H¢ to itself, which is the unique
operator solution of the differential equation

d 1
—Tg’e(w, z) = ﬁHaa (u), j) Tf’e(w, z) + G* (w, z

- ) T (w, 2) (2.44)

€
with T¢¢(w,0) = Id. Then,

Vz e [0,L], ai(w,z) =T (w,2)(d(w)),
and we get the following result.

Proposition 2.3

Vn >0 and Vu > 0, hII(l)P ( sup [|a(w, z) — T(w, z)(ao(w))H%? > 77) =0.
o 2€[p,L]
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2.4.1 Limit Theorem

This section presents the basic theoretical results of this chapter. Proofs are given in the
appendix at the end of this chapter. In [30] and [39], the authors used the limit theorem
stated in [48] since the number of propagating modes was fixed. However, in our configuration,
in addition to the N(w)-discrete propagating modes the wave field consists of a continuum of
radiating modes. The two following results are based on a diffusion-approximation result for
the solution of an ordinary differential equation with random coefficients. This result is an
extension of that stated in [48] to the case of processes with values in a Hilbert space.

Theorem 2.1 VL >0 and Vy € Hf = CN®) x L2(&, k2 (w)), the family (T(w,.)(y)) o)
solution of the differential equation (2.44), converges in distribution on C([0, L], H¢,,) as

€ — 0 to a limit denoted by T¢(w,.)(y). Here H ,, stands for the Hilbert space Hg equipped
with the weak topology. This limit is the unique diffusion process on HY, starting from y,
associated to the infinitesimal generator

=LY+ LY+ LY,

where
N(w
5> T3(w) (TT30n0; + TTi0w, 0y — TyTid, b, — TTiog 0
=1
]Jsﬁl
N(w
+5 Z I'y(w) (TT101,057 + TT10-0r, — T,Ti, 01, — TyTi07-0 )
]l 1
N(w) . N(w
1 c 1 — 1 s __
32 (@) — T}, @) (101, + T0g;) + 5 ;1 I (@) (T0r, - Tor) .
and
N@)
Se= -2 3 (M) + iAW) Ty, + (A% (w) — iAW) T
2,6 9 4 / j j T g j Tj’
j:
Nw)
Ge=1 Y w5(w) (Lo, - Tor).
j=1

Here, we have considered the classical complex derivative with the following notation: If
v = v1 + vy, then 9, = % (Oyy, — i0y,) and 05 = % (9, + i0,,). We have used the following
notations. V(j,1) € {1,.. (w)}2 and j # [

4 w o
59) = g7z o ELCHOICHE)] cos () = By (w)2)
N(w)
== > T
=1
I#j
4 w o
i) = Qﬁﬁf)ﬁ)() | BICH0)C) sin (51) - 55(0)2)d=
N(w)
Z I

l#ﬂ
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and V(j,1) € {1,.. N(w)}Q,

L )N A IO
- 2Bj(w)ﬂl(w)/0 E[ij(O)C”( )]d

k2 (w) 4 400
A% (w) = /€ ; \/’i(ﬁ])w) / E[C%,(0)C%,(2)] cos (VA — B;(w))2)dzdr,

(
R L R 5 ) N Ay w : s /
Aj S(w) = /5 2\/>ﬁj @) / E[C},/(0)C, (2)] sin (VY — Bj(w))z)dzdy,

—£

£00) — w . -V Ilz !

k3 (w) —/ / (0)C%,(2)] cos (Bj(w)z)e dzdy'.
7 . 26] /; 77 ] ( J )

The coupling coefficients C¥(z) are defined by (2.15) page 39. We get the following result in

the asymptotic & — 0.

Theorem 2.2 VL > 0 and Vy € H§ = CVN@) x L2(0,k*(w)), the family (T (w, ')(y))ge(o N

converges in distribution on C([0, L], (Hg, ||-[#2)) as & — 0 to a limit denoted by TO(w, )(y).
This limit is the unique diffusion process on 'H, starting from y, associated to the infinitesimal
generator

LY =LY + L5 + L3,

where

@ - Z (AC i (w ))TjaTj + (A§(w) —iAi(W)) 07,

=1 Z kj(w (Tj@Tj —TJ%) )

Here, we have Vj € {1,...,N(w)}

K@) = lim AT W), A5(@) = Im ATSW), () = lim (@)

Theorems 2.1 and 2.2 describe the asymptotic behavior, as € — 0 in first and £ — 0 in
second, of the statistical properties of the transfer operator T§7€(w, L), in terms of a diffusion
process.

The infinitesimal generator £“ is composed of three parts which represent different
behaviors on the diffusion process. We can remark that the infinitesimal generator depends
only on the N(w)-discrete coordinates. Therefore, the radiating part of the limit process
remains constant in L?(0, k%(w)) during the propagation and does not play any role in the
diffusion process of the propagating modes. The first operator £y describes the coupling
between the N(w)-propagating modes. This part is of the form of the infinitesimal generator
obtained in [25, 30], and the total energy is conserved. The second operator L% describes
the coupling between the propagating modes with the radiating modes. This part implies a
mode-dependent and frequency-dependent attenuation on the N (w)-propagating modes that
we study in Section 2.5.1, and a mode-dependent and frequency-dependent phase modulation.
The third operator £% describes the coupling between the propagating and the evanescent
modes, and implies a mode-dependent and frequency-dependent phase modulation. The
purely imaginary part of the operator £~ does not remove energy from the propagating modes
but gives an effective dispersion.

Moreover, let us remark that the convergence in Theorem 2.1 holds on C([0, L], (H, |- HH?))
for the N(w)-discrete propagating mode amplitudes.
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2.4.2 Mean Mode Amplitudes

In this section we study the asymptotic mean mode amplitudes. From Theorem 2.2, we get
the following result about the mean mode amplitudes.

Proposition 2.4 Vy € Hy, V= € [0,L], Vj € {1,...,N(w)}

lim hmE{Tg’ (w, z)(y)} = E{Tg(wa Z)(Z/)}

£—0e—0
e (w) =Tl (w) — AS(w s (w) — A (w
:eXpK () = Ty = A5 >>Z+i< i)~ A5 >+kj(w)> 1 4.

(2.45)
First, let us remark that the mean amplitude of the radiating part remains constant on
L?(0,k*(w)). Second, Vj € {1,...,N(w)}, the coefficient (I'};(w) + AS(w) — T5;(w))/2 is
nonnegative. In fact, for (j,1) € {1 N(w)}? such that j # I, IS (w) and Fl ;(w) are

nonnegative because they are proportional to the power spectral den81ty of C¥ b and CW- at
Bi(w) — Bj(w) and 0 frequencies. Therefore, —I'{;(w) is also nonnegative. Moreover AC( ) is
also nonnegatlve because it is proportional to the 1ntegral over (0, k%(w)) of the power spectral
density of C%) at \/y — B;(w) frequency.

The exponential decay rate for the mean jth-propagating mode is given by

]E[Tg’(w, L)(y)} ‘ — || exp l_ (F}j(@ - F;;(w) + A;@)) L} |

which depends on the effective coupling between the propagating modes, and the coupling
between the propagating and the radiating modes. This exponential decay corresponds to a
loss of coherence of the transmitted field.

2.5 Coupled Power Equations

This section is devoted to the analysis of the asymptotic mean mode powers of the propagating
modes. More precisely, we study the asymptotic effects of the coupling between the propagating
modes with the radiating modes. Let
2 2

T (w,2) = lim I B[ T5(w, L) ()] = E[| 5w, 2) )], (2.46)
be the asymptotic mean mode power of the jth propagating modes. ’]}l (w, L) is the expected
power of the jth propagating mode at the propagation distance z = L. Here ¢! € HE is
defined by yé = d; and y,ly = 0 for v € (0,k*(w)), and where §; is the Kronecker symbol.

The initial condition y' means that an impulse equal to one charges only the Ith propagating
mode. From Theorem 2.2, we have the coupled power equations:

LT (w,2) = —AS(W) T} (w,2) + Z T5(w) (Th(w, 2) = T} (w, 2)) (2.47)
n#]

with initial conditions ’Z}l (w,0) = 0j;. These equations describe the transfer of energy between
the propagating modes and I'“(w) is the energy transport matrix. In our context, we also
have the coefficients A;(w) given by the coupling between the propagating modes with the
radiating modes. These coefficients, defined in Theorem 2.2, are responsible for the radiative
loss of energy in the ocean bottom (see Figure 2.3). This loss of energy is described more
precisely in the following section.
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Figure 2.3: Illustration of the radiative loss in the shallow-water random waveguide model.

2.5.1 Exponential Decay of the Propagating Modes Energy

In this section, we assume that at least one of the coefficients A°(w) is positive. With
this assumption, we show that the total energy carried by the propagating modes decays
exponentially with the size L of the random section. In the opposite situation, that is when
there is no radiative loss A(w) = 0, it has been shown in [30] and [25, Chapter 20] that the
energy of the propagating modes is conserved and for large L the asymptotic distribution of
the energy becomes uniform over the propagating modes.

Let us define

ST ={Xx eRN, X;>0 Vje{l,...,Nw)}and | X[ gre = (X, X)gne = 1}
with (X,Y)pve = SnG) X;Y; for (X,Y) € (RV®))2, and

A?l(w) = diag(Ai (w)’ s 7A?V(w) (w))

Theorem 2.3 Let us assume that the energy transport matriz I'°(w) is irreducible. Then, we
have

1 N(w) l
LEIEOO Eln ]z:l T (w, L) | = —Axc(w)
with
Ao(w) = inf ((—T%w)+AG(w)X, X)pn> (2.48)
xesy®

which is positive as soon as one of the coefficients A§(w) is positive.

This result means that the total energy carried by the expected powers of the propagating
modes decays exponentially with the propagation distance, and the decay rate can be expressed
in terms of a variational formula over a finite-dimensional space.

Proof The coupled power equations admit a probabilistic representation in terms of a

jump Markov process. If we denote by (YtN(w)) a jump Markov process with state space

>0
{1,...,N(w)} and intensity matrix I'*(w), then we have using the Feynman-Kac formula:
z
THw,2) = |exp (- / A i (w)ds) PN (2.49)
0 s (Yz :])
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Moreover, we have supposed that I'“(w) is irreducible. Then, (Y;N(w)) +~0 i1 an ergodic process

with invariant measure jip (), which is the uniform distribution over {1,...,N(w)}. That
is, pn(wy(j) = 1/N(w) Vj € {1,..., N(w)}. The self-adjoint generator of the jump Markov
process (YtN( ))tzo is given by

N(w)

LY@ g(5) Z re, —¢(4)),

for every function ¢ from {1,..., N(w)} to R, and it is easy to check that ﬁN(w)pLN(w) =0.
Let us consider the local times

lT(j):/OTl( N(w) J)ds

for 5 € {1,...,N(w)} and T > 0, which corresponds to the time spent by the process
(")

deviation principle for %ZT viewed as a random process with values in ./\/liv(w) which is the

+>p in the state j during the time interval [0, T]. According to [20], we have a large

set of probability measures on {1,..., N(w)}. More precisely, we have
o1 .1
LgrfoozlnE[exp(—L<A ,Ll RN(W)>‘}/0 —l}
I | N(w) _
_LEToozlnE[ / AS e ds) Vg ) = 1]
=— inf (I(p)+ <AC )
[J‘EM{V(M)
with 1/2
(1) = (= T°W) " Villy gveer = (= W) Vit Vi)
Consequently,
LEIJIrloo L Z _Aoo(w)'

J:

N(w)

Let us assume that A(w) =0. As S N@) is a compact space, there exists Xg € S, such
that

Moreover, —I'“(w) and Aj(w) are two nonnegative matrices and 0 is a simple eigenvalue of
—I'“(w) by the Perron-Frobenius theorem. Then,

<(_Fc(w))X0a X0>RN(w) =0& Xg= \/m’

and
(AS(w) X0, XoYpney = 0= 3j € {1,....,N(W)}, Xo(j) =0.
Therefore,
Aso(w) > 0.
|

The expression (2.48) of Ax(w) is not simple. However, we have the following inequalities.

e By ) S Axl) < R =5 3 A (2.50)
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but the lower bound is not a sharp bound. In fact, this bound is equal to 0 if the vector A%(w)
has only one coordinate equal to 0. To finish this section, let us investigate some special cases
in which we can give a simple expression of A (w).

First, we assume that Vj € {1,..., N(w)}, Aj(w) = A(w) > 0. In this case, using (2.50)

A (w) = A(w).

This means that if all the coefficients which represent the radiation losses are equal, the decay
rate of the total energy of the propagating modes is given by this coefficient.

Second, we assume that the coupling matrix is small, that is we replace I'“(w) by 71'¢(w)
with 7 < 1. If Vj € {1,..., N(w)}, Af(w) > 0 we have

T _ : c

Py A() = iy )
From (2.50), it is the smallest value that Ay (w) can take. This result is consistent with
the fact that the coupling process on the transfer of energy between propagating modes is
negligible and the decay rate of the energy of a particular propagating mode j is given by its
own decay coefficient Aj(w). Then, for the total energy of propagating modes the decay rate
is given by the minimum of those decay coefficients. Consequently, if there exists Af (w) =0,
we have

lim A7 (w) = 0.
T—0

The reason is the energy of the joth propagating mode stays approximately constant with a
weak transfer of energy, and

li AT = inf {((—=T¢ X, X o >0,
m (W) ;?éf/« (w)) >RN<>

T—0 T
where

V= {X € Siv(w), suppX C {1,...,N(w)}\ supp(Ac(w))} ,

because | /fin (o) & V.
Now, we assume that the coupling matrix is large, that is we replace I'“(w) by 1I'“(w)
with 7 < 1. In this case, we have

lim A7 (w) = Aw).

T—0

From (2.50), it is the largest value that A (w) can take. The strong coupling produces
a uniform distribution of energy over the propagating modes and the decay rate becomes
(A(W), N (W) ) g = A(w) for each mode. A more convenient way to get this result is to use
a probabilistic representation. In fact, we have

/]}l(w, z) =E |exp < A S]},SJ) ) ( W>7]> ‘Y l]

_ L c N(W) —
=E |exp < ZZ/O AYSN(@ (w)) 1(1@75“’):]') ‘Y(') l] ,

is a jump Markov process with state space {1,..., N(w)} and intensity

where (Y;N(w))t>0

matrix I'“(w). Using the ergodic properties of (Y;N(w))po, we get that

hm’TTl( L) =

lim, N@) exp (—K(w)L) .
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Figure 2.4: Tllustration of negligible radiation losses in the shallow-water random waveguide
model.

Finally, if we assume that the radiation losses are negligible, that is we replace A°(w) by
7A%(w) with 7 < 1, we have
lim A (w) = 0.

T—0

In fact, if the radiative loss is negligible, the coupling process becomes dominant, and we can
show that
| 0,1
VL>0, sup [T (w,2) = T;"(w,2)llapner = O(7),
z€[0,L]

where 70! (w, .) satisfies (2.47) without the coefficient A°(w). In this situation
! N N
T9400) = (1) = 1 ),
and the total energy is conserved (see Figure 2.4), and

N -
}11% ;Aoo(w) = A(w) > 0.
As it was already observed in [30] the modal energy distribution converges as L — +oco to a
uniform distribution:

1

lim 7% (w.L) = ——.

L—-4o00

2.5.2 High-Frequency Approximation to Coupled Power Equations

In this section we give, under the assumption that nearest neighbor coupling is the main
power transfer mechanism, an approximation of the solution of the coupled power equations
(2.47) in the high-frequency regime or in the limit of large number of propagating modes
N(w) > 1. Let us note that the limit of a large number of propagating modes N(w) > 1
corresponds to the high-frequency regime w — +00. Next, we analyze the energy carried by
the propagating modes in this regime.

The coupled power equations can be approximated in the high-frequency regime by a
diffusion equation. This approximation has been already obtained in [39] for instance, in
which we can find further references about this topic. We can also refer to [44] for more
discussions on this approximation. For an application of such a diffusion model to acoustic
propagation in random sound channels we refer to [45], and for applications to time reversal
of waves we refer to [33] and Chapters 3 and 4 of this manuscript .
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Using the form of the covariance function (2.52) page 65, we find

¢ (1) = ak(w)I;(w)
it 26j(w)Bi(w)(a? + (Bj(w) — Bi(w))?)
d
. - [ e
T 2BwvAEe + (Gw) - D)
where
Ijl :%AgAlZ [S(O’j — 01,05 — Ul) + S(Uj +o1,05 + O'l)
— S(Uj — 01,0 +0'1) — S(Uj + 01,05 — O'l)},
1
Ij,y :ZA?A% [S(O‘j — 1,05 — 77) + S(Uj +n,0; —|-77)
— S(oj —n,05+m) = S(o+m,0; = )]
with

d rd o Vs
S(v1,v2) :/0 /0 Yo(z1, z2) cos(gm)cos (gl’g)dl’ldfﬁg,

and where 4;(w), Ay(w), 0j(w), n(w), ¢j(w, ), and ¢,(w,x) are defined in Section 2.2.1.

Band-Limiting Idealization

In this section, we introduce a band-limiting idealization hypothesis in which the power
spectral density of the random fluctuations is assumed to be limited in both the transverse
and the longitudinal directions.

We assume that the support of S lies in the square [ — 28, 2%] x [ — 3% 3%]. Then,
[ MRS - Aoy — ) i -l =1
Iji(w) = .
0 otherwise,
and
1) < [ HEDA@S00) —n)oi) —ne) i i) ) <
7 0 otherwise.

From this assumption we get V0 < v < k?(w) and j € {1,..., N(w) — 2},
1
N(w) —oj(w) > nik(w)dy |1 — — — 0j(w) > nik(w)dd — (N(w) — 2)7
n

(M)

™

€[0,1)
Then, for j € {1,...,N(w) — 2},

3T
inf — il
0<1$<k2 n(w) —oj(w) > 5

and

Aj(w) =0, Vje{l,...,N(w)—2}.
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Consequently, the coupled power equations (2.47) become
d (& C
TTH(E) = ~ARTR () + v (Tha(2) — T(2)))
d (& (&
%Tléf—l(z) = =AY TN (2) + T 1 v (Tzif—z(z) - T](f—l(z))

+ T (Th(2) = Tha(2)
d

T =T, (T() - T2)) + Ty (T () — TH(2)) forje {2, N — 2},
L1i(e) =15, (B) - 7).

(2.51)

with 7/(0) = d;;.

The band-limiting idealization hypothesis is tantamount to a nearest neighbor coupling.
More precisely, this assumption implies that V(j,1) € {1,..., N(w)}? the jth mode amplitude
can exchange informations with the [th amplitude mode if they are direct neighbors, that is,
if they satisfy |j — | < 1.

High-Frequency Approximation

The evolution of the mean mode powers of the propagating modes can be described, in the
high-frequency regime or in the limit of a large number of propagating modes N(w) > 1, by a
diffusion model. This diffusive continuous model is equipped with boundary conditions which
take into account the effect of the radiating modes at the bottom and the free surface of the
waveguide (see Figure 2.3 page 54).

Let, Vo € C°([0,1]), Vu € [0,1], and z > 0,

N(w) .
N(w) — TNy — J [N (w)u]
,ZZD (Z,U) _TLP (W,Z) - ]Zl ¢(N(W))TY (W,Z),
where ¢ — 'ZZPN(W)(Z, .) can be extended to an operator from L?(0,1) to itself. Here, L?(0,1)

is equipped with the inner product defined as follows: V(¢,) € L?(0,1)?

1
(0 W paon) = [, elODb()dv.
Theorem 2.4 We have
1. Yo € L*(0,1) and Vz > 0,

lim TN( z,u) = T,(z,u) in L*(0,1),

w—+00
where T,(z,u) satisfies the partial differential equation : ¥(z,u) € (0,400) x (0,1),
0 0 0
L) = 5 (ax ()3T ) (),
with the boundary conditions

0

%%(2’,0) =0, 7,(2,1)=0, and 7T,(0,u) = p(u),

Vz > 0.
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2. Yu € [0,1], V2 > 0, and Vo € C°([0,1]) such that ¢(1) =0, we have
lim TV (z,u) = T,(z,u).

w—+00 ¥

Here,
ao

T- (1- 3p) (w2

. 2 .
with ay = 2@%%, 0 =/1-1/n2 Sy = féj fg’yo(:cl,xg) cos (1) cos (Gag)dridry. ny is

the index of refraction in the ocean section [0,d], 1/a = 1., is the correlation length of the
random inhomogeneities in the longitudinal direction, and o is the covariance function of the
random inhomogeneities in the transverse direction.

(oo (1)

This theorem is a continuum approximation in the limit of a large number of propagating
modes N(w) > 1. This approximation gives us, in the high-frequency regime, a diffusion
model for the transfer of energy between the N(w)-discrete propagating modes, with a
reflecting boundary condition at x = 0 (the top of the waveguide in Figure 2.2 page 33) and
an absorbing boundary condition at u = 1 (the bottom of the waveguide in Figure 2.2) which
represents the radiative loss (see Figure 2.3).

Exponential Decay in the High-Frequency Regime

In this high-frequency regime, we also observe that the energy carried by the continuum of
propagating modes decays exponentially with the propagation distance. The exponential
decay of the energy in the high-frequency regime is given by the following result.

Theorem 2.5 Vo € L?(0,1) \ {0} such that ¢ >0, and Yu € [0,1),

lim %ln [T,(L,u)] = —Ax,

L—+o00
where .
Ao = inf (V)¢ (v)2d
élelD ; oo (V)¢ (V)*dv > 0
and

D={pec=O.1). Ieliron=1 500 =0 on)=0}.
This result means that the energy carried by each propagating mode decays exponentially
with the propagation distance, and the decay rate can be expressed in terms of a variational
formula. Consequently, the spatial inhomogeneities of the medium and the geometry of the
shallow-water waveguide lead us to an exponential decay phenomenon caused by the radiative
loss into the ocean bottom.

Proof We can see that the operator Po, = £ (aco(-)£) on L*([0,1]), with domain

D(Pw) = {p € B 0.1, 5hp0) =0, p(1) =0}

is self-adjoint. P, has a compact resolvent Ry = (A d — Ps,)~! because [0, 1] is a compact set
and then it has a point spectrum (\;);>1 with eigenvectors denoted by (¢ ;);j>1. Moreover,
all the eigenspaces are finite-dimensional subspaces of D(Px) and Vo € D(Py) \ {0}

<P00<(10)7 g0>L2(071) < 0

Let us organize the point spectrum in the nonincreasing way, --- < Aa < A\; < 0. We have
ML
Tp(L,v) = Z <907 ¢OO,J'>L2(071)6 7 ¢00,5(v)-
Jj>1
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Lemma 2.2 )\; is a simple eigenvalue and one can choose ¢oo1 such that ¢oo1(v) > 0
Vo € [0,1).

Proof (of Lemma 2.2) This lemma is a consequence of the Krein-Rutman theorem, but
not its strongest form [55]. Indeed, the set of nonnegative functions in L?([0, 1]) has an empty
interior. However, using the smoothness of the eigenvectors, the proof also works in our case
as we shall see it.

Using the maximum principle we know that if ¢ € L?(]0,1]) such that ¢ > 0, we have
7,(L,.) > 0, and then Ry(¢) > 0. Consequently, applying the Krein-Rutman theorem [55]
to the resolvent operator Ry with A\ > 0 and which is a compact operator, the spectral
radius p(Ry) is an eigenvalue, for which one can associate an eigenvector ¢,(g,) such that
Vv € [0, 1], @,(ry)(v) > 0. However, we have Vo € [0,1), ¢,g,)(v) > 0. In fact, let us assume
that there exists vo € [0,1) such that ,g,)(vo) = 0, then Rx(¢g,)(vo) = 0. Moreover,
Rx(¥Rry) = p(Rx)¥p(r,) is an eigenvector for Py, and then ¢,g,) is a smooth function on
[0, 1]. Therefore, according to the proof of Theorem 2.4 we have

“+o00

R)\(SORA)(UO) = /0 e_AtTQO,,(R)\) (tv UO)dt

+oo =
_ /O e ME0 [0,y (@ () Ly dt

— T1
= [/0 e*)‘tgop(RA)(]m(t)Ddt} =0,

where P, is the unique solution of the martingale problem associated to Lz = % (Eoo(-)a%)
and starting from vy. Here, we have chosen @, such that Vo € [0, 1], Goo (V) = Goo(—v) = a0 (v),
and the martingale problem associated to Lg__ is well-posed. Moreover, 71 = inf(t > 0, |z(t)| >
1). Consequently, Py, ( fg* €™ (g, (Jz(t)|)dt = 0) = 1. However, we know that there exists

v1 € (0,1) such that ¢,g,)(v1) > 0, and then v; < vy < 1. Therefore, Py, (7 < 7,) =1, and
by the Markov property

0 < EFvo [e” 1(Tv1<+00):| =E"o [e™™ L(r, <+00771<T“1)]
< EHDl [e—Tvl 1(7—1)1 <—|—OO):|

< EP’UO [6_7-”1 1(Tv1 <+OO)]?

which is impossible. Therefore, Vv € [0,1), ¢,r,) > 0. Now, to see that the eigenvalue p(R))
is simple, let ¢ € L%(0,1) \ {0} such that Ry(p) = p(R))p, and let

Pr, R — C%J0,1])
t — QOR)\ - t§07

which is a continuous function. We recall that ¢ is a smooth function on [0, 1]. Let us show that
3t € R such that ¢ =t ¢,g,), that is 0 € Pg, (R). To do this let us assume that 0 ¢ Pg, (R).
By linearity one can assume that Jug € [0,1) such that ¢(vg) > 0. Let > 0 be small enough
to have vy € [0,1 — 7). Let Kb = {¢ € C°([0,1 —7]),Yv € [0,1 —n],¢(v) > 0}, then the
interior of Kt for the sup norm on [0, 1] is K+ = {¢ € C°([0,1—7]), Vv € [0,1—-7], ¢(v) > 0}.
Moreover, for t small enough g, —tp € K,I*, and wr, —tp ¢ K, for t large enough. Then
Jto € R such that pr, —top € K7 \ K,/*. However, pr, —tow > 0, but ¢, —top # 0
because 0 € Pgr, (R). Following the previous work we have

p(Rx)(¢r, —tow) = Ra(pr, — tow) € K.
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Consequently, p(Ry) = 1/(A — A1) implies that \; is also a simple eigenvalue and one can
choose

P01 = Ba(9ry) = p(R\)pr, € K7
That concludes the proof of Lemma 2.2. [J

As a result, Vo € L2(0,1) \ {0} such that ¢ > 0, Vv € [0,1) we get

1
lim Eln [7,(L,v)] = A1,

L—+400
and
A = sup Po(v),p = —-A, <0.
©€D(Pso) < >L2([O’1D
H‘PHLQ([Q,l]):l
[ |

In Theorem 2.5, we take ¢ € L%(0,1) \ {0} such that ¢ > 0, which can be consider as being
the initial repartition of energy over the continuum of modes. However, the result of Theorem
2.5 is also valid for any ¢ € L?*(0,1) \ {0} such that (¢, ¢poo1) > 0.

L2(0,d)
2.5.3 High-Frequency Approximation to Coupled Power Equation with
Negligible Radiation Losses

In the case of negligible radiation losses, we also get a continuous diffusive model for the
coupled power equations in the high-frequency regime or in the limit of a large number of
propagating modes N(w) > 1. This diffusive continuous model is equipped with boundary
conditions which take into account the negligible effect of the radiation losses at the bottom
and the free surface of the waveguide (see Figure 2.4 page 57).

Now, let us assume that the radiation losses are negligible, that is, A°(w) = 7A%(w) with
7 < 1. We have already remarked that, if the radiation losses are negligible, then the coupling
process is predominant and we have

VL >0, sup |77 (w,2) — T (w, 2)lypne = O(1),
z€[0,L]

where 7% (w,.) satisfies

d

ZIV'(2) =Ty (TWL () - TR'(2)).

d

T ) =T, (T2() - TM(2) + T (T2() - TM(2)) forje {2, N =1},

d, oy . 1 1
T =15, (T () - ()
with 7;7(0) = 0.

High Frequency Approximation

Let, Vo € C°([0,1]), Yu € [0,1], and z > 0,

N(w)

[N(w)u]
)3 )T e,

where ¢ — ’T@N(w)(z, .) can be extended into an operator from L?(0,1) to itself.
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Theorem 2.6 We have
1. Yo € L?(0,1) and Vz > 0,

lim TV (z,u) = T,(z,u) in L*(0,1),

w——+00 ¥

where T,(z,u) satisfies the partial differential equation : ¥(z,u) € (0,400) x (0,1),

0 0 0
@Tw(zau) - % (aoo()alu/]:p> (Zvu)a
with the boundary conditions

2'Z:o(z, 0)=0,

50 T.(2,1) =0, and 7T,(0,u) = p(u),

9

v
Vz > 0.

2. Yu €[0,1), Vz > 0, and Vo € C°([0,1]) such that ¢(1) = 0, we have

lim 7V®(z,u) = To(z,u).

w—+too ¥
Here,
ag
1- (1= 3p) (0u)?

. 2 .
with ay = 2@2%%, 0 =/1-1/n2 Sy = féj f(fl%)(azl,ajg)cos (Za1) cos (Gxo)dwrdry. ny is
the index of refraction in the ocean section [0,d|, 1/a =1, 5 is the correlation length of the

random inhomogeneities in the longitudinal direction, and g is the covariance function of the
random inhomogeneities in the transverse direction.

(oo (u) =

This theorem is a continuum approximation in the limit of a large number of propagating
modes in the case where the radiation losses are negligible.This approximation gives us, in the
high-frequency regime, a diffusion model for the transfer of energy between the N(w)-discrete
propagating modes, with two reflecting boundary conditions at u = 0 (the top of the waveguide
in Figure 2.2 page 33) and u = 1 (the bottom of the waveguide in Figure 2.2). Here, the two
reflecting boundary conditions mean that there is no radiative loss anymore (see Figure 2.4).

Asymptotic behavior of 7(L,v) as L — 400

In the case where the radiation losses are negligible, we have seen in Section 2.5.1 that the
decay rate satisfies lim, .o A7 (w) = 0 and 7% (w, L) converge to the uniform distribution
over {1,...,N(w)} as L — o0 [30]. In the high-frequency regime we have the following
continuous version.

Theorem 2.7 Vi € L%(0,1) and Yu € [0, 1],

1
LErJrrloo’pr(L,u) :/0 e(v)dv,

that is, the energy carried by the continuum of propagating modes converges exponentially fast
to the uniform distribution over [0,1] as L — +oo.

As a result, the energy is conserved and the modal energy distribution converges to a uniform
distribution as L — +o0.
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Proof We can see that the operator Py, = %(aoo(-)a%) on L?([0,1]), with domain

D(Ps) = {go € H?(0,1), C,i]go(O) =0, aavgo(l) = o}

is self-adjoint. Moreover, Py, has a compact resolvant because [0, 1] is a compact set and then
it has a point spectrum (\;);>0 with eigenvectors denoted by (¢oo j);j>0. Moreover, all the
eigenspaces are finite-dimensional subspaces of D(Px) and V¢ € D(Px) \ {0}

<P00((70)7 ¢>L2(071) S O

Let us remark that A\g = 0 is a simple eigenvalue with eigenvector ¢ o = 1. Then, the
spectrum is include in (—o0, 0] and we have the following decomposition

1
Tlp(zv U) = /0 @(U)dv + Z <<;07 ¢oo,j>L2(0’1)e>\jZ¢oo,j (U)

j=1
Therefore, Yu € [0, 1],

1
Jlim To(Low) = [ o),

with exponential rate Ay < 0. H

Conclusion

In Chapter 2 we have analyzed the propagation of waves in a shallow-water acoustic waveguide
with random perturbations. In such a waveguide, the wave field can be decomposed into three
kinds of modes, which are the propagating, the radiating, and the evanescent modes, and the
random perturbations produce a coupling between these modes.

We have shown that the evolution of the propagating mode amplitudes can be described
as a diffusion process (Theorems 2.1 and 2.2). This diffusion takes into account the main
coupling mechanisms: The coupling with the evanescent modes induces a mode-dependent
and frequency-dependent phase modulation on the propagating modes, the coupling with the
radiating modes, in addition to a mode-dependent and frequency-dependent phase modulation,
induces a mode-dependent and frequency-dependent attenuation on the propagating modes.
In other words, the propagating modes lose energy in the form of radiation into the bottom of
the waveguide and their total energy decays exponentially with the propagation distance. We
can express the decay rate in terms of a variational formula over a finite-dimensional space
(Theorem 2.3).

Under the assumption that nearest neighbor coupling is the main power transfer mechanism,
the evolution of the mean mode powers of the propagating modes can be described, in the
high frequency regime or in the limit of a large number of propagating modes, by a continuous
diffusive model with boundary conditions which take into account the effect of the radiation
losses at the bottom and the free surface of the waveguide. In this regime, we observe that
the energy carried by the continuum of propagating modes also decay exponentially with the
propagation distance. The exponential decay rate can be expressed in terms of a variational
formula (Theorem 2.5).

The diffusive systems obtained in Chapter 2 will be used in Chapter 3 of this manuscript
to analyze pulse propagation and refocusing during time-reversal experiments in underwater
acoustics.
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2.6 Appendix

2.6.1 Gaussian Random Field

This section is a short remainder about some properties of Gaussian random fields that we
shall use in the proofs of Theorems 2.1 and 4.1, and in Sections 2.3.2 and 2.3.3. All the results
exposed in this section can be shown using the standard properties of Gaussian random fields
presented in [1] and [2] for instance.

In this thesis, the random perturbations of the medium parameters are modeled using
a random process denoted by (V(x,t),xz € [0,d],t > 0). Throughout this manuscript the
process V' is a continuous real-valued zero-mean Gaussian field with a covariance function
given by

E[V(z,t)V(y,s)] = yolz,y)e” =5l V(z,y) € [0,d]* and V(s,t) € [0, +00)%. (2.52)

Here, a > 0; 7o : [0,d] x [0,d] — R is a Lipschitz function, which is the kernel of a nonnegative
operator, that is, there exists a nonnegative operator @), from L?(0,d) to itself such that
V(p, 1) € L*(0,d)*

d pd
<QVO((‘0)’¢>L2(O,(1):/O A 70(x7y)(p(x)¢(y)dxdy

Consequently, one can consider the process (V(.,t)):>0 as being a continuous zero-mean
Gaussian field with values in L?(0,d) and covariance operator (- In other words, Vn € N*,
Y(o1,-- - pn) € L2(0,d)", and Y(t; ..., t,) € [0, +00)"

(ng (tl)a o 7V§0n (tn)) = (<V(a tl)a ¢1>L2(O,d)’ C) <V(7 tn)a ¢n>L2(0’d))
is a real-valued zero-mean Gaussian vector such that V(j,1) € {1,...,n}?

E |Vis (4) Vit ()] = (@ (7)s 20) g gy~ 7. (2:53)

With this point of view we have the following proposition.
Proposition 2.5 We have

1. (V(.,1)t>0 is a continuous zero-mean stationary Gaussian field with values in L*(0, d)
and autocorrelation function given by (2.53). Then, we have Vn € N* and ¥Vt > 0,

E [(/Od\V(m,t)’Zd:n>n] —E l(/OdW(x,o)de)n

2. We have the following Markov property. Let
Fr=0V(,s),s<t)

< +oo0. (2.54)

be the o-algebra generated by (V (.,s),s <t). We have
(Vit+m|F) = (Vit+m)] oV (1),
where the equality holds in law, and this law is the one of a Gaussian field with mean
E[V(.,t+h)|F] =e V(1)
and covariance, ¥(p,v) € L*(0,d)?,
B[V, (¢ + )V (t + h) = B[V (¢ + h) | F B[Vt + h)| 7] | 7]
= <Q70(90),7/’>L2(0,d) (1 - 6_2ah) .
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The Markov property of the random process (V(.,t));>0 is a direct consequence of the
exponential form of the autocorrelation function (2.53) with respect to the variable ¢ [1].
This property will be used in the proof of Theorems 2.1 and 4.1, which are based on the
perturbed-test-function method.

Now, we are interested in some estimation on the supremum of V'(x,t) with respect to the
two variables x and ¢. To this end, let us introduce some notations [2]. Let € > 0 be a small
parameter and L > 0. We consider the following pseudo-metric on the square [0, d] x [0, L/¢]
defined by

1/2
< Ky [t = s+ [z —yl].

m((2,), (y,9)) =E [(V(2,t) = V(y,5))?]
Let us remark that [0,d] x [0, L/¢] associated to the pseudo-metric m is a compact set. From
Theorem 1.3.3 in [2], we have

diam(0dx[0.L/A)/2
E| sup |V(z,t) SK/ H'Y2(r)dr
z€[0,d] 0
t€[0,L/¢]

Supz s ’YO($?‘Z) L
< Kl/ clo In <K2d2>d7“,
0 T4€

where H(r) = In(N(r)), and N(r) denotes the smallest number of balls, for the pseudo-metric
m, with radius 7 to cover the square [0, d] x [0, L/¢]. Here, diam stands for the diameter with
respect to the pseudo-metric m. Consequently, we have the following proposition.

Proposition 2.6 Vi > 0 and VK > 0,

lim IP’(E“ sup sup |V(z,t)| > K) =0. (2.55)
e—0 z€[0,d] t€[0,L /€]

Moreover, according to Theorem 2.1.1 in [2], one can show that the limit (2.55) is obtained
exponentially fast as e — 0.

2.6.2 Proof of Theorem 2.1

The proof of this theorem is in two parts. The process (Tg’e(z))z>0 is not adapted with
respect to the filtration 7 = F, /.. Then, the first part of the proof consists in simplifying
the problem and introducing a new process for which the martingale approach can be used.
The first part of the proof follows the ideas of [36]. The second part of proof of this theorem
is based on a martingale approach using the perturbed-test-function method and follows the
ideas developed in [16].

