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Chapter 1
Introduction

Le travail présenté dans cette thèse porte sur la propagation et le retournement temporel
des ondes dans des guides d’ondes aléatoirement perturbés. Dans cette introduction, nous
rappellerons dans un premier temps quelques aspects de la propagation d’ondes en milieu
aléatoire, et dans un second temps nous présenterons un résumé des résultats exposés dans
les trois principaux chapitres de ce manuscrit.

1.1 Propagation des ondes en milieux aléatoires
L’étude mathématique de la propagation d’ondes en milieu complexe est indispensable à la
compréhension de certains phénomènes observés expérimentalement et au développement
de nouvelles applications. La description exacte des perturbations présentes dans un milieu
n’étant quasiment jamais possible, il devient très difficile de pouvoir résoudre certains prob-
lèmes de manière analytique ou numérique. En générale, on ne dispose que d’une description
statistique des milieux complexes. Ainsi, l’approche consistant à considérer un milieu inho-
mogène comme aléatoirement perturbé apparaît beaucoup mieux adaptée, et permet une
description statistique des effets produits sur des ondes se propageant dans un tel milieu.

Les perturbations d’un milieu peuvent avoir différentes origines : la présence d’impuretés,
des différences de salinités, des imperfections géométriques, etc. Généralement, ces perturba-
tions sont petites. Cependant, sur de longues distances de propagation, l’effet cumulé de ces
imperfections peut devenir significatif.

A l’aide de considérations physiques, il est possible d’appréhender les échelles caractéris-
tiques d’un problème et d’émettre des hypothèses sur leurs ordres de grandeurs. L’intérêt est
de mettre en évidence les rapports d’échelles qui peuvent mener à des régimes asymptotiques
remarquables. Cette technique de séparation d’échelles introduite par G. Papanicolaou et
al [5], permet de développer une analyse asymptotique basée sur des théorèmes limites de
solutions d’équations différentielles à coefficients aléatoires [48, 5, 25, 50, 33]. Le principal
travail est d’arriver à caractériser les quantités physiques intéressantes à l’aide d’équations
effectives, afin de pouvoir décrire l’allure des ondes après qu’elles se soient propagées dans le
milieu aléatoire.

Les échelles de longueur que nous considérerons dans cette thèse, et qui sont aussi
largement utilisées dans la littérature [5, 25, 9] sont : la longueur de propagation dans le
milieu inhomogène, la longueur d’onde typique d’une onde, et les longueurs de corrélations
spatiales des inhomogénéités. Nous considérons aussi l’amplitude des inhomogénéités, ainsi
que la largeur du spectre de la source.

Les phénomènes de propagation d’ondes en milieux aléatoires, à travers la séparation
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Chapter 1 Section 1.1.0

d’échelles, ont été largement étudiés que se soit pour des milieux de dimension 1 (voir [5, 25]
et leurs références), de dimension 3 stratifiés (voir [25] et ses références) ou en considérant
l’approximation parabolique de l’équation des ondes [7, 8, 9, 13]. Pour des milieux de dimen-
sion 1, le phénomène de localisation des ondes, observé en premier par P.W. Anderson [4],
a lieu même si les inhomogénéités sont faibles [32]. Pour les milieux stratifiés cela se passe
essentiellement comme en dimension 1. En dimension 3 sous l’approximation parabolique,
l’amplitude de l’onde cohérente décroît avec la distance de propagation et son énergie se
transforme en fluctuations incohérentes. En revanche, l’énergie moyenne se propage de manière
diffusive ou par transfert radiatif. Pour l’étude de ces phénomènes d’un point de vue physique,
on peut se référer à [34].

Les modèles aléatoires de dimension 1 ne possèdent qu’un axe de propagation et aucune
diversité spatiale, ce qui limite le réalisme de ces modèles. Les modèles ouverts de dimension 2
ou 3 possèdent une diversité spatiale mais n’ont pas de direction de propagation privilégiée, ce
qui rend l’utilisation des outils de calcul stochastique difficile. Les modèles de guides d’ondes
aléatoires sont donc à la fois physiquement pertinents et mathématiquement traitables.

En outre, l’étude de la propagation dans les guides d’ondes aléatoires est devenue in-
dispensable face au grand nombre de situations pouvant se modéliser de cette manière :
comme par exemple en télécommunication, en acoustique sous-marine ou en géophysique.
Contrairement aux modèles de propagation de dimension un, ainsi qu’aux modèles ouverts de
dimension supérieure, les guides d’ondes possèdent une diversité spatiale ainsi qu’un axe de
propagation privilégié, ce qui permet aux ondes de ce propager sur de très longues distances
(voir Figure 1.2). Il s’agit donc d’une situation intermédiaire qui permet de modéliser des
phénomènes spatiaux échappant aux modèles ouverts.