Then, let us introduce ’i‘g’g(.) the unique solution of the differential equation

d ¢

STz = 21{ (

with T¢(0) = Id and where (G®*) is defined, Yy € Hg, by

)T @) + (@) (2.56)

€

aa _ ¢ ik oo ) . e~ VI oy
(G >](y) - /_OO W/O E[Cjy(0)Cjy(2)] cos (B2)e Vil dzdryy;

Vje{l,...,N} and <G‘m>7(y) =0 for v € (&, k?). We have the following proposition that

describes the relation between the two processes T*(z) and TS’E(Z).
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Proposition 2.7

Yy € He and ¥y > 0, nrréP( sup \Tév%z)(y)—Tg’%z)(y)n%g>n> ~0
€& z€[0,L]

Let us remark that the new process (’i‘g’g(z))po is adapted to the filtration F¢ and

~§7
IT ()W) = Iyl V2> 0.

Let 1, = [yl
Brye = {A € He [\l = /(O Ny, <7y}

the closed ball with radius 7y, and {gn,n > 1} a dense subset of B;, .- We equip By, #,
with the distance dBry’H5 defined by

+001

dBv-y,HE ()‘a //J) = Zl 27 ‘<)‘ - //J’gn>H§‘
j=

V(A 1) € (Br,1,)?, and then (B, dB%H&) is a compact metric space.

Using a particular tightness criteria, we prove the tightness of the family (’i‘g’e(.))ee(o’l) on
C([0, 400), (Bry7H5’dBTy7H§ )), which is a polish space. In a second part, we shall characterize
all subsequence limits as solutions of a well-posed martingale problem in the Hilbert space
He.

We have the following version of the Arzela-Ascoli theorem [14, 35] for processes with
values in a complete separable metric space.

Theorem 2.8 A set B C C([|0,+00), (Bry7H§7dBry,H§)> has a compact closure if and only if

VT >0, limsupmr(g,n) =0,
n—»OgeA
with
mr(g,n) = sup dg, . (9(s),9(t)).
(s,t)€[0,T]?

|t—s|<n
From this result, we obtain the classical tightness criterion.

Theorem 2.9 A family of probability measure (}P’G)EE(O 1y on C([0, +00), (B"'yaH§7dBry,H§)) is
tight if and only if

VT >0,7' >0 lim sup P°(g; mr(g,n) >n')=0.
77_’066(0,1)

From the definition of the metric dg the tightness criterion becomes the following.

vy He
Theorem 2.10 A family of processes (X)cc(0,1) s tight on C([0,+00), (Bryﬁg,dlgwﬁé)) if
and only if ((X¢, /\>H§)ee(0,1) is tight on C([0,400),C) VA € He.
This last theorem looks like the tightness criterion of Mitoma and Fouque [47, 23].

For any A\ € He, we set Tie(z)(y) = <']~:‘£’€(z)(y),)\>H§. According to Theorem 2.10,
the family (TV(.)(y)). is tight on C([0, +00), (Br, e+ dB,, 5, ) if and only if the family
(TS°()(y))c is tight on C([0,+00),C) YA € He. Furthermore, (T%(.)(y)). is a family of

continuous processes. Then, it is sufficient to prove that YA € Hg, ('i‘f\e()(y))6 is tight on
D([0,400),C), which is the set of cad-lag functions with values in C.

67



Chapter 2 Section 2.6.2

Proof (of Proposition 2.7) Differentiating the square norm and using the fact that H**(z)

is skew Hermitian, we get

ITE(2)(y) — T (2) )13,
<o) [[{(@ (2) ~ (@) T ), T ) — T )W), o

3
2G| [T ) ) - T () ) e

Let ' > 0, we will split the interval [0, z/€] into intervals of length 7'/+/€e. The idea is that over

these intervals the fast dynamic of G* averages out while T¢¢ does not move significantly.

We have

E /OZ/E (G (@) = (@) T (), T (eu) ) ~ T () w), o

<’/xfn

+\/ 1 (€7 — (@) T (i), T () )~ T () ), o

%\3\

(67 (0 — (G™) T (eu) 1), T (cu) 1) — T (cw)),,

9

with

\/[/ (G () = (G™) T (eu) (y), T (ew)(y) = T (ew)(w)), dul

3
. y 1/2
A ([ 1am (2) Pan) -+ variiee)

* el TS (2) () [l | T (2) (1) — T (2) ()14,

7JVen' < Ven', and

sinceOﬁz—[\/;7

’
n

[ (6 ) ~ (@) T (o). T () o) - T (), dof

(7] il
= Ve Z\ /. +)ﬁ<(Gaa(“)—<Gaa>)T5’e(€u)(y)aTﬁ’e(ﬁu)(y)—Tg’g(fu)(y)>H§du‘.

'
NG

™

Moreover,

V4 [ EHY )T (e0)(y) + €G (0)TE(ev) (y)do

m

TE< (eu)(y) = T (mn' Vo) y

S

and

T cu)) = T (mn/ VO ) + [, VAT () ) + <GV (c0) (9)d

S
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Therefore, we have

(m+1) L= ~fe
Ve [T (G ) (G T (), T (ew)(y) — T (),

% "
(m+1) 2 ey
= Ve[ G )~ (G T ) ), T V) o) — T G V) )
mve

m 1)"—/e u ey
[0 [ (e — @) T ) (), T ) — T (),
+ (G () = (@) G ()T (e0) (1), T ew)(y) = T () ),

+ (G ) — () T (maf V) (), H (0) (T (e0) () = T (e0) ),

+ (G (u) — (G T (maf Ve (y), G (0) TS(ev) () — (G™)T " (ev) ()} .

He
Consequently, by the Gronwall’s inequality
€ ~§7€ aa
sup [ T€5(2)(y) — T ()W), < Ble,n)elle L,
z€[0,L]
where
N u 1/2
aa 2 aa
B(e,n'>=z[é/4ﬁ(/o e (%) i) o Vi)
€ € ~§76
x SFp]IITg’ ()W)l T (2) () = T (2) ()l
z€[0
[ s,
vave S [T (el @l + e Ee )]
m=0 m e me
aa aa 2 ,€ J€ &€
S IG)] 4 (G ) st [T C)W) TG 0) = T C) 0 o

(m+1) 2= -
elvef @) - (G TS (o Ve) (), T (i V) ) — T (V) ) g,
me

3

and

P( sup [ITS(2)(y) — T ()W), > n) < B(Blenf) = ne 2.
z€[0,L]

Setting " = nef2||<Gaa>HL, we have

B(Ble,nf) zn") <B(Blen) 2, sup [|TS(2)(y) 3, < M)
z€[0,L] N
+P( sup | T(2)(y)l13, = M)
z€[0,L]

We already know that the process ’i‘é’e(.)(y) is bounded. Moreover,

P(B(e 77) > 77//’ sup HTgE( )y )H%E < M) < %E [B(e,n/)l(

z€[0,L)] n SUPz¢io,L] I T<(= )(y)||%§§M)]
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with

¢ [B“’ T W, <M>] < K[ + T + Vel + )]

supco,r) [T (2
L

+2ve >
m=0

E|1
{ (sup-efo.0 ITS ()W), <M)

x M / ”Z“’% (G () = (G)) T (V) ), T V) = T/ VO W) |

K[n” +el/4f+\fn +1?)]

1/2
+2\[K Z [’f/ y Gaa (u) — <Gaa>duH2] ’

S

/

m+1)"—

~

—~
IS

since f o
\/E Ve

E {HGaa (Z) \\2] <KE l(/odyV(a;,O)Fdx)Z]

for u € [0, L]. As a result, it remains us to estimate only one term.

Lemma 2.3

[ (m+1) 2 2]
limve ) E [H\/E/ LG () — (G du ] = 0.
- m=0 m e

Proof (of Lemma 2.3) Let us remark that we have the following decomposition.

j€{l,...,N}, almost every vy € (£, k?), and Vy € Hg,

k2
Gaa Z G l + g G?g/(Z)y,Y/d/-y/’

k2

G2 (2 ZG yl+§ G2 (2)yydy.

Letting

70
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we have (j,1)% € {1,... ,N}2 such that j # [, and almost every v € (&, k?)

(m+1)\7}7/g aa aa
Pjj=e o G (u) — (G >jj du,
m
NG
(m+1) 2
le = \/E/ o ?la(u)du,
mve
E

(MDY aa
Pj,yl = \/E/ o ij/(u)du,
me

(m+1)2
T

l
m 7
’
(m+1)-L=
Ve aa
P’Y’y’ = \/E/’mn, G,w/(u)du,
Ve

and

1 N N k2 k2 N k2 k2
SIPIZ< ST PP+ 3 [ Pyl + [ S Py [ [ PoPaydn.
=1 j=1"¢ S ¢ Je
Moreover,
E[V(ml,Zl)V(xz,ZQ)V(.Tg,Zg)V(JZ4,Z4)} :E[V(l’l,Zl)V(mg,ZQ):|E|:V($3,Zg)V($4,Z4)i|
+ ) [V(l‘l, Zl)V($3, 23)} E[V(ZL‘Q, Z2)V(:L’4, Z4)}

+ F {V(a:l, 21)V (x4, 24)} E[V(372> z2)V (23, Z3)}

= o1, T2)y0(x3, 24)e U122l galza =24l

+ Y0(1, T3)70 (w2, 24)e P18l alz2=24]

—alz1—24| ,—alz2— 23]
M

+ (71, 24)70(72, T3)e€
which is the fourth order moment of a Gaussian field. To compute the expectation of the
square norm of P we must know these moments. Following that decomposition, the square
norm of P can be decomposed in three parts. First, after a long computation, the two parts
corresponding to the two last terms of the previous decomposition are dominated by +/€
uniformly in m. Then, we focus our attention on the part corresponding to the first part of
the previous decomposition. For E[|P;./|*], E[|P.;|?], and E[|Pj;|?] with j # [, we get after
a long computation terms of the form

m+1 Ll m+1 o i i
6/( ) 7= (¢ v el(ﬁ—ﬁj)ule—l(\ﬁ—ﬁj)wdm dug = O(e),

)

)

6i(ﬂl—5j)u1e—i(ﬁz—ﬂj)UQdul dus = O(e).
For E[|P.,|?] we separate the integral into two parts.
k?  rk?
/ E[|P'y'y/|2]d7/ dy = / E[|P'y'y’|2]d'7/ dy + / E[|P'y'y’|2]d'7/ d,
3 3 I>, Icp
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where p > 0 and
L ={n7) € @RV, V7= V7| 2 ul,
L ={(n7) € €F2 |VA— V| <}
Consequently,
| EIPPydy<K [ i
1<u I<u

and on I>, we get terms of the form
(m+1) (m+1)
/ / f / ’(\F VAU =iy Y= V) V2 duy dugdy'dy = O(e).
Is,

Now, it remains us to study E[|ij\2] After a long computation, the terms of order one
produced by Gjj are compensated by the terms of order one given by <Gaa>j. Moreover, the

other terms are dominated by +/e.
As a result, we get

[7e7] -1 (m+1) 1 2]
T Ve
mve > E [H\/E/ Lo am) - <G““>duH ] <K,([| dvdy
€E— m=0 mﬁ ]<N

and one can conclude the proof of Lemma 2.3 by letting  — 0.0J

From the previous lemma, we finally get, Vi’ > 0

2l e)]le

T =&,
m P sup | T(2)(y) = T (2) ()|}, > n) < ————Kn,
=0\ el0,L] n

since using the Gronwall’s inequality and (2.57) we have

lim Tim P TS He > M) =0.
Mir{lkoo egr(l) (221[(1)1,)[/] H (Z)(y)HHﬁ a ) !

Consequently, we conclude the proof of Proposition 2.7 by letting ” — 0. W

According to Proposition 2.7, to study the convergence in distribution of the process
(Tg’e(.)(y))E it suffices to study the convergence for (’i‘é’e(.)(y))€. Moreover, we shall consider
the complex case for more convenient manipulations. Letting A € H,¢, we consider the equation

d g 1 <€ £y t e
SO0 = Z2m (T 0w (1) 1)+ 6 (TU0w)
with Hy = (H, )‘>H§’ Gy = <<G“a>(.),)\>H§, where, for j € {1,...,N} and almost every

v € (&, k?)

Hj (T,C, S) e [Z \/ﬁ A= BJ)STZ +/£k2 \/27 \f B])ST /dV}

k2 C
H,(T,C,s) = 22 [Z W iBi— \f)STl +/
=1 \// 0

The proof of Theorem 2.1 is based on the perturbed-test-function approach. Using the
notion of a pseudogenerator, we prove tightness and characterize all subsequence limits.

il s
1/4 /1/4 VI T 'dv}
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Pseudogenerator

We recall the techniques developed by Kurtz and Kushner [41]. Let M€ be the set of all
Fe-measurable functions f(t) for which sup,«7 E[|f(t)|]] < 400 and where T > 0 is fixed. The
p — lim and the pseudogenerator are defined as follows. Let f and f° in M€ Vé > 0. We say
that f = p — limg f0 if

sufE[yfé(t)|]<+oo and %in%)EHf‘s(t)—f(t)H:O Vt.
t, -

The domain of A€ is denoted by D (A€). We say that f € D (A°) and A°f =g if f and g are

in D (A€) and
{Et[f(t +§)] — f(t) _ g(t):l =0,

where [Ef is the conditional expectation given Ff and Fi = F/.. A useful result about A® is
given by the following theorem.

— i
P

Theorem 2.11 Let f € D(A). Then

t
M0 = £(8) = [ A (w)du
is an (Ff)-martingale.

Tightness

We consider the classical complex derivative with the following notation: If v = a + i3, then
Oy = % (On — 103) and Oy = % (On +103).

Proposition 2.8 VA € He, the family (Ti’e(.)(y))ee(o ) is tight on D ([0, +00), C).

Proof According to Theorem 4 in [41], we need to show the three following lemmas. Let
X € He, f be a smooth function, and f§(t) = f (’i‘ie(t)(y)) We have,

L
Ve

+0nf (T 000) [ 210 (T 000 (1) 1) + 6 (T 0w) |

A£50) = 0,1 (T 0W) | -1 (2000 (1) 2) + 6 (T 0w)|

Let

fit0 = Jouf (B 0w) [ B [m (T wm.c (£). )]

0o (T 0W) [ B [HA (T“mw.c(2). “)] du,

Ve €) €
Lemma 2.4 VT > 0, lim supg<,<7|ff(t)| = 0 almost surely, and sup,>o E[| f{(t)]] = O (V/e).

Proof (of Lemma 2.4) Using the Markov property of the Gaussian field V', we have

i2 € ~ &€ i2 € ~ £ -
i) = 0,1 (T 0 W) Fialt) - Y ouf (T3 0w)) FE)
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with
N [N _ |
7j=1 Li=1
K Cj ’(é) z(f Bj)Lée a+i(v/~y — ﬁ]) NMbv
oA B T OW A

BAGR Cot (D) iaimymt e atilfi— V)
A We R EI Gk

k2 t ~&e a+i(w_ ) ] —
+/ 1/4 ,1/4 VY VDTS (¢ ()(y)a2+(\ﬁ_\\g2d'7])‘vd’7‘

Using (2.54), we easily get
E[ff®)]] < VeK(f,N).
and

i) < K\ f)ve sup  sup [V (z,1)].
0<t<T/e z€[0,d]

Then, we can conclude with (2.55).00
Lemma 2.5 {A°(f§+ f5)(t),e € (0,1),0 <t < T} is uniformly integrable YT > 0.

Proof (of Lemma 2.5) A computation gives us

atfs+ 10 =B (0w (Hec(t).h),

€

where

C(T) ® C(T)lh 929391 — Cq1 q2 (T)Cq3 qa (T)
for ((ha 42,43, CI4) € ({1, L) N} U (ga k2))4a with

F\(T,C, ) = 0,f(T) [Fy(T, C,5) + Gy (T)| + 9f(T) [FL(T, C, 5) + G (T)]
+a2 F(T)FY(T,C,s) + 02f(T)F(T, C, s)
+ 050, f(T)FR(T, C, ) + 0,05 (T) F3(T, C, 5),

and
FA\(T,C,s) =
1{34 N ]lll (By—B;)s a_t'_z(ﬁl _ﬁ)
!B =Fy)sp,, Z L AL I
321 [“Z: @@ﬂl/ a2+ (B - )2
/-, GRG0
+Z/§ W 7a2+(6l*6j)2’y

kK2 N

Ciyyrrr a + z(\/i B ) /
+ L l(ﬁl/ 5J)ST J d
~/€ Z 1V 5]7/@/ (\/ ﬁ])
k2 K2 . 7
J’Y’Y’Y Z(\/'Y//—Bj)ST . a+2(\/’7_ﬁj) dv'd~" | X
/ / NN (RN Vo A ERE R
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K

_ 4/5
N k2

C"/”’Y” Z(W VA)s a+1(5l \/>) "

+ —_— T //—d

2/5 \/W + G-y

Gy ¢ B =vDsT, a—|—z(\/> \/j

z/ VY B + (VY = \f)

/k2fk2 ’Y’Y"/’Y” W f)sT , a+7’(f ﬂ]) d’y/d’y// Tyd,%

N .
Cyur GiBu =D, a+i(B —\7)

=1 /ﬁﬁlzﬁl’ ! a? + (ﬂl - ﬁ)Q

=1

k2N

N N .
Cilg__ i(Bu=B,+Bu—B;)sp T, T (B — B;)

k4
771”/2:1 ”'ZZlW a4 (B - ;)

N 2
—|—Z g M 7'(ﬁl Bg"l‘\/ﬁ ﬂ )‘?T T’y’wd !
=1 6 ﬁjﬁlﬁj"’ a (/gl ﬂ_})
K2 N

Clvyitv i(\/7,—B+By =By )sT Tl' CH‘ (V7 53 o,

+/5 Vz—;\/ﬂjﬁﬁj’ﬁl’ \F B;)?

K2 k2 Cir Ao
+/ / S i VAT TEVETS DR (T, atilyoi =) Sdmdys | Ay
S Bi/ 1BV O

2 N .
Citrar ¢iBi=By 48y —/Am)sy,, AT (B = B)

B oL [
- ;/g ZZ:l\/ﬁJﬁz\/%ﬁz' a? + (B — B;)?

n
Nk . : _
" Z/ Cityars BB\ B=vR)s T, f12+ i(B — B, )2 i,
2 — .
¢ \/BiBivA a® + (B — B;)

Mei(ﬁiﬁjJrﬁl’im)sTw Tl’ a+ Z \/7 ﬂ] /

k2
+ / 1 Y,
S v=14/Bi\/V17280 (Vm = 65)°

k2 K2
/ / AT Ve SURVE SN N A S S VNP NA b v
VBV + (Vo - 82

_k4 /k Z Z 'Yll]/l/ z(ﬂz—\/vT+B,,—,Bj,)sTlTl, a—|—i(ﬂl_ﬁ)
= =R e
N

2 .
" g Contjry RGNV AVET LG I 3 a+i(B—vn)
Ba T (G- )
& VBB
k2 N
N / Meamfmwwm@ﬂl ati v —V)
v=1\/\/1"Bj B (Vv \/>

k2 k2 ova
"Yl'Yl] "/2 (/Y1 =V +\/72 B )ST T a+'L i d /d / o N\
Y3 a® + (/7] — M1@72 | A Ay

\Y4 ’71'71 5! \/ N

=1

75



Chapter 2 Section 2.6.2

L . C a+i(B )
— 7/ / Z Yilyel’ i (BL— \ﬁ-s-ﬁl/—\/%)sTlTl/ I — VN
R I I et RVAVATYC AVATTER a*+ (6 — yn)?

N k2
n / C"/ll’yz"/é 1(ﬁl r+\/g \/,TQ)ST T, a—+1 (ﬁl \/7) d’yl
13

[ B, Za?+ (G -2

=1
k2 N
+/ Zmei(ﬁ—ﬁﬁ—ﬁy—ﬁ)srrvl,rl/ W =V
1 !
¢ r=1/v/Mm20e a?® + (V7 —vn)?
k}2 k2
'ywlvz'yg (VAT \/7—2)5,1‘ T/a—i—z(\/'yi ﬁ)d Lo | e
1/4 Y2 a2 7 71 '72 1 Ay Y1072,
(V17272) + (VA = )2
F(T,C,s)
N
= k74 Z Z ]lj/l/ l(ﬂl B =By 4B )STT M
4 4,9'=1 [LI'=1 Bjﬁlﬂ] ﬁl/ 2 + (ﬁ[ _ﬁj)2

N 2
.\ k lejw; oi(BL—Bi— NER N ST, a+i(B — B5) d~
/ B2t (B — B2

€ BiBiBir\/ Vs

=1

k2 N

Civr i a+i(v/7 — Bj)
+ ZL \/7 Bi—By+Bj )éT Tl’ ] /
/6 1A/ BBy B a® + (V71 = 5;)?

.2 2
Y N O 1Y TS O v N S N il il S VPN b
+ V4 2+ \/» ﬂ ,Y V2 77

& e\ BINVABIVY ’

N
Citmall__ iti—0,— 00+, Ty aﬂ(ﬂl Bi)

RN
+4Z/g T + (5= 5)?

N 2
+Z/ Citrav; ot (Bi=Bi =/ +y/A2)sp /T, aaz—k Z((gl 51)) dr,
=178/ BiBi/27s b
kK N

Ot BRIV ButvA)s Tz/ ““ vl @ !

+/’5 V=1 4/ Bin/A 20 \F D

k2 K2 ﬁ
/ / 3717272 ’L(\/i Bj— \/E"P\/’Yi?)g’]:‘ T’Yé CLQ—'—Z 6J d’yld’yZ )\ )\A,Zd’yQ
ﬁ V273 + (V" = By)?

N
Conlil__ i(Bi—yAT—By+8;0 ST, T, ““(ﬂl V1)

Z
+4/§ ; U,Zzl NenE + (B — )2

N

K2 o,
+ / Ol it iAo T, a2+2<(§l \F)) dvy
& VBB @+ (6 = vn)?
k2 N
+/ N T atilyn = Vi) _d
1
U=14/v/ ’Yl’Yiﬁj’ﬂl/ (V71— vm)?

K2k L irn S

/ / Gy VNIV Bs T, /T, a+i(y/ - d’yid’yé Ay Ajir
/

’Yl’Yl iV \/71

=1

76



Chapter 2 Section 2.6.2

K kP N
k‘4/ / _ G - y- Bu+V2)sT, T, atilh = o)
= BB a® + (B — v7)?

n / C“ul’yz“/g z(ﬁl VAT — \/'72+‘/'T2)5T T'y/ C;“v‘ (ﬁl \/’71)2d é
¢/ VB Y27 @*+ (B = )

=1

k2 N

wa{wl’ z(\f VAT— 5l,+r)5T TZ/CH_ (V71 —vn)

A DR DV gy
2 /I _ 2
£ =1 A /'YI’Y{L'YQﬁl’ a‘ + ( Y1 ’Yl)
2 2
/k /k 717172’)/2 1(‘ / \/7 /'Yg"l‘\/"/i? ST T - a + Z ’Yi '71)

(77275 72 a2+ (V] — )2
This expression combined with (2.54) gives us, sup, , E[|A° (f§ + f) (¢ 2] < +o0. O

dm dw] Ay Az dyidnys.

—

Lemma 2.6

. - T {75 —
lim TmP T () (y)| > M | = 0.
Moo too e 20 (@f%’ (W)= )

Proof (of Lemma 2.6) We recall that H’i‘g’g(t)(y)HHg = |ly[l2, and then

T 5’6 T £7€

ITX @O @) < [T @O @)l [ Mlre = Nyl 1A -
O
This last lemma completes the proof of Proposition 2.8.
Martingale problem

In this section, we shall characterize all subsequence limits by showing they are solution
of a well-posed martingale problem. To do that, we consider a converging subsequence of

(Tg’e(.)(y))ee(oﬁl) which converges to a limit T¢(.)(y). For the sake of simplicity we denote by
(Tf’e(.)(y))ee(()’l) the subsequence.

Convergence Result

Proposition 2.9 Y\ € He and Vf smooth test function,
F(T5()(v))

/ 0uf (TS(5) () (F(TE () A),, + 06 (TR ()W) (ST (5) (), A)

+OLS (TS5 ) (K (T W) N, A), -+ 87 (TS6) () (K (T() () (V). A)

00,/ (T5.(5)(9)) (LT ) ) V), A),+ 0udisf (T(5)(w)) (L(TE () ) V), ), ds

He

is a martingale, where

JH(T); = D= FJ;j — A +i (Fij ;A?g + @) T;,
1Y _
K(T)(\); = ;FJZT LY Z (1%, +i0%) Ty TN,
z;éj
L(T)(N); ZFJIT TN+ - ZF]leTz)\g,
l#]
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and
JE(T)’Y = K(T)O\)v = L(T)()‘)’Y =0

for almost every v € (£,k%), and for (T, \) € Hg.
Proof (of Proposition 2.9) Let

o= [ E (B (F0w.e (2o (?).7)]

B ( T() (), E[C(0) © C(0), “) du,

Lemma 2.7

SpE[If3 (] = O (e)
and
A5+ 55+ 5) ) = B (T 00 BC0) 9 CO)L L) + Ale),
where sup;>o E[|A(e, t)[] = O(Ve).
Proof (of Lemma 2.7) Using a change of variable we get fs5(t) = eB(e,t) with

B(e,t) —/O+°O ES [FA <T§’€(t)(y), C (u 4 D ©C (u 4 D o+ i)]
Ry (T“(t)(y), E[C(0) @ C(0)], u + i) du.

By a computation, we get that sup, ;¢ E[|B(e, t)|] < 400, and after a long but straightforward
computation we get the second part of the lemma. [

Next, let GA(T*“(1)(y), 1) = (T () (), EIC(0) ® C(0)], ) and

0= [ (@ 0w, Y im 1 [ 6T W), )as]

€ T—+o00

Lemma 2.8 V1" > 0, we have

lim sup E[If5(t)[] =0.
e—Uo<t<T

Proof (of Lemma 2.8) Using a change of variable, we get
Y L (T o (g
f5(t) = — /0 [GA (T* (). u) — tim /0 G (T () (), 5) ds] du.

Let o > 0, we have

[ [ m 0 - 1 [ 6 (100) ds] o

(£y

< K(/'Llevgay) / d’71 d’}/]a

where

I, {(%)ze{l, g1 € (&R 3 (@)ieqt,.amgy € (B, BN
4—j

and (t)ieq1,..ay € {—1,1}", with ’Zm\er Zuqu‘ < u}

=1 =1
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Finally,
T é ~ 6 . 1 T =~ 5
11_13(1)0;1%,1@ € /0 G (T (t)(y),U) *TEI}:OOT/O G (T (t)(y)ys) ds| du

4
SKT6nY [ dn.dy,
j=1"1zpu
and then by letting u© — 0 we get the announced result. [
Let fe(t) = f5(t) + fi(t) + f5(t) + f5(t). A computation gives

Afe(t) = lim % /OT G (’i‘g’e(t)(y), s) ds + C(e, t)
= G5 (T (W) + Cle D),

where, Vi > 0,
4
lim sup E[|C(e,t)]] < K(T',, / dvyi ...dvy;,
iy sup ECGO) < KT [, iy

using the boundness condition (2.54). Moreover, for (T, \) € ’Hg, G is defined as follow

G (T) =0uf (T) (J(T), ), +05f (T) LIE(T), Ny,

+ O (D) (K (T) (M), A), +05f (T) (K (T) (), A),

+ 060, (1) (E(T) (N), A),, + 807 (T) {L(T) (3), )

)

He
where

- k4 Cjijn a+i(6 — B;) ~—
ST, L TR (a5
BBy =ukpy VI @A T R

B C’l"l’ —a"i'z(ﬁl_ﬁ)
P, = S A
(T)(N); 4 ﬂjﬁj;ﬁzﬁz/ BB By ey (g - py) Y

for j € {1,..., N}, with
C =E[C(0) ® C(0)],

and

K(T)(A)y = E(T)()‘)v =0

for almost every v € (£, k?).
We assume that the following nondegeneracy condition holds. The wavenumbers (; are
distinct along with their sums and differences. This assumption is also considered in [25], [30]
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and [39]. As a result we get

G5 (T (0) = 0o (T W) (FE“ D)),
+0f (T (W) (T O,
+ 031 (T ) (K (T () (W), A),,, -
+ 031 (TR W) (K (T (0) ().A),,
+000uf (T3 0) (2 (T () (). A),,
+0,05f (TR () (L (T (0(w) (V). A)

He'

By Theorem 2.11, (M$.(1)) 5,
function h, every sequence 0 < s; < --- < s, < s < t, and every family (Aj)jeqr,...ny With
values in ‘Hy we have

is an (Ff)-martingale. Then, for every bounded continuous

B [1 (15 ()01 <5 <) (5700 - 16) = [ A7 )] =0

Finally, using (2.58) and Lemmas 2.4, 2.7, and 2.8, we can conclude the proof of Proposition
2.9. 1

Uniqueness In order to prove uniqueness, we decompose T¢(.)(y) into real and imaginary
parts. Then, let us consider the new process

1,
YE(1) = l;gm , where YY4(8) = Re(T¢()(y)) and Y24(t) = Im(TS(6)(y)).

This new process takes its values in G¢ x G, where G = RY x L2((¢, k%), R). Ge x G is
equipped with the inner product defined by

N

k.2
_§ 1ql 2Q2 1gql 2Q2
i=1

V(T,S) € Ge x Ge. We also use the notation Yi(t) = <Y§(t), )‘>g G with A € G¢ x G¢. We
¢ XG¢
introduce the operator T on G¢ X G¢ given by

T:ggxg€—>g§xg5,
T! T?
By Proposition 2.9, we get the following result.
Proposition 2.10 VA € G¢ x G¢, Vf € C°(R)
t
FOYS0) = [ (BEYE(9) N gy g, (YS()

+ S (AYE($) (V) Mg, g, £ (Y5(s))ds

N | —
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is a martingale, where

with, for j € {1,...,N},

re. — A%E s, — A%S
A1 (Y)(A Zr YA + T7(Y)A]]
Ay (Y)(N); = —Y; Zr [YIN + YN+ 15( Zr Y)A + YHY)A]
l7£j 575]
As(Y)(N); = A Zr + (YD),
l#]

and

BS(Y) = A,(Y)(\) = 45 (Y)(A) = A, (Y)(N) = 0
for almost every v € (&,k?), and for (Y,\) € (Ge x 95)2.

Proof (of Proposition 2.10) Using Proposition 2.9,
FYS() /Reﬂﬁ<)mmwwwn
4 G Re(((L+ ) (TE() () (0 Ay ) (Y5 (5)) ds
is a martingale. Let us remark that we also denote by A the function A! +4\2, and

Re((T(8)(9): Ny, ) = (Y48 N)g, g, and Im((TE(E) (), Ny, ) = (T(YE() A)g, g,

Then, we have
Re((J5(T(5) (1)), A)y,) = (B (YE(s)

Re({(L + K)(T*(s)(y))(N), A)yy

)\>gg><g§

)= (AN, Ng g,
|

As a consequence of Proposition 2.10, VA € G x G, letting successively f € C;°(R) such that
f(s) =sand f(s) = s%if |s| <ryl|Algxg, we get that

(VD) Vg, = M) = (XS0 — [ BECY () A)g g,

is a continuous martingale with quadratic variation given by

< M () = /Ot (ACYE(5))(N), Vg, 5

81



Chapter 2 Section 2.6.2

Proposition 2.11 Vf € CZ(G¢ x Ge),

M) = Y0 — [ EEOY)s (259

is a continuous martingale, where VY € G¢ X G¢

1
£ — 2 1
Lo f(Y) = 2t7’ace (A(Y)D f(Y)) + <B (Y),Df(Y)>g£Xg£ .
Moreover, the martingale problem associated to the generator Lt is well-posed.

Proof (of Proposition 2.11) We begin with the following lemma.

Lemma 2.9
A:gg Xg£—>Lii_(g£Xg£),
Bgtgg X Gg — Gg X G,

where LT (Ge x Gg) is a set of nonnegative operators with finite trace.

Proof V(Y,\) € (Ge x 95)2, we have

(AY)(N); g, g, = Re({(L+ E)(T)(N), )y, )

N - —  —
= Re( 'Y T)[T;%; = TyA] [T - TiA)
Jil=1

N 2
+ 3 TGT N - Ty
jl=1
J#l
with T = Y' +iY? and A = X! + X% First, V(j,1) € {1,...,N}? such that j # [, '} is
nonnegative because it is proportional to the power spectral density of Cj; at 3; — 3; frequency.
Second, the matrix I'! is nonnegative since VX € CV, we have

R k4 N +oo X!
xrix =53 [ 00eEx T =5 [ EC 000k () > 0
],l 1

because it is proportional to the power spectral density of C'g(2) = >, ij(z)f( ; at 0 frequency,
and with )~(j = X;/B;,Vje{l,...,N}. Moreover,

trace(A ZF Yz) | < je{sluPN} Fgl'j ||YH55><Q§-

O

Consequently, following the proof of Theorem 4.1.4 in [63], (2.59) is a martingale. However,
B¢ and A are not bounded functions but this problem can be compensated by the fact that
the process Y(.) takes its values in By, GexGe-

Moreover, from this lemma there exists a linear operator o from G¢ x G¢ to Lg(gg X Qg), which
is the set of Hilbert-Schmidt operators from Ge x G to itself, such that A(Y) = o(Y) o o*(Y).
According to Theorem 3.2.2 and 4.4.1 in [63], the martingale problem associated to L¢ is
well-posed because VY € G¢ x G¢

lo(Y)I| < K(N)[Yllgexg-
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Let us recall that the process Y¢(.) is an element of C([0, +00), (B, GexGes dBry,ggxgg))7

and we cannot assert that Y(.) is uniquely determined. In fact, we need to know if its law is
supported by C([0, +00), (G¢ X Gg, [|-llgexg,))- Letting

FY) = I, K) @ TH(E )Y = 9) [ v,
where

(¢, k%) @ TI(E, k%) : Ge x Ge — Ge x Ge,

Y! TI(E, k2)(Y")
Y2 7| R (Y|

As Y¢(.) is a solution on C([0, +00), (Bry7g§><g£,d3w7g£xg€)) of the martingale associated to
LE, we get

E[f(Y¢(t)] =0 Vt>0,
and therefore TI(¢, k) @ TI(€, K)(YE()) = TI(€, k) @ TI(€, k%)(Re(y), Im(y)). Consequently,
the process YE(.) is strongly continuous since the weak and the strong topologies are the same
on RY. Finally, Y¢(.) is uniquely characterized as being the unique solution of the martingale

problem associated to L¢ and starting from (Re(y), Im(y)), and that concludes the proof of
Theorem 2.1.

2.6.3 Proof of Theorem 2.2

Let Ho = CN x L?(0,k?) and y € Ho. We begin by showing the tightness of the process
(T%(.)(3%))e, which is the unique solution of the martingale problem associated to L¢ and
starting from y¢ = II(&, +00)(y). As the radiating part I1(0, 2)(TS(.)(y¢)) of the process
TE(.)(y) is constant equal to TI(€, k?)(y%), to prove the tightness of (T(.)(y¢)) is suffices

to show the tightness of the finite-dimensional process (IT(k2, +00)(T*(.)(y%)))¢. Let Ef be
the conditional expectation given o(T*(u)(y¢),0 < u < t). Then, V¢t > 0, Vh € (0,1) and
Vs € [0, h], we have

< ivj Ef[(/tm Lff;(Yﬁ(u))duﬂ +E§[(M§§(t+ 5) — ijl_ (t))Z],

with VY € Gy x Go, fjl- (Y) = Yé-. Therefore, using that the process T¢(.)(y¢) takes its values
in By, #,, we first get

s[( [ e eym)] < K,

and second,

2
[ (¢ ¢ ¢ ¢ ¢
ES {(Mf]l_(tJrs) ijl_(t)) } — k¢ [ <Mfy >ues = < My > | < Kh
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with
< MG = [V ) — 27 @) SV ()

Consequently, the process (T¢(.)(y¢))e is tight on C([0, +00), (Ho, ||-|[1,)). Now, to characterize
all limits of converging subsequences, let us denote by T°(.)(y) such a limit point. First, for
every smooth function f on Hy, for every bounded continuous function h, and every sequence
0<sy < - <8y <s<t, we have

B 1 (T56091 2. < n) (AT 000 ~ FT0) - [ £ (T 6AN)]| =0
Second,

sup ‘Ef(T) — ng(T)‘ <K sup ]A;’£ — Af| + |A§’E —Af| + |/{§ — Kjl.
TeB, 1, jed1,...,N}

Consequently, T°(.)(y) is a solution of the martingale problem associated to £ and starting
from y. However, following the proof of the uniqueness in Theorem 2.1, this martingale
problem is well-posed and therefore T¢(.)(3¢) converges in distribution to the unique solution
of the martingale problem associated to £ and starting from y.

2.6.4 Proof of Theorem 2.4

The proof of this theorem follows ideas developed in [59, Chapter 11]. In order to prove
this theorem we use a probabilistic representation of ’Z}l (w, z) by using the Feynman-Kac
formula. To this end, we introduce the jump Markov process (XtN ) > With state space

{—(N-1)/N,...,0,...,(N —1)/N} and generator given by

o (L) =t (0 (551 0 (£)) Thens (5 (51) 0 (3))

for i€ {1,...,N —2},

25 (£) e ()0 () b (o (5) ()

forl € {—(N —2),...,—1},

%90 = 2 (o) —90) + 2 (o )~ 00)).

eV (BB =iy (o (B2 -0 (FH)).

Using the Feynman-Kac formula, we get for (j,1) € {1,..., N(w)}?

and

THw,L) =Eis
N

—AS [P _ndv—AS [P _ond
- [6 Nfo (|X{)’\:%)v N71f0 (IX,£V|:M)”

1<|xm+;v=;;>] |

Let f be a bounded continuous function on [0, 1], we consider 7*(w, L) as a family of bounded
measures on [0, 1] by setting

—AR le N_N—1\dv—A§_ le N|_N—2\dv 1
j}l(w’L):ElNl[e NJo T(1x =) N-1Jo T(1x)V1=8g2) f(‘XivH‘N)
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In the first part of the proof, we consider the case v € [0,1) and in a second part we shall
treat the case v = 1.

Let u € [0,1) such that I{(N)/N — u. We begin by introduce some notations. Throughout
the proof we denote by T](l)N the Ith passage in j/N, for j € {—(N —1),...,N —1}. To
avoid the unboundness in £V of the reflecting barriers LN ¢(+(N — 1)/N), we introduce the

stopping time

TN = T(N—[Ne])/N 2 T—(N=[N))/N
with a € (0,1). Let XtN’T = XtJXT]%, Vt > 0, be the stopped process and d(N) = (I((N) —1)/N.
We denote by IP’QEN) the law of (XN );>0 starting from d(N) and by P27 the law of (X} )i>0

d(N)
starting from d(N). Let
0 (_ 0
Loy, = v (aOO(')aU> )

where @ (-) € C}(R) is an extension over R of ax(+), which is defined on [~1, 1], and such
that the martingale problem associated to Ls.., and starting from wu is well posed. We denote
by PP, this unique solution. Let ¢ € C§°(R),

My (1) = pla(t)) — ola(0) — [ Lo p(a(s))ds,

and 7, = 1nf(u >0, |‘T(t)‘ > T) for r € (07 1)

Lemma 2.10 Yy € C°(R). Va € (2/3,1),

lim sup 1LY p(v) — La p(v)] =0,
N e T

where LN p(v) is defined as follows. Vj € {1,...,N — 2},

LYp(v) =T5 44 (‘P (T) o7 (J]V»

(3 (2)
forvel[j/N,(j+1)/N], and

LY(v) =T, (90 <_']‘]\J7r 1) s (;\}]>)
@

T (o(F57) =2 ()

Proof (of Lemma 2.10) We shall restrict the proof of this lemma to the proof of

if vel=(+1)/N,—j/N].

lim su |£N<p(v) — Lap(v)| =0,
N—+4o00 N—[N9]
UG[ — }

z|~

since the other case is completely similar by symmetry. We start the proof of this technical
lemma by proving Lemma 2.1 page 36.
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Proof (of Lemma 2.1) Let h.(v) = W and g(v) = arctan(v). We recall that
ni —v

Vje{l,...,N}, tan(o;) = —h.(o;) First,

|0j41 — 0 — 7| < [g(tan (0j41 — (j + 1)7)) — g(tan (o — jm))|
< Kltan (0;41) — tan (0;)|
< Klhe(j41) — he(oj)|
<K sup hy(v)

vE[0j,0j41]

kdf)? Co " . . .
where h(v) = ("1—)3 which is a positive and increasing function. Moreover,
((n1kdf)2—v2)2

on—[ne] < (N = [N])m
and then .
sup lojt1 —oj — :O<N§_5a) .
je{l,....N=[N<]}
Second, in the same way we have
Oj+2—20541 + 0
= g(tan (042 — (j +2)7)) — 2¢(tan (041 — (j + 1)7)) + g(tan (o; — jm))
= —(9(he(0j12)) = 29(he(0j+1)) + g(he(05)))

and

g(he(gj+2)) - 29(he(aj+1)) + g(he(aj)) = [gl(he(UjJrl)) - gl(he(aj))]'[he(UjJrZ) - he(UjJrl)]
+ 9'(he(05)) [he(0j12) = 2he(0j41) + he(0;)]

he(oj+2) "
[ eloyin) =09 (0) di

e(oj+1)
he(oj+1) "
= [ elog) 00
he(oy)
Moreover,
19/ (he(0j4+1)) = ¢ (he(0))]-|he(0j12) = he(oj1)| < K NT32
Tj42
he(y52) = 2helian) + he(oy) = [ H(®) = bt~ m) dt
Jj+1
’ Tj+2 Oj+1
+ h.(t — ) dt — / hL(t) dt,
Tj+1 )
with

ot

< K h{(on-(no)) = O(N372%),

/ TR — Wt — 1) dt

J+1

3(n1kdf)?v
((n1kdf)2—v2)5/27

Tj+2 oj+1tm
‘/ h’e(t—w)dt—/ h’e(t—w)dt’
Ij+1

oj+T

because h(v) = and

< hy(on—(na)) (042 — 011 — 7| + |02 — 0j11 — 7])
< KN173e,
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Finally,
he(ojr2) Y he(oj41) ,,
| / he(oie2) —t)g"(t) dt — [ (he(oj11) = ) g"(t) dt|
e 0']+1 hﬁ(gj)
<K ((he(0j+2) — he(0j+1))2 + (he(aj—i-l) - he(aj))z)
S [(']\]1—3017
and
sup 042 — 20541 + 05| = O(N'739).

j€{17...7N—[Na}—2}

This completes the proof of Lemma 2.1 since we can take o > 1/3 and we have N33 < Ni=3e,
O

From this lemma, we immediately get

sup 1S(0j+1 — 05,0541 — 05) = S(m,7)|
je{l,..N=[No]-1}

1 3
<K sup |a]+1 — 77] = (N5*§a> .
je{1,.,N—[N=]-1}

Before showing that

2 _
sup ‘AJZ—& = O(N*1),
je{l,...,N—[N=]}

where A; is defined by (2.8), we prove that

1
sup o;—JT —(’)(_a>.
je{l,..A,[Na]}| 3= Nt
In fact, Vj € {1,..., N}
loj — jm| = |g(tan (oj — jm)) — arctan(tan(O))‘

< K| tan(o;)|
S Khe(U[Na})

Moreover, ojye) < Nt and then

Consequently,
2 .
sup ‘A2 B 7‘ <K sup sin“(o;)  sin(20;) .i(_a
je{l,...N—[Na]} je{l N—[Nal} | G 20 N
because
sup sin®(a;) sin(20j)‘ < 1
je{l, ., N=[No]}  Gj 20 \/(nlkdﬂ) —aN (Vo]
n sup sin(20;) N sin(20;)
JE{[NO]+1,...N—[Ne]} | 207 je{l Ny | 205

sin(20;) — sin(2j)

1
< 4 + sup
N1/240a/2 201 Na)41 JE{L,...,[Ne]}

1 1 1 .
=t <N1/2+“/2 TN oL ey 3 _m) '

2Uj
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Now, let us introduce

1 42 2 . _ s . — O
BN — a 14747150011 — 0, 0541 — 0y)

J 2 2 2 . 3. 2
271%\/1 o n%ZJQdQ \/1 e a® + (ﬁj ﬁ]+1)

nik2d?

Then, for j € {1,..., N—-2}andve {%,M}

et = (2) () () - (522

() - o))

Consequently, from the following decomposition

Nou|+1 Nv Nv|—1 Nv
N[ — o (BB + (o) - (5 31
n2d29?
_171_72an090(”)

INoly sO(MN_l)] By n%;lzazaw(v)}

)
Mo () vy, - By - L L o)
( 1

o %) _290([1]\;”]) ﬂﬁ([Nl;]V— 1)) )]

+ EE 2 et W (B - o(B)) - w0,

and because it is easy to show that

V() () — e = o(x)

o VA
Nuv 1 Nv Nv| -1 1" 1
. N () — 2 (5 + () — | = o)

it suffices to show the two following points

lim sup sup
N jef1 N=IN“]-1} ve[ {1

20202 d
lim sup su N(ij — Bﬁrl) _ 711727%0
N Ge{l N=[No]=1} ve[ 4,15 T2 dv

We decompose the proof of these two points into two sublemmas.

Lemma 2.11

n3d?0?
1 5 aoo(v)’ =0

lim sup

S
. J
N je(1,..N=[Ne]-1} ve[ 4 m
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Proof (of Lemma 2.11) Vj € {1,...,N — [N%] — 1} and Vv € {%,

following inequalities,

J+1

N }, we have the

1 < < 1
1 _ 0-72 o 0'2. g2+1 - 1 _ 0.72+1
n2k2d? (1 — W) (1 — nﬁ#aﬂ) n2k2d?
Moreover, for I € {j,j + 1}
1 1 j+1 ji—1 20
_ < 0 —
‘1—(91))2 7 <] N nlkd”‘(l—m)?
n2k2d?
K
< —.
- N
Consequently,
1 1 1
sup sup — =0 () .
JE{L - N=[Na]-1} ye[ £ a41] 1 = (0v)? L L T ‘ N
n3k2d? nik2d?
Next,
2 2 g;
g’ g’ T
__J _ .7+1 _ nikd
‘n1k(\l 1 n2k2d2 Jl n%k2d2> d ! o2 ‘
T nZk2d2
o2 o2 1 2L
< Klnik(4|1 I i N Sy g mukd
m (J n2k2d? n%kZdQ) g\t =) - |
n3k2d?
Tha
+ K‘(JJH oj — ) o1 = ’
1= n%kédQ
K 1 0 1.3
< T DEE (041 = 05)" + Klojt1 — 0 —W|ﬁ < KNz72¢
and then
1 1
sup ’ 5 5 — ) ‘ = O(N%—%Oé).
el N=INe]-1} 'a® + (B — Bjt1) e
@+ g
l_n%kz(ﬂ
Moreover Vj € {1,...,N — [N®] — 1} and Vv € [%, %}, we have
9 )
‘ nikd . v ‘SK‘ 9j _G,UISE’
) o? V1= (6v)2 nikd N
T nZk2d?
and finally
1 1 1.3
' sup sup 5 ——5 — ez | = O( V2 2%).
JEL o N=[NO=1} e [4 i41] 1O + (85— Bi+1)* a2+ = é&)z ’ ( )
This concludes the proof of Lemma 2.11.0J
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Lemma 2.12

n3d?0* d
hm sup sup N(BN B]H) ;72%%0(@)‘ =0.

N je{l,, N=[Na]-1} pe[ 4 541]

Proof (of Lemma 2.12) We separate the proof of this lemma into two step. First, for
je{l,...,N —[N°] -2} let

1 1
CJN =N 2 2 B 2 2
1— oL 1 — i 1— % 1 Zis
n%k2d2 n%deQ n%deQ n?k2d2
We can write Vv € [%7 %]
292 1 :Lj+2 202
CJN_ v22: = N U?kd%dw_iv”
(1 - (97)) ) 1 . Uj+1 nlid (1 _ U]2)§ (1 _ (91}) )
2k2d2
oj+2 - . o
nlkd ]+2 ]
7dw - N -
2k2d2
0542 v 1 1
+N(ZE2 - B
(mkd nlkd) (1 — (6v)? ) ( L C2,]2_J2r12 1_ (911)2)
nik2d

o; o Ov
+ (N<mﬁz - nlkd) 9>m'

We can check that the function v — (1_(00% is bounded on [0, 1] and

0j+2 g 1_3
N(ZE2 - 20| < — 2| 4 26 ~ 1| < KN272°
| <n1kd nlkd) | n kd‘U]H |+ ’nlde <N

Moreover, v — (1_(99% is bounded on [0, 1] and
‘ 1 1 < E 0
V1= (6v)? \/1 R N (1 92)3/2.
n2k?
Finally, 0 < 1“341 < \/11792 and
\/1_n%k2d2
e T w 0412 o Ov
N[ = dw- N(ZE - :
’ i (1—w?)3 ("““l ”1kd)( — (v)?)?
Tj42
n 202 +1
<N ]lkd|w—«9v|d +2 5
n1kd (1—-62%)2
i \? _ 0542
< KN | (00 nlkd> +( nlkzd) ]
K
< —.
- N
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Consequently,

sup sup
JEQL N=[N]=1} e [ it1]

N 20% B 1.3,
c 7(1_(%)2)2]_0@2 2%),

Second, for j € {1,...,N —[N*] =1} and v € [%,%], we have

2 20%v
v ( 1 _ 1 )+ — L)
a? + (Bj+1 — Bj+2)* @+ (Bj — Bj1)? (a2 + ng 1&%)2)2)2

1 _ 1 )
Bj+1 — Bj+2)?  a?+ (85 — Bj+1)?

= ‘N(Cﬂ + (

—2([3]‘ — Bj+1)
=M= Biv2) = B = By)) 7 = ]

285 — 1) = oy
+ IN((Biz1 — Biao) — (B — B —2\Wj T P+l " T (1= (60)2)2 '
’ ((ﬂ]+1 ﬂ]+2) (ﬂ] 5J+1)) (a2 + (ﬁg - /Bj+1)2)2 (a2 N 22%)2’

For the first term on the right of the previous inequality, we have

1 B 1 )
Bir1 — Bj2)?  a? + (B — Bj41)?

G

— N((Bj+1 — Bj+2) — (Bj — Bjt1)) —2(8; — Bj+1) 2’

(a® + (8; — Bj+1)?)
< K N((8j11 — Bjs2) — (B — Bi1))s

and we shall see just below that
sup |Bj+2 — 28541 — B = O(i)-
je{l,..,N=[N«]-2} N

Now, for the second term we have previously get

B —

sup sup
je{l,..-,N—[Na]—l}Ue[%,%]

Then, to finish the proof of this lemma it suffices to show that

T Ov 1_3,
b~ el = ok

o
N(Bj —2Bj41 + Bjr2) + (1_2172)%

To show this relation we shall use the following decompositions. For [ € {j,j + 1}

o} Ul2+1 1 T
1——L 1 (o1 — o) ——k
n2k2d? n2k2d? ka1 o)

41

nikd (0141 1
fr —w I dw,
/nfid (nlkd ) (1—w?)3

sup sup

= O(N?59),
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and

0'2. 0'2. 0'2. ]
_ 3 _ g+l _ g2 d
ank(Jl e AT e T\ n%k2d2)+

(1= (0v)?)

Nl

N nikd mokd 70
= E((Uj—s—l —0j) = = (042 — O =)
1- % 1 Zit (1 —(0v)?)>
n3k2d? n3k2d?

Tj41 742

n Oitq 1 nikd [ Oiq2 1
—i—Nnk/lkd VR 7dw—/_ T2 ) ——————dw).
1 ( % <n1]<;d )(1_w2)§ % (nlkd )(1—’[1)2)3 )

First, using Lemma 2.1 we have

LJ’;; (o} 1 0]7;3 o 1 13
ni J+1 /n1 42 B 1_3, 9
—w dw — —w dw=0O(Nz2"2 .
VBN G- S et L A G R e St )
Second, we have
N ij Uj+]; EO
— (041 — 0j) —=E==—(0j42 — 0j11) —— + R
d o2 - 5
[ 1— 27 (L= (6v)?)?
nik n1k2
N ik T
- 3(%“ W)[ 2 > ]
1— —212 1— Jj+1
\/ n%k2d2 \/ n%k2d2
N 9j+1
7 (0542 = 20541 + 0j) il
1 it
n%k2d2
T ] 9j+1 9
+ (N nikd . nikd + ),
d( { P 1 %in } (1- (9’0)2)2)
n%k2d2 n%k2d2

where, according to Lemma 2.1, the first and the third term are O(N %7%“), and the second
term is O(N?73%). That concludes the proof of Lemma 2.12 for a € (2/3,1).0

Consequently, thanks to Lemma 2.11 and Lemma 2.12, we get

Slj\lf ‘,CNQO(U) o aooQO ’ _ ( (2— 30¢)V(a—1))

)

this concludes the proof of Lemma 2.10.00
Lemma 2.13 IP’(Z;E’](,) is tight on D(]0, +00), R).
Proof (of Lemma 2.13) Let M; = o(z(u), 0 < u < t). According to Theorem 3 in [41,

Chapter 3], we have to show the two following points. First,

Kliriloohm IP’d(’N) (sup|:c( )| > K) =0.

The first point is satisfied since we have VN, IP’%(,) (suptzola:(tﬂ < 1) = 1. Second, for each
N,he(0,1),s€[0,h] and t > 0,

]P,N‘r

E ) ((x(t + s) — x(t))*M;) < K h.
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Concerning the second point, letting ¢ € C;°(R) such that ¢(s) = s if |s| < 1, we have

IPN,T

E 4 ((2(t 4 5) — 2(t))*| M) < 2 EPi) (M (t+ s) = MY (1)*| M)
]P;N,T t+s 2
+ 2 EFah) ( LNgo(x(w))dw) M)

t

with .
M (1) = pla(t) — p(a(0) = [ £¥p(a(s))ds,
which is a (M;)¢>o-martingale under Pé\g N) and we know that
N — [N9]
Py < — 1) .
d(N) (Stgg!w( < — )

Moreover, by Lemma 2.10

sup sup 1LY o(v)|< +o0
% e[ 2

and the fact that LV (0) = 0, we get

]P,N,‘r

t+s 2
E 4V (( £N<p(:n(w))dw> ‘Mt> < Ch?.
t
We recall that .
< Mfav >p= /0 (ENg02 - 2<p£Ngo) (z(s))ds.

Then, using the martingale property of (Mé,v (t))t>0, we have

IPN'T

B (MY (¢ + 5) — MY ()2 M) = EFiew) (MY ((t+8) Ariy) = MY (E A 78))2IM:)
— P (MY ((t+ ) A7) = MY (A T5)? M)

Py N N
— EFam (< MY >(gnrg — < MY >incg |Mt)

(t+s)ATY
— ERa) (/ " <£N<p2 - 2<P£N<P) ($(w))dw‘Mt>
t

ATR
< Ch.
In fact, by Lemma 2.10 we have
sup sup 1LY ¢(v)] < +o0,
N e [_N—][VNa]j_%]U[%’ij[VNO‘]}
sup sup 1LY % ()] < oo,
N ve[iN—I[VNO‘]77%]U[%7N—][VND‘]]

in addition to LN (0) = 0 and supy LY ¢?(0) = % < 4o0. O

Lemma 2.14 Let Q, be a limit point of the relatively compact sequence (IP’%%)N. Then,

Vo € C°(R) and Vr € (0,1), (My(t A T))i>0 s a (M)s-martingale under Q.
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Proof (of Lemma 2.14) Let (PQ\ZIZ{,T,))N/ be a converging subsequence. Throughout this

proof we will take N for N’ to simplify the notations. Let 0 < t; < t and ® be a bounded
continuous My, -measurable function. We have

IPN,T ]PN,T

E 400 (MY (ta A7) @) = BP4) (MY (11 A7) @)

Furthermore, Vi > 0

PdN}G) tATy N ]P)ljiv,]:r tAT, N
EFa (/0 c go(a:(s))ds@)zﬂi <>(/0 c go(x(s))l(x(s)el%)dsq)>

N, T

tAT
+E ) (/0 ﬁNQO(x(S))l(x(s):o)dS‘I)) ,

with I = [~(N — [N9]))/N, —1/N]U[1/N, (N — [N])/N]. Using Lemma 2.10

N, T

h]]\[[n ‘EIP’d(N) (/OMTT (ﬁN@(x(s)) - anogo(x(s))) 1(37(5)6153,)‘15(1))‘ =0.

Consequently, we have to prove the two following points:

N,
o limy E 9 (M (t A7) @) = EQ (M (t A7) D).

N,
o limy E () (f(;j/\n 1(x(8)=0)d8) =0.

We prove the first point as follows. The problem is to apply the mapping theorem to the
functional My,(t A7) and to do this we must have Qu (D, (1a7,)) = 0, where Dpy_(ia7,) is the
set of discontinuities of M,(t A 7,.) for the Skorokhod topology. While M(t) is continuous for
this topology, it is not necessarily true for 7,.. However, we can follow the proof of Lemma
11.1.3 in [59] and then use a family of stopping times for which we can apply the mapping
theorem.

We know that the size of the jumps of (X}¥); is constant equal to 1/N, therefore we have
Qu(C(]0,+00),R)) =1 (see Theorem 13.4 in [14] for instance). Then

QU(DM(P(U\TT)) = QU(DM(p(t/\TT) N C([Ov +OO)> R))

We recall that the Skorokhod topology on C([0,400),R) coincides with the usual topology
defined on this space. Therefore, Dy ¢ar,) N C([0, +00),R) is the set of discontinuities of
M,(t A 7,) under the topology of C([0,+00),R), and 7, restrict to C([0,+0c0),R) is lower
semi-continuous. Consequently, according to the proof of lemmas 11.1.2 in [59], there exists a
sequence (7y,)y, such that r, / r and

Qu ((77,, < 400) N Dy, NC([0, +00),R)) = Qy (77, < +00) N Dy,)) = 0.

Then, Qu(Daz,(irr,,)) = 0 and we can apply the mapping theorem to My (t A 7,), i.e

N,T
lim E 4™ (My(t A 7y, )®) = EQ (M (t A Ty, )®) .

Finally, we obtain
EQ (My(tg A 77, )®) = B (My(ty AT, )®),

and
lim EQ (My(t A7y, )®) = B2 (M, (t A7) @)
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because 7., / 7,. Consequently,
EQ (M (t2 A 7)®) = EQ (M, (t1 A7) ®) .

For the second point, we have

PN’T tAT, tATy t
"4 (/0 l(m(s):O)d'S) = Eq() UO 1(X§V=0)d8] < Eo [/0 1(XSN:0)d8] ,

since the stopped process spends less time in 0 than the original process and the last inequality
is given by the Markov property. We denote by N the number of returns in 0 during the
time interval [0,t] and by (Y});>0 the renewal process associated with the return times in 0,

(95”)iz1, of the process (XV);, with Yy = o) = 0. Moreover, for o/ € (0,1
0 )iz ¢ 0

¢ [N1+e] G+
]EO |:/0 1(X§V=0)d8:| < t]P)O (Nto > [N1+a ]) + ]EO ) 1(X§N=0)ds
90
t [NlJra’] +1
< —— = Eo[N)] + ¥ ——
= [N1+a/] 0[ t]+ Fgl )

(J+1)
since (f:(g) 1(X§V:0)d3)j is an i.i.d sequence with mean 1/T'5;. We recall that N + 1 is a
0

stopping time for (Yj);>1. Then,

NO4+1
0 t
Eo {agNt = | Y 5| = (Bo [N] +1) Eo [o"].
j=1
Furthermore,
(NP+1) | (NO+1)
EO l:o'o t = EO l:O'O t (1(XtN:O) + I(ngfo))]

=E, {inf (s>TN, X[\, = 0)1(ng:0)} + Eo [mf (s >0, X, = 0)1(@#0)

where T}¥ = inf (s > 0, X/}, # 0). Then, using the Markov property we get

Eo |inf (s > TN, XN, = 0)1, . | = (t+Eo [0"] )Po (X = 0)
(x¥=0)

2N —1
< tPo(X7 =0) + ——;
I'fy
and
N-1
E [inf (s >0, XN, = 0>1(XN;£0):| = > K [inf (s >0, XN, = O)l(XN:j)
t j=—(N-1) '
J#0
N-1 @
= > (t+E ] )oY =)
j=—(N-1)
J7#0

_% N -1
j=11=1 I‘lcl+1
N -1
N2

Po (|XN| =3) +tPo(X} #0)

<K Eo [’XtNH(XtN#O)] +Po(X; #0),
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where K is a constant independent of N. Consequently,

ry, 2N-1_
2N — 1 rg,

t 1
Eo UO 1<X3Nt>)d8} =0 <NM<1Q>) :

From Lemma 2.14, we have Vr € (0,1), Q, = P, on M,,. From this relation and the fact
that Q,(C([0,+00),R)) = P,(C([0, +<),R)) = 1, Q, = P, on M, since 7. /' 7 asr /1.
Let f € C*([0,1]) with compact support included in [0,1) and let (IP’ZZV;Q,T,))N/ be a

Eo[N)] < K

O(N),

and

(

converging subsequence as in the previous proof. We have

/ / 1 !/
Tfl(N )(w,t) = Eq(nr) [f <|Xt |+ N’) 1(t<71‘3",)] +r(NY), (2.60)

with

N

_Ac [t1 o du—AcC ty o do
,,,(N) :Ed(N) |f Nf() (\X111\7|:M) V—AN_1 fo (|X75v‘:u)

1
x f <|XtN\ + N) (l(rggtqgﬂ) + 1(tzrl%+)\))} )

where 7% = T((]{,)_l)/N A Til()N—l)/N and A\ € (0,t). Using Lemma 2.13 and Lemma 2.14, we can

study the first term on the right in (2.60).

E XMy L) _ EPAn LY,
d(N") f | t | + ﬁ (t<7_1%/) = f |3§‘(t)‘ + ﬁ (t<7’1‘i‘],)
PNI,T

— Erac) {f <|w(t)\ + ]\1n> 1(t<ﬂ°$f)] ’

since (t < 7§) € Mrq and }P’fi\E Ny = Pfi\é’]@) on Mre. Moreover,

B (1 (1201 + ) Lens |
_ gPa [f (|m(t)| + ]\17,” ~f (M_[]]\\,@H) P (> 750)
= BP0 [£(12(0))] + o).

Consequently,
' po1
i Bavn |1 (1X 14 37 Larg,)| = B0

However,
E% [ (jo(t))1(ry<p] = 0.

In fact, let 7, = inf(¢t > 0,Vv > t,z(v) = x(t)) be the first time for which the process becomes
constant. From the Portmanteau theorem

=T P, (= m) <@ ((m = m)).
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where A denote the closure under the Skorokhod topology of a subset A of D([0, +c0),R).
Moreover, we have

(s <) N (1 <t)N(x(0) =u) NC([0,+00),R)
=(1s <m)N(m <t)N(x(0) =u) NC([0,+00),R).

Then,
Qu(lz(t)] € supp(f), 71 < t) < Qu(lz(t)] € supp(f), 7s <71 < 1)
< Qu((0)] € suppf).Jalt)] = 1) =0,
and
i Eaovn | £ (P14 37 ) Learg )| = E% (020D 1ecn)] =B [0 Lry) -

Finally, by the following lemma we get
. I(N’ P
lim 7/ (w, 8) = E™ [£(12()) L0<my) | -

We can remark that this limit does not depend on the subsequence (N'). The following lemma
represents the loss of energy from the propagating modes produced by the coupling between the
propagating and the radiating modes. Moreover, this lemma implies the absorbing condition
at the boundary 1 in Theorem 2.4, which implies the dissipation behavior in Theorem 2.5.

Lemma 2.15 limy: r(N') = 0.

Proof

t
I )

|T(N/)| S ||f”00 (]Ed(N/) 1(t>7—]0\]/+)‘)]

/ 1
+ Py <|th\7 | + N € supp(f), 78 <t < T + >\>) :

First, let o/ € (3/4,1) and N}V the number of passages in (N —1)/N during the time interval
[0,2].

~AS, fgl(‘xé\,,lzl\,}/\r_’l)ds ~AS, fgl(IX%:N;V?l)ds

Ea(vr [6 1<t>rpv,+x>] < By [e

x (1 1 .
( (tz‘r((ll\f)’ﬂ)/N’Jr)‘) " (t>T(1<)N'1)/N’+’\)>
—Aclftl / ONT—1 ds
We shall work only with Egnr) |e N0 T (1x 1=K ) 1. o N but the same proof
(t*T(N’fl)/N’+ )
works for the other term.
—A¢ ftl / ds
N (PR
E , (‘ s N7 1
AN’ [e (2700 N

t
—AS, fo 1(XN,7N/71)ds
S - !
NL L (NN s N )

< Eynv [6
+Pd(N’) (NtN/ < [Na/]ft - 7_((]{[)/,1)/]\7/ > )\) .

97



Chapter 2 Section 2.6.4

On (N > [N'] 4+ 1), we have

t )
B T e VR S
: 00
[N'] —AS, T((]g;r —-1/N l(XN’:N’71)dS
< H e (N'—1)/N’ s N
j=1

We denote by 08\;_1)/1\, the time of the first return in (N — 1)/N, then

—A, fot1(xév,7N,71)ds

Eavry |e -V LN s e 4
’ T(jtl) ’
[N'*] _Al]:V/ T((jl;’ -1)/N l(XéV/:N/71)dS
< 11 Eawv) |e (Nr=D /N "
=1
) (N
_Ac/ (N/*1>/N/1 , , dS
< |En- e N Jo (XéV:NN’l)
N/
LG+
since g)v_l)/ M1 (XN=N-1 )ds is an i.i.d sequence. Moreover, we can check that A§ >
T(N-1)/N s N j
CN3/2 and then
o) o)
—Ae, [y IOl ds —o N2 [((NEDNTy s
Ex_1 |e N (XéN:N’) <Ey_:1 |€ ’ (XéV:N’)
N/ N/
In fact, a computation gives
. ak'A3 [rkd nvn? — (ni1kdd)?
&=
167N Jnsnas \/(rikd)? = (1+ (B — 4/ (mkd)? = 17)2)
" S(n—on,n—on) dn
(n? — (n1kdf)?) sin®(n) + n* cos?(n)
However, we recall that the support of S lies in the square [—37”, %’T] X [—37”, 37“}, then we

can restrict the integration over [nl kdf,n,kdf + 37”] Moreover,

2

2
_ 2 _2/32) = (n—g)2_Y f { oN 7 ]
(ﬁN (n1k)* —n?/d ) (n=o) 1—y?’ or some y € nikd’ nikd

3m\?2  n?/(nikd)?
s <2> 1= 2/ (nakd? =

where K stands for a constant independent of N, because 6 < 1 and k > 1. Therefore,

n1kdf+3F
A > K / m/n? — (ni1kd@)2dn > K" N3/2,

n1kdo
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where we assume that the function S has a positive minimum, and then K" > 0.
Now, let us remark that Yo € [0,In(N/4)]

eiv S 1— W’U
and
"Ellv)' 1)/N 1
En_ / - 1w ~n_1ndS| = ———.
NN’:l 0 (Xév :%) F?Vlfl N/
Then, we get
U(l)/ ’ ]
- e_KN N'3/2 j‘o (N'—1)/N 1(Xév,:%)d8 L Lﬁ 1 ;
NN71 = N/3/4 ln(N/1/4)
and
— A tl ’ /_1\ds i e’ nli— K" _ 1
Eanry |e ok (x'=557) Lnasiveipny | = LN [1 N3/4 (1 1H<N’1/4>)}.
t =
Moreover,
N o (1) ((N*]) (1)
Pac (Nt <INt =T(voyn 2 )‘> < Py (T(Nl)/N ~ T(N-1)/N = >‘>
1 (v]) (1)
= XEd(N) (T(Nl)/N ~ T(N-1)/N
N o)
< TE(N—l)/N [U(Nq)/zv}
K
< —.
— Nl_Oél
Consequently,

t
_A;ﬂ fO 1(\X§/|:NJI\;1 ) ds

1}\I[I/I}Ed(N/) [e l(tZTR,/-i-)\)] = 0.
Second, let ¢¢ € (0,1) such that supp(f) C [0,c¢f —1/N’] and = € [0, cf), then

1
Py <|XtN’ + €swp(f), Ty St < ™ +)\> < Py (XtN € [—cpepl, T <t < TR/JF)\)

N — |N“¢

SPd(N) (XgVE[—Cf,Cf],X%:]\[T],T]%St<7'](\)7+)\>
N — |[N“¢

+Pd(N) (XtNE[—Cf,Cf]yXf-YV:—]\[[],T]%St<7']%+)\).

We shall treat only the case where X?J’V = (N — [N?])/N, but the following proof works also
in the other case. Let ¢ € (cy,1), p € (0,1) such that [¢f — p,éf + p] C (cf,1) and X € (0,1).
Using the strong Markov property we have

N — |N“®
]P)d(N) <XtN S [—Cf,Cf],qu_Yo\; == ]\g],T]% S t< 7']%"’)\)

(1) N
< P (i > X) + Plieg (Tepap <A+ ),

N
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where 7z,+, = inf(t > 0, |z(t) — é¢| > p). First, a computation gives

N-2
(1) A 1) 1 N+1+1 K

Second, the sequence j\gr(N "))+ is bounded. Let (r(N"))n» be a converging subsequence. We

recall that ]P’é\(fN) = IP’C(}\T[) on Mo, where ¢(N) = [N¢]/N, and by Lemma 2.13 the sequence

(IP’?Z:,’,T,))NN is tight. Let (IP’?&;%)NW be a converging subsequence to ng. Moreover,
Tepdp < 7y and therefore (Téfip <A+ N ) € MT;‘G' Consequently, by the Portmanteau
theorem

1]{7@ Pé\éﬁ///) (Tgf:tp S A + A/) = %{@ ]P)i\([N;;) (Téf:lzp S A + >\/)

< Tim P07, ((refip <A+ A))

< Qg ((Tafip <A+ )\')) :

We recall that Qgz, (C([0, +00),R)) = 1 and we can show that

(refip <A+ )\’) N ([0, +00), R) = (Téfi,, ot )\’) NC([0, +00), R).

Then,
];[/// i\(]N;j’-) (Tﬁle:p S )\I) S @Ef (T?:f:l:p S A + )\/) s
and

T r(N”) < Qg (reep <A+ X).

Finally, limpy» 7(N") = 0 and the limit of all subsequences (r(N"))n» of (r(N'))n is 0. O

To finish, (’Tfl(N) (w,t))N is a bounded sequence. Let (Tfl(Nl)(w, t))N/ be a converging

subsequence. By the previous work, there exists an another subsequence such that
. I(N") _ P,
lim 7, (w, 1) = E7 [f(le (1)) Laem)

where the limit does not depend on the particular subsequence, then all subsequence limits of
(’Z}I(N) (w, t))N are equal to EFu {f(|:1:(t)\)1(t<n)}. Consequently,

i 7™ (. ) = B [f(2()) Lemy) | -

Now, we have to show that this equality holds even for a sequence (I(N))y such that
I(N)/N - u=1,ielimy ’Z}Z(N)(w,t) = 0. To do this, we write for A € (0,¢),

(N
T (@, 8) < [ Flloo (Pagy (£ < 7iN—1y ) + )

t
e*ANfO 1(XN:%)(1’LL

u 1 (tZT(l), +/\) ) .

+ Eq(v)

We have already shown in Lemma 2.15 that the second term on the right in the previous
inequality goes to 0. The proof did not depend of the sequence (d(N))y. Moreover, we have

(1) 1 (1)
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and

N-2 y
N+1+j [(N)
By [0 ] = <x(1-7).
d(N)[(N—l)/Nﬂ iy LTivigez N

Consequently, we have Yu € [0, 1] and V(I{(N))x such that [(N)/N — u,
N B
im 7, (@, ) = E™ [£(j2())1a<n)| (2.61)

where the limit satisfies the required conditions. Finally, from the decomposition used in the
proof of Theorem 2.5, we have Vo € L?(0,1) and ¢ a smooth function with compact support

1T (L) = To(Ly 20,1y < 200 = Bllzzon) + 11T (L, ) = Ta(L ) £2(0,0)-

Using the density of the smooth functions with compact support in L?(0, 1) for ||.|| £2(0,1) and
the dominated convergence theorem we get the first point of Theorem 2.4. The second point
is a direct consequence of the probabilistic representation (2.61) and the density for the sup
norm over [0, 1] in {p € C%(]0,1]), ¢(1) = 0} of the smooth functions with compact support
included in [0, 1).

2.6.5 Proof of Theorem 2.6

As in the proof of Theorem 2.4, we use a probabilistic representation of ’];-O’I(z) by using the
Feynman-Kac formula. However, we introduce the jump Markov process which is a symmetric
version with respect to reflecting barrier (N — 1)/N of that used in the proof of Theorem 2.4.

Let (X}),, be a jump Markov process with state space { — (N — 1)/N,..., (N —
1)/N,...,3(N —1)/N} and generator given by

ORI ACORE) A CORIE)

for i € {~(N —2),...,—1},

e (£) i o5 o (1) (o (57) o (5)
forl e {1,...,N — 2},
LN (;) = Dlia(v-n)42 i—2(v—1))+1 (¢ (l_]\fl) ¢ <Zi7>)

) [+1 z
+ T avo1)) 1—2(v—1)+1 (d’ <N> -9 <N)>
forl € {N,...,2N — 3},

LN <]i[> = o ovo1) 141-2(v—1) <¢ <l+Nl> —¢ <Jif)>
-1 l
N

+ I o(v=1) 141-2(N—1) (¢ (N) —¢ (
fori e {2N —1,...,3N — 2},

N <NN—1) S (¢> <NN_2> —¢ (NN_1>> ’
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00 =51 (o (1) ~00) + B2 (6 (31) - o0).
o (M) =5 (o (N o () e (o (8) o ().
e (22) T <¢(2NN‘3)—¢<2NN‘2)>+F§1( o(55) -0 (55)):

We recall that 7%!(2) can be viewed as a probability measure on [0, 1] by setting

Zf( )Toz 2)

for all bounded continuous function f on [0,1]. Let 0 < < 1 and f be a smooth function
with support included in [0,1 — 7). In order to make the link between 7°!(z) and the process
XN let us introduce an extension of f by setting

f(=v+1/N) if ve|[—(N-1)/N,0]

() = f(v+1/N) if v e [0, (N—1)/N]
f(=v+ (2N —-1)/N) if wvel[(N-1)/N,2(N—-1)/N]
fo—(@2N=3)/N) if wve[2(N-1)/N,3N —3)/N].

With these two functions we get the following representation. VI € {1,..., N},

TP'(2) = Euy [¥(x)].

N

Moreover, we have
) =By [P 40 (1) =B [P0 x)] +0 ().

where

vs  elsewhere,

with vg € (1 — 7,1 —1/2), and where

f((—g)) if wve [[—17?]
s _ flv if ve |01
PO=Y rCoto) i [1,2]

flo=2) if wvel23].

Let u € [0, 1) such that I{(N)/N — w. One can assume u € [0,1—7) by changing r if necessary.
As in the proof of Theorem 2.4, we have the following lemma.

Lemma 2.16 Yy € Ci°(R).

N
lim sup ‘ENQD <[ M) - Ear,mw(v)‘ =0,

N"*‘FOOUGIN N
where
7 _[ N —1—[Nr] 1] {1 N—l—[Nr]}
N N N TN N
U[N—1+[Nr] 2N—3}U[2N—1 3N—3—[Nr]]
N " N N N ’
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and Gy 5 Cl-extended version of ase such that

oo (=) if ve(=(1-r),0]
U0 (V) = oo (V) if vel0,1—7r)
7,00 aoo(_’u + 2) Zf v E (1 + 2]
CLoo(U—Q) if v E [273_1”)7

and the martingale problem associated to L and starting from u is well-posed.