Dans un guide d’onde idéal, la structure géométrique peut avoir une forme très générale.
Les paramètres du milieu peuvent, eux aussi, avoir une forme générale mais restent constants
le long de l’axe du guide d’onde. Il y a deux types de guide d’onde idéal : ceux qui entourent
une région homogène avec des conditions aux bords entraînant le confinement des ondes, et
ceux dont le confinement est assuré par les variations transverses de l’indice de réfraction.
Dans les guides d’ondes, il y a deux types de dispersion. Tout d’abord, il y a la dispersion
modale. Les modes propagatifs voyagent à travers le guide d’onde à des vitesses différentes, ce
qui provoque un étalement de l’onde dans le temps et l’espace. Ensuite, les nombres d’ondes
modaux ne sont pas linéaires par rapport à la fréquence, ce qui implique une dispersion
supplémentaire liée au spectre des fréquences de l’onde [30, 25]. L’étude des phénomènes
de propagation d’ondes dans des guides d’ondes aléatoires a fait l’objet de multiples études
[38, 44, 54, 52, 39, 30, 25, 31, 29], dans lesquelles l’analyse du couplage des modes produit
par les inhomogénéités du milieu est le point central.

L’amplitude de l’onde cohérente se propageant dans un guide d’onde décroît avec la
distance de propagation, et se transforme alors en fluctuations incohérentes. Pour des ondes
monochromatiques ou de spectre de fréquences étroit, l’énergie, par contre, se propage diffu-
sivement [30, 25]. En revanche, dans le cas d’ondes à spectre de fréquences large, comme dans
le cas des milieux de dimension 1, l’amplitude de l’onde cohérente décroît avec la distance
de propagation. Cependant, dans ce cas, l’énergie est déterministe et décroît aussi avec la
distance de propagation. L’énergie se transforme alors en fluctuations incohérentes de faible
amplitude [25].

Le concept de retournement temporel des ondes a été introduit par M. Fink. Le principe
de l’expérience de retournement temporel se compose de deux étapes. Dans un premier temps
(voir Figure 1.1 (a)), une source émet un signal. Une onde se propage dans le milieu et est
enregistrée par le miroir à retournement temporel. Un miroir à retournement temporel se
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Chapter 1 Section 1.1.0

(a) (b)

Figure 1.1: Illustration de l’expérience de retournement temporel dans un guide d’onde d’axe
de propagation z et de section transverse X . Une source est placée dans le plan z = LS et
DM ⊂ X représente le miroir à retournement temporel placé dans le plan z = LM . La figure
(a) représente la première étape de l’expérience. Une source émet un signal, l’onde se propage
dans le milieu et est enregistrée par le miroir à retournement temporel. Ce miroir retourne
en temps le signal enregistré. La figure (b) représente la deuxième étape de l’expérience. Le
miroir à retournement temporel réémet le signal retourné en temps dans le milieu en direction
inverse. Ce qui a été enregistré en dernier repart en premier. L’onde émise par le miroir se
propage en sens inverse et a la propriété de refocaliser au voisinage de la source d’origine.

compose de matrices de transducteurs piézoélectriques ayant la capacité de recevoir un signal,
de l’enregistrer et de réémettre ce signal renversé en temps. Ce miroir retourne alors en temps
le signal enregistré et le réémet dans le milieu en direction inverse. Ce qui a été enregistré en
dernier repart en premier. Dans un second temps (voir Figure 1.1 (a)), l’onde émise par le
miroir à retournement temporel se propage en sens inverse et a la propriété de refocaliser au
voisinage de la source d’origine. De plus, des études théoriques et expérimentales [19, 22, 42]
ont montré que les imperfections présentes dans le milieu améliorent la refocalisation de l’onde
retournée en temps. Des recherches sur ce sujet ainsi que des applications sont présentées
dans [21]. Des expériences de retournement temporel ont aussi été effectuées en mer à l’aide
de réseaux de sonars par W. Kuperman et son équipe de San Diego [40, 57].

Les propriétés de refocalisation en milieu inhomogène du procédé de retournement temporel
permettent de multiple applications, comme par exemple : la détection en contrôle non
destructif, délivrer de l’énergie sur des petites cibles en lithotritie (destruction des calculs
rénaux), la réduction des interférences en télécommunication sans fil.