Qr, oo

Lemma 2.17 The law of the process (¢-(X™))n starting from d(N) = (I(N) —1)/N is tight
on D(]0, +00),R).

Proof (of Lemma 2.17) Let 7 = o(XY, s <t). According to Theorem 3 in [41, Chapter

3]. We have to show only the two following points. First, we have

lim Tim P (X)) > K| =0,

ol T Py (s (57> )

since VN, supy>olgr(X{V)| < 3. Second, we have for each N, h € (0,1), s € [0,h] and ¢ > 0,
]Ed(N)((gr(Xﬁ-s) - gr(XtN)>2|~7:tN) < Kh.

In fact, we have

Ean) ((9-(X[L5) — gr(X)FN) < 2By (M) (t+ 5) — MY (1))*| )
t+s 2
+2Eqn <( [,Ngr(Xg)dw> ‘ftN> ;
t

with .
M) = 90 (X = 9:(X5) = [ Vg (XD,
which is a (F}V)i>o-martingale. We also have

sup sup 1LY g, (v)|< +o0
N e[ 2t 3] {0,221 )

since by Lemma 2.16

sup  sup |£Ngr(v)| < +o0.
N velnyU{vs}

Moreover, £V g,.(0) = LN g,.(2(N —1)/N) = 0. Then, we get

t+s 2
Eq(n) (( ) ﬁNgr(Xqu)dw) ‘]:tN> < Con*.
We recall that .
< ngy >,= / (ENQTQ - QgTENgr) (XN)ds.
0
Consequently, by the martingale property of (M, g ()0,
By (MQY (¢ + 5) = MY #)21FY) = Bay (M) (¢ + 5) = MY ()| FY)
— Eqv (M;j(t +5)2 - Mg(t)2|ftN>
= Ed(N) (< M;Y >iys — < M}\Cfl > |ftN)
AN 2 N N N
= Ed(N) </t <£ Ir — 297“£ 97‘) (Xw )dw’ft )

< Ch.
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In fact, in addition to the previous arguments, we also have

sup  sup LN g2 (v)] < +o0,
N velnU{vs}

supy LV g2(0) = % < +o00, and supy LY g2(2(N —1)/2) = 2% < 400. That concludes the
proof Lemma 2.17. [

Now, let us introduce some notations. Vj € N*, let

W =inf (¢t > 70, 2@t)€[-1,-1-r)U(l—r1+r)U(3—r3])
9 =inf (t>79), 2@t)e(—1—-7r),1=r)U(1+r3—7)),

Ty

with TS();) = 0. Using the previous lemma, there exists (N') such that

A Bagvn [*(9: (X)) = B [£°(2(2))].

Moreover,

E%[f*(@(2)] = Y E® [ F@(=)1 -0, 0]
Jj=1 T

= > SB[ (@)L g0 o er) M0 ]

j>1

where My = o(z(s), 0 < s <t). With the following lemma we can identify each excursion
(G-1) ()

between 7.~/ and 777,
Lemma 2.18 Vj € N*, the conditional law Q,( - |MT<]~71>) coincide up to the stopping time

79D with the conditional law @Z( |MT(J-_1)), where Fz is the unique solution of the martingale

problem associated to L and starting from u.

Ar,co
Proof (of Lemma 2.18) This proof is a conditional version of Lemma 2.14. Moreover, this
lemma follows from Lemma 2.16 and the fact that we are studying excursions between qu,]cfl)
and 7,7 By Lemma 2.16, in addition to g,(XY) = XN for T,S,]c_l) <z< T,gj),

h]{]n Ed(N)

t/\‘r,gj)
Lo €702 = L0, o) ds|M o | =0,
T T,C

T,C

and we also have

t 1
Ko [/0 1(X§0)d5] =0 <NaA(1a>> )
t 1
Ea(n-1)/n [ /0 1(X£2(N—1)/N)d3] =0 (Nama)>

by symmetry of the process X». As in the proof of Lemma 2.14, we get that V¢ € C5°(R)

. . t/\Tﬁj)
plalt AT) = pla(ri) = [ Lo plals)ds

T

is a martingale under the conditional law Q,,( - |MT<7~,1)). Finally, from the uniqueness of the
martingale problem associated to L,, ., Qu(- |M7(j_1)) coincide up to the stopping time T7£j )

with P, ( - |MT<]-,1>) (see Theorem 6.2.2 in [59]). That concludes the proof of Lemma 2.18.0J
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From the previous lemma, Vj € N* we have

) R LG )L EN

Tr

and then

i Eaen [F(r(X2)] = B [((2))] = E™ [ (@(2)],

where the limit does not depend to (N’). Consequently,

Jlim TP E) = ER[((2)] = Tz ),

with

0
ity -
0z 7(z0)

For the boundary conditions, first let h € (0,1) such that 0 < h < 1, we have

,Tf(zvu) = ﬁaoolz}(zau)'

Ar oo

(T ) = Ty(e, =) = 3 i (B [£°(X)] — E_pon [7°(X2)]) =0,

because of the symmetry of the process X~ and f*, and therefore,
0
2—T¢(z,0) = 0.
ou f(Z, )

Second, in the same way, let h € (0,1) such that h < 1. Moreover, one can assume r < h by
changing r if necessary. Then, we have

1 1 s
E(,Tf(zv 1—h)=Ts(z,1+h) = 5 ylm (Ewan [f*(XN)] = Ewarm [fF(XN)]) =0,
— 100 N N
and therefore,
0
2—1T, 1) =0.

As a result, using the density of the smooth functions with compact support in L?(0,1) for
[l 22(0,1) and the dominated convergence theorem we get the first point of Theorem 2.6. The
second point is a consequence of the maximum principle and the density for the sup norm over
[0,1] in {¢ € C°([0,1]), (1) = 0} of the smooth functions with compact support included in
[0,1). W
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Chapter

Pulse Propagation and Time Reversal in
Shallow-Water Acoustic Random
Waveguides

Introduction

This chapter is devoted to the study of the propagation and the time reversal of a broadband
pulse in the random waveguide model introduced in Chapter 2.

Acoustic pulse propagation in shallow-water waveguides has numerous domains of ap-
plications. One of the most important applications is submarine detection with active or
passive sonars. Pulse propagation in random media has been studied in different contexts, in
one-dimensional random media in [17] and [25, Chapter 8], in three-dimensional randomly
layered media in [25, Chapter 14], and in random waveguides in [25, Chapter 20] and [30].
In these cases, it has been observed that the amplitude of the coherent wave decays with
the propagation distance, since the coherent energy is converted into small incoherent wave
fluctuations.

The time-reversal experiments of M. Fink and his group in Paris have attracted considerable
attention because of the surprising effect of enhanced spatial focusing and time compression in
random media. The refocusing properties have numerous applications, in detection, destruction
of kidney stones, and wireless communication for instance. Time-reversal experiments have
been intensively analyzed experimentally and theoretically. This experiment is carried out in
two steps. In the first step (see Figure 3.1 (a)), a source sends a pulse into a medium. The
wave propagates and is recorded by a device called a time-reversal mirror. A time-reversal
mirror is a device that can receive a signal, record it, and resend it time-reversed into the
medium. In the second step (see Figure 3.1 (b)), the wave emitted by the time-reversal
mirror has the property of refocusing near the original source location, and it has been
observed experimentally that random inhomogeneities enhance refocusing [19, 22, 42]. Time-
reversal refocusing in one-dimensional media has been studied in [18, 25], in three-dimensional
randomly layered media in [26], in the paraxial approximation in [10, 15, 49], and in random
waveguides in [30, 25, 33].

The pulse propagation and the time reversal of a broadband pulse, in the case of a
waveguide with a bounded cross-section and Dirichlet boundary conditions, is carried out in
[25, Chapter 20]. However, it does not take into account radiation losses. In this chapter,
the waveguide model introduced in Chapter 2 permits us to decompose the wave field into
three kinds of modes: the propagating modes, the evanescent modes, and the radiating
modes. However, in this chapter, for the sake of simplicity we do not consider the effect
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EEEE EEEE
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Figure 3.1: Representation of the time-reversal experiment. In (a) we represent the first step
of the experiment, and in (b) we represent the second step of the experiment.

of the evanescent modes on the propagating and the radiating modes. We have seen, in
Chapter 2, that the presence of evanescent modes induces an effective dispersion, and we
know that dispersion effects can be compensated for by time reversal [25]. We have seen
that the presence of radiating modes produces an effective diffusion, and we anticipate that
diffusive effects cannot be fully compensated for by time reversal. Therefore, it is interesting
to understand these effects. The main result of this chapter is the analysis of the influence of
the radiation losses on the refocused wave in the time-reversal experiment. In Propositions
3.11 and 3.12, we show that the radiative loss affects the quality of the time-reversal refocusing.
First, the amplitude of the refocused wave decays exponentially with the propagation distance.
Second, the width of the main focal spot increases and converges to an asymptotic value,
which is significantly larger than the diffraction limit \,./(26) obtained in Proposition 3.6
(where A, is the carrier wavelength in the ocean section [0, d] with index of refraction ny,
and 6 = (/1 —1/n?).

This Chapter is in two parts. The first part concerns the propagation of a broadband
pulse and the second part concerns the time-reversal experiment. In Section 3.1 we recall the
waveguide model introduced in Chapter 2. In Section 3.2 we recall the mode decomposition
associated to this model with the simplification that we neglect the effect of the evanescent
modes. Section 3.3 concerns the study of the propagation of a broadband pulse. In this section
we show that the coherent transmitted wave is a sequence of modal waves with different
arrival times and different modal speeds. The amplitude of each modal wave is exponentially
damped and the rates depend on the effective coupling between the propagating modes and
the radiation losses. The study of the incoherent wave fluctuations requires the analysis of
the product of two transfer operators at two nearby frequencies. Then, we derive an effective
system of transport equations which takes into account the effect of the radiation losses.
Applying this result to the study of the intensity of the incoherent wave fluctuations, we
observe that it is exponentially damped and becomes uniform across the waveguide section
[0,d] when the propagation distance is large. In Section 3.4 we study the time-reversal
experiment in which the spatial random inhomogeneities may have changed during the two
steps of the experiment. In this case, both the amplitude and the statistical stability of the
refocused wave depend on the degree of correlation between the two realizations of the random
medium. Moreover, we describe the refocused transverse profile in terms of the solution of
the continuous diffusive model introduced in Section 2.5.2. Consequently, we show that the
quality of the time-reversal refocusing is degraded by the radiative loss.
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3.1 Waveguide Model

In this chapter we conserve the setting of Chapter 2, which is illustrated in Figure 2.2 page
33, but with some simplifications. We consider a two-dimensional linear acoustic waveguide
model. The conservation equations of mass and linear momentum are given by

)
pla,z) 5 + Vp=TF5,
ot
Lo o (3.1)
K(x,z)a—i_ u=0

where p is the acoustic pressure, u is the acoustic velocity, p is the density of the medium, K
is the bulk modulus, and the source is modeled by the forcing term Fy (t,z,z) given by

Fo(t,x,2) = Vi (t,2)0(2 — Lg)e..

Here, \Ifg(t, x) is the profile of the source. The third coordinate z represents the propagation
axis along the waveguide. The transverse section of the waveguide is the semi-infinite interval
[0,+00), and x € [0,4+00) represents the transverse coordinate. Let d > 0, the medium
parameters are given by

% (n?(z) + eV (z,2)) if z€[0,d], z€][0,L/e
1 x € [0,+00), z € (—00,0) U (L/e,4+00)
K(z,z) %nQ (x) if or

z € (d,4+00), z € (—00, +00).
plx,z)=p if x€][0,+),z€R,

and where the process V is described in Section 2.6.1. We consider the Pekeris waveguide
model. This kind of model has been studied for half a century [51] and in this model the
index of refraction n(z) is given by
n(z) = ni1>1 if x€]0,d)
)1 if € [d,+00).
This profile can model an ocean with a constant sound speed, where d represents the ocean
depth. Such conditions can be found during the winter in Earth’s mid latitudes and in water

shallower than about 30 meters.
From the conservation equations (3.1), we derive the wave equation for the pressure field,

Lo
c(x, 2)? Ot?

= V.F, (3-2)

where c(z,2) = VK(z,2)/p(z,2), A = 02 + 92, and ¢ = /K /p. In underwater acoustics
the density of air is very small compared to the density of water, then it is natural to use a
pressure-release condition. The pressure is very weak outside the waveguide, and by continuity,
the pressure is zero at the free surface x = 0. This consideration leads us to consider the
Dirichlet boundary conditions

p(t,0,2) =0 V(t2) €[0,4+00) x R.

In addition to the classical scales which are the wavelength, the correlation length, the
standard deviation, and the propagation distance, we also consider the bandwidth of the
pulse. This scale plays a key role in the pulse propagation and the time-reversal experiment.
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In this chapter, the source profile \llfl(t, x) is given, in the frequency domain, by

. (3.3)

[Z%wm%wx+/ ey 1 T (@ 2)dn

with ¢ > 0. The restriction ¢ > 0 allows us to freeze the number of propagating and
radiating modes and gives simpler expressions of the transmitted field. Here, we have used
the decomposition with respect to the resolution of the identity II, associated to the operator
R(w) and introduced in Section 2.2.1. We refer to Section 2.2.1 for a summary of the spectral
analysis of this operator. The Fourier transform and the inverse Fourier transform, with
respect to time, are defined by

= [rwe=ar, 50 = o [ e s,

We also recall that S can be arbitrarily large and £ can be arbitrarily small. Consequently,
the spatial profile (3.3) is an approximation of a Dirac distribution at zp, which models a
point source at . Moreover, % A(%) is the Fourier transform of f(e%t)e~™o! which is
a pulse with bandwidth of order €¢? and carrier frequency wg. In this chapter, we study the
broadband case, that is for ¢ € (0,1). In the broadband case the pulse width is of order 1/,
which is much smaller that the propagation distance, and therefore the propagating modes
are separated in time by the modal dispersion. In the broadband case, the transmitted wave
can be described by a front stabilization theory (Section 3.3.2), and the statistical stability of
the time-reversal refocusing can be study in a simple way (Section 3.4.6).

The case ¢ = 1, that we shall not treat in this chapter, corresponds to the narrowband
case. In this case the order of the pulse width is comparable to the propagation distance, and
consequently the modes overlap during the propagation.

However, for the sake of simplicity, we shall consider the case ¢ = 1/2 and the analysis
that follows could be carried out Vq € (0,1).

According to (2.12) page 37, the evanescent part of the wave field decreases exponentially
fast with the propagation distance. For more convenient manipulations in the study of the
time-reversal experiment we assume that the source location Lg is sufficiently far away from
0 so that the evanescent modes generated by the source are negligible. With this assumption
and using 2.23 page 41, we can assume that the incident pulse coming from the left is given,
at z =0, by:

N(w) ~e k2(w
| Z“M ot [ B g i |
m ﬁ](

where

@o(w) = it )f (w — w()) Bj(w, mo)e PsWIls — {If(w — wo) iij(w) (3.4)

2ed € 2¢ €4
Vje{l,...,Nw)},
~e YA S (W —wo —iyALs I 2fw—wo) .
as0(w) = gf T ¢y (w, o)e = @f Y () (3.5)

for almost every v € (£, k*(w)). Let us remark that this assumption is not restrictive and all
the results of this chapter are valid for any Lg < 0. Indeed, according to Proposition 2.2 page
50, in the asymptotic € — 0, the information about the evanescent part of the source profile
are lost during the propagation in the random section [0, L/¢€], and therefore they play no
role in the pulse propagation and in the time-reversal experiment.

110



Chapter 3 Section 3.2.1

3.2 Mode Coupling in Random Waveguides

In this section, we study the Fourier transform p(w,x, z) of the pressure p(t,z, z) when a
random section [0, L/¢] is inserted between two homogeneous waveguides. In the half-space
z > 0, by taking the Fourier transform in (3.2), we get the perturbed time harmonic wave
equation

02 p(w, , 2) + 02 p(w, , 2) + K2 (w)(n?(z) + VeV (x, 2))p(w, z, z) = 0, (3.6)

where k(w) = ¢ is the wavenumber, and where

V(z,z) = { Viz,z) if re0,d, ze€l0,L/¢

0 elsewhere.

Moreover, we consider Dirichlet boundary conditions p(w,0,2) = 0 Vz € R. As in Chapter 2,
we are interested in smooth solutions such that

B(w, ) € C°([0,+00), D(R(w))) N ([0, +00), H),

with H = L?(0, +c0), in order to consider (3.6) as an operational differential equation. Here,

2
R() = Ao+ Rw)n’(x)

is the Pekeris operator of the unperturbed waveguide, with domain D(R(w)) = HE(0,+00) N
H?(0,+00). We recall that H is equipped with the inner product defined by

+oo
V(hl, hg) € H x H, <h1’h2>H = /0 hl(w)hg(x)dx

We refer to Section 2.2.1 for a summary of the spectral analysis of this operator. In the
perturbed section [0, L/¢], a solution of (3.6) can be decomposed using the resolution of the
identity II,, associated to R(w),

kQ
plw, z, 2) Z pj(w, 2)p;(w, z) +/ (w, 2) Py (w, z)dr,

where p(w, 2) = O, (p(w, ., 2)). The operator O, is defined in Section 2.2.1. However, in what
follows, we shall consider solutions of the form

N(w) k2 (w
pw,z, 2) Z pj(w, 2)pj(w, z —|—/ (w, 2) Py (w, z)dry (3.7)

to simplify the study of the time-reversal experiment. This assumption is tantamount to
neglecting the coupling mechanism with the evanescent modes. Furthermore, as it has been
observed in Chapter 2 or in [25], this mechanism implies mode-dependent and frequency-
dependent phase modulations, that is dispersion, but does not remove any energy from the
propagating modes in the pulse propagation. Dispersion is compensated by the time-reversal
mechanism and therefore plays no role in this experiment [25]. This assumption leads us to
simplified algebra in the proof of Theorem 3.1 page 114. Moreover, we assume that € < &
and therefore we have two distinct scales. We shall consider in a first time the asymptotic e
goes to 0 and in a second time the asymptotic £ goes to 0.
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3.2.1 Coupled Mode Equations

In this section we give the coupled mode equations, which describes the coupling mechanism
between the amplitudes of the two kinds of modes. According to the decomposition (3.7), we
consider the coupling between the propagating modes with the radiating modes.

In the random section [0, L/¢|, p(w, z) satisfies the following coupled equation in H“’ =
CNE) x L2(&, k2 (w)).
d? 2 2
bW, 2) + B (WD) (w, 2) + Vek™(w Z 2)pi(w, 2)

)
ek (W) /{ C% ()P (w, 2)dy' = 0,

(3.8)
2

d2p7(w 2) + 7 Py(w, 2) + Vek?(w Z (2)p1(w, 2)

)
ek (W) é C¥ () (w, 2)dy =0,

where the coupling coefficients C¥(z) are defined by (2.15) page 39, and they represent the
coupling between the propagating and radiating modes.

Next, we introduce the amplitudes of the generalized right- and left-going modes a(w, z)
and b(w, z), which are given by

Py(w,2) = —— (@)(w, 2)e 0% 4 b (w, 2)eP()2),
fj(w)
iﬁ(w z)=1 ﬂ(w)(&-(w 2)ei @2 _pi(w z)e_iﬂj(“)z)
dz J ) J J ) 7 3 )
~ I /. INGZEINN —i\/Vz
Py(w,2) = W(aw(w,z)e VIZ L b (w, 2)e” VT ),

d . NN —i\/7z
apv(w,z) 1/4<a7(w 2)eVTE — b (w, 2)e \ﬁ)

Vi€ {l,...,N(w)} and almost every v € (£, k*(w)). From (3.8), we obtain the coupled mode
equation in H¢ x H¢ for the amplitudes (@,5),

di;&(w, 2) = VeH W, 2) (a(w, 2)) + Ve H® (w, 2) (b(w, 2)) (3.9)
Lhw,2) = VEH (0, 2)(a(w, ) + VEH (0, 2) (B(w 7)) (3.10)

where H(w, z), H?®(w, 2), H*(w, 2), and H*(w, z) are defined by (2.30)-(2.33) page 45.
This system is complemented with the boundary conditions

~ L
a(w,0) =af(w) and b (w, ) =0
€

in HY, and where a§j(w) is defined by (3.4) and (3.5). For j € {1,...,N(w)}, @jo(wo)
represents the initial amplitude of the jth propagating mode, and for v € (£, k*(w)), dy,0(w)
represents the initial amplitude of the yth radiating mode at z = 0. Moreover, the second
condition means that no wave is coming from the right homogeneous waveguide. According
to Section 2.3.2 this system leads us to the local and global conservation relations

3w, 2) By — 6w, 2) 3 = a(w, 0) e — [b(w, O)le ¥z € [0, L/,
6 (. L/€) [ + 5. 0)lI3es = lfale, 0) By
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3.2.2 Propagator and Forward Scattering Approximation

In this section we introduce the forward scattering approximation, which is widely used in the
literature. In this approximation the coupling between forward- and backward-propagating
modes is assumed to be negligible compared to the coupling between the forward-propagating
modes. We refer to Section 2.3.4 for the physical explanation and to [30, 33] for justifications
on the validity of this approximation.

Let us define the rescaled processes

a(w, z) = a; (w, Z) and b (w,z) =b <w, 2) for z € [0, L].
€ €

These scalings correspond to the size of the random section [0, L/¢€], and they satisfy the
rescaled coupled mode equation

%?e(w,z) =7 H* (w, 6) (@(w, 2)) + Ve e (wE> (AEE(%Z)) (3.11)

a(w,0) =a5(w) and b (w,L) =0
in H¢. We can rewrite (3.11) in a vector form as

d%Xe(w,z) = \2H <w, i) (X(w, 2)).

where

a¢(w, z W, 2 Dy, 2
o - [E0 M) T

Bﬁ(w,z)] and H(“’Z):lﬂab(w,z) H(w, 2)

Now, we introduce the propagator matrix P¢(w, z), that is, the solution of the differential

equation

d 1
—p = —H
dZ (CU,Z) \ﬁ (CL),

Therefore, we get
a“(w,2)| o a‘(w,0)
[E&(w’ Z)‘| =P (wv Z) [be(w’o)] ’

Z) P(w,2) with P¢(w,0)=Id.

€

and by the symmetry of H(w, z) we have a particular form for the propagator, which is

¢ ~[Piw,2) Pl(w,2)
Pfw,2) = [Pg(w,z) Pg(w,z)] ‘

Here, P¢(w, z) and Pi’(w, z) are operators which represent, respectively, the coupling between
right-going modes and the coupling between right-going and left-going modes.

In what follows, we shall consider the forward scattering approximation already discussed
in Section 2.3.4, that is, we assume that the power spectral density of the process V, i.e. the
Fourier transform of its z-autocorrelation function, possesses a cut-off wavenumber. In other
words, we consider the case where

/;oolE[ “(0)C51(2)] cos ((Bi(w) + Bj(w))z)dz =0 V(j4,1) € {1,.. .,N(w)}2.
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Under this approximation, we can neglect the left-going propagating modes in the asymptotic
e — 0. Consequently, we can consider the simplified coupled amplitude equation on [0, L]

d e _ 1 g wz a“(w, z wi a‘(w,0) = ag(w
T () = ZH (0.2 ) @) with 3(,0) = G5(w),

which implies the conservation relation

0w, 2) B = 3w, 0) B ¥z € [0, L.

Finally, we introduce the transfer operator T¢* (w, z), which is the solution of

1
S (0 2) T 0n) with TE@0) =14 (1)
€ €

From this equation, one can check that the transfer operator T&* (w, z) is unitary since H**
is skew-Hermitian and

d
$T5’e(w, z) =

Vz >0, a(w,z)=T(w,z2)@5w)).

3.2.3 Limit Theorem

This section presents a simplified version of results introduced in Section 2.4.1. In [30] and
[39], for the study of the pulse propagation and the time-reversal experiment the authors
used the limit theorem stated in [48] since the number of propagating modes was fixed.
However, in our configuration, in addition to the N (w)-discrete propagating modes we have a
continuum of radiating modes on the interval (£, k?(w)). The two following results are based
on a diffusion-approximation result for the solution of an ordinary differential equation with
random coefficients. This result is an extension of that stated in [48] to the case of processes
with values in a Hilbert space.

Theorem 3.1 Vy € HY = CNW) x L2(¢,k%(w)), the family of processes (TS (w, ‘)(y))ee(o 0

converges in distribution, as € — 0 on C([0,+00), H¢,,), to a limit denoted by T (w,.)(y).
Here H“’,w stands for the Hilbert space ’Hz’ equipped with the weak topology. This limit is the
unique diffusion process on 'HY, starting from y, associated to the infinitesimal generator

?= o+ e
where LY and ‘C;é are defined in Theorem 2.1 page 51.
We can get the following result in the asymptotic & — 0.

Theorem 3.2 Vy € HY, The family of processes (TS(w, ')(y))ge(o,l) converges in distribution,

as § — 0 on C([0, +00), (Hg, ||.|lnx)), to a limit denoted by Tw,.)(y). Here HY = CNW) x
L2(0,k%*(w)). This limit is the unique diffusion process on HY, starting from vy, associated to
the infinitesimal generator

LY =LY + L3,
where L% is defined in Theorem 2.2 page 52.

The infinitesimal generator £“ is composed of two parts which induce different behaviors
on the diffusion process and we recall their interpretation. The first operator £{ describes
the coupling between the N (w)-discrete propagating modes. This part is of the form of
the infinitesimal generator obtained in [25, 30], and for which the total energy is conserved.
The second operator £% describes the coupling between the propagating modes with the
radiating modes. This part implies a mode-dependent and frequency-dependent attenuation
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on the N(w)-propagating modes already studied in Section 2.5.1, and a mode-dependent and
frequency-dependent phase modulation. We use these results in the following section which
concerns the study of the pulse propagation.

Moreover, let us remark that the convergence in Theorem 2.1 holds on C([0, L], (K¢, ||. HHE’))

for the N (w)-discrete propagating mode amplitudes.

3.3 Pulse Propagation in Random Waveguides

In this section we study the pulse propagation in the broadband case ¢ = 1/2. The analysis
in the case of waveguides with bounded cross-section (see Figure 2.1 page 32) is carried out
in [25, Chapter 20].

Using the modal decomposition, the transmitted field at time ¢t and z = L/e is given by

L 1
b (120 ) = o [ Plova Ljge

€ o

- (5 Mz‘f

k2 (w o |
+ / 1/4 ’Y (w7 L)(a(w))¢7(w7m)elﬁ:d7 e_ZWtdw7

TS (w, L)(@(w))g5(w, z)e )€

]

where a(w) is defined by (3.4) and (3.5). We observe the transmitted wave in a time window
of order 1/4/€, which is of the order of the pulse width, and centered at time ¢y /e, which is
of the order of the travel time for a distance of order 1/e. Let us assume, throughout this
chapter, that fhas a compact support included in (—he, he), and then by making the change
of variable w = wy + /eh we get

o t L
pg' (toatvxaL) = DPtr (6 +— 2z, 6)

Ve

_ e—m (t—0+%> % / f(h)e—ih (t+t7og)

™

(wo) )
x [ ) - T5(wo + Veh, L) (a(wo + v/eh))j(wo + Veh, z)ed@otve) e
‘ Bj(wo + V/eh)
k2 (wo++/€h)
+/ ' 711/4T§’ (wo + V/eh, L) (@(wo + veh))py (wo + Veh, x)e™VT < dy| dh.

Here, € is small enough to have N(wg + €?h) = N(wp). In this section we consider the case
g = 1/2, but the same analysis can be carried out for any ¢ € (0,1). In this case the pulse
width, which is of order 1//€, is much smaller than the propagation distance. The transmitted
wave can be decomposed as follows.

; @_A,.L
p§:<to,t,x,L>e“’°<e ) P (to,t, 2, L) + pi&(to, L, @, L),
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with
t N wo
—ih -0 1 i
15’ “(to,t,x, L) ~ 4r /f (H ) Z e/
T j=1 /Bj(wo + \€h)
" T§’€(w0 + Veh, L)(a(wo + veh))pj(wo + Veh, x)dh, (3.13)

_1h k2 (wo-++/eh)

p§r§€(t07t ,Z' L f t"l‘ ) 0 1 e\/>7

c A/

x Tfe(wo +Veh, L) (a(wo + Veh)) b, (wo + Veh, x)dvydh,

where p,; L& “(to,t,x, L) is the projection of the transmitted wave over the propagating modes,
and ptf (to,t,x, L) is the projection of the transmitted wave over the radiating modes.

3.3.1 Broadband Pulse in Homogeneous Waveguides

In this section, we study the transmitted wave through a homogeneous waveguide. In the
homogeneous case, that is, when the transfer operator Tg’e(w, z) = Id, we have

_ to (wo)
Do (fo, 2, L) / Fiye ™ ” ) S itV (-Ls+ )
7=1

X ¢j(wo + Veh, x0)pj(wo + eh, x)dh

1 —~ —ihl et E2(wo++/eh) |
Pirshom to, 2, L) = / Fie (%) /E (VA(-Ls+E)

X ¢~ (wo 4+ Veh, 20) P~ (wo + Veh, z)dydh.

First of all, let us remark that by integration by parts we get ptf;wm(to,t,x,L) = O(e)
uniformly in ¢, and uniformly in = on each bounded subset of [0, +oo). Consequently, the
amplitude of the radiating part of the wave is very small. This amplitude is smaller than
the error obtained when we make the approximation wy + \/eh — wg for the propagating
part p}fl’;m of the transmitted wave, and smaller than the error produced by the diffusion
approximation, which are of order O(y/e).

The propagating part ptf;l _m can be treated in the same way as in [25, Chapter 20]. Let
us remark that the coefficients Bj(w) are smooth in w. This fact can be shown by using the
implicit function theorem on (2.9) page 36. Consequently, we can consider the following

expansion

h2
Bj(wo + \Eh) = ﬂj(wo) + ﬁh,@; (wo) + G?ﬂ;(wO) + 0(63/2>. (3.14)
Therefore,
) N(wo) .
ptrgf’wm(to’t L, L Z elﬂj wo) LS+?)¢]’(W07$0)¢]’(WO;$>
( 5 (wo)L—tg t> ,
X oo / Fh v ¢ L% g,
+ (’)
,5 (wo)L—tg
and because of the fast phase e~ V< , we have for any £ > 0

.
. WO(%*%) —igB; - 1
lg%e Vel e iBj(wo)(—Ls+L )pfrehom(tj’taxﬂl’) ptrghf)m](t z,L).
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Here,
1
pirgf’wm](t T L) ¢j(W0, l’)gf)j(u)o, xO)K;:% * f(t)’
with

— o w2
tj = ﬂ;(WO)L and K;jOL(w) — W5 (wo) L5
Moreover, Vtg # t;
hmptT hom(to’ iz, L) =0.

As a result, the radiating modes play no role on the shape of the transmitted wave for ¢ < 1.
Consequently, in a homogeneous waveguide, we can observe for € < 1 a train of separated
waves with arrival times ¢;, j € {1,..., N(wo)}. The wave with arrival time ¢; corresponds to
the jth-propagating mode, travels with the group velocity 1/ 6}((00), and is dispersed by the
convolution kernel K;"OL(t) Moreover, the total energy of the transmitted wave is given by

Z // Dt hom.,; (8, @, L ] dxdt = /\K‘”O * f())2dt - = Z | (wo, xo)]
=[S 6o
j=1

which is not equal to the total energy of the incident pulse. In fact, the total energy of the
incident pulse in the asymptotic € — 0 is given by

(wo)

1 *(wo)
[t 0P dwdt = [15Pae - [Z|¢gw07$o)’+/ |¢v(w0,$0)\2],

where p) (t,7,0) = lim, pmc(t/ Ve, x,0), and therefore, the missing energy was converted
into radiative waves with small amplitudes. As the convergence is obtained in the space of
continuous functions, equipped with the supremum norm over the compact sets, this energy
cannot be detected.

3.3.2 Broadband Pulse in Random Waveguides

Now, we are interested in the transmltted Wave through a randomly perturbed waveguide.
First, let us investigate the radiating part pt’ “ of the transmitted wave. Using the perturbed-
test-function method we get

E[ s (t(]’t x L)] _p?rgf;om(t()vt’xvlf) + O(\/g)

Then, p?f,’;m(to, t,x, L) is an approximation of the mean transmitted wave E [p?f’ (to,t,z, L)],

but we know that p?f,fom(to, t,z, L)=0(e). Consequently, the amplitude of the radiating part
of the transmitted wave is very small and it does not play any role in the pulse propagation.

Now, let us consider
e_iﬁj(wo)(_LS+%)p ol (tjat x L) ptr](t €z L)

which is the transmitted wave observed in a time window of order 1/4/€, which is comparable
to the pulse width, and centered at time ¢;/e, which is of the order the travel time for a
distance of order 1/e. Let us note that t; = ;(wo)L is the arrival time for the jth modal
wave in the homogeneous case.

According to the analysis developed in [17] and [25, Chapter 20] for instance, we can state
the following proposition.
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Proposition 3.1 The jth-transmitted wave, observed around time t;, pf;fj (t,z, L) converges
in distribution as € — 0 and as a continuous process in the three variables (t,x, L) to

1 i~
P (b2, L) = 5.65(wo, )5 (wo, wo)e VL KS5E + £ (1),

where

= 1 . <R3 S - a1 2L
R (1) = ¢ (75 (o) T3, (o) =S )i o)) L8 () §

Y

and (W7); is a N(wq)-dimensional Brownian motion with covariance matriz T (wo). Moreover,

pfm(t,x, L) converges almost surely and uniformly in (t,z,L) as & — 0 to

1 .
P (b2, L) = 5(wo, )5 (wo, o)™ LKL+ f(2),

where . . 5
K9 (w) = 3 (55 (0) T35 (o) —AS (wo)—iA (o)) 405 (o) 5

Here, TS (wo), T'5;(wo), A% (wp), Aj’g(wg), A¢(wo), and Aj(wo) are defined in Section 2.4.1.

As in [25, Chpater 20|, it possible to observe coherent transmitted waves only around
times t;, j € {1,..., N(wo)}. The transmitted wave is composed of a sequence of transmitted
waves which are separated from each other. Each pulse corresponds to a single mode.
Vj € {1,...,N(wo)}, the jth modal wave travels with the group velocity 1/3}(wo). This result
means that we have stabilization of the transmitted wave up to a random phase; that is one
can observe deterministic intensity around the arrival times tg =t; Vj € {1,..., N(wo)}. The
random phase is characterized in terms of a Brownian motion. The pulse intensities decrease
exponentially with the propagation distance and the pulse spreads dispersively through f(]wOL
Moreover, there is no diffusion for the deterministic pulse profile.

Consequently, the coherent waves are given by

1 — wo)L Frw
Elprj(t, 2, L)] = 5¢5(wo, 2)¢5(wo, zo)e P02 K49 s £ (1),

_rt L
where e 15“0)2 jg given by the averaging of the random phase. Moreover, the intensity of
each coherent wave observed around times ¢; is deterministic and given by

1 (pe c
B[ [[lpwstto. D) Pdodt] = [170) e e300 g, o, o)
where the damping term e(F§J (w0) =A5(wo)) L is responsible for a mode-dependent attenuation.
We refer to Section 2.4.2 for a discussion about the nonnegativity of I'j;(wo) and A§(wo).

3.3.3 Incoherent Fluctuations in the Broadband Case

We have seen that one can observe coherent waves with deterministic intensity only around
the times t; = 87 (wo)L, j € {1,..., N(wo)}. In this section we study the transmitted wave at
time to # t; Vj € {1,..., N(wo)}. This analysis has already been carried out in [25, Chapter
20] in the case of waveguides with bounded cross-section. We observe the mean transmitted
intensity in a time window of order 1/4/€, which is of the order of the pulse width, and
centered at time to/€, which is of the order of the travel time for a distance of order 1/e. The
mean transmitted intensity is given by

1 ~ =T _i(h—h' tg
‘p%}e(to,t,fﬁ,L)‘Z :16 5 // f(h)f(h/)e (h h )(t+\/0g)
>

x (TS (wo + Veh) (a(wo + v/eh)), Ag (wo + \ﬁh»Hg’O*ﬁh

x (TS (wo + Veh!)(a(wo + Veh)), A& (wo + ‘/Eh/»HgO*‘ﬁ” dhdh’,
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where

1 . 1 .

X5 (0) = 0w, 2)e HOE and X (@) = g 6y(w.a)e VTE
’ Bi(w) ’ 7

in ‘H¢. The expansion (3.14) glves us terms of the form eve (% @) L—to)(h=H’ ), and then we

make the change of variable b’ = h — y/es. These terms mean that the coherent field can be

observed only around the times tj, j€{l,...,N(w)}. Therefore,

- L [ T e e
X (T (wo + Veh) (@(wo + Veh)), As(wo + Veh)), g ven

13

x (TS (wp + Veh — es)(a(wo + veh — €s)), \s(wp + Veh — es))

|p (to,t, z, L

wo++v/eh—es dhdS

He

One can remark that in the asymptotic € — 0 the mean transmitted intensity does not depend

on t anymore, which means that the transmitted intensity becomes locally stationary.
Following [25, Chapter 20], in order to analyze the incoherent fluctuations we need to

study the statistics, as ¢ — 0 and £ — 0, of the the product of two transfer operators

TS (w 4 es) @ TS (w) at two nearby frequencies. In the following proposition we summarize
the results that we need in this section. Following [50], it is possible to show a functional

limit theorem for the process V&¢(w, s) = T4(w + es) ® T¢¢(w) with values in a space of
distributions. V&€ represents the product of two transfer operators at two nearby frequencies,
and where ® is defined by V(A, u) € Hg x 'HZ"JF“,

(A®@ p)rs = Arpis
for (r;s) € ({1,..., N(w)} U (& k*(w))) x ({1,..., N(w+es)} U (&, k*(w + €s))), and
HE @ Het = {A@p,  (\p) € HE x HEte )

Proposition 3.2 V(y!,4?) € He ><H”+hc and V) € H“’@H"ﬂrhc the autocorrelation function
of the transfer operator at two nearby frequencies as € — 0 zs given by

lim (VE*(w, 5, L) (3", 5%),A)

He@HE T
N(w) ) N() LT
=> Wi (w, s, L)e —isfj (W)L yryPN; + > ¢Um(®) yjlyzn)\ym
jl=1 Jm=1
JjF#Em
N(w) kQ(w) 1 1—\(‘ 1"1 AC‘E L i FS AS L
+ Z‘;[s o3 5y )T, (AR @DE=5 (T, @)= @I Ly T 2 30
J:
k?(w) N W) Lre  (W)=TL (W) —=ASE (W) L+L (D8, (w)—ASE(W)LTT, 2 v —
+ £ Z e2y mm mm m (W 2\ mm m y}/ym)‘vmd'y
m=1

k?(w) /@(@T — ,
+ /£ /£ Y Y Ay drydry'

:% [055(@) + T (@) = (T5(@) + Thy (@) = 2T (@) = (AT (@) + Af ()]

4 2 [Thuml) — T ) — (A35@) — AFE@)],
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and Wf»’l(w,s,L) stands for the Fourier transform of the distribution W (w, ., z) which
satisfies the system of transport equations

Oy, 2) 4 w)

0 ¢l
9z 7W (va) Z)

or

= Ajg(w)W (w,r,2z) + Z I w) W (w, T, 2) — W§’l(w,r,z)),

. o ey oy . 7l C S Cc S,
with initial conditions Wf (w,.,0) = 0(.)0. Here, I'(;(wo), T'3;(wo), A (wo), Ajg(wo),
A¢(wo), and Aj(wo) are defined in Section 2.4.1.

Let us note that the matrix Q¢(w) has coefficients with negative real part and Wf’l(w, T, 2)
are measures. The system of transport equations, for a waveguide with bounded cross-section
and without radiation losses, has been already obtained in [30]. In our context, the system of
coupled transport equations takes into account the radiative loss. The system of transport
equations describes the coupling between the N(w)-propagating modes. These equations are
a generalization of the coupled power equations affected by the modal dispersion. In other
words it is a space and time version of the coupled power equations with transport velocity
equal to the group velocity 1/ ﬁ;- (w) for the jth mode.

Following Section 20.6.2 in [25, Chapter 20|, we introduce a probabilistic representation
of the system of coupled transport equations. Let (YtN(w)) >0
with state space {1,..., N(w)} and intensity matrix I'(w). Then, Vo € S, where S is the
set of infinitely differentiable functions which are rapidly decreasing at infinity, we have the
probabilistic representation

be a jump Markov process

W£7l L _ E N fOL C N(“’)
Slw, L)(¢) =Ee

N(w .
/ B @dv) e[ = 1]
Consequently, lim¢_,o Wf’l(w, L)(p) = W%Z(w,j, 0, L), where

L c
— fo AYN(w) (w)dv

VN\/%l(w,j, r,L) = E[e ga(r + /L ﬂ;NM (w)dv) (YN - ]YO = j]
0 v

and statisfies the system of transport equations

9 l c Al
aw (w,m,2) = = Aj(Ww)W)(w, 1, 2)
9 5 W Pl il
+ﬁj( )a W(CUT‘Z + ZF (Wn(w7r72)_wj(w7r7z)))
n=1

with initial conditions le»(w, r,0) = ¢(r)d;;. Decomposing with respect to the first jump of

(Y;N(w))po, we have

Whw,r, L) = 65T O8N5 — gL(w)L) + W (w, 7, L)dr.

Consequently, if j # [, le (w, ., L) has a density with respect to the Lebesgue measure, and
WHw, ., L) is a sum of a Dirac mass at ﬁ} (w)L and a density with respect to the Lebesgue
measure. As a result, the following proposition describes the asymptotic mean transmitted
intensity.

120



Chapter 3 Section 3.3.3

Proposition 3.3

glg%lg%\/ p§s ot 1)) = 5 [1F 0 Pan - i (to,, 1),
where the limits hold in 8" with respect to to, and
pine(to, x, L) Z $2(wo, ) d2 (wo, )T A NG (1) — B (W)L)
N(wo
+ Z , )7 (wo, T)Wi o(wo, to, L).

]llﬁ]

This result means that the transmitted wave has also an incoherent part whose typical
amplitude is of order /4.

Proof We have

/|p§ toathL\SOtodto—\///f F(h - \[S)()
x (T4 (wo + v/eh)(@(wo + Veh)), A (w0+\ﬁh)>Hwo+ﬁh

¢
x (T (wo + Veh — es)(@(wo + Veh — €s)), A& (wo + Veh — es)>HW0+ﬁh,esdhds

3
+ O0(Ve).

Using the perturbed-test-function method and after a computation, we get

J[FmFn-ves)ae)

x E[{V&(wo + Veh, s, L) (a(wo + veh), a(wo + Veh — es)),
)\x(u}o + \/Eh) ® )\g(wo + \Eh — €S > w0+\fh®,Hw0+\fh Cs]dhds

- // F) Fh = Ves) P E[(VE (wo, 8, L) (@(w0), a(e0)). A& (. 8,60) ) et gy dhds

with

]E{(Vg(wo, s, L) (@(wo), a(wo)), X5 (h, s, wo)>H§°®H2’°}

N(wo) -
= > B[V, (w0, s, L) (@(wo), a(w0)) | X5 s (b 5, w0)

7,m=1
N(wo) k2(w) c c, 7 s s,

+ ) /6 © o3I (wo >r;j(wo)—Ajé(wo»L—g(rjj(wo)—Aj5<wo>>L¢j(wO7$0)¢j(w0’x)
j=1

X d’v (w0, T0) P~ (wo, x)ei(ﬁfﬁj (wo)) (~Ls+¢) ¢~ (wo) 72 e_iL;ﬁ;/(wO)LdV

T Z e% (0 =L (0) ~A5E (o) L 5 (T (0) = A5 @O L s (1, ) o (w0, )
; / ihB (wo) -t b2 oy
X oy (0, T0) by o, )l P (0= V (SLat2) 1 (0) o il ol

k2 (wo kQ(wo) i(\/fi\/il)(iL +£) ’
Jr/5 Py (w0, 0) Doy (Wo, T) Py (Wo, T0) Py (wo, )" VIV STl dydy,

8
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and

5 s (s 5,) _ 95(W0, 2)Pm (W0, ) (8, (w0)~; (w0)) £ (B (w0) =} (w0)) L L
B5(wo) Bm(wo)
(1B (w0) =B (o) LZ s, (wo) .

Let us remark that the three last terms on the right side are O(€) because they have a term
of the form f£ )gbv(w z0) P~ (w, x)e’ WY = O(e). Here,

E[VS,. (w0, 5, L) (@(wp), a(w0)) | = e@m L8 Go)iam (wo) it j # m,

and

N(wo) —
=1

(8 (w0)— B (w0) )L L

However, because of the fast phase e e , in the asymptotic € — 0 we have only

terms which correspond to the case m = j. Consequently,

0, )7 (wo, To)

iy - [ B[ o, 1) Plitto)dto = o [17(0)

e—0
x W (wo, L) ().
[ |

Now, we study pi"“(tg,z, L) in the asymptotic L > 1. In order to do that let us rescale
the propagation distance using a small parameter 7 < 1, that is we consider L/7. Then, we
have

lim lim \[/ ,f)ﬁ (to)dto = — o /‘f ’ dh - pmm( L) ()

E—0e—=0T

where

OJO)
inc,T
tr (

0, )¢} (wo, o)

]ll

fL/T Ac

0 N(w) (w)dv L/T

<Ele G 0 ﬂ;/UN(w)(w)dv)l (YLN(“’>:l)|YON(W) = j]-

Consequently, according to Theorem 2.3 page 54, lim,_,q pi?m(to, x, L) = 0, because of the
radiation losses. Then, we rescale the modal radiative damping rates, and let us consider
TAc(wO).

Proposition 3.4 Let us assume that the radiation losses are given by TA(wg). Then,
lim pp*" (to, 2, L) = e ML (o, 2)6(t — B'(wo) L)

where the limit holds in S’ with respect to ty. Here, the transverse profile is given by

1 N(wo) ) N(wo) 1 )
Hyy(wo, ) = IN(@y) j,; Bi(wo) i (wo, o) jz_:l ﬁj(wo)¢j (wo, 7).
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This result means that the effective velocity of the incoherent wave fluctuations is the harmonic

average of the modal group velocities 1/ (wp), with

1 No) /
ﬂ(WO) = N(wo) ]2 ﬁj(wo)v

and the effective radiative damping rate is the arithmetic average of the modal radiative

damping rates
N (wo

)
Rw) = N(lwo) ; A% (wo).

N(w))

Proposition 3.4 is a consequence of the ergodic theorem for (Y; >0 D [25, Chapter
20], the authors show, in the continuum limit N(wg) > 1, that the mean intensity of the
small fluctuations becomes uniform over the bounded cross-section of their waveguide model.
Moreover, the spatial extent of the autocorrelation function of the small fluctuations is of order
the wavelength, in the continuum limit N(wg) > 1 which corresponds to the high-frequency
regime wgy " +oo. In the following proposition, we study the transverse profile of the mean
transmitted energy of the small incoherent fluctuations in a window of order the carrier

wavelength A, = 7317[50, in the ocean section [0, d] and centered at any point x € [0, d].

Proposition 3.5 In the high-frequency regime the transverse profile is given, Va € [0,d] and
Vi € R, by

. 1 . @ 1.
woanJaroo AocHzo (w0, T+ AoeZ) = 104 arcsin(6) {2 — arccos(0) + 5 sin(2 arccos(@))}.

Here, 6 = /1 —1/n%, Ao = 2Z% is the carrier wavelength in the ocean section [0,d] of the

niwo
waveguide.

In summary, from Proposition 3.4, at time ty = (#(wp)L one can observe exponentially
damped small fluctuations for large propagation distance and small radiation losses. Moreover,
the arrival time (#’(wp)L, of the incoherent fluctuations, takes a simple form in the high-
frequency regime:

. ; _m _
lim (' (wy) = —r S . 7

wo—+00 c

- m /1 1 ny arcsin(6)
; :

From Proposition 3.5, we can see that the mean intensity of the small fluctuations becomes
uniform over the ocean cross-section [0, d| of the waveguide, in the high frequency regime or
in the limit of a large number of propagating modes N(wg) > 1.

3.4 Time Reversal in a Waveguide

Time-reversal experiments with sonar in shallow water [40, 57] were carried out by William
Kuperman and his group in San Diego. This experiment is carried out in two steps. In the
first step (see Figure 3.2 (a)), a source sends a pulse into the medium. The wave propagates
and is recorded by a device called a time-reversal mirror. A time-reversal mirror is a device
that can receive a signal, record it, and resend it time-reversed into the medium. In other
words, what is recorded first is send out last. In the second step (see Figure 3.2 (b)), the wave
emitted by the time-reversal mirror has the property of refocusing near the original source
location, and it has been observed that random inhomogeneities enhance refocusing [19, 22].
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Figure 3.2: Representation of the time-reversal experiment. In (a) we represent the first step
of the experiment, and in (b) we represent the second step of the experiment.

This experiment has already been analyzed in waveguides with bounded cross-section in [25,
Chapter 20] and [30].

However, the properties of the fluctuations of the medium may have changed between the
two steps of the experiment. That is why we distinguish, in what follows, the two steps of the
experiment by using the indices 1 and 2. The influence on the time-reversal experiment of
time-dependent random media is carried out in [3] for one-dimensional environments, and
in [11] for three-dimensional environments with the parabolic approximation of the wave
equation. In order to characterize the two realizations of the medium parameters for the two
steps of the experiment, let us introduce ((V1(x,t),V?(x,t)),z € [0,d],t > 0) a continuous
real-valued zero-mean Gaussian field with a covariance function given by

E V7 (@, )V (y,5)| = 0w, y)e " and B [VI(2,)V!(y, 5)| = Fo(w, y)e "

for (j,1) € {1,2}? and j # I. Here a > 0, v and 7o are Lipschitz functions from [0, d] x
[0,d] to R, which are kernels of nonnegative operators 0, and Q5,. As in Section 2.6.1,
(V1(.,1),V2(.,1))i>0 can be consider as a process with values in L?(0,d) x L?(0,d), and we
have the following results. Let

Fi=o((Vi(,s),V%(.,38)),s <t)

be the o-algebra generated by ((V1(.,s),V?(.,s)),s <t). We have the Markov property

(V4R V2( 4 h)),

)
= (V' t+R), V2t + h),

o (VI 1), V(. 1),
where the equality holds in law, and this law is the one of a Gaussian field with mean
E[VI(.,t+ h)|F] = e *"Vi(,1)

and with covariances for (j,1) € {1,2}? and j # I,

E[VI(t+ W)Vt + h)~E[V(t + R)IAEVI(E+ B)F)F] = (Qu(9),8) o) (1 - €72")

Eu;

A}
A}

(t+ R)Vi(E+ R)—E[VI(t + B)FJE[VL(E + B)F]IF] = (Qao(9): %) pao.q) (1= e72)

<
<

V(p, 1) € L2(0,d)?. Moreover, we also have the following two properties: VI' > 0, VK > 0
and VY > 0
Ao
€ €
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Figure 3.3: Representation of the first step of the time-reversal experiment.

Vn € N* and Vz > 0,

/|V 1322d13 /|V2xz|dx>}
TL d n
—E[( [ WV@oR) + ([ W0P)] <+

We recall that the process (V!, V?) is unbounded and this fact implies that the bulk modulus
can take negative values. However, as in Chapter 2, this situation can be avoided since

11_13%]?(3]' € {1,2}, Aw,2) € [0,d] x [0, L/ : n1 + VeV (z,2) <0)

v <x2>‘ ’VQ <x i)‘ >n1> =0.

3.4.1 First Step of the Experiment

< hmIP’ Ve sup sup
e—0 2€[0,L] z€[0,d)

In the first step of the experiment (see Figure 3.3), a source sends a pulse into the medium,
the wave propagates and is recorded by the time-reversal mirror located in the plane z = L/e.
We assume that the time-reversal mirror occupies the transverse subdomain Dj; C [0,d] and
in the first step of the experiment the time-reversal mirror plays the role of a receiving array.
The transmitted wave is recorded for a time interval [to tg] and is re-emitted time-reversed
into the waveguide toward the source. We have chosen such a time window because it is of
the order of the total travel time of the section [0, L/€].

According to the previous section, the wave recorded by the time-revesal mirror is given

by
p(”L> 47r\f ( ﬁ)

N(w)
[ THE (w0, L) ((w)) 5 (w, @) () € it
j=1 5] (W)

W) 1 p B L »
+/€ 1/4T}y5 (w, L)(a(w)) ¢y (w, x)e Ve dye ™ dw,

where Tl’g’e(w,L) is the transfer operator associated to V! during the first step of the
experiment.
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Time-reversal

mirror Dy

Figure 3.4: Representation of the second step of the time-reversal experiment.

3.4.2 Second Step of the Experiment

In the second step of the experiment (see Figure 3.4), the time-reversal mirror plays the role
of a source array, and the time-reversed signal is transmitted back. Now, the source term is
given by
Fornp(t,z,2) = —frp(t,x)d(z — L/e€)es,
with ; L
1 M
Fonlta) =i (2~ 12,72 Gt — t)Galo),

where

G1(t) =1y, )(t) and  Ga(z) = 1p,, ().

Here, G represents the time window in which the transmitted wave is recorded, and Go
represents the spatial window in which the transmitted wave is recorded. In our study of this
experiment, we are interested in the spatial effects of the refocusing, so we assume that we
record the field for all time at the time-reversal mirror, that is the source has the form

Jrr(t,x) = per (t; —t,x, f) Ga(x). (3.15)

Now, we are interested in the propagation from z = L/e to z = 0. The decomposition with
respect to the resolution of the identity II,, associated to R(w) (see Section 2.2.1) gives

N(w) 79 k2 72
b , . (w) b (w,z) _.
Pre(w,z,2) = > U@, 2) e Pn(@)zg (w,x +/ eV (w, z)dy,

m—=1 V ﬁm(w)

with

4
B(w, L) = T eVT (Frplw, ), 6 (@, )

in Hf. Then, at the source location z = Lg, we get

N(w) 79

prr(w,z,Ls) = Z f/% eBn@ls g () x +/

k% (w) 62 (w,0)

1/4 iﬁLS¢W(w7x>d’Y'
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We recall that the transfer operator T2’5’6(w, z) associated to V? is unitary, and therefore
b%(w,0) = (T?5) (w, L) (0*(w, L)),

where (T2’5’6)*(w, z) stands for the adjoint operator of T?*(w, z). Consequently,

m@m,L»e%nww%n(m

n

prer(w,z, Ls) = Z

T

ﬁn
k2 (w) - .
_{__/5 711/4(T2’5’6)1;(w, L)(b*(w, L))e VT3 ¢ (w, x)dy
= (ha(), (T4 (0, L) P, D)

= (T*%(w, L) (bs (@), b?(w, L))

w)
H§

where
o
Bn(w)

in H“g. Moreover, one can write

byn(w) = Op(w, x)e”Pr@ls ang i)xﬁ(w)zmgb,y(w,x)e_iﬁLs (3.16)

4./€ Ve
B L) = o (522 ) e (T L) al). 4 )

in HY, where \°(w) is defined by

(@) = 1| 2 itan()-py) £

mj w 9
3;(w) j(w)
€ Bm(w) W)=~/ L
A (w)mv’ = \/,(-7)6 (Bm(w) \/’7) 5 Mm’y’ (LU), ( )
3.17
€ Y —q — B (w)) &
Ky =Gy T o)
71/4 \ﬁ L
A W)y = 7/1/46_2(\ﬁ_ ! )?sz(w),

with J
D) = [ Cala)or,a)o (. 2)do
for (r,s) € ({1,...,N(w)}U (¢, kQ(w)))2. (M, s(w)) represents the coupling produced by the

time-reversal mirror between the modes during the two steps of the time-reversal experiment.
Therefore,

~ _ 1 2(w—wo jwt &€ ~ 7 €
. Ls) = 1] (£ )it (U, L) (0). ). A @)oo
Here, we consider V(\, u) € (Hg)2,

()\ ® ,U)rs = )\TMS
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for (r,s) € ({1,...,N(w)} U (&, k2 (w)))?, and
HE@He = {Aou, () e (M)}
We equip H¢ ® H¢ with the inner product defined by

k2 (w)
(A ) HE@HE — Z Ajiisl Z / Ajy iy dy’

kz(w B (w) rk?(w) ,
+ /£ Z Ayifiyrdy + /g /5 Ayt iy drydry
=1

V(A p) € (HE ® HZ")Q, which gives a structure of Hilbert space, and the process U¢(w, L) is
defined by

US(w, L)(y',y%) = TH(w, L) (y') @ T>(w, L)(y?)
Vi) € (M)

We study the refocused wave in a time window of order 1/4/€, which is comparable to
the pulse width, and centered at time ¢,ps/€, which is of the order the total travel time for a
distance of order 1/e. Finally, the refocused wave at the source location is given by

1
2T

Lobs t

pTR( c + %,

x,Lg) = /ﬁTR(w,x, Ls)e_mdw

t1—tobs __t
€

‘}E)dw

W

)

€€ ~ T €
= g T (52 (U5 L) @0, 5) X @y
where @(w) is defined by (3.4) and (3.5), by(w) is defined by (3.16), and A\¢(w) is defined by
(3.17).
In what follows, we consider a time-reversal mirror of the form Dy, = [dy, ds] with

dy = dpr 4+ X dy and dy = dyy — \2Mdy,

where dyy € (0,d), (da,dy) € (0,+00)%, and aps € [0,1]. Here, Moo = 2m¢/(n1wo) is the carrier
wavelength in the ocean section [0, d] of the waveguide. The time-reversal coupling matrix
are given by

Mji(w) = (d2 — d) Aj(w) Ay(w)

{cos ((aj( ) —o1(w)) <d22—tld1> 7[') sinc ((Jj(w) —o(w)) (d22_dd1> 71)
—cos ({o3(w) + ou(w)) (2 ) ) s ((050) + ) (25,2 ) )]

for (j,1) € {1,..., N(w)}?, where 4;(w) and o;(w) are defined in Section 2.2.1. We give only
the coefficients Mj;(w) for (j,1) € {1,...,N(w)}?, because, in what follows, that is only these
terms which play a role. The parameter ays represents the order of the magnitude of the size
of the time-reversal mirror with respect to the wavelength in the ocean cross-section [0, d]. In
fact, we shall see that the size of the mirror plays a role in the homogeneous case only when
it is of the order the carrier wavelength \,. = 2mc/(niwp).

Moreover, we shall study the spatial profile of the refocused wave in the continuum limit
N(wg) > 1, which corresponds to the high-frequency regime wy /" +00. However, we know
that the main focal spot must be of order \,., which tends to 0 in this continuum limit.
Therefore, we study the spatial profile in a window of size A, centered around zg.
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3.4.3 Refocused Field in a Homogeneous Waveguide

We study the refocused wave in a time window of order 1/y/e, which is comparable to the
pulse width, and centered at time t,s/€, which is of the order the total travel time for a
distance of order 1/e. In this section we assume that the medium is homogeneous, that is
TH4¢(w, L) = T%5¢(w, L) = Id. Then, the refocused wave at the original source location is
given by

tObS t ; t1—tops —'Z»LUOL 1 N(wO) : . L L
pTR( p + 7,1’,[15) =T e Ve . Z Z el(ﬁm(WO)—BJ(WO))(— S+:)Mjm(w0)

e

Jjym=1

X ¢j(wo, o) m (wo, ) K7,

+ O(Ve),

! (wo) — B5(wg))L 4+ t1 — tops
YR CIEEEN

where - )
K3, (W) = K55 (0) K20 (w) = e/ (o dnleon s (3.18)

and K;’; 1 = 0o. Consequently, in the asymptotic ¢ — 0, we can observe a refocused wave
only for a finite set of times given by

tjm = t1 + (B (wo) — Bj(wo)) L. (3.19)
For m # j, we have

t; t o ti—tim ot _
pTR(%mJF*anaLS) —cieo = TR ¢l (o) B o) (E ) M ()

NG

X 360, 20) b, 2) KD, % (1)
+ O(Ve).

At time tj,, (j # m) one can observe only one mode. In this expression we observe the
mth mode, emitted by the time-reversal mirror during the second step of the experiment,
which propagates toward the source location. This mode is coupled with the jth modes
recorded by the time-reversal mirror during the first step of the experiment through the
coefficient Mj,,(wo). This coupling is produced by the time-reversal mechanism through the
time-reversal mirror and is characterized by the coupling matrix Mj,,(wg). Moreover, we
can see that the refocused wave shape is dispersed by K;’OL(t) during the first step of the
experiment and by K", (—t) during the second step.
Now, for s = t1 we get

t t _ —iwo= @
pra(y+ Sz Ls) = ¢ U (OHE (wo ) + O(Ve),
where
N(wo)
HoM s
zo” (W0, ) = 7 Y Mjj(wo)dj(wo, 20) ¢ (wo, ).
Jj=1

Here, we have a contribution of all the modes. The refocused wave is a superposition of modes
where each mode is coupled with itself by the time-reversal mirror through the terms M;;(wo).
Then, we find the time-reversed pulse shape with a transverse profile that we can study in
the high-frequency regime.
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Proposition 3.6 For ays € [0,1), the transverse profile of the refocused wave in the contin-
wum limit is given by

Lo )\oc
lim LHW(w m +—:7:) —
wotoo w0 \FOH0T T,

sz+cz1
d

sinc(27x).

The width of the focal spot is given by the diffraction limit Ao./(26).

Proof First, we have

d Al—om Aoc Moc N-[N¢] N
- — 2 — HM(wy,x0+ —T) = — E + E ¢j(wo, o)
dy+d; 0 ’ ( 0 ) 20 [ Jj=1 j=N-[Ne]+1
A%d 2dns + AM (dy — dy) MM (dy + dy)
. ~ ] _ i M ocC 2 1 . . Ttoc 2 1
®j(wo, o + Noc/0) 5 [1 cos (J] p )smc (Uj e )} ,

and the second sum on the right of the previous equality is a O(N“~1). Moreover,

\ N—[N¥]
2726 > i(wo, m0)¢j(wo, To + Ao /)
A2d 2dns + AM (dy — dy) MM (dy + dy)
_J LOM oc” \“2 1 ; Do \¥2 1 l—ap
X —5— cos (o] g )smc(o] J )‘ < KA, *MIn(N).
Now, for the first sum of the previous equality we have
Aoc A? Aoc - 2x0 + )\ocj/e
(;Sj(wo, ﬂ?o)gbj (u}o, o + 733) = ?‘7 [COS <0-ij> — COS (Uj#>:|’

and

2 Aoc /0 N AocZ /0 .2 Aoc /0
o5 (Ujv’wdx/) —cos ((o; - mwﬁdﬁv/) cos (ﬂl’o+dfﬁ/)
. L 2x0 + /\OC.f/Q . . 2x0 + /\OC@/H
— sin ((U] — ]W)f> sin (]7‘(’#).
Then using the Abel transform and Lemma 2.1, we get

‘21'0 + Aoc /6

N—[N?]
Aoc Z cos (Uj#)‘ < KN%—%OA
j=1

Let us recall that

2
sup ’AJQ i O(N*),

and then

Mocd T D P A 4
<0 le Aj cos (aj%x) = 50d Zl cos (2N7m?) + O(N ),

=

with
N—[N%]

AOC ] 1
Z cos (QLmNc) = / cos(2unZ)du = sinc(27T).
i=1 N 0

r
wog?-oo 20d

That concludes the proof of Proposition 3.6.H
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3.4.4 Limit Theorem

To study the time-reversed field in the case of a random waveguide we need to know the
asymptotic distribution of the process Ug’e(w, .) as € goes to 0 and £ goes to 0. Let us remark
that V(y',y?) € (Hg)?, with HE = CNV@) x L2(¢, k*(w)),

108w, 2) (0", ) Frere = 19" @ ¥ ware V22 0.
Let ry = [ly' @ y* [ nzone
Y ) Y 'H§ ®H§7
B, meany = {)\ € H¢ @ He, [ Mlrngony < Ty}

the closed ball with radius r,, and {g,,n > 1} a dense subset of BTvaZJ@H?' We equip

87'117')—(‘5@’)—{? with the distance dBTy,Hg o defined by
+o0 1
dBry HE@H (A p) = Z % (A —p, g">Hg®Hg

7j=1

V(A p) € (Bry")-(‘g@?-{?) and then (BHw dg ) is a compact metric space.

In the two following theorems, we give only the drifts of the infinitesimal generators
because, in what follows, we shall use only this part.

Ty HE OHY

Theorem 3.3 V(y',y?) € (H‘é’)2, the process US(w,.)(y",y?) converge in distribution on
C([0, +00), (Bryﬂg(@ﬂg,dlgw weoanw)) as € — 0 to a limit denoted by Us(w, )(y',9?). This
e Tt

limit is the unique solution of a martingale problem on H¢ @ H¢, starting from y! @ y?, with
drift given by
LY + L5,

where

Z F UllaU +Uu%)

7,l=1
j#l
1 N(W) 1 1 1 7
+ 5 [Fjj(w) + T (w) — (Fjj(w) + Ty (w) — 2sz(w))} (Ujlanz + UjlaUT.l)
j,l=1
1 V@ k2 w) )
Fa 2 [ ) - T W, + Tt e
]:
1 k2(w) N(w) . L
vyl Y )~ T Wb, + Tt
=1
i N _
+5 2 [iw) = T5(@)] Undu, — Undr,)
=1
i N k2(w)
- D) Z /E ]J( )(UJ’YzaUm UJ”Y26UM2)d'72
7j=1
S ORMCY -
+ 5 ¢ Z Ffl("‘))(U’Yllanll - UVII%)d717
=1
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and
1 N(w) ok " 7
fe=—5 X (A7) + A7) (U, + Tty
=1
i e ¢ U,
= 2 30 A @) = AT (U, — T
=1

kZ(w) C cAS C, S TT
e [ @) iU, + ) + N T

= ive
LR ¢ ¢ ¢
8 > [AF@) AT @]+ AT) = AT @) T

Here, we have considered the complex derivative with the following notations. If U =
U +iU? € HE ® HY, we have (U',U?) € (G§ ® G¥)?, where G = RN x L2(0, k*(w)).
Then, the operators dy = (9y,.,) and 95 = (0g—) are defined by

oy = %(8U1 —i0y2) and % = %(8U1 +i0p2),

with Vf € C1((G¥ ® G¢)2,R) and VA = (A}, \2) € (G¥ ® G¥)?

N(w)

> {Z N f (vt 0%) + Z/ A, Oun f(vh,v?)dys

n=1,2 jil=1

kZ(w k2 (w) k% (w _
+/ Z Audur [ (v',v?)dm +/ / A Oun [0 0 )d’hd’m}
= Z </\n78U”f(v y U )>g8)®g(u; = Df(v y U )()‘)7

n=1,2

which is the differential of f. Moreover, T%¢(w), T'*¢(w), T (w), A% (w), and A%¢(w) are
defined in Section 2.4.1, and

ey = K@) e L
ﬂ<w>—W /0 E[CH0)CH ()] cos ((4w) - B(w))2)d=

N(w)
Z I
l#J

. ) oo , 2
r},(w)_w/o E[CL(0)C2(2)]dz, ¥(,1) € {1,..., Nw)}>

As in Chapter 2, we can also give the asymptotic distribution of the process U¢ (w,.)as &
goes to 0.

Theorem 3.4 V(y', %) € (HY)?, the process Us(w,.)(y",y%) converge in distribution on
C([0, 400), (BTy,H‘(‘))Q@HE’adBTJ e ) as & — 0 to a limit denoted by U%w,.)(y',y?). This
¥:"to 0
limit is the unique solution of the martingale problem on HE ® HY, starting from y' @ y?,
with drift given by
LY+ L5,
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where
1 N(w)
5) = 9 [AC( )"’Al( )]( jlanz + Ujla;)
§l=1
i N(w)
—5 2 M) = M) (Updu, — Undgr;)
=1
1 N(w) k2(w) -
o | ) U, + [AS() A Tt
j=1
1 k2 (w) N(w)
“3 ) l; [Af(w) + i) ()] Uy0u,,, + [Af(w) —iA] (w )]Uw%~

From Theorems 3.3 and 3.4, we have the following proposition about the autocorrelation
function of the transfer operator for the two steps of the time-reversal experiment.

Proposition 3.7 V(y!,y?) € He X He and VA € He X 'H¢, the autocorrelation function of
the transfer operator for the two steps of the time-reversal experiment as € — Q0 is given by

g (090 L)(5". 1), V) ] = B [<Uf< DM ) Ngsnes

N(w) 1,2y
- 7} w, L)ylying; + Zeam YjYmAjm
ji=1 Jm=1
jm
W) 3 re ()T ()= ASE @)L § (0 () AT @) LT, 21—
+Z/§ g2\ Em e g @R By L2 X dry

k2 c, 3 5
/ Z 3 (T ()T hn (&) = AR @)L (Cham () =M @I T2 X0

k2 (w) k2(w — ,
+ /g /£ YLy Ay drydy'.

Here,
Qi (@) =5 [T51(0) + T (@) = (T} () + Th () — 26(w)) — (A4 () + A ()]
5 o (@) = T55(@) = (A5E(w) = A7 (@))].

and ’j}g’l(w, z) is the solution of the coupled power equations

d%tff’l(w, 2) = — [AS(w) + Tjj(w) — Tj;(w) = T5;(w) + T (@)] T (w, 2)

N(w
+ 3 T ) (T8 (W, 2) — T (w, 2))
n=1
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and ’ff’l(w,()) = 0j;. Moreover,

i E (U, L) %), Npggames ) = E[(U° @ L0155 Vg

(w) N(w)
Z 7; yl Yi )‘]] + Z eQim w)Lleyg@)‘Jm

jym=1
j#m
N@ k@) e ! e : s
N Z/ 03 (U5 (@) =T} (@)= (W) L—F (T ()= A5 (W) L
3

k2
o
k2 (w) k2 (w)
+ /0 /0 yyyvl)\w/d’yd’y,

where, Q(w) = limg_o Q%(w) and ’ZN}l (w, 2) is the solution of the coupled power equations

Sl 2N
Y Yy Ajyrdy

)N(w

l w)-TL w)—AS (w (s w)—AS (w
2 mm( ) me( ) Am( ))L+2(me( ) Am( )) y’me)\’Ymdfy

9w, 2) = — [ASle0) + Ty (w0) — Ty loo) — T (w0) + T (w0)) T 0, 2)
N(wo) . (3.20)
+ Z I, (w0, 2) — T} (wo, 2))
and ’f}l(wo,O) = dj.
Here,
T} (wo, L) = lim lim E[ T (wo, L)(s") T3 (w0, L) (o) (3.21)

with yé- = 01, and y,ly =0 for v € (0, k%(w)). ’j}l(wo, L) is the asymptotic covariance for the
jth propagating mode of the transfer operators at distance z = L, with respect to the two
steps of the time-reversal experiment.The initial condition 4’ means that an impulse equal to
one charges only the [th propagating mode at z = 0. The coupled equations (3.20) permit us
to study the influence of the degree of correlation, between the two realizations of the random
medium, on the amplitude of the refocused wave.

3.4.5 Refocused Field in a Changing Random Waveguide

In this section we study the refocusing of the wave when the realizations of the medium
parameters are not the same between the two steps of the time-reversal experiment. With
the change of variable w = wy + /eh, the mean refocused wave is given by

tob t o ((fobs =t |t 1 ——— (i tobs
pTR( 6 +ﬁ,x,Ls)ew°( v 87/1«?(@@’ (A=)

x (US(wo + Veh, L) (@(wo + veh), by (wo + V/eh)), A (wo + \/Eh)>H2)0+\/Eh®Hgo+\/€hdh‘

According to the previous section and using the perturbed-test-function method we get
E[(US(wo + Veh, L) (a(wo + v/eh), bz (wo + veh)), A(wo + Veh)) wo+fh®Hwo+\fh]

= E[<U£(w0, L)(a(wo), Ex(wo)) ) S‘E(hv WU)>H‘£"0®H?O} +O0(Ve),
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where

5‘in](h’a WO)

_ /3;((;?))e_i(gmwo)_ﬁ,-(wo))56z‘h(ﬁ;n(wo)ﬁ;(wo)); i (37, (w0) 8/ @DL AL (),
J

e m\Wo) _; wo) A /AL —ihBl (wo) L B2 g,
5, (hywo) = ﬂ\(ﬁo)e (B (0) /1) & =B (w0)Fz (= B0V N L ()

Y 1 (w L 4 ’,wiiﬁ/‘/w
_ A1/
NSy (hywo) = ’7'1/4 VIV 7' (wo),
and
E [(US (w0, L) ((wo). Ba (o)), A (1 00) 0 g0
N (wo) ~ _
= > E{Ugm(wo,L)(&(wo),bx(wo))})\inj(hawo)
7jm=1
N(u}o) k2 w . i s
s /5 0 05 )T )= 0D L3 05 ()= D g ()
j=1

X ¢j(wo, o) P~ (wo, x)ei(ﬁfﬁj(wo))(fLSJr%)e_ihﬁ;(wo)\%e_ih;ﬁy(woﬂd’y
k2(wo) N(wo) 1 ot .
+/ Z 3 Crnm (@0) =T (w0) — A (w0)) Lt 5 (T (wo) — AR (wo))LM ( 0)
3 m=1

X G (w0, 20) b (w0, @) P 0=V (S5 2) (MO w0) e it B ) L gy

k2 (wo) k2(wo)
[ M o o) o, ) TV )

We can see that the three last terms give a term of the form

k2(w) . L
/g 6 (w, )y (w0, y)eVTE = O(e)

uniformly on bounded subset of [0, +00)2. We recall that the radiating components are very
small, of order O(e). We cannot observe the recompression of the radiating components by

the time-reversal mechanism, because it holds only on a set with null Lebesgue measure.
Consequently,

. N(wo)
tobs | 1 iwo(fes=y ) 1OGS [Bin(@0) (8, (wo)— B, (wo)) &
E[pTR( c + \/Eux’LS):|e Vel = 4 Z B](wo) Bl € ’ o

Jm=1

<<ﬂ:n<wo> - ﬂ;(’ﬂ))L i fons t) E[US,, (w0, L) (@(wo), bu(wo))|

X My (wo) K570, 1% f

+0(Ve),
where K}";’nL are defined by (3.18) page 129. From Proposition 3.7, for m # j, we get

lim hmE[pTR(L+ t $7LS)}eiw()(tjm;tl+ﬁ)€*i(ﬁm(wo)*ﬁj(wo))(*Ler%)

£—0e—0 \/>
im (Wi M K — 1 w
= €Qjm( o)L jm(w(]) ]gnL ( t) : Z¢j(w03$0)¢m( O’x)’
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where the times ¢, are defined by (3.19). Then, at these times we can observe the refocused

waves obtained in the homogeneous case but with the damping terms e@im(«@0)L — The

amplitude of the coherent refocused waves at times ¢;,, decays exponentially with respect to

the propagation distance L, and therefore becomes negligible for long propagation distance.
Now, for s = t1, we have from Proposition 3.7

N(wo)
. . t1 t jwo - 1 =
fim i Bpra (7 + 2w Ls ) |0V = f(=0) -5 ;l_:l M (wo) T} (wo, L)1 (wo, x0)u(wo, ),

where ’ZN}l (wo, L) are the asymptotic covariance (3.21) which satisfie the coupled power equations
(3.20). Here, we have a contribution of all the modes. In the case of a random waveguide we
have a coupling between the modes during the propagation of the two steps of the experiment.
As in the case of a homogeneous waveguide, at time t.s = t1, the time-reversal mechanism
produces a coupling of a mode with itself through M;(wo), which imposes the form of the
coupling produced by the random waveguide through ’f}l(wo, z).