Une étude mathématique est indispensable à la compréhension des phénomènes de refocal-
isation lors de l’expérience de retournement temporel et pour le développement de nouvelles
applications. Les phénomènes de refocalisation ont été étudiés dans différents contextes : dans
des milieux inhomogènes de dimension 1 [18, 25], de dimension 3 stratifiés aléatoirement [26],
de dimension 3 sous l’approximation parabolique [15, 10, 49], ainsi que dans les guides d’ondes
aléatoires [30, 25]. Dans les cas multidimensionnels, la taille de la tache focale principale,
obtenue avec des milieux aléatoires est plus petite que la formule de Rayleigh λL/D (où
λ est la longueur d’onde principale, L est la distance de propagation et D le diamètre du
miroir), qui donne la taille de la tache focale principale obtenue dans un milieu homogène. La
tache focale obtenue en milieu homogène a typiquement la forme d’un sinus cardinal. Les
inhomogénéités du milieu permettent aussi la suppression des lobes latéraux. M. Fink et son
groupe de l’ESPCI ont même proposé un dispositif avec un miroir à retournement temporel
en champ lointain permettant de refocaliser sous la limite de diffraction λ/2 (où λ est la
longueur d’onde principale). Ce dispositif consiste à ajouter un "peigne" de diffuseurs proche
de la source.
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Figure 1.2: Illustration of a planar waveguide, with propagation axis in the z-direction,
cross-section X , and a source localized in the plane z = LS .

La stabilité statistique est une autre propriété importante du retournement temporel des
ondes. L’onde refocalisée ne dépend pas de la réalisation particulière du milieu. Dans le
cas d’ondes à large bande de fréquences, la stabilité statistique a été étudiée dans différents
contextes : dans des milieux de dimension 1 [18, 25], de dimension 3 aléatoirement stratifiés
[24, 25], de dimension 3 sous l’approximation parabolique [15, 49], ainsi que dans les guides
d’ondes [30, 25].

Les phénomènes intéressants, produits par le retournement temporel des ondes, sont
intiment liés au fait de faire revivre, à l’onde enregistrée par le miroir à retournement temporel,
sa "vie passée". Quelles sont alors les conséquences sur l’onde refocalisée, lorsqu’elle n’a pas
exactement revécu sa "vie passée"? La question de l’influence d’un milieu changeant entre les
deux étapes de l’expérience de retournement temporel a été étudiée dans plusieurs contextes :
dans des milieux de dimension 1 [3], de dimension 3 sous l’approximation parabolique [12, 11].
Pour des milieux de dimension 1, l’influence du milieu entre les deux étapes de l’expérience
entraîne une perte de stabilité statistique de l’onde refocalisée reliée au degré de corrélation
des deux réalisations du milieu. Dans des milieux de dimension 3 sous l’approximation
parabolique [12, 11], l’onde refocalisée reste statistiquement stable contrairement aux cas
unidimensionnels.

1.2 Presentation of the results
This section is an overview of the main results obtained in this thesis and presented in detail
in the three following chapters. This presentation is in two parts. In the first part, we present
the results obtained about wave propagation in random waveguides. In the second part, we
present the results about time reversal of waves in random waveguides.

The present thesis is devoted to the study of the wave propagation and time reversal
in randomly perturbed waveguides. However, throughout this manuscript, for the sake of
simplicity, we consider planar waveguides. In this case a waveguide has a propagation axis
with coordinate z ∈ R, and a transverse section X which is an interval with coordinate x ∈ X
(see Figure 1.2). Furthermore, the analysis developed in this manuscript can be extended to
more general waveguides.

We consider acoustic wave propagation using the linearized equations of momentum and
mass conservation for the pressure p and the velocity u:

ρ(x, z)∂u
∂t

+∇p = F,

1
K(x, z)

∂p

∂t
+∇.u = 0,

10



Chapter 1 Section 1.2.1

where ρ is the density of the medium, and K is the bulk modulus. The source is modeled by
the forcing term

F(t, x, z) = Ψ(t, x)δ(z − LS)ez,

which is a source that emits a signal in the z-direction and localized in the plane z = LS .
Ψ(t, x) represents the profile of the source and ez is the unit vector pointing in the z-direction.

In this thesis, we are interested in phenomena which occur when the propagation distance
L0 is large compared to the typical wavelength of the source λ0, and large compared to the
length scales lx,c and lz,c, which are the correlation lengths of the random perturbations in
the transverse and longitudinal directions. Moreover, the typical amplitude σ of the random
perturbations of the medium parameters is small, and in Chapters 2 and 3 we consider the
case where the orders of lx,c, lz,c, and λ0 are comparable. More precisely, we consider the
regime in which

L0
λ