Let us remark that we can study ’]N}l (wo, 2) as in Section 2.5.1, by using a probabilistic
interpretation. Let us consider

siv(wm:{x e RN X; >0 Vje{l,...,N(wo)} and [|X|[3 prewy = (Xs X)pniwp) = 1}
with (X, V) gy = S5 XY for (X,Y) € (RV0)2, and

Dd(WO) = diag(Dl(WO)a ) DN(w)(WO))’ (322)

where

Dj(wo) = A§(wo) — [T§;(wo) — T (wo)] + [T);(wo) — Tjj(wo)]-
Let us begin with the case where the two processes V! and V2 are independent, that is the
case in which o(z,y) = 0 ¥(z,y) € [0,d]?. In this case, the asymptotic covariances (3.21)

become the square modulus of the asymptotic mean amplitude for the jth propagating modes
(2.45),

@l(wo,L) _ e(*A?(UJo)‘FF;j(UJo)*F;j(wo))Lé-jl‘

Then, the mode-dependent and frequency-dependent dispersion produced during the first
step of the experiment is compensated by the time-reversal mechanism. However, the mode-
dependent and frequency-dependent attenuation is equal to the one of a wave which propagates
over a distance 2L. Therefore, in this particular case the time-reversal mechanism cannot
recompress efficiently the recorded field during the second step of the experiment. The reason
is that the two realizations of the random medium are much too different between the two
steps of the time-reversal experiment.

In what follows, we shall assume that V! and V2 are not independent anymore. However,
even in this case, we have the following result on ’Z;-l (wo, L).

Theorem 3.5 Let us assume that the energy transport matriz f‘c(wo) is irreducible. Then,
we have

. 1 ~
lim I In = —Aso(wo)

L—-+4o00

e
Z T] (CU(), L)
j=1

with 3

As(wo) = inf  {((—Two) + Dy(wo)) X, X)pnewo) >0,

N(wq)
XeS, 0

and where Dg(wp) is defined by (3.22).
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From this result we get the following inequalities

N(wo)
m X — 1
0< : D < A < D _ D. .
et My D0 = (o) o) = Ny ]; o)

Moreover, this result means that if the two realizations of the random medium are not fully
correlated, that is p € [0, 1) with the assumption (3.23), the amplitude of the refocused wave
decays exponentially with the propagation distance, even if the radiation losses are negligible.
Let us consider the case of a strong coupling process, that is we assume that the energy
transport matrix I'*(wg) can be replaced by %f “(wp) with 7 < 1. Consequently, the decay
rate in this regime is given by 3
lim A% (wo) = D(wo),

and we also have .
hm ’T Ywo, L) = Nw) exp ( - D(wg)L>.

Let us remark that in the strong coupling regime the decay rate takes its largest value.
In order to investigate some particular cases relative to the changing medium, let us
assume that V(z,y) € [0,d)?,

Yo(z,y) = nio(z,y) for p € (0,1]. (3.23)
This assumption implies that
I (wo) = ulM(wp) and T(wg) = pl(wp).
In the case of weak correlation, that is yu < 1, the asymptotic decay rate is given by

i{f})Néo(wo) = je{lyl"ﬂ’ln( )}AJ (wo) + T} (wo) — T§;(wo) > 0,
and we also have
lim 774! (o, L) = eS0T (o) T (o)) gy
which corresponds to the case u = 0.
More generally, for any ;1 € [0, 1) there exists a constant K (,,,) > 0 such that

N (wo)
Ty an < exXp ( - KN(wo)(]' - :LL)L)7

and then the amplitude of the mean refocused wave decays exponentially with respect the
propagation distance L.

In the case where p is close to 1, that is a strong correlation regime, the asymptotic decay
rate in this case is given by

lim A@:o(wo) = inf {((=T%wo) + Af(wo))X, X>RN<WO)’
pn—1 XESN(WO)

and we also have
N
}ngl T“ (wo, L) = 7}1(0)0, L)
uniformly on each bounded subset of [0, +00), which corresponds to the case u = 1. Here,
A§(wp) is defined in Section 2.5.1, and 7 !(wp, L) is the solution of the coupled power equations
(2.47) page 53. This last case will be studied more closely in Section 3.4.7 using the high-
frequency approximation developed in Chapter 2.
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3.4.6 Stability of the Refocused Wave

An important property of the time-reversal experiment is the stabilization of the refocused
wave. This property has been shown in [18] in the one-dimensional context, and in [25,
Chapter 20] in the case of a waveguide. However, when the realizations of the random medium
are not the same between the two steps of the experiment, it has been shown in [3], in the
one-dimensional context, that the loss of the statistical stability is related to the degree of
correlation between the two realizations of the random medium. In the three-dimensional
context with the parabolic approximation, it has been shown in [12], that the statistical
stability is not affected by the change of the random medium between the two steps of the
experiment. In this section we study, in the context of a waveguide, the effects of the change
of the random medium on the statistical stability.

We recall that the mean refocused wave at the source location in the asymptotic € — 0 is
given by

N(wo)
t t wo -t 1 ~
lim E|pri () 4w Ls )V = (=) 30 Misln) T (wio L)n(wns ao) e, ),
]7l:1

where the asymptotic covariances ’ff’l(wo, L), defined by (3.21), are the solution of

LT wn, 2) = (1= )T T (o, 2) + £4(T¥(w0,2)) (),
with
N(wo)
£59(j) = —A5 (@0)o () + (1 — WT% (@0)6l) + 1 3 Ty (wn)(@(n) — 6()).
n=1

and ’jf’l(wo, 0) = d;1. Now, let us introduce another probabilistic representation, in terms of

the solution of a stochastic differential equation, for ’jf’l(wo, L). Let (Bj)je{l,...,N(wo)} be a
family of independent one-dimensional standard Brownian motions. We recall that T'! (wp) is
a nonnegative symmetric matrix and then admits a unique symmetric square root that we

denote by /T'!(wp). Let

N(wo)
Z(wo, 2) = [ I’l(wo)}ﬂBi Vie{l,...,N(wo)},
j

€

I
—

and (Xﬁyl(w(h '))je{l,...,N(wo)} be the unique solution of the system of coupled Stratonovich

stochastic differential equations
dX 5 (wo, 2) = L9 (X (wo, 2)) (j)dz + i1/2(1 — 1) X3! (wo, 2) © dZ;(wo, 2),
with Xf’l(wo, 0) = 6;. Consequently, we have
T (wo, L) = B[ X§ (wo, L),

where the expectation E is taken with respect to the law of (Bj)je{lw"N(wo)}, and

s S
) 1 Nwo) l (3.24)
=E[f(-)- 7 2 My(w0) XS (wo, L)du(wo, zo)du(wo, @) |-
g l=1

The following proposition extends this result.
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oo
Proposition 3.8 The refocused wave pTR<% + \%, a:,LS> e"“" Ve converges in distribution as

e — 0 as a continuous process in (t,z) € R x [0,4+00) to

N(wo)

1 !
Pyg(tit,a, Ls) = f(—t) - 1 > ij(wo)Xf’ (wo, L) ¢1(wo, z0)d1(wo, 7).
Jil=1
Moreover, p%R(tl,t,m, Lg) converges in distribution as & — 0 as a continuous process in (t,x)

to
N(wo)

prr(ti,t, @, L) :f(—t)& Y Mjj(wo) X (wo, L)¢i(wo, zo)pi(wo, ),
ji=1

where (Xl(wo, .))je{1 - N(wo)} 18 the unique solution of the system of coupled Stratonovich

stochastic differential equations
dX}(wo, z) = LM(X (wo, 2)) (j)dz + i1/2(1 — p) X} (wo, 2) © dZ;(wo, 2), (3.25)
with X]l-(wo,O) = 0j;, and

N(wo)
LrG(j) = =AG(wo)p(j) + (1 — w)T5;(w0)o(F) + 1 Y Thj(wo)(¢(n) — ¢(4))
n=1

Consequently, the spatial profile of the refocused wave at the source location is the
superposition of the N(wq)-discrete propagating modes with random weights, which depend
on the time-reversal mirror through the coefficients M;;(wp) and on the solution of a stochastic
differential equation driven by a family of N(wg)-independent Brownian motions.

Let us remark that in the case p = 1, the limit in distribution of the refocused wave is de-
terministic, and therefore the convergence holds in probability. The stabilization phenomenon
of the refocused wave has been already observed in the context of waveguides in [25, Chapter
20] for instance.

Proof We begin by proving the tightness of the refocused wave and next we study the
convergence of all finite-dimentional distributions. First of all, let us remark that

tl t iwoi
sup  sup sup ‘pTR(—Jr—,x,Ls)e Vel < K,
€ \/E

€€(0,1) z€[0,+00) tER

where K is a non random constant since the transfer operators TV€ and T?%€ are unitary.
Therefore, V7 > 0,

1 | 51 iwo 2k 1 | S2 iwo 22
pTR(* +— HfLLs)e Ve _pTR(? + —= 332,Ls)€ Ve

€ Ve Ve

sup sup
66(0,1) ‘CE1 —(Ez|+|sl—82|ST

S K|:‘1 _ eiWQ(Szfsl)’

1T 1= =] 4 By, (w0 + Veh) = Braen + Vem) 1]

and then Vn > 0

[ t S jwo 2L t S ;
lim lim P sup ‘pTR(—l—i——l,a:l,LS)ewoﬁ —pTR<—1+—2,x2,L5)ewoﬁ >n| | =0.
T7—0€e—0 |21 —@2|+ € \/E € \/E

[s1—s2|<T
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We have already shown the convergence of the first moment (3.24). Now, for the high-order
moments we have

EWM%MQ+;m@mﬂ4wpr

3]

# oot
mgf( hiyiy)e~ L”QSHE[ H

1<i1<q 1<ii<q
1<io<ry, 1<ia<ry,

<U£’6(w0 + \/Ehiﬂ'zv L)( (WO + fh1112) (wo + \[hhw))
; A (wo + \/ghi1i2)>HW0+fh

with r = 231:1 r;,. Following, the proof of Theorem 2.1, one can show an asymptotic theorem

as € goes to 0 for the process
(US(wo + Veh1,2), ..., US(wg + Vehm, 2))  with h; # hy,Vj #1,

and which takes its values in the space ®;~":1(’H‘g°+hc ® HZ’°+h°). Then, using the perturbed-

test-function method we have

. t1 | s1 1 iwp 2L s Tq
“o e f = .. 0 /e 224 24

E%E[( pTR( + \/*7:617-[15)) (6 pTR(E + \/Ev'xqaLS)) :|

H f(=si)"™ Z H Mj¢1i2jz‘1i2 (w0)¢li1i2 (w07$0)¢li1i2 (wo,xil)j; (wo, L)

1<11<q 1<i1<q
1<ia<r;,

with j = (Jiip) 1<i<q and 1= (liyi,) 1<i1<q , and where

1<ia<ry, 1<i2<ry;
d - 1 7€,1 7€l ;
%735 (w(]’ Z) ( Z F]uzzjuzz )73& (UJ(), Z) + Z £§7M (T& (w07 Z)) (]ilh)’
1<ii<q
1<io<ry,

with ’]:.g’l(wo, 0) = ILiy i Oiigliysy - L5 (TY(wo, 2)) (ji,i,) means that the operator L&# acts

only on the component j;,;,. Therefore, we get that

7€, T Eliqi

T wo, ) = B[ T X502 (wo, L),
1<ii<q
1<ia<ry;

where the expectation E is taken with respect to the law of the family (Bj)je{l,...,N(wo)} of
independent Brownian motion. Consequently

. wo ti, s
lll%EK pra(* ¢ T /e

- IEKPTR(tl’ LA LS)>T1 o (pg‘R(tl, Sqs Lq; LS))TQ]

1 9) " (a4 T 1) ]

This concludes the first part of Proposition 3.8. For the second part of Proposition 3.8, using
Ito’s formula we get that, V& and Vz > 0

HXfJ(z)H%N(wo) <1 as.,
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and then
~ L ~
E[XSNL) = XY L) Enw] < K/O E[| X5 (w) = X' (w) | 2xwg) ] du
+L sup [AS(wo) — ASS(wo)l*
je{lv""N(WO)}

Consequently, using the Gronwall’s inequality, Vi > 0

lim P sup sup ‘pETR(tl,t,x,Ls) —pTR(tl,t,m,Ls)‘ >n| =0.
=0 z€[0,400) tER

This concludes the proof of Proposition 3.8. H

Let us investigate the regime p — 0, that is, when the two realizations of the random
medium between the two steps of time-reversal experiment are weakly correlated. In this
regime the system of stochastic differential equations (3.25) take a particular form, from
which we can get an explicit expression of the solution. Now, let us denote by X ]“ ’l(wo, )
the solution of (3.25) and by X]Q’l(wo, .) the solution of the following stochastic differential
equation

dX (w0, 2) = [ — AS(wo) + TG (wo) — T (wo)] X (wo, 2) + V22X (wo, L)dZj(wo, 2)

with X?’l(wo, 0) = d;1. Because there is no coupling between the N (wq)-stochastic differential
equations, we have

X0 (wp, 2) = 86 TAGEOITS (0) LivaZ; (oo L)
J ’ )

Proposition 3.9 Vn > 0, we have
lim P sup sup ‘p%R(tl,t,:L‘, Lg) —p%R(tl,t,x,Ls)‘ >n]| =0,
n—0 z€[0,+00) tER

where
N(wo)

1 —AS(w ¢ (w % i(w
prp(ti,t,z, L) = f(—t) - 1 Z ij(w(])e( AS(wo) 4TS, (wo) ) Ltin/2Z;( O’L)qzbj(wo,:co)qﬁj(wo,x).
=1

Consequently, in the weakly correlated regime p — 0, the refocused wave is the superposition
of the N(wq)-propagating modes with weights depending of the time-reversal mirror through

Mjj(wo), a damping term e(_AE(WOHF;j(WO))L, and a random phase e/V2Zi(wo,L)

3.4.7 Mean Refocused Field in the Case y — 1

This section is devoted to the study, in the strongly correlated regime p — 1, of the transverse
profile of the refocused wave in the high-frequency regime wy — +o0.

First of all, in the particular regime u — 1, we get the stabilization of the refocused wave.
In fact, using the Ito’s formula we know that, Yu € [0, 1], ||X“’Z(L)H%N(WO) <1 as. , and then

- L
E[HXLM(“)Ov L) - Tl(w()v L)H%N(WO)] < KI/O E[HXL'M(WO’ S) _Tl(w07 3)”éN(WO)]d$+K2(1 _:u’)?

where T!(wp, .) is the solution of the coupled power equations (2.47) page 53. Consequently,
we have the following result.
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Proposition 3.10 Vi > 0, we have

lim P ( sup sup ‘p‘jﬂR(tl,t,x,LS) —plTR(tl,t,x,LS)‘ > 17) =0,
Tre

p—1 [0,400) t€R
where
p’:ll“R(tl’ta z,Lg) = f(_t)H;:XOM (wo, ),
with
1 Nwo)
HyM(wo,, L) Z M;;(wo) T} (wo, L)y (wo, z0) i (wo, 7).
]l 1

In what follows we consider the band-limiting idealization, introduced in Section 2.5.2,
to study the transverse profile HZM in the high-frequency regime wg — +oo. With this
assumption ’Z}l(wo, .) satisfies (2.51) page 59.

Mean Refocused Field with Radiation Losses

In this section, we study the transverse profile of the refocused wave in the presence of
radiation losses.

Proposition 3.11 For ay; € [0,1), the transverse profile of the refocused wave in the high-
frequency wyg — 400 is given by

T Aoc - dy+di
wollgl-oo 7 ——HyM (wg,xo + — 7 L) y H(z,L),
where .
H(z, L) = / T1(L, u) cos(2mu)du,
0
and T1(L,u) is the solution of
0 0 0
T = 5 (0() 5T (2w
with the boundary conditions:
8617'1(2,0) =0, 7i(z,1)=0 and T1(0,u) =1,

Vz > 0. Here,
ao

1= (1= 3p) (w2
with ag = W’ 0 =y/1-1/n? Sy = fgl f(fl%)(xl,xg) cos (§z1) cos (Faz)dzrdrs. ny is

the index of refmctzon in the ocean section [0,d], 1/a =1, , is the correlation length of the

random inhomogeneities in the longitudinal direction, and g is the covariance function of the
random inhomogeneities in the transverse direction.

(oo (u) =

Consequently, the transverse profile of the refocused wave can be expressed in terms of the
diffusive continuous model introduced in Section 2.5.2, with a reflecting boundary condition at
u =0 (the top of the waveguide) and an absorbing boundary condition at u = 1 (the bottom
of the waveguide) which represents the radiative loss (see Figure 3.5). As it is illustrated in
Section 3.4.8, the radiation losses degrade the quality of the refocusing: the amplitude of the
refocused wave decays exponentially with the propagation distance (see Section 2.5.2), and
the width of the focal spot increases and converges to an asymptotic value that is significantly
larger than the diffraction limit A\,./(26), where A, is the carrier wavelength in the ocean
section [0, d].
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T
Figure 3.5: Illustration of the radiative loss in the shallow-water random waveguide model.

Proof First, we have

d Aoom A
= Ha]\{ oC ~ L Tl
do+d; 0 <w0’ o+~ 0 ) ]121 (wo, L) ¢u(wo, o)
Ayd 2y + N5 (dy — ) A (do + )
5 L i . M ocC 2 1 . M
d1(wo, o + NocZ/0) 9 [1 cos (UJ y )smc (Ug d )}’

where A; is defined by (2.8) page 35. Moreover, using the probabilistic representation (2.49)
used in the proof of Theorem 2.3 page 54,

Moe 1 )
20 > Tl (wo, L) dy(wo, z0) b1 (wo, To + Aaci /0)
=1

XA”m4]MM+w?@—&Um4%mmﬁ+@»

N
1 1
<MNZemnNINT —— P, (YN =)+ =P, (YN =1
<A [;m_l) e (V2 = ) B (1 = 1)
< KAL7“M In(N),

where (Y;N ) +>0 18 a jump Markov process with state space {1,..., N}, intensity matrix I'“(wy),
and invariant measure j, which is the uniform distribution over {1,..., N}. Consequently,
the transverse profile of the refocused wave is given by

Aoe L Ad 7
7 Z #73 wo, L) é1(wo, zo)p1(wo, To + Aoc®/0).

Let n > 0 such that n < 1. We have

Aoe o Ajd_ -
20 77; (wo, L)1(wo, 20) i (wo, To + Aoc /0)
=1
Ao N(-
79 Z wOa )¢l(w0a x0)¢l(w0> xo + )‘Oci‘/e)
l:
+0()
LR
79 T} (wo, L)p1(wo, 20)d1(wo, 2o + Aoc /6)
=1
O(n),
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since we recall that
lim sup A%(wo) — =| =0. 3.26
NHJrooje{l N—[ ‘ ]( ) d ( )
Let f(v) = 1j9,1_y)(v), we have

Aoc < AZd_ .
7 Z —5T; (wo, L)du(wo, z0)d1(wo, 2o + Ao /0)
Jji=1

)\ [N(1—n)]
Z T} (wo, L) d1(wo, 20) 1 (wo, To + Aoci/6)
+ o ).

Now, we are able to apply the high-frequency approximation given in Theorem 2.4 page 59

N(-
% Z \Tfn wo, L) = Tpn (L, 1/N))|

(INOA=m)]=1 " (y1)/N N
< ¥ /Z/N TV (wo, L) — Tpa (L, [Nu]/N)|du
=1

< iy
< [ 1T, Low) = Tpa(L ) du
1
-I-/O "Ew(L,u) — Tn (L, [Nu]/N)|du,

where the terms on the right side of the last inequality goes to 0 as wy — +oo by Theorem
2.4. Then

Moe Agd /|
20 > 7 (wo, L) i (wo, o) dr(wo, 2o + Aoc/0)
7,l=1
e VO
=55 2 Tp(L,U/N)bu(wo, 20)1(wo, @0 + Mac/6)
=1
+ O(n).
Moreover, we have
Xoc . A Xoc - 220 + Ao /0
930, 20)6; (w0 + T°) = 5 cos (0537) = cos (0 =5 |

and

o8 (ij> =Cos ((Uj - jW)W) cos (jﬂ'W)
~sin (o — jm) 20T 200y iy (200 20

Using the Abel transform, Lemma 2.1 page 36, (3.26), and the continuity of v +— Tym (L, v)
on [0,1], we get

[N(1-n)] ~
. 2x0 + AocZ /0
WOILIEOO )\OC’ ;:1 Tyn(L, 1/N)A? cos (aj %)‘ =0.
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Moreover, using (3.26) and the fact that limy,, sup; Aoc|oj — jm| = 0,

y Age NG Aoe
B o Z Tpa(L,1/N)A? cos( Hdw)
[N(1—n)] I
_ Nl—l>I—IQ—IOO 29d2 l:ZI Tyn(L,1/N) cos (27TN53)

1-n
=(1-1n) T¢n(L,u) cos(2mut)du.
0

Consequently, from the decomposition used in the proof of Theorem 2.5 page 60, we have

| Zpn(L,.) — Ti(L, )l 2o,y < 1" = Ul z2(o,1p);
and then

lim
wo—-+00

A M A2d ~
7 Z %7} wo, L)1 (wo, o)1 (wo, 2o + Aoc /0)

1
—/ Ti(L,v) Cos(27rui)du‘ < Kn.
0

This concludes the proof of Proposition 3.11.1H

In order to study the case aps = 1, let us introduce some notations. Let & = Ups>1 €,
where

M
gM = {Za]¢]7 (a])] S RM}7

=1

and
2 som )
pj(x) = \/;sm (jgl’) vz € ]0,d],Vj > 1.
Let us remark that (¢;); is a basis of L?(0, d).

Proposition 3.12 For ay =1, in the continuum limit N(wo) > 1, we have

lim H} (wo,.,L)—ﬁ;O(wo,.,L)ZO

wp—-+00

in &', which is the topological dual of £ equipped with the weak topology, and where

lim H

wo—-+00

N Aoc )z@JQZCZlH(:E,L).

wo, To + 7%’ L

Here, H(Z,L) is defined in Proposition 3.11.

Proof Let M > 1 and fM = Z —1a;¢; € Epr. Moreover, let

Ve e [0,d], fM(x) Zajas] wo, T

Using (3.26) and because we have

1
swp ;| =0 ().
jeflmy N
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then,

sup (@)~ ()| = 0 ().

z€[0,d]

Finally, by letting

~ dg —l—dl Aoc
H;O@)g,a:,[/) 70

N 2
2%7; wo, L) ¢y (wo, zo)d1(wo, x),

we have
<H:%0 (WO, ) L) - ﬁ;o (UJ07 ) L)’ fM>L2(O,d) :<H;0 (WOa ) L) - Ianl:O (WO, K L)7 fM B fM>L2(O7d)
+ <Hx10(WO; o L) - H;O(WO, '7L)’ fM>L2(Ovd)’

N j=2 7T<J 1) N 01

In(NV

<
<K,

and
|<H1 (w()? aL)_ﬁl (w07-7L)7fM>L2(Od)‘
1
ZMWm PO € N1 N Y = 1)

for n > 0, and f"(v) = 1jg,. Therefore, it suffices to study M, Tfln (wo, L). To do this, let g”
be a smooth function with compact support included in [0, 2n] and such that 0 < f7 < g7 < f27.
Using the second part of Theorem 2.5 page 60,

N@mz o (wo, L) = MTy(L,0) < MPy(z(t) € [0,27]).

Here, we have used the probabilistic representation of T (wo, L) introduced in the proof
of Theorem 2.5, where P is the unique solution of a martlngale problem starting from O.
However, the probabilistic representation can be chosen such that the associated diffusion
process has transition probabilities absolutely continuous with respect to the Lebesgue measure
[27]. Therefore, 3 ~

lim (H, (wo,., L) — H} (wo,., L), fM>L2(07d) =0,

wo—-+00

and the rest of the proof is the same as that of Proposition 3.11. B

Consequently, in the case of a random waveguide, the order of magnitude ajs of the time-
reversal mirror plays no role in the transverse profile compared to the homogeneous case (see
Section 3.4.7).
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Mean Refocused Field with Negligible Radiation Losses

In this section, we study the transverse profile of the refocused wave in the case where the
radiation losses are negligible, that is, A°(w) can be replaced by 7A¢(w) with 7 < 1. Therefore,
we have

YL >0, sup [T (w,2) — T (w,2)]lypve = O(T),
z€[0,L]

where 7% (w,.) satisfies

d 0,1 c 0,1 0,1

IV =T (TVL () - TR'(2)).

d . ‘

dz’TOl( z) =T5_y; (Tol () — 7}0’l(2’)) + 1511 (’Z}g’_ll(z) — 7}0’l(z)) for je{2,...,N — 1},
d

2T =15 (B - 1)

with ’]}O’Z(O) = d;1. Consequently,

lim sup |H;(’)°‘M (wo,x, L) — Hg(’)aM (wo, x,L)| =0,
7—0 z€[0,+00)

where
N(wo)

HoaM(wo,m L Z (wo, )¢I(W07x0)¢l<w07x)'
]l 1

Proposition 3.13 For ays € [0,1), with negligible radiation losses, the transverse profile of
the refocused wave in the continuum limit N(wg) > 1 is given by

1—ay,

i Aoc M OaM Aoc —
Jim e Y (wg,xo+7x,L)f

Cl~2—|-6l~1

sinc(27).

Proof Following the proof of Propostion 3.11 and using Theorem 2.6 page 63, we get

Aoe ™M o )‘oc
lim HY (wo, w0 + 528, L) =
wo—+oo 0 o 0H0T Ty

J2+J1

1
/ T1(L, u) cos(2mui)du,
0

where 7;(z,v) is a solution of

0 0 0
ST = o (a0 T ) (o),
with the boundary conditions

d 0
%’2’1(,2,0) =0, %Tl(z, 1)=0, and 7;(0,u) =1.

However, this problem admits only one solution, which is 77(z,u) = 1. B

The transverse profile of the refocused wave is studied using the diffusive continuous model
introduced in Section 2.5.3, with two reflecting boundary conditions at © = 0 (the top of
the waveguide) and u = 1 (the bottom of the waveguide). Here, the two reflecting boundary
conditions mean that there is no radiative loss anymore (see Figure 3.6), and then the energy
is conserved. This is for this reason that 77(z,u) = 1. Consequently, the sinc profile obtained
in Proposition 3.13 is the best transverse profile that we can obtain.

In the same way, we have the following result for ap; = 1.
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Figure 3.6: Illustration of negligible radiation losses in the shallow-water random waveguide
model.

Proposition 3.14 For ap; = 1, in the continuum limit N(wg) > 1, we have

lim H%'(wo,.,L) — Ho'(wo,., L) =0

wo—-+00

in &', and where

do + dy

N A
lim A% (wo,xo + L) —9 sinc(27).

—

wp——+00 0
These results are consistent with the ones obtained in [25, Chapter 20] where the authors
have obtained the sinc function for transverse profile, and which does not depend on the size
of the time-reversal mirror.

3.4.8 Numerical Illustration

In this section we illustrate the spatial focusing of the refocused wave around the source
location. First, we represent the evolution of 77(L,u), in presence of radiation losses, with
respect to L. Here, 71 (L, u) is the mean mode power for the [N (wp)u]th propagating mode in
the continuum limit N (wq) > 1, which is the solution of the partial differential equation in
Proposition 3.11.

Second, we represent the spatial profile H(Z, L) of the refocused wave, and finally we
illustrate the resolution of the refocused wave as the propagation distance L becomes large.

In this section, we consider the following values of the parameters. For the sake of simplicity,
we take ag = 1 and the inverse of the correlation length of the random inhomogeneities in the
longitudinal direction is @ = 1. Moreover, we take n; = 2 for index of refraction in the ocean
section [0,d], and depth d = 20.

We saw in Proposition 3.11 and Proposition 3.12 that 77 (L, u), in the presence of radiation
losses, plays an important role in the transverse profile of the refocused wave. In Figure 3.7,
we illustrate the influence of the radiation losses on 77 (L, u) as the propagation distance L
increase. As we can see in Figure 3.8 and Figure 3.9, the radiation losses degrade the quality
of the refocusing. Moreover, for L > 1, one can see a threshold of the quality of the resolution
since ) )

H,,(z,L) ~ e’\lL/ gboo,l(’u)dv/ $oo,1(w) cos(2mzu)du,
L>1 0 0

where A\; < 0 and ¢o,1 are defined in the proof of Theorem 2.5 page 60.
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Figure 3.7: Representation of 77 (L, u), in the presence of radiation losses, with respect to the
propagation distance L.
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Figure 3.8: Normalized transverse profile. In (a) and (b) the dashed curves are the transverse
profiles in the case where the radiation losses are negligible, and the solid curves represent the
transverse profile H(Z, L). In (a) we represent H(Z, L) with L = 75, and in (b) we represent
H(%, L) with L = 250.
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Figure 3.9: Representation of the evolution of the resolution with respect to the propagation

distance L.
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Conclusion

In this chapter we have analyzed the pulse propagation and the time reversal of waves in a
shallow-water acoustic waveguide with random perturbations.

We have shown that a broadband pulse can be decomposed into a superposition of modal
waves with different arrival times and different modal speeds. As in [17], the statistics of
the transmitted wave can be described by a front stabilization theory. We have studied the
incoherent wave fluctuations, which requires the analysis of the distribution of the transfer
operator at two nearby frequencies, and we have derived an effective system of transport
equations which takes into account the effect of the radiation losses. The intensity of the
wave fluctuations is exponentially damped and becomes uniform across the waveguide section
[0, d] as long as the propagation distance is large.

We have studied the time-reversal experiment of a broadband pulse in the case where the
medium may have changed between the two steps of the experiment. We have shown that
the loss of the statistical stability of the refocused wave is related to the degree of correlation
between the two realizations of the random medium. In the case where the two realizations are
not sufficiently correlated, the amplitude of the refocused wave decreases exponentially with
the propagation distance. In the case where the two realizations are sufficiently correlated, we
obtain the statistical stability of the refocused wave. Moreover, using the continuous diffusive
models developed in Section 2.5.2 and 2.5.3, we have seen that radiation losses degrade the
quality of the refocused transverse profile as the propagation distance increases.

In this chapter, we have shown that the size of the focal spot in the time-reversal experiment
is, at least in the most favorable case, limited by the diffraction limit. However, we shall
see in Chapter 4 that the focal spot can be smaller than the diffraction limit by inserting a
strongly heterogeneous random section in the vicinity of the source.
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Chapter

Time Reversal SuperResolution in Random
Waveguides

Introduction

Time-reversal refocusing has been studied in different contexts: in one-dimensional media
[18, 25], in three-dimensional randomly layered media [26], in the paraxial approximation
[15, 10, 49], and in random waveguides [30, 25]. In all these contexts it has been shown that
the focal spot can be smaller than the Rayleigh resolution formula AL/D (where X is the
carrier wavelength, L is the propagation distance, and D is the mirror diameter). However,
the focal spot is still larger than the diffraction limit \/2.

Mathias Fink and his group at ESPCI have proposed an approach to obtain a superres-
olution effect, that is to refocus beyond the diffraction limit, with a far-field time-reversal
mirror [42]. This approach consists in adding a random distribution of scatterers in the
vicinity of the source. The proposed physical explanation is as follows. The small-scale
features (position and shape) of the source are carried by high evanescent modes, and these
modes decay exponentially fast with the propagation distance, so that this information is
usually not transmitted up to the time-reversal mirror, which is located in the far field. The
random medium located around the source location permits to convert high modes into low
propagating modes. In other words, the inhomogeneities of the random slab induce mode
coupling, so that the information on small scales of the source is transferred to the propagating
modes and reaches the time-reversal mirror. During the time-reversal experiment these modes
are regenerated in the vicinity of the source from the backpropagated propagating modes,
and therefore they can participate in the refocusing process. An application of this result to
wireless communication is presented in [42].

In this Chapter, even though the work of Fink and his group was on time reversal of
electromagnetic waves, we consider a two-dimensional acoustic waveguide model. The main
goal of this chapter is to present a mathematical proof that the focal spot can indeed be
smaller than the diffraction limit. Before the mathematical analysis, we give some physical
explanations to describe the important phenomena induced by the insertion of a section in the
vicinity of the source for a long waveguide. First, the case of a waveguide with homogeneous
speed of propagation ¢q (see Figure 4.1 (a)) is well known; see, for instance, [25], where the
authors obtain the classical diffraction limit. Namely, the focal spot has radius equal to
the carrier wavelength over two. In this case, the small-scale features (position and shape)
of the source are carried by high evanescent modes that decay exponentially fast with the
propagation distance. Consequently, these modes do not reach the time-reversal mirror, which
is located in the far field. Only low modes are recorded by the time-reversal mirror. In the
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(a)
Time reversal o Time reversal

o : mirror : mirror
3 High modes > J : J
Source i Source I(

Low modes

Low modes

(b)

Time reversal Time reversal
mirror : mirror
High modes J ! J
Source q Source] | Low modes
Low modes
(c)
Time reversal Time reversal
: mirror : mirror
' High modes J « High modes J
Source { Mn Source| ;
T = T
: Low modes < Low modes

Figure 4.1: Representation of mode propagation in the time reversal experiment. In (a)
we represent a homogeneous waveguide, in (b) we add a homogeneous section with low
propagation speed, and in (c) we add a randomly heterogeneous section with low background
propagation speed.

second step of the time-reversal experiment, the mirror sends back the recorded low modes
that carry only the large-scale features of the original source. This loss of information is
responsible for the diffraction-limited transverse profile computed in Proposition 4.3. In what
follows, we refer to high or low modes relatively to a waveguide with homogeneous speed of
propagation cg. Experiments have shown that the situation changes dramatically when a
section of medium with low speed of propagation c¢; < ¢ is inserted in the vicinity of the
source. In this chapter, we will compare the two following cases with the homogeneous case.

First, we assume that a homogeneous section with low speed of propagation is inserted in
the vicinity of the source, as illustrated in Figure 4.1 (b), such that some high modes of the
previous case are propagating modes in this first section. However, we assume that the major
part of the waveguide has speed of propagation ¢y so the high modes and the small-scale
features of the source do not reach the time-reversal mirror. Therefore, as in the homogeneous
case, only low modes are recorded by the time-reversal mirror and the small-scale features of
the source are lost. The transverse profile obtained in this case is described in Proposition 4.2.

Second, if the additional section with low speed of propagation is randomly perturbed,
then coupling mechanisms, between propagating modes of the first section, allow small-scale
features of the source, which are carried by the high modes, to be transferred to low modes.
Even if the high modes do not propagate over large distances in the second part of the
waveguide and are not recorded by the time-reversal mirror, a part of the small-scale features
of the source reaches the time-reversal mirror since they are carried by the low modes which
are recorded by the time-reversal mirror. This fact is illustrated in Figure 4.1 (¢). These low
modes, time-reversed, will come back to the randomly perturbed section in the second step of
the time-reversal experiment, and by coupling mechanisms they will regenerate high modes
with the small-scale features of the source. This regeneration of small-scale features of the
source is responsible for the superresolution described in Proposition 4.4.

The organization of Chapter 4 is as follows: In the first section, we describe the waveguide
model that we consider in this chapter for the experiment. In Section 4.2, we reduce the
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10 L/f1 @

Figure 4.2: Representation of the waveguide model with bounded cross-section [0, d], and two sections
(=00, L/e*=%) and (L/e'=%, +00).

study of the wave propagation in the random section to the study of a system of differential
equations with random coefficients by using a modal decomposition. Moreover, we introduce
some assumptions needed for the study of the time-reversal process. In Section 4.3, we state
the asymptotic results that we will use in the following section. In Section 4.4, we consider
the time-reversal experiment in the random waveguide presented in Section 4.1. We analyze
the refocused field to emphasize the superresolution effect and show the statistical stability.
Finally, the appendix is devoted to the proofs of the theorems stated in Section 4.3.

4.1 Waveguide Model

For the sake of simplicity, we do not consider in this chapter the same waveguide model as in
Chapters 2 and 3. The waveguide model that we consider in this chapter is the same as in
[25, Chapter 20] and [30], that is, with a bounded-cross section. As a result, in this Chapter
we shall not consider the influence of radiative losses on the time-reversal experiment.

We consider a two-dimensional linear acoustic wave model. The conservation equations of
mass and linear momentum are given by

o )2 4 V= e,
ot
Lo, (4.1)
Ke(a:,z)a—i_ a0

where p is the acoustic pressure, u is the acoustic velocity, p¢ is the density of the medium,
K¢ is the bulk modulus, and the source is modeled by the forcing term F€(¢, z, z). The third
coordinate z represents the propagation axis along the waveguide. The transverse section of
the waveguide is a bounded interval denoted by [0, d], with d > 0 and z € [0, d] representing
the transverse coordinate. We assume that the medium parameters are given by (see Figure
4.2)

oKL (1+/eV (2, %)) if x€(0,d), zel0,L/e]

1 — 200 1 i —
= if xe€(0,d), ze(L/e  +00),

6(3’3 Z) = 6_204,;’5 it ze (Oad)? z € (_OO7L/61_a]
pL,2) = b if ze(0,d), ze (L)' +o0),

where a, and o are such that a, — ag = a € (0,1] and where V, which models the spatial

inhomogeneities, is described in Section 2.6.1. In what follows, we will see that the important
parameter is «, because it determines the order of the sound speed of the first section. This
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configuration means that the order of the sound speed of the section (—oo, L/e!=%) is small
compared to that of the section (L/e!=%, +00). The first section can represent a solid with
random inhomogeneities, and the second can represent a homogeneous gas or liquid. The case
a = 0 is equivalent to that studied in [30] and [25, Chapter 20], in which no superresolution
effect can be detected. The parameter « represents a possible configuration of the waveguide
model, but we will see in Theorem 4.1 that the set of possible configurations for which we
will apply an asymptotic analysis is more restricted.

We consider a source that emits a signal in the z-direction with carrier frequency wg. The
source is localized in the plane z = 0.

Fe(t,z,z) = f(t)¥(x)d(2)e,, where f(t) = %f(ept)e_wot with p € (0,1), (4.2)

U(x) is the transverse profile of the source and e, is the unit vector pointing in the z-
direction. The source amplitude is large, of order 1/e“, because transmission coefficients at
the interface z = L/e!~® are small, of order ¢*/2. However, we shall see in Section 4.4.6 that
the transmission coefficients can be made of order one by inserting a quarter wavelength plate.
Note that the condition p > 0 simplifies the algebra, and the condition p < 1 corresponds to
the broadband case and ensures the statistical stability property discussed in Section 4.4.5.
In the configuration (4.2), the relative bandwidth is of order €P, and the carrier wavelength is
of order € in the (—oo, L/e!~®) section and of order one in (L/e!~%, +00).

Let us recall that the process V' is unbounded and this fact implies that the bulk modulus
can take negative values. However, this situation can be avoided by working on the event

(\m, 2) € 10,d] x [0,L/e0], 1+ eV (:c 2) > 0) ,
€
since by the property (2.55) page 66

m P (3(z,2) € [0,d] x [0,L/e: 14 eV (m, ;;) < 0)

V(x,i)‘El) — 0. _

<limP|+/e sup sup
2€[0,L] z€[0,d]

4.2 Waveguide Propagation

4.2.1 Propagation in Homogeneous Waveguides

In this section, we assume that the medium parameters are given by

P and K¢(z,z) =

€20 2ok’

p(@, z) = V(z,z) € (0,d) x R.

From the conservation equations (4.1), we can derive the wave equation for the pressure field,

1 9%
- ——+5 = V.F* 4.3
662 atQ ) ( )
where c¢ = ea\/g = ¢e%c and A = 92 + §2. We consider Dirichlet boundary conditions
p(t,0,2) =p(t,d,z) =0, V(t z)€[0,+00) x R.

We recall that the Fourier transform and the inverse Fourier transform, with respect to
time, are defined by

fo) = [ retae, 1) = o [ Fwe o,
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In the half-space z > 0 (resp., z < 0), taking the Fourier transform in (4.3), we get that
p(w, x, z) satisfies the time harmonic wave equation without source term

E2(w)
a2 =0

p(w,x, 2) + 2p(w, z, 2) +

with Dirichlet boundary conditions p(w,0, z) = p(w,d, z) = 0, V(t,2) € [0,4+00) x R. Here
k(w) = ¢. The source term implies the following jump conditions for the pressure field across
the plane z =0

Plw,,07) = plw,,07) = Fe(w)¥(x),
0.p(w,z,0") — 9,p(w,z,07) = 0.

We can decompose this solution in a spectral basis of L?(0, d), which can be chosen as the
set of eigenfunctions (¢;j(x));>1 of —02

d
—02¢;(x) = \j¢;(x) and /0 ¢j()pi(z)dx = 0 V4,1 > 1,

where §;; denotes the Kronecker symbol. This family is given by

2 . .2 2
oj(x) = \/;sin (];x> with A\; = jdg for j > 1,

and corresponds to the basis of the unperturbed waveguide. Let us remark that in this
waveguide model the spectral decomposition does not depend on the frequency. Thus, we can
write

plw,x,z) = Zﬁj(w, z2)pj(x). (4.4)

j=1
This implies that Vj > 1, p;(w, 2) satisfies the differential equation

2 2 w
%ﬁj(w, z) + (kega) — )\j) ﬁj(w, z) =0. (4.5)

For each frequency w,
NN, () < K2 (W) < AN ()41

with Ne(w) = [%] There are two cases. First, for j < N¢(w), these modes represent the

propagating modes, and we define the associated modal wavenumbers by

k2
B (w) = E§f) —Aj.

Second, for j > N(w), these modes represent evanescent modes, and in this case we define
the modal wavenumbers by

Bi(w) =/ A — £ )

Finally, using (4.5) and (4.4), the pressure field can be written as an expansion over the
complete set of modes

6204 :

PN Nelw) ZL\;O(W) 105 (w)z 6;0(w) —B5(w)z
Plw,z,2) = | > ——==e""g;(x)+ ——c 7 0;(2) | 1(0,400)(2)

=1 /B (w) i>Ne@)+1 4/ 55 (@)

df o (w

~—

eﬂj(w)z%(l’)] 1(—00,0)(2),

(4.6)

j=1 (W) 5> Ne(w)+1 \/W
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where @ ,(w) (resp., b; o(w)) is the amplitude of the jth right-going (resp., left-going) mode
propagating in the right half-space z > 0 (resp., left half-space z < 0), and ¢§,(w) (resp.,
Aj-’o(w)) is the amplitude of the jth right-going (resp., left-going) evanescent mode in the
right half-space z > 0 (resp., left half-space z < 0). We recall that the source is located in the
plane z = 0 with the transverse profile ¥(z).

Substituting (4.6) into

25 25 Fw) - _R /
Ip(w,x, z) + Oip(w, x, z) + 2 Dw,z,z) = f(w)¥(x)dy(2), (4.7)

multiplying by ¢;(x), and integrating over (0, d) permit us to express the mode amplitudes

N ~ ﬁ;(w)/\ W — w
o) = Bow) = LI F(252) 0

~ BE(w) .y —
Cio(w) = —djo(w) = — > T (w wo) 05,

4eotp €pP

where Vj > 1,
d
05 = (W.03) oy = [ ¥y (@)d

4.2.2 Mode Coupling in Random Waveguides

In this section, we study the expansion of p(w,z, z) when a random section z € [0, L/e!79] is
inserted between two homogeneous waveguides:

1 KL L+ VeV (0, 5) if we(0.d), z€[0,L/e]
R QOLK 1 1 —
D) R %f x € (0,d), ze€( ool,_O)
x if ze€(0,d), ze(L/e™“ +o0),
1

e2wp if x€(0,d), z€(—o0,L/e7?
p if x€(0,d), =ze(L/el™ +x).

In this region, the pressure field can be decomposed on the basis of eigenmodes of the
unperturbed waveguide

Ne(w)

pw,x,2) Z pj(w, 2)pj(x) + Z qj(w, z)p;j(z).

J>Ne(w)

Evanescent modes correspond to j > N¢(w), and N¢(w) goes to 400 as € goes to 0. Therefore,
we will neglect the modes j > N (w). Note that it could be possible to incorporate the modes
J > Ne(w) using the method described in Chapter 2 or in [25, Chapter 20], but this would
lead to complicated algebra without modifying the overall result. Indeed, we shall check a
posteriori that the mode decomposition of the wave is supported by a number of modes of
order one as € goes to 0. Consequently, we shall consider in what follows the decomposition

Ne(w)

plw,z,2) = Z ﬁj(wvz)(bj(w)?

where pj;(w, z) satisfies

a2 Ne(w
@ﬁj(w,z) + B5(w w)? pj(w,z) + 2 g2y Z Cii ( )]3 ,2) =0 (4.8)
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with V(5,1) € {1,..., Ne(w)}?

d
Cil2) = (03 0V (+2)) 20y = | S3(@)n(a)V (@, 2)da.

Let us recall that V(j,1) € {1,..., Ne(w)}?, the coefficient Cj; represents the coupling between
the jth propagating mode with the [th propagating mode. Next, we introduce the amplitudes
of the generalized right- and left-going modes @;(w, z) and Ej (w,z) for j € {1,..., Ne(w)}.
They are given by

1

~ _ iB5w)z | 7 —if5(w)z
Dj(w, z) = a;(w, 2)e +bj(w,z)e " ,

B5(w) ( )

d ~ . ~ 185 (w)z —i65(w)z
0j(w,2) = iy/B5(w) (@(w, )5 —Bj(w, 2)e 7).

In the absence of random perturbation, these amplitudes are constant. In the presence of
random perturbations, we obtain from (4.8) the coupled mode equation

(Zil(w, z)ei(ﬂlefﬁ;)z + by(w, z)efi(ﬂlqﬁ;)z) ,

d ~ 1 kz N (W) C ( ) . € € -~ . € €
—bj(w,z) = —e2 7 — 3~ a(w, z)ez(ﬁl +5)z 4 bi(w, Z)efl(ﬂl )z ;
dz 2 — e /56@ ( )

Vie{l,...,Ne(w)}.
Let us define the rescaled processes

~¢ N ? FXG _7 ?
a5(w,2) = aj (w, 61—0‘> and bj(w, z) = b; (w, 61—a> for z € (0, L),

Vj € {1,..., Ne(w)}. These scalings correspond to the size of the random section (0, L/e!~%).
They satlsfy the rescaled coupled mode equation

w)c )

dA?
dz HC Ve ZZ; c /ﬂeﬁl

(@t e )% LBy, e (F45)3)

(4.9)

Zhi@?) i (Pi+5) +5f(w,z)e*i€a(ﬂf*ﬁ§)§) ;

d ~ .
dz 7 6 ; ea\/ﬁeTl( (W,Z)

This system is endowed with the boundary conditions Vj € {1,..., Nc(w)},

aj(w,0) = @5 o(w) and bj(w, L) = 0.

Note that Vj € {1,..., Ne(w)}, a5 o(w) represents the initial amplitude of the jth propa-
gating mode generated by the source at z = 0". The second condition means that no wave
comes from the right. We can rewrite (4.9) in a vector-matrix form as

where
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and V(5,1) € {1,..., No(w)}?,

W) Cne) e (3 -5),

H (w,z) =
jl 2 e ﬂ;(w)ﬁf(w) (4.10)
Y (0,2) = B@)_ Cile) i (pipsse):, |

2 e /B (w) B (w)

Now, we introduce the propagator matrix P¢(w, z), that is, the 2N (w) x 2N (w) matrix
solution of the differential equation

d € 1 € z € : € _
£P (w,2) = %H (w, e) P(w,z) with P¢w,0) =1L

This relation implies

20| _ pe o [0
[be(w,z)] =Pw2) [be(w,O)] ’

and the symmetry of H(w, z) gives a particular form of the propagator:

where P%(w, z) and P%(w, z) are N (w) x N,(w) matrices which represent, respectively, the
coupling between right-going modes and the coupling between right-going and left-going
modes.

4.2.3 Band-Limiting Idealization and Forward Scattering Approximation

In this section, we introduce a band-limiting idealization hypothesis in which the power
spectral density of the random fluctuations is assumed to be limited in both the transverse
and the longitudinal directions. We already have introduced this assumption in Section
2.5.2 for the study of the coupled power equations in the high-frequency regime and also for
the study of the time-reversal experiment in Section 3.4.7. In the same way, this hypothesis
simplifies in this chapter the study of the time-reversal experiment. Note that Vj > 1 and
z € [0, 4+00), we have

d pd
EICu(2 = [ [ @ 0)0,@)in(a)s )ony)dedy
=SU-Li-D+SU+Li+0)-SG-Lj+1)-SGE+15-1),

4 d rd ™ T
S(a,b) = d2/o /0 v(z,y) cos <adaz) cos <bdy) dxdy.

We assume that the support of S lies in the square {—%, %} X [—%, %} Our compact support

where

hypothesis implies
Ca(2) =0 if[j—1] > 1,

which is tantamount to a nearest neighbor coupling. More precisely, this assumption implies
that V(j,1) € {1,..., Ne(w)}? the jth mode amplitude can exchange information with the /th
amplitude mode if they are direct neighbors, that is, if they satisfy [j — | < 1.

Now, we consider the forward scattering approximation already discussed in Section 2.3.4
for the waveguide model studied in Chapter 2 and Chapter 3. Considering the first exit
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times of a closed ball related to the weak topology and by considering the process P¢ in an
appropriate finite dimensional dual space, the same proof as the one in Section 4.5.1 shows
that P converges in law. The limit processes of P¢ and Plg, as € — 0, are coupled through
the coefficients

| ECa0)Cata) cos(zh(e)2)i

because of the factor e=<( @15 @)= 1y H?f(w, z) and the fact that Vj > 1,
hI% €35 (w) = k(w). (4.11)

We assume that the power spectral density of the process V, i.e. the Fourier transform of its
z-autocorrelation function, possesses a cut-off wavenumber strictly less than 2k(w). In other
words, we consider the case where

/0 T EC(0)Cy1(2)] cos(2k(w)2)dz = 0 V5,1 > 1.

Consequently, the limit coupling between P%(w, z) and P%(w, z) becomes zero. Moreover,
the initial condition P?(w,0) = 0 implies that P® converges to 0. In this forward scattering
approximation, we can neglect the left-going propagating modes in the asymptotic e — 0.
With this assumption, one can consider the simplified coupled amplitude equation given by

b
Ve

Finally, we introduce the transfer matrix T¢(w, z), which is the N.(w) X N(w) matrix solution
of

$a€(w, z) =

€

H*¢ <w2> a‘(w,z) with a“(w,0) =ap(w).

d 1
ﬁTe(w,z) = %H“’E (w, i) T¢(w,z) with T(w,0) =1L (4.12)
From this equation, one can check that the transfer matrix T¢(w, z) is unitary since H*(w, z)
is skew-Hermitian.

4.3 The Coupled Mode Process

This section presents the theoretical results needed in this chapter. In our configuration
the number of propagating modes is not fixed. Then, we must extend the limit theorem
stated in [48], where the number of propagating modes is fixed. The first result concerns
the diffusion-approximation for a solution of an ordinary differential equation with random
coefficients. This result is a version of that stated in [48], where the dimension of the system is
fixed, adapted to the case where the dimension of the system goes to infinity in the asymptotic
€ goes to 0. The second result, which follows from Theorem 4.1, is about the asymptotic
behavior of the expectation of the product of two transfer coefficients. These two results will
be used in the following section to compute the refocused wave in the asymptotic regime e
goes to 0. The third result concerns the high-frequency approximation to the coupled power
equations obtained in Proposition 4.1. Using a probabilistic representation of solutions of this
equation, we establish a convergence in law to a continuous diffusion process. From Theorem
4.2, we give the high-frequency approximation to the coupled power equations that will allow
us to compute the transverse profile of the refocused wave and show that randomness enhances
spatial refocusing beyond the diffraction limit.
Let H = 1% (E,C), with E = (N*)Q, equipped with the inner product be defined by

Jm=1
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Let us fix (I,n) € (N*)? and consider

U5, (w, 2) = T5(w, 2) T, (w, 2),

gl
which is an H-valued process such that Vz > 0
U (w, 2)|ln = 1.

Note that we have dropped the indexes [ and n in the previous definition because they do not
play any role in (4.12). Moreover, let

B = {X € . Al = /0N < 1}

the unit ball of H, and {g,,n > 1} a dense subset of By. We equip By with the distance
dp,, defined by

dBH ()‘7 /.L)

9

%\(A—u,gn%{

TM&%

V(X ) € By?, and then (By, dg,,) is a compact metric space.

Theorem 4.1 For a € (0,1/4), the family of processes (U (w, '))ee((),l) converges in distribu-
tion on C([0,4+00), (B, dp,,)) as € — 0 to a limit denoted by U(w,.). This limit is the unique
solution of the infinite-dimensional stochastic differential equation

dU(w, z) = J*(U(w, 2))dz + 0% (U(w, 2))(dBL) + 45 (U(w, 2)) (dB2),

with Ujpm(w,0) = 6j10mn. ( ?m)n 1,2 is a family of independent one-dimensional standard
7 m>1
Brownian motions and

J(U) jm = Mw) [(Uj+1+10im — Ujm) + (Uj—1j-16jm — Ujm)] ,

w Aw
VLU N)jm = | (2 )(Ua+1m/\jj+1 = Uj—imAj—15 + Uim+1Amm+1 — Ujm—1Am—1m),

A (w
Y3 (U)(A)jm =i (2)(—Uj+1m/\jj+1 = Uj—1mAj—15 + Ujm+1Amm+1 + Ujm—1Am—1m)

Y(U,\) € HxI2(E,R), with A = ’“2;;’ S(1,1). We use the convention (yom)m>1 = (Y;0)j>1 =
0 forye™H.

This theorem gives the asymptotic behavior of the statistical properties of the matrix
U*€ in terms of the diffusion model given by the infinite-dimensional stochastic differential
equation.

The proof of this theorem, given in the appendix, is based on a martingale approach using
the perturbed-test-function method already used in the proof of Theorem 2.1.

Proposition 4.1

lim E | T5;(w, L) T (@0, L) | = B [Ujin(w, L)

e MWL if j #£m#1,

lim E | T (w, L) T§y(w, L)| = E[Uj;(w, L)] = T} (w, L),

_{ e MWL it moand j=1 orm =1,

lin%IE [ Si(w, L) T, (w, L)} = E[Ujm(w, L)] = 0 in the other cases,
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where (’]}l (w, z)) . is the solution of the coupled power equations,
J>

T} w,2) = A@) [T, 2) + Ty (w,2) 2T w,2)] . 521,
LTl (w,2) = Aw) [B(w,2) - Tw,2)],

with ’Z}l(w,()) =0j.

7}l(w, L) is the expected power of the jth propagating mode at the propagation distance
z = L, when at z = 0 the energy is concentrated on the lth propagating mode. These
equations represent the transfer of energy between propagating modes, and A is the energy
transport coefficient. As in Section 2.5, we are interested in studying this equation in the
high-frequency regime, that is, when w > 1. To this end we take a probabilistic representation
of this equation. We introduce the jump Markov process (X;);>0 whose state space is N* and
whose infinitesimal generator is

Lxp(j) = Mw)(e(G+1)+e(—1) = 20(j)), =2,

Lxp(1) = Aw)(2(2) — p(1)).
We get
Xp
N N

Th(w, L) = B(X;, = j|Xo = 1) = P(

[ Xo !
N N
where N(w) = [%l] is the number of propagating modes in the homogeneous part of the
waveguide model (L/e'~%, +00). The normalization of the last equality is the same as the
one used in the proof of Theorems 2.4 and 2.6. As in Chapter 3, the continuous diffusive
regime that we get in Theorem 4.2 will be used in the next section to compute the transverse
profile of the refocused wave.

We can consider (T!(w,L));>1 as a family of probability measures on Ry. Let Vo €
CP([0,+00)), Yu € [0, +00), and z > 0,

’Z;N(z,u) T[N“wz Zgo( )T[Nu (2).

7j>1

Theorem 4.2 Let u > 0. Vo € C)([0,+00)) and Yz > 0, we have

lim V) (z,0) = To(zu) = | o(0)W(zu,0)do,

w——+00 Ry
where Vz > 0 and V(u,v) € [0, +00)?,

0 o? 9%
£W(z u U) ?WW(ZJ u U)
with

;LW(z 0,v) =0 and W(0,u,v) = 6(u —v).

and o0? = d”TQaS(l, 1).

This theorem is a continuum approximation in the limit of a large number of propagating
modes. This approximation gives us, in the high-frequency regime, a diffusion model for
the transfer of energy between propagating modes. In our case, the diffusion model of the
coupled power equations takes a particularly simple form; it is the heat equation with a
reflecting barrier. Let us note that W(z,u,v) can be computed. We have, ¥z > 0 and
V(u,v) € [0, +00)?,

1 _ “)2 _ (v+u)2
W(Z, U,, U) = \/ﬁ [ 2022 + (& 202z .
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4.4 Time Reversal in a Waveguide

4.4.1 First Step of the Time Reversal Experiment

In the first step of the experiment, a source sends a pulse into the medium, and the wave
propagates and is recorded by the time-reversal mirror. In this section we obtain the integral
representation of the wave recorded by the time-reversal mirror.

A source is located in the plane z = 0 and emits a pulse f¢(¢) of the form (4.2),

o) = — f(ept) ~wol with p € (0, 1).

2e*

A time-reversal mirror is located in the plane z = Lj;/e!=®, it occupies the transverse

subdomain Dy C [0,d] and in the first step of the experiment the time-reversal mirror plays
the role of a receiving array. The transmitted wave is recorded for a time interval [%0, %]
at the time-reversal mirror and is re-emitted time-reversed into the waveguide toward the
source. We have chosen such a time window because it is of the order of the total travel time
of the two sections. We recall that the propagation distance is of order 1/¢!~ and the sound
speed is of order €* in (—oo, L/e!'~%), and the propagation distance is of order 1/¢!~ and
the sound speed is of order 1 in (L/e!=% Ly /e =%).

The Fourier transform of the pressure field at the end of the random section [0, L/€!~?] is
given by

- Ne(w)
~0,€ 156(
pt?" <w7x7 1— Oé) Z \/7 1 Oé¢( )
=1 /B5(w)

Jumps of the medium parameters at z = L/e!~® imply that the incoming pulse produces
a reflected and a transmitted field. The modal decomposition obtained in Section 4.2.1 for
the first part of the waveguide can be obtained in the same way for the second part with
€ = 1. The decomposition over the eigenmodes gives

N(w) ~
~L e . CL‘7L(W) z’@(w)(z—%) ) j,L(w) —iﬁj(w)(z—l%) )
Py (wyx,2) = ——=c I gjx) + ——=e I/ ()

t [Z NE® ’ B5(w) J

N G W) s dj(w) s,

+ 2L =5 (o= aw) g (2) + L Bi (=) 6 (2) | 11 a0 400y (2)

j:N(w)H\/m j 55(@) J (L/et=e,+00)
Ne(w) ~ b

o |3 B s (o ata) g ) 4 D) i) 6 2)] 10,0 (2),
7=1 ﬁ;(w) ﬂe.(w)

(4.13)

where @; 1,(w) (resp., 577 r(w)) is the amplitude of the jth right-going (resp., left-going) mode
propagating, and ¢; r,(w) (resp., c@ r(w)) is the amplitude of the jth right-going (resp., left-
going) evanescent mode in the homogeneous section (L/e!~%, +00). Moreover, a5 p(w) (resp.,
A;-’ 1 (w)) is the amplitude of the jth right-going (resp., left-going) mode propagating in the
section (0, L/€!=%). Note that we have kept the evanescent modes j > N(w), in the waveguide
section (L/€!™%, +00), in the expression (4.13) because N(w) is of order one.

From the continuity of the pressure and velocity fields, we get Vj € {1,..., N(w

ajr(w) B ot o ae.,L(u)) ﬁ]w ﬂgw
)=l ] i) e [ 7@V 5e)
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x
Ad Time reversal mirror
b, (w)
1 _
I~

Source {5 0(w)

—1 S v P

! @5 (@) |@;.L(w)
: o
0 L/el™« Ly /e

and Vj € {N(w) +1,...,Ne(w)}
G _ |ty [@»L(wﬂ a_ 1| [Bw) . [B)
sz,ﬂw)] e D ] R R o R oy

@ 1 (@) = 5w, DT, B () = 0, and djp(w) =0,

with

The two last conditions mean that no wave comes from the right. In fact, in the first part of the
experiment the time-reversal mirror records the signal and does not produce reflected waves.
Solving these equations allows us to express the transmitted and the reflected coefficients.
Consequently, Vj € {1,..., N(w)}, we have

€,—

@1 (w) = 757 (@) (w, D) T and B 1 (w) = (e, L)) ats
j
where ,
(W) = 4.14
J ( ) r§’+(w) ( )

is the transmission coefficient of the interface z = L/e!=% and Vj € {N +1,..., N.(w)}

€1

: e L . r e L
¢r(w) =— :ia;(w,L)ezﬁj(w)ﬁ and b ; (w) = —%ﬂ.ezﬁj(w)ﬁ.
r. .
J J
We can remark that Vj € {1,..., N(w)}, the transmission coefficients T;’Jr(w), which are

defined by (4.14), are of order €*/2. We recall that we have taken a source amplitude of
order 1/e% in (4.2). This fact will allow us to have, after the second step of the time-reversal
experiment, a refocused wave of order one. However, we recall that we shall see, in section
4.4.6, that the transmission coefficients can be made of order one by inserting a quarter
wavelength plate.

The reflected wave produced at the interface z = L/e!~® does not reach the time-reversal
mirror. Moreover, Ly /¢!~ is sufficiently large so that one can assume that the evanescent
modes, that is, the jth right-going modes for j € {N(w) 4+ 1,..., Ne(w)} in the homogeneous
section (L/e!~, +00) which decrease exponentially fast, do not reach the time-reversal mirror
either. Therefore, only the transmitted propagating wave

N(w) ~e ) Ly;—L
t L 1 as(w,L) . B () L 18 (w) (A= oy
v (Lo ) =5 [ BB st O (HT) o yeetan (19
j_

€ 1 4/Bj(w)

is recorded by the time-reversal mirror.
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4.4.2 Second Step of the Time-Reversal Experiment

In the second step of the time-reversal experiment, the time-reversal mirror plays the role of
a source array, and the time-reversed signal is transmitted back. This source term is given by

Fop(t,z,2) = —frp(t,x)d(z — LM/el_a)eZ,

with ; I
Fontt.) =i (2 = b, 52 ) Gl - ct)Gao),

and
Gi(t) = l[to,tﬂ(t) and Ga(x) = 1p,, ().

Here, G; represents the time window in which the transmitted wave is recorded, and Go
represents the spatial window in which the transmitted wave is recorded. As in Chapter 3,
we are interested in the spatial effects of the refocusing, so we assume that we record the field
for all time at the time-reversal mirror, i.e.,

Fralta) =pi, (2~ tia 524 Gao). (1.16)

However, in this chapter, we assume that the two realizations of the random medium are the
same during the two steps of the time-reversal experiment. Let us remark that the same work
as in Section 3.4.6 can be done in the configuration of this chapter.

We study the propagation from z = Lj;/e!™ to 2 = 0. The decomposition on the
eigenmodes gives

N(w) 7

—iBm(w) [ = LM
ﬁ%“%’e (w,x, - a) Z :;;L o )< )¢m(x)

in the homogeneous part (L/e!=%, Lys/e!=%) of the waveguide, with

(@) = VD [ G 2) ) (417)

where

) a@5(w, L) 7_““} L i) (B
(w)e B ( )61_a€ J (51
1 /B )

and Em Ly (w) =0 for m > N. We are now interested in the refocused wave near the source
location. The transmission through the interface z = L/e!~® and the back propagation in the
random section are treated in the same way as the first step of the time-reversal experiment.
The eigenmode decomposition at the interface z = L/e! =% is given by

t1

Frr(w, ) Z ¢j(2)Ga(x)e™ =, (4.18)

~L.e

Prr (w x,z) =
m i W) (2— =L gm —1 w)(z——=L—
Z j/ﬁL; m () ( el—a)¢m(x)+ﬁ’L(:d>>e Bm (@) el‘ﬂ)qu(fv)] L(Ljer-a 4o0)(2)
Ne(w) ~€ e I /l;e - 3e L
N %ezww(mm)%(m) + T'ZEL(((:))G_ZB”(M (z—ew)%(x)] 10,1 /1-0)(2),
m=1 m m

(4.19)
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‘ d Time reversal mirror

' — 71|~
PN by, (@) bun.p(w) - &

: b;(w? 0) hFH.L,U (“J)

Source i =
h : a\m.L(w)
I =
) 4
0 L/(l b L\[/(-l &

where G, 1,(w) (resp., EW r(w)) is the amplitude of the mth right-going (resp., left-going)
mode propagating in the homogeneous section (L/e!~%, +00), and @, ; (w) (resp., Efn (W)
is the amplitude of the mth right-going (resp. left-going) mode propaigating in the section
(0,L/e=2).

From the continuity of the pressure and velocity fields, we get ¥Ym € {1,..., Nc(w)}

A, ()| _ |t | |G (@)

bmr(@)] [ T b))
However, the source emits only N(w) propagating modes; therefore, @, 1.(w) = Em, Lw)=0
for m > N(w) and for m < N(w)

€

- - il () (L)
am,L(w) =0 and bm,L(w) =bm,Ly€ a .
The first condition means that no wave comes from the left in this forward approximation
that we are considering. Solving this equation permits us to express the transmitted and the

reflected coefficients. Ym € {1,..., N(w)},

R e~ ~ —ifm(w) (EEL) o, et o i (w) ( ZEAL
(W) = Tzl-i- b, Ly € ( o )7 m,L(w) = Tn%Jr(w)bm,LMe ( a >7
m
where 75T (w) = TG’J}(W) and BfnL(w) =0Vm € {N(w)+1,...,N(w)}. Thus, we have

obtained the expression of the boundary conditions at the plane z = L/e!~®. Now, we are
interested in the back propagation through the random section from z = L/e!=® to z = 0;

N(w)
B (w,0) = 3 T, (w, LB, (w, L) Pn @ a=s
m=1
W ~ B (w) (L2 e
= Z Tfnn(w7L)TT€rz+(w)bm7LA4€ﬂm( )( l—a )6zﬂm(‘d)61£a’
m=1

R 1 N(w) Ne(w) ﬁf(w)ﬁm(w) — IR P—
)= g 2 2\ (5 T T

1—]/— e L fiﬁv(w)(LM_*L) -
X ?T§’+(w)76’+(w)e Bwazae T e
€

m )
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where ;
Mj = /0 G (2) 0 (2) 1 () .

The matrix (M) represents the coupling produced by the time-reversal mirror between the
propagating modes during the two steps of the time-reversal experiment. We recall that
Em’ L, is the projection over the mth propagating mode for the Fourier transform of the
time-reversed signal recorded by the time-reversal mirror. Therefore, the refocused wave is

! Y (B (@) ()
pTR( v 0) 167T6P/ ;11;1 WMWJ91¢H< )
X T D T, D @it @F (£222) 420

@)=, (HE ) i35, )05 ()

t1—t
€

Now, we make the change of variable w = wgy + €?h. Consequently, (4.20) becomes

w0+e h N€ w0+6 h

e t
pTR<mo) o / z 3

l,n=1

XTEJ(WO‘Fﬁph,L) n(wo + €Ph, L) m “F (W + €Ph)

Bf (wo + €Ph) B (wo + €Ph)
Bj(wo + €Ph) B (wo + €Ph)

>~ m (wo+ePh wo+ePh Ly-L
ST e ()
tq—t

1B (worterh) =5 (wo+erh) o ih(H55) gp,

(4.21)
In what follows: we consider the following

1. A source with transverse profile of the form

¢
Vo € [0,d], V(z)=> di(zo)di(x)
=1

where we assume that ¢ > N(wg). Then, 0; = ¢;(zo) for I € {1,...,(} and §; = 0 for
[ > ¢ + 1. This profile is an approximation of a Dirac distribution at zg, which models
a point source at xg.

2. A time-reversal mirror of the form Dy, = [dy, d2] with
dy = dpr + MM dy and dy = dyy — NyMdy,

where dy; € (0,d), (d2,d;) € (0,400)?, and ap; € [0,1]. The time-reversal coupling
matrix is given by

M = d> ; d [cos ((] —1) <d22tid1> 77) sinc ((] —1) <d22_dd1> 77)
— Cos ((] +1) <d22—;d1> 7T) sinc ((] +1) <d22_dd1> 7'(‘)] :

The parameter ajs represents the order of the magnitude of the size of the mirror with
respect to the carrier wavelength \g = 2wc/wp. In fact, we shall see that the size of the
mirror plays a role in the homogeneous case only when it is of the order the carrier
wavelength Ag.
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Moreover, we shall study the spatial profile of the refocused wave in the high-frequency
regime wy /" +00. However, we know that the main focal spot must be of order \g, which
tends to 0 in this continuum limit. Therefore, we shall study the spatial profile in a window
of size Ay centered around the source location z.

4.4.3 Homogeneous Waveguide

Here we examine the homogeneous case, that is, the case in which the section [0, L/e!~%] has
homogeneous parameters K /e2*5 and p/e®. In these conditions we have T5(w, 2) = dji.
We recall that the continuum limit N(wg) > 1 is achieved in the high frequency regime
wo /" 400 and the carrier wavelength is given by A\g = 2mw¢/wy.

Proposition 4.2 The refocused field is given by

. w5 e 1 13 7«
l%e P prR (6 + 61,7517:0) = HIOM(W0737>f(_t)7
where N(wn)
e 1 = B'(WO)
HzoM(w(bx) = 5 ]2 ]j(wo) ij¢j($0)¢j($)

For apy €10, 1), the transverse profile of the refocused wave in the continuum limit is given by

lim Ay~ M HZM (wo, 2o + AoT) = dz + du

wop—+00 d

HY(z),

where

1
HY (3) = / V1 —u?cos (2rzu) du. (4.22)
0
Proof First, we have Vp € (0,1) and Va € (0, 1]
Bj(wo)Bm(wo)

k(wo)

Second, we will fix the parameters p and « in order to give, for illustration, a simpler
proof. Let p = 1/2 and o = 1/6. These two values allow us to have a not too long truncated
expansion (4.24); then the refocused field is given by the deterministic expression, for ¢ < 1,

1 S
lim ETXT;*(wO + ePh) TS (wo + €Ph) = 4

(4.23)

N(wo)

Lot U Bawe) i (5
PTR ( -t 61/273370> ~ 2jmzl k(o) Mipj0jpm(x)e
o 1B (w0) =05 (w0)) 5 w0 575
2.2
1/6 13, 2 o mct L] 1
x f qe P (B(wo) = B5(wo))(Lar = L) +¢'/P(m?* = j )wng 20] /2 _t> ’
since
€ 1/2 € 1/2 L = € < L
(ﬁm(wo +e/7h) — Bj(wo + € h)) Ta (ﬂm(wo) - ﬁj(‘ﬂ))) 5/6
) 5 o (4.24)
ho mec® L +o(1)
+ 20( J )w2d2 (/6 O
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Finally, the transverse profile is given by

d - 1 & Tk j
— D‘MHO‘M w0, To + Ao) 1 — == cos <27ri)
dy+dy° (0,20 + 20 ]2 N? N

A N
20;% )cos (32 2m0+)\0w))

d Al ay N ﬁ( )
_J2+d1 2 Z ( )

j:l
X COS <j7r <d2 + dl)) sin (j7r (d2 _ dl))
d d

Using the Abel transform, the second and the third sums on the right are O(1). This completes
the proof of the Proposition. l

¢j(w0)¢j (w0 + Ao)

+o(1).

To finish this section, we consider the difference between the previous profile (obtained in
the case where the homogeneous section [0, L/ ~?], with the parameters K /€25 and p/e>*»,
is present) and the one in which this homogeneous section is missing (that is, the waveguide is
homogeneous with parameters K and p). The second profile is given, in [25, Chapter 20], by

N(wo)
Hmaojfilo section(wo’ Z Mj]¢] ."L‘(])qu( )
7=1

which we can rewrite in the continuum limit N(wq) > 1.

Proposition 4.3 For ays € [0,1), the spatial profile in the continuum limit is given by

Cig + dl
d

1—apn prom -\
WOE)IEOO >\ H:co no section (o.)(), o + )\0(17) =

sinc(27z); (4.25)

where the sinc function is defined by sinc(v) = sin(v) /v.

The formula (4.25) corresponds to the classical diffraction limit with a focal spot of radius
Ao/2. In Figure 4.3, we compare, in the homogeneous case, the spatial profile (4.22) in the
case where the homogeneous section [0, L/e!~9] is present with the profile (4.25), where this
section is missing. We can see that the main focal spot, in the case where a section is inserted,
is larger than the focal spot produced when this section is missing (see Figure 4.5). The use
of this section does not improve the refocusing in the homogeneous case. It is necessary to
use an inhomogeneous section to induce mode coupling in order to enhance refocusing, as we
shall see in the next section.

4.4.4 Mean Refocused Field in the Random Case

Taking the expectation of (4.21), we obtain the mean refocused wave

o ty—t t Nlwote?h) Nelwot éh) ¢ ﬁl wo + 6ph)ﬁm(w0 + fph)
sl ()] - 8 S
< E [ “(wo + €h, L)T,,, (wo + €Ph, L)] Mqubl(wo)%(rv)?h)

(B (o)~ (wnrer)) (A5

1 -
x —75F (wo + ePh)7i T (wo + €l h)e
€

i Bin (wotePh) =G5 (woter ) =z Lih(455) g7,
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amplitude (a.u)

,_.
o

w
.

Figure 4.3: Normalized transverse profiles in the homogeneous waveguide in the case where
ap € [0,1). The dashed curve is the transverse profile in the case where the section is missing

sinc(27Z) and the solid curve is the refocusing profile H(M)(Z) in the case where we add a
homogeneous section.

We shall establish the convergence of the mean refocused wave in the topological dual space
&' equipped with the weak topology, with & = Uj;>1 Em and where

J=1

M
gM:{ZNj¢j’ (1) GRM}

Ewm is equipped with the topology induced by (.,.) 12(0.d) and £ with the inductive limit
topology. This topology is a the same as the one tused in Proposition 3.12 and Proposition
3.14. Consequently, It suffices to study (E[e"°epS (4 + E%,.,O)},qb@p(o’d) for n € N*.

Using Proposition 4.1, we get
t t
1 + 7'50>:| a¢n>
eP L2(0,d)

Tj<wO, L)M;jdi(x0) f(—1) 3 + O(NZe L)

lim lim <IE { w ePpTR

(—+o0e—0
(wo
Z

f(=t )H;“OM (wo, )i bn) 200 T ONZe M),

/_\

l\DM—\

\\/M

~

where the transverse profile is given by

1

H;:XOM(W()?J;) = 52 Z

k(w ) C T (wo, L)M;¢1(x)i(wo)-
In the continuum limit, the terms which correspond to j # m decay exponentially because of
the damping term e~ since A ~ N20?/2.

Proposition 4.4 For a)s € [0,1], in the continuum limit N(wg) > 1, we have

lim (Hg (wo, ) — HEY (wo, ) =0

wo—-+00
in £, where

lim )\1 aMHaM (WO To + )\01’)
wp—-+00
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with
i . 1
H® (% L) = 67332/’”31%[(1)(:13) = e /e / V1 —u?cos (2niu) du, (4.26)
0

and
1 d a

- oV 2L - n2 2LS(1,1)'

From this proposition, in contrast with Proposition 4.2 which considers a homogeneous
waveguide, the time-reversal coupling matrix does not play any role in the transverse profile
of the mean refocused wave. This result is consistent with those obtained in [25, 30] and
those of Section 3.4.7.

(4.27)

Tc

Proof Let n € N*; we have

: e 1 al Bj(WO) n
CET@O <Hx0]u (W(]a ')’¢n>L2(0,d) = 2¢n(x0); k(WO) M]j,]; (LUO,L).
Using the probabilistic interpretation of 7;"(wo, L) in Section 4.3, we get
N 2
Bj(wo) dy — dy X1 Xy n
M T (wo, L) = E[\/1- ) 1 fo_1n
2 ) M 2 N) H(apefd o)) N TN

1 Bj(wo) . dy +dy . dy—dy
_ 2 T(w. L ~
2 2 h(wo) (wo, L) cos (j7r 7 > sin (]w 7 )

+o(1).

Moreover, using Theorem 4.2

E [ 1 (?)21<§Le{]{,1}) % = ;\Lf] =E [\/1 — (O’BL + ;)21(03L+}36[—1,1])]

+o(1),

and we have the following result.

Lemma 4.1

N
. B;(wo) —+n Cdo+dy\ . (. do—dy
NIBEOO]E:l jﬂk(wg)IZ} (wo, L) cos (377 p ) sin (]7[‘ ) =0.

Proof It suffices to show that

N
lim Z Bilwo) 7" (wo, L) = 0.

N—>—i—ooj:1 jﬂ'k(u)()) J
Let n € (0,1); we have
N
5j(w0) (XL { 1 [NT]]} X() n)
I\F0) gn L)<P(ZL SR I G e
;jwk(wg) Pen b <B( e gy v =y
1 N
+ > P(Xp=j|Xo=n).
[N] +1 J=INn]+1
Therefore,
i 3 i)

and we get the result by letting n ™\, 0.0J
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This lemma shows that the time-reversal coupling matrix does not play any role in the
transverse profile of the mean refocused wave. Consequently,

wolirioo <H£40M (wo, ) — HE‘OM (w07 ) ¢R>L2 (0,d) =0,

where

HaM (wo, x)

l 2
\/1 — (O’BL + N) 1(0’BL+%€[7171]) ¢l($0)¢l($)

>1

Lemma 4.2 In the continuum limit N(wo) > 1, we have

dy+d 2 1
)\1 O‘MHO‘M (wo, o + AoZ) = %6_2&72”2362 / V1 —wu?cos (2miu) du
0

Proof The proof is an application of the Poisson formula,

Z F(m)e"™ = 2r Z F,(v+ 2mm),
meEZ mez

. EN _(m=Nuw)? N pP) 2772 02 ; .
with F,(m) = e 28%a%z and F,(t) = %e*t N2&-L+itNu  Thys we obtain

d
do — dy

I:[goM (w(), xo + )\oi')

Z N2" Z Xo@+2l) / V1 — u2 cos K AoZ + 2l7r> Nu} du

lEZ

_ Z NQU L(% (Noi+2wo)+2Im) / V1 —u2cos K (Ao + 2x0) + 2l7r> Nu] du.

lEZ

Finally, we take only the term [ = 0 in the first sum on the right because the rest of the
first sum and the second sum are of order O(e=¢N 2) uniformly in . Moreover, we have
lim,, A oN/(2d) =1. O

This last result completes the proof of Proposition 4.4. B

In Figure 4.4, we illustrate the differences between the transverse profiles of the refocused
wave in the homogeneous case and when a random section is inserted. In order to show
that random inhomogeneities enhance refocusing of the time-reversed waves, we consider two
configurations. (a) illustrates the case where o < 1 (weak fluctuations). We can see that the
focal spot in the case where we add a section can be larger than in the case where this section
is missing. In contrast, (b) illustrates the case where o is large enough to have side-lobe
suppression and a focal spot which is narrower than in the case where the random section is
missing. In figure 4.5, we illustrate the improvement of resolution with respect to ¢ by using
the FWHM, that is the full width at half maximum, which is a useful tool for studying the
width of peaks. In the case where the random perturbed section is missing, the FWHM of
the transverse profile given in Proposition 4.3, is of order \y/2. However, when this section is
inserted the FWHM of the transverse profile, given in Proposition 4.4 is narrower than in the
previous case for o large enough. Consequently, if o is large enough, the resolution is < \y/2.
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amplitude (a.u)
amplitude (a.un)
o
bl

Figure 4.4: Normalized transverse profiles in a random waveguide. Here L = 1. In (a) and (b)
we illustrate the case where aps € [0,1). The dashed curves are the transverse profiles in the
case where the section is missing sinc(27%), and the solid curves are the transverse profiles
H®)(Z, L) in the case where we add a random section, with o = 0.5 in (a), and ¢ = 7 in (b).

)

)

<]
Y
P R

<)
N}
P B

FWHM(H(2,L))

o
S

Figure 4.5: Ratio between the FWHM of the profile H®) (%, L) obtained when we add a
random section and that of the profile obtained when this section is missing sinc(27%), in
terms of the standard deviation ¢. Here L = 1. The solid curve represents the case where
apr € [0,1), and the dashed curve represents the case where apy = 1.
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4.4.5 Statistical Stability

Pulse stabilization is proved by a frequency decoherence argument, see [18] in the context of
a one-dimensional medium and [25, Chapter 20] in the context of waveguides. In our case, to
prove the self-averaging property, we study the second order moment of the refocused wave
w0 p DPTR (% + Eip, z,0). As in section 4.5.1, we prove a limit theorem for

(Tel (w + €Ph, )T€n(w + 6ph) ')T.el’ (w + Ephla )Ten’ (w + eph/v ))e

and show that, Vp € (0,1) and a € (07 % A %)7

E[ S(w + Ph, )Ty, (w + €h, )Ty (w + €, )Ty, (w + PR, )}

m'n’

=B [ (w4 ePh, L)T, (w + €Ph, L)} E [Tjw (W + R L) TSy (w + ePl/, L)}
+0 (/2120

VK > 1 and Y(j,l,m,n,j,l',m',n') € {1,..., K}*. Consequently, we have Yy € £

l%E[Kem%”p?R(% + Eip’ " 0) ’ ¢>L2(0,d)’z]

= 11_{% ‘EKeine%peTR(% + 6%7 L 0)’@>L2(O,d)] ’2‘

4.4.6 Quarter Wavelength Plate

In this section, we explain how the transmission coefficients through the interface z = L/e! =
can be made of order one. We have seen that the previous transmission coefficients, defined
by (4.14), are particularly small, of order €*/2. This poor transmission can be corrected by
inserting a quarter wavelength plate. A description of this antireflective process can be found
in [25, Chapter 3]. This method is often used in echographic imaging; it consists in adding a
thin layer to enhance the transmission through an interface with the minimum loss of energy.
In our situation, we will obtain a transmission of order one when it was of order €*/2 without
this method. Here, we consider a source that emits a pulse of the form

Fo(1) = (et

Note that we no longer need the factor 1/¢“ as in (4.2) in order to get a refocused signal
of order one. The medium parameters of this thin homogeneous layer located in the region
(L/el=, LE) are given by

7] K L
P and K(z,2) = — Y(x,2) € (0,d) x (L/e'™*, LS) with L = +eo‘/2%.

€%p €OK elfa

Pz, 2) =

In the section (L/e'=% L¢), the modal wavenumbers are

zeo oy (K)o k(w)d
=y [

From the continuity of the pressure and velocity fields, the transmission coefficients of the
layer become

0,€ 1, i8¢ (w)(LE—L /el =)
T ()T ()

€
7.7+w_

L L R ()R (w) P
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with

’ B5(w) + B5(w) ’ Bj(w) + B5(w)
0,€e o M 1,6 — je(w) - /BJ (w)
B = o T By B = o T @)

where T]Q’6 and R?’6 (resp., le’e and lef) are the transmission and reflection coefficients
of the interface between the sections (0, L/e!~%) and (L/e'=% L) (resp., (L/e! =%, L) and
(LS, Ly /€t7%)). Consequently, the refocused wave is given by

(wo+€Ph) Ne(wo+€ePh
e PTR (t x 0) / OE: (i: )Z Bf (wo + €7h) B (wo + €Ph)
167T n=1 5] wo + Eph’)ﬁn(wo + eph)
x Ty (w + ﬁph, L)T;,, (w+€h L)m &+ (wy + €Ph)

)

= i(Bm(wo+ePh)—B;(wo+ePh)) ( F2L—
X Mimjgi(x0)Pn () f(h)e ’ 3{o ( T

1B (worteh) =B (wo+eh')) ok ih (45

e ) dn'dh.

(4.28)

Note that the only difference between (4.21) and (4.28) is the expression for the product of

transmission coeflicients 7; ’+( )75 T (w). The limit as € — 0 of this product is (4.23) in the
absence of quarter Wavelength plate. In the presence of the quarter wavelength plate, it is
given by

Bj(wo)Bm(wo) 1

Kol (Bey+1) (s +1)

lin’(l] T;’+ (wo + €?h) TS (wo + €Ph) = 4

From this result, we can analyze the mean refocused wave and see that the statistical stability
is not affected. The homogeneous spatial profile, with ap; = 1, becomes

1 .
5 Z ﬂj w0) 5 Mmjdj(x0)dj(xo + AoT),
BJ(WO)

Ho) (e )

and in the case where aps € [0,1), we have in the continuum limit N(wg) > 1
[ o=

O (14 Vi)

5 cos (2mTu) du.

In the random case, the expression of the mean refocused field (4.26) becomes

- 1 1 — 2
e 2/7"3/ Y 5 cos (2mTu) du
O (14 Vi)

in the continuum limit N(wp) > 1, where r. is defined by (4.27).

To summarize, random inhomogeneities in the section (0, L/e!~®) ensure a conversion
between low and high modes, and the quarter wavelength plate (L/e!™% L¢) ensures an
efficient transmission from the perturbed section (0, L/¢!=%) to the homogeneous medium

(sz LM/€17Q>'
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Conclusion

In this chapter we have analyzed a time-reversal experiment in a homogeneous waveguide in
which a heterogeneous section is inserted in the vicinity of the source. The role played by
these inhomogeneities is quite different from the regime studied in [30] or in Chapter 3, in
which the random fluctuations are weak and distributed throughout the waveguide. In the
latter case, randomness can enhance spatial refocusing up to the usual diffraction limit. But
in our configuration, the random section permits us to refocus beyond this diffraction limit,
and this effect is statistically stable in that it does not depend on the particular realization
of the random section. The role of this random section is to ensure a strong conversion
between low modes (that can propagate over large distances) and high modes (that carry
the information about the small-scale features of the source). The insertion of a quarter
wavelength plate completes the experimental set-up. It ensures an efficient transmission from
the random section to the homogeneous one. It could be possible to build other experimental
configurations (with a rough surface, for instance) in order to achieve super-resolution. The
important ingredient is that a time-reversible mechanism should convert high modes to low
(propagating) modes in the vicinity of the source.

4.5 Appendix

4.5.1 Proof of Theorem 4.1

The proof of this theorem follows the ideas of the proof of Theorem 2.1, which is based on a mar-
tingale approach using the perturbed-test-function method. First, using a particular tightness
criteria, we shall prove the tightness of the family (U(w,.))ce(0,1) on C([0, +00), (B, ds,,))-
In a second part, we shall characterize all subsequence limits as being solutions of a martingale
problem in a Hilbert space, and using the stochastic calculus in infinite-dimensional Hilbert
spaces we will see that this martingale problem is well posed.

From the definition of the metric dg,,, we can use the tightness criteria of Theorem 2.10
page 67, which was already used in the proof of Theorem 2.1.

For any A € H, we set U§(w, z) = (U%(w, 2), A),, According to Theorem 2.10, the family
(U(w, .))e is tight on C([0,4+00), (B, ds,,)) if and only if the family (US(w,.))c is tight on
C([0,+00),C) VA € H. Furthermore, ||[U(w,2)||x =1 Vz > 0,Ve € (0,1), and (U (w,.)). is
a family of continuous processes. Then, it is sufficient to prove that (U§(w,.)), is tight in
D([0,+00),C) VA in a dense subset of H. Let &y be the subspace of sequences with finite
support equipped with the induced inner product. We have chosen £y for two reasons. First,
Ex is a dense subset of H. Second, thanks to the band-limiting idealization, it allows one to
avoid in (4.12) the unboundedness of N,(w) and the fact that €35(w) goes to 0 for j of order
Ne(w) when € goes to 0.

As in the proof of Theorem 2.1, we consider the complex case for more convenient
manipulations. Letting A € £y, we consider the equation

d € _ 1 € € E E
%U)\(w7t) - \/EFA <U (wat)ac (6) ) €> )

where
2 Ne(w)
Fe (U,C, S) :_Zk (w) CJQ zea(ﬁjf—ﬁ;)qum

2 A e85
Ne(w

i) " & Oy ie(B5 =65 )57

2 (0% € € Je

q=1 € ﬂm q
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The proof of this theorem is based on the perturbed-test-function approach. Using the
notion of a pseudogenerator recalled in Section 2.6.2, we prove tightness and characterize all
subsequence limits.

Tightness

We shall consider the classical complex derivative with the following notation: If v = a + i0,
then 0, = 3 (9o — i03) and 05 = 1 (9 + 10p).
Proposition 4.5 VA € &, the family (U\(w,.))c(,1) i tight in D ([0, +00),C).

Proof (of Proposition 4.5) According to Theorem 4 in [41], we need to show the following
three lemmas. Let A € &, f be a smooth function, and f§(t) = f (U§(w,?)). Thus,

ASfS(t) = : O f (Ui\(w, 1)) Fy <U6(w’t)’c (i) ’Z)
t

Ve

i 28# (U3 75 (U0 (1) . ).

Let

Fi) f R R (v o (2).2)] o w30 du
+ 7 /:OO R [F§ (Ue(w,t),C’ <6> , Z)] Oo f (US (w, 1)) du.

Lemma 4.3 VT > 0, lim,supy<,;<7|f{(t)] = 0 almost surely, and sup;~o E[| f{(t)[]] = O (Ve).

Proof (of Lemma 4.3) Using the Markov property of the Gaussian field, we get

Cj (E) e (B5—pc) L
fi(t) = Ved, f (U (w,t) [Z— Z 39 le) e (B5—Bg) e
lg—gl<1 ea\/%

a+ 1€ (ﬁ€ - B3)

X U€ m
( ) 2+€2a(ﬁe ﬁ;)2 J
Z’k? Cmq (i) e (e pe )L a+ie@( € _ fn) J—
s il e Bt (w, ) e Dml
2 e e [Be s T a? €26y - A1)

+ Vedsf (U (w, 1) [Zm T Chale) ie(az—s0)-
e i)
a2+€2a(ﬁe _ﬁ;)z Jm
il Crmg (€) iea(e,—pe) i @+ € (B — )
__ M4 e/ e (Bm—Bg) e Ut w,t m q Aipn
2 |‘1%<1 EOé\/ﬁﬁé jq( )a2—}—520<(576n_l32)2 J

Using (2.54) page 65, we obtain

—_ 1

E[Ifi®)]] < VeK(f, A).

V(2)

For the first part, we get

|fit)] < K(X, f)ve sup sup

0<t<T 2€[0,d]

and we conclude with (2.55) page 66.0
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Lemma 4.4 {A°(f§+ f7)(t),e € (0,1),0 <t < T} is uniformly integrable.

Proof (of Lemma 4.4) After a computation, we get

. t t t
A (f5+ £5) (1) = (U (@0, (G5 (5) Cmn (£)) )
€ € ilmm €
where
F§(U,C,s) = 0,f(U)Fy(U,C,s) + 05 f(U)Fy (U, C, s)
+02f(U)Fy“(U, C,5) + 22f(U)FY(U, C, )
+ 050, f (U)FY*(U, C, 5) + 0,05 (U)Fy (U, C, 5),
with
FyY(U,C, s)
N . € €
_ 7142 S G sy, Z“za(ﬁj— q)2
4 im | q,q'=1 2« ﬁ;ﬁ;ﬁ;ﬁ;/ ac+e a(lgj (;)
Cjgmg a(ﬁj—ﬁ,§+ﬁg,—ﬁﬁm)sU a+ ie&(ﬁ; - 5;)
aq 2 200( A€ €\2
2 /35 BB B a® + e (B — B35)
qu mg e (B 405 -Bsyy 0+ i€ (GG — B)
aq 2 20 ( e € \2
B384 B ﬁf a? + e2*(8g — Br,)
Crgaq’ e (B, —Bm)s - a + ie*( 2_ ) | —
,Bﬁnﬁéﬁgﬁ;/ Jq a2 _|_€2a(/62 ;n)Q ]y
FY4(U, C, s)
k4 Ne C.iry e (36— a i€ (B — B¢
= Z Z _ Jjaj'a e (B5—Bg+85, -5, )ququ = Za(ﬂi ﬂz)z
i L @/B58:556; + (55 — 59)
j ,m
C m! €X(BE— 3¢ € _3€ Vs a+l @
jam'q (85 —Bg+85,—B;,1) Uy Uiy — Ea( 5)
e B85 5y, 56 a? + €2 (35 — B5)?
C m € (3€, — 3¢ €3¢ \g _|_ @
j'a'mq i€ (85, =B, +85—B5) U;uUym (21 z;( Br)
55 85 Bra 56 + e2%(Bg — B5,)?
Cmm” € (3€—3€ € _3¢ Vs _|_'a € €
— g e (ﬂq 6m+ﬂq/ Bml) quUj/q/ 621 Z;a(ﬁe /86 ) )\JmA] m’s
5&555&/5;/ a” +e (ﬁ — 35,)?
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k4 Ne

3 Cja'e i (35-B-85+8)sy g OT ie* (65 — B87)
a qnqm’ 5 5 — 2e\2
e o 05 By a? + (05 — )
Cigm'q’ ie (95050, +05,0 g 15— BY)

Bede b5 I 2 4 (55— Be)?
ﬂjﬂqﬁm’ﬁq’ J q
Cjrg'mq i (=5 +0, 48Py g O i€ (85 — B

€ 3€ e ee g gm' a2 + €2a(ﬁe _ ﬂe )2
/Bj/ﬂq/ﬂmﬂq q m

Crgm'¢’ S BB —By 85,05 . T a+ie (35 — B5,)
ﬁfnﬁ;ﬂﬁn/ﬁ;/ Jja™~j'q a2+€2°‘(5§—5fn)2

)\jm)\j/m/

From this expression, using (2.54) page 65, we can check that sup, , E[ | A (f§ + ff) ] <
+o0. O

Lemma 4.5

lim TimP US(w,t)| > K | =0.
i (&%' el )

Proof (of Lemma 4.5) We have

[US(w, 8)] = < (1Al

> U@, ) Ajm

Jmz=1

O
This last lemma completes the proof Proposition 4.5. B

Martingale problem

In this section, using a well-posed martingale problem, we characterize all subsequence limits.
In what follows, we consider a converging subsequence of (U(w, .))cc(0,1) Which converges to
a limit U(w, .). For the sake of simplicity we denote by (U(w,.))cc(0,1) the subsequence.

Convergence Result

Proposition 4.6 VA € &y and Vf smooth test function,

F(Uxr(w,1)) /8f Ui(w,)) (J(U(w,s)), Ay + 05 f (Ux(w, 5)) (J(U(w, 5)), A)y

+05f (Un(w, 8)) (K (U(w, 5)) (A), Ny + 92 (Un(w, 8)) (K (U(w, 5)) (A), A)y
+050, f (Ur(w, 8)) (L (U(w, 5)) (A), Mgy + 0005 f (Ua(w, 5)) (L (U(w, 5)) (A); A)pds

178



Chapter 4 Section 4.5.1

is a martingale, where
[(Ujt15410jm — Ujm) + (Uj—1j-10jm — Ujm)]
[Ujm1m ((Uj—1, Aj)y — (Uj, Aj1)y )

+ Ujsim ((Ujt1, Aj)y — (Uj Ajga)y )]
[Ujm—l( (Um—lv /\m>1 - <Um, >\m—1>2)

+ Ujma1 (U1, Amd i = (U, Amt1)s)],
[Ujm1m ((Uj—1, Ay — (U, Aj-1),)

+ Ujiim (U1, Ay = (U Aja))]
[Ujm-1((Um-1,Am)s = (Um, Am—1)1)

+ Ujint1 (U1, Am)a = (Un,y Amt)y)]

N >

LU)(N)jm =

_|_

No| >

with
<)\j7/~Lj>1 = Z Ajmma <)\m,ﬂm>2 = Z /\jmm
m>1 j>1
Vi,m > 1, and for (U, \,u) € H x Ey X Ex.

Proof (of Proposition 4.6) Let

s = [ 5B (0 (en(£) o (2)),,., 2]

— F§ (Ue(w,t), (E[C51(0)Crnn (0)]) ;1 1 u) .

€

Lemma 4.6
supE [[f5(2)[] = O (¢)
t>0

and

A S+ 15+ 55 0 = B (U530, (56 — Lom = )10, ) + Alest),
where sup0 E [[A(e, )] = O(/0)

Proof (of Lemma 4.6) A change of variable gives

+oo ~ t t t
s =c | [FA (U%w,m (o (w2 G (u+3))  ut )
0 6 E j’l7m7n 6

_ <U5(w,t), (E[C}1(0)Can (0)])
= eB(e, t).

t
u+)du
€

Jbm,n?

By a computation, we can check that sup ;~oE[|B(e, )] < 4+o00. The second part of this
lemma follows a long but straightforward computation. [

We consider G5 (U*(w, t), ) = F5(U(w,t), (S(j —,m — n)) ) and let

j7l7m7n’ €

t 1 (T .
f5(t) = _/0 [Gf\(Ue(w,t),%) _TETOOT/O G5 (U (w,t), s)ds]du.
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Lemma 4.7 We have
supE [ f5(1)]] = O(¢'2%).
t>0

Then, we need to have o € (0,1/2).

Proof (of Lemma 4.7) After a change of variable, we get

t

r ~ T _
() = —6/05 la; (U(w, t),u) — _lim ;/0 G5 (U (w, 1), 5) ds] du,

T—+o0
and t
“|és € i LT e € K
szlepE /0 G (U (w,t),u) _TETOOT A GS (U (w,t),s)ds| du|| < o
O

Let fe(t) = f5(t) + fi(t) + f5(t) + f5(t). With the boundness condition (2.54) page 65, a
computation gives

T
A1) :TEIEOO;/O S (U(w, 1), 5) ds + C(e,£).

We assume that the following nondegeneracy condition holds. Ve € (0, 1), the wavenumbers
B5(w) = Bj(w/e*) are distinct along with their sums and differences. Consequently, we get

ASF(t) = 0uf (U (w, 1)) (J(U(w, 1)), A
+ O (Ui (w, 1)) (J(U(w,1)), A
+ 03 (U (w, 1)) (K (U(w, 1)) (A), A)yq
+02f (Us(w, 1)) (K (U(w, 1)) (X), \)yq (4.29)
+ 050, f (Uj(w, 1)) (L (U (w, 1)) (A), A
+ 005 f (Uy(w, 1)) (L (U (w, 1)) (A), Ay
+ C(e,t),

where sup;~o E[|C(e,1)|] = (’)(e%_%‘). Then, we need to have a € (0,1/4). By Theorem 2.11
page 73, (MF.(t)),, is an (Ff)-martingale; this implies that for every bounded continuous
function h, every sequence 0 < sy < --- < 5, < s < t, and every family (Aj)jeqi,...ny we have

E [h (US, (@.57). 1 < j <n) (ff(t) ~pe(s) — /: Aefe(u)du)] — 0.

Finally, using (4.29) and (4.11) with lemmas 4.3, 4.6, and 4.7, we get the announced result of
Proposition 4.6. B

Uniqueness To show uniqueness, we decompose U(w,.) into real and imaginary parts.
Then let us consider the new process

1
Y(w,t) = gggzgl . where Y!(w, 1) = Re (U(w, 1)) and Y2(w, ) = Im (U(w,1)) .

Let G = [2 (E,R). G x G is endowed with the inner product defined by

<T7 S)gxg = Z lems}m + T?mS?m
Jjm=>1
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V(T,S) € G x G. We also use the notation Y(w,t) = (Y(w,?),\) with A € G x G. We
introduce the operator ¢ on G x G given by

p:GxG—GxG,

T! T?
Let f be a smooth function on R. By Proposition 4.6, we get the following result.

Proposition 4.7 VA € &g,

F YA 0) = [ X (0,9 Mg f (¥l 5)
5 (A (0,9) W), Nigg £ (Ya(, ) ds

is a martingale, where

ACY)N)jm = Q[Ymm[wm,m Y N (Y1 A — (Y5 A1), ]

+Y, lm“ Jj— 1, A <Y],)\] 1> <YJ 15 > <Y ) ]

+ij+1[< m+1, <Yma)‘m+1> +< m+1a >2 <Yma)\m+1>1]

+Y]m 1[<Ym 1, <Yma)\m 1> +< m— 1, >2 <Yma>\ 1>1]
Y)J+1m[<@(Y )j+1: A1 = (L) Aja)g — (@(Y)j41, Ay + (0(Y)j, Ajn), |
+@(Y)j—1m [ (p(Y)j-1, 2501 — (2(Y)j Aj—1)y — (@(Y)j=1, Ay + (0(Y);, Aj—1), |
+ @(Y)jms1 [{(6(YV)mr1: Am)a — (0(YV )i, Amt1)1 — (0¥ )mt1s Am)y + (0(Y )y Amt1)s ]
+ oY) jm—1[{(6(Y)m—1, Am)s — (6(Y)ms Am—1)1 — (0(Y)m—1, A >1—<w(Y)m,Am—1>2H

for (Y,\) € (G x G)%.
Proof (of Proposition 4.7) By Proposition 4.6,
t
F @) = [ TX@,5)Ngg £ (Yaleo,s)
1 "
+5Re (L + K) (Uw,5)) (A), A)gg) £ (Ya(w, 5)) ds
is a martingale, where we also have denoted by A the sequence A\' 4+ iA\?. In addition,

Re((U(w, )3, 7)) = (Y(w,8)5,A5) and Im((U(w,1);,45)) = (o (Y(@, 1)), A),
and we get Re (((L + K) (U(w, 5)) (A), \)g) = (A(Y(w,5)) (A); N)gyg- B
From this last proposition, for f(z) = x and f(z) = 22, we get that
(M(t),N) g, = Ma(t) = <Y(w,t) —/0 J(Y(w,s))ds,)\>gxg

is a continuous martingale with quadratic variation given by

< My> () = /Ot (A(Y (w,8)) (), N g g .
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Proposition 4.8 Vf € CZ(G x G),

_ /0 LAY (w,5))ds (4.30)

is a continuous martingale, where VY € G X G

1
Lf(Y) = Strace (AY)D2F(Y)) + (J(Y), DF(Y))gg -
Moreover, the martingale problem associated to the generator L is well posed.

Proof (of Proposition 4.8) We begin with the following lemma.

Lemma 4.8

A:gxg—>L1+(g><g),

J:GxG—Gxg,
where LT (G x G) is a set of nonnegative operators with finite trace. We have, VY € G x G,
A(Y) =0*(Y) oo (Y) with

0:GxG— La(G xG),

where Lo(G x G) is the set of Hilbert-Schmidt operators on G X G, o* is the adjoint operator
of o, and

o (Y)(N)jm = \/5( (Y1, A1 + (Y1, Ag)y — (Y5, Aj)y — (Y, >\j+1>2)5j+1mv
o (Y)(N)jm =

A

5 (L)1 )1 = ()1, M)z + ()5 Ay = (0(¥)1, Ajia) ) O1m.

Proof V(Y, )\, 1) € (G x G)3, we have
(AY)(N), i) gwg = %Z (Y1, A7)y + (Y1, Ay — (Y5 Ajn)y — (Y5, Aj41)0)
i>1
x ((Y J+17NJ + (Y1, 1150 — (Y5 1)y — (Y5 jt1),)
+ ((p(Y)jt1, A i1 — (e(Y)j+1, Aj)g + (0(Y)j5 Aj1)y — <¢(Y)j7)‘j+1>2)
X ({e(Y)ju1, 1501 = {L(Y) i1, 150 + (0 (V)5 1)y — (0(Y)j 1j41)5)
<0( JA), o (Y) (1)) gxg -

Let ( ]l)n 1,2 be the family of elements in G x G defined by

]l>
9 0
L %1 2 —
€1 [0] and e [53'1] .

This family defines a basis of G x G and VY € G x G,

trace(A(Y)) = Y (AY)(h),efgg = D lo(Y)(h)llgxg < 16]Y G-

n=12 n=1,2
Jii=1 j,lzl
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From this lemma and following the proof of Theorem 4.1.4 in [63], (4.30) is a martingale.
In fact, the key point is that the process Y (w,.) takes its values in Bgyxg. Moreover, by
Theorem 3.2.2 and 4.4.1 in [63], the martingale problem is well posed since o is linear in x
and VY € G x G

le ()= lle* ()] < 4l[Yllgxg-

That concludes the proof of Proposition 4.7.1

At this point, we cannot assert that Y (w,.) is uniquely determined. In fact, we need to
know if its law is supported by C(]0, +00), (G x G, ||.|lgxg)). Let

Sgug = {2 €G % G, | Algxg = /(X Ngrg =1}

Proposition 4.9 The law of the continuous process (Y (w,t))i>0 is support by the space
C([0, 4+00), (Sgxg: |l-llgxg)), and more generally by C(]0,+0), (G x G, ||.llgxg))- Consequently,
(Y(w,t))i>0 is uniquely characterised as being the unique solution of the martingale problem
assoctated to the generator L.

Proof (M(t)):>0 is a bounded weakly-continuous martingale with values in G x G. Fur-
thermore, from the following proposition, (M (t)):>¢ is also a bounded strongly-continuous
martingale with values in G x G.

Proposition 4.10 Let (M]")i>0 be a sequence of continuous (Fy)-martingale with values in
a separable banach space B. Assuming that

Jlim E[[M - MiB] = 0.

Then, (My)i>o is an Fy-martingale, almost surely continuous.

Consequently, we can use the representation theorem, Theorem 4.3.5 in [63]. Then, there
exists a cylindrical Brownian motion (By);>0 defined on G x G such that

t ¢
Y (w,t) =Y (w,0) —I—/ J(Y(w,s))ds—l—/ " (Y(w,s))dBs. (4.31)
0 0
Using the Ito’s formula given by Theorem 3.1.3 in [63], we get that

1Y (w,8)llgxg =1, Vvt =0.

Then, the process (Y (w, t))¢>0 is strongly-continunous with values in Bgxg, and more generally
mgxg.

Using (4.31) and the definition of the last integral, we have

(e, /Ota*<Y<w,s>>st>ng = [[{ot¥ .9, dB),
= 3 [ ot el ), ()

0=1,2
r,s>1

By Theorem 3.2.2 in [35], (B¢)t>0 can be decomposed as follows:

By(h) = Y (el h)g oBh(t), YheGxg
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with ( )77 1,2 a family of independent one-dimensional Brownian motions. Finally, a

3> 1
computation gives

dU(w,t) = dY (w,t) +idY*(w,t)
= J(U(w,1))dt + 1 (U(w, ))(dBy) + ¢2(U(w, 1)) (dB}),

From this equation, we can get the conservation relation:

|U(w,t)|l% =1, Vt>D0.

4.5.2 Proof of Theorem 4.2

The proof of this theorem follows closely the ideas developed in Theorem 2.4. In a first step,
we introduce a new process, it is an adapted version of the first one, which has a symmetric
state space about 0 and which is more convenient for manipulations. In a second step we shall
prove the tightness using Theorem 3 in [41]. Moreover, the size of the jumps are equal to 1/N.
Then, all accumulation points are supported by the set of continuous functions. Consequently,
the last step consists of adapting Lemma 11.1.1 and 11.1.3 in [59] to the Skorokhod topology.

We begin by introducing a new process. Let (Y;)i>0 be a jump Markov process on Z with
generator £ given by

Lo(j) = Mw)(o(G+ 1) + 00 —1) = 20(5)), j#0,
Lp(0) = (¢(1) + &(=1) = 26(0)), j=0.

One can check that, starting from the same point and V¢ > 0, X; and 1 + |Y;| have the same
law. In what follows, we will denote by in\E wy the law of the normalized process (Yt/N)i>o

starting from d(N) = (I(N) — 1)/N. According to Theorem 3 in [41], we will not directly
prove the tightness of the normalized process, but truncations of this process, and we will
be able to conclude thanks to an adapted version of Lemma 11.1.1 in [59] to the Skorokhod
topology on D([0,+00),R). We also introduce some notation. Let M = o(z(u),u > 0),
M =o(z(u),u <t), and

M0 = 5 (w) ~ F0) ~ [ £ als)is,

0

which is an (M;)-martingale under @fi\g y and where

200) = A [o (Lt ) +o (1) -2 (2)]. 20

o0 = 22 o () +o () ~200)]. =0

Tightness of (Qﬁ%)}v

Let M > 1, large enough to have supy d(N) < M, and 73y = inf (u > 0, |z(u )\ > M) We
denote by Qd M the law of (Yiary, /IN )0 starting from d(N). We remark that Qd(N Qd
on My, . It becomes easy to see that

> = 0.
i, 0 (g > ) =o
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Moreover, (M;V(t A Tar))e>0 is an (My)-martingale under (@S{N). Consequently, V 0 < s <,

Q) 2] _ 2@y [N N{on2
SO @) = 2(9))?] = B [(MPY(E) - MPy(s))?]
_ Q«]iV(N) N N
=Es [< MId inmy — < MId >8/\TM}
A
< Qﬁ(t = s),

QN,M
where E, *

[41], (Qg(w)) v is tight in D([0,+00), R).

is the conditional expectation under Q (N glven M. Thus, by Theorem 3 in

Convergence

We consider f a smooth function and (QQVN]Y)[) v @ converging subsequence to Qé\/f . Let

0<s<tand ® be a bounded continuous M -measurable function. We have
N M

0 QN’,M ,
E 2ann) [MN (t/\TM)(I)} — [ [MJJCV (S/\TM)(I)} : (4.32)

However, A(w) = % - NQO;’
w

: AN, [ [NV] a® _ AN 1o* ,
Ve el Wt | (%)% (U)‘_Oand W IO =57 1O

To correct the problem in v = 0, we have the following lemma.

5 vt -0 )

N
Proof E%u [fot 1((u)=0)du] is the mean time spent by ( L);>0 in the state 0. We denote
by (X¢)¢>0 the traffic of the M/M/1 queue with traffic rate p = 1. In addition to the Markov
property,

¢ t t t B

However, explicit expressions of the transition probabilities for this queue can be found in [6,
Theorem 8.5] . In our case,

Po(X; = 0) = e~ 2M (Iy(2At) + 11 (2A1))

Lemma 4.9

where Iy, is the modified Bessel function of order n, given by In(t) = >2t>¢ 57r A2k Then,

2R LI (n+k)!*
we get

2k+1 2k+2
/ Po(X (2A) (2A) <

1
du < o 72At Z < —.
2A 2@k 2kt 2) 24

O
Consequently, letting N’ — +o0 in (4.32), we obtain that under QS/I

2
is an (M)-martingale. If we denote by W7 the law of the process (0 B; +y)i>0, where (B;)i>0

o2 [thtm
fatann) — fe@) -G [ 1 @w)ds

is a standard Brownian motion, we have Qé\/f = W7 on M. Finally, we conclude that Qé\é N)
converges to W7 thanks to an adapted version of Lemma 11.1.1 in [59] to the Skorokhod
topology on D([0, +00),R). 1
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Résumé : Cette thése porte sur la propagation et le retournement temporel des ondes dans
des guides d’ondes aléatoirement perturbés. L’étude de la propagation dans les guides d’ondes
aléatoires est devenue indispensable face au grand nombre de situations pouvant se modéliser
de cette maniere : comme par exemple en télécommunication, en acoustique sous-marine ou
en géophysique.

Le travail présenté dans cette thése se décompose en trois chapitres. Dans un premier
chapitre, on s’intéresse a la propagation des ondes dans un guide d’onde océanique inhomogene.
On propose des équations effectives permettant de modéliser la propagation des ondes dans ce
milieu. Ces équations décrivent le role des modes propagatifs, évanescents et radiatifs sur la
propagation, et permettent de quantifier la perte radiative d’énergie dans le fond océanique.
Dans un second chapitre, on s’intéresse a la propagation et a la refocalisation par retournement
temporel d’une impulsion dans le modeéle de guide d’onde océanique du premier chapitre. On
obtient une description de I'onde refocalisée prenant en compte la perte radiative dans le
fond océanique et ’évolution des fluctuations du milieu entre les deux étapes de I'expérience
de retournement temporel. Dans le dernier chapitre, on s’intéresse a la refocalisation par
retournement temporel dans un modele de guide d’onde simple. On obtient un phénomeéne de
super-résolution par l'insertion, devant la source, d’une section inhomogene a faible vitesse de
propagation, c’est a dire qu’on obtient des tailles de taches focales plus concentrées qu’en
milieu homogene.

Mots-clés : Propagation d’ondes, Retournement temporel des ondes, Guides d’ondes
acoustiques, Milieux aléatoires, Analyse asymptotiques, Théorémes limites.

WAVE PROPAGATION AND TIME REVERSAL IN RANDOM
WAVEGUIDES

Abstract : This thesis concerns wave propagation and time reversal of waves in randomly
perturbed waveguides. The study of wave propagation phenomena in random waveguides is an
interesting subject with numerous domains of applications: for instance in telecommunication,
underwater acoustics and geophysics.

This thesis is composed of three chapters. In a first Chapter, we are interested in wave
propagation in inhomogeneous oceanic waveguides, and we derive effective equations which
model wave propagation in such media. These equations describe the role of the propagating,
radiating, and evanescent modes, and allow us to quantify the radiative loss of energy in the
ocean bottom during the propagation. In a second chapter we study pulse propagation and
time-reversal refocusing in the perturbed waveguide model introduced in the first chapter.
We get a description of the refocused wave which takes into account the radiative loss in the
ocean bottom, and the evolution of the random fluctuations of the medium between the two
steps of the time-reversal experiment. In a last chapter, we study time-reversal refocusing in
a simple waveguide model. In this model we get a superresolution phenomena by inserting a
random section with low speed of propagation in the vicinity of the source, that is, we get
more concentrated focal spots than in the homogenous waveguides.

Keywords : Wave propagation, Time reversal of waves, Acoustic waveguides, Random
media, Asymptotic analysis, Limit theorems.
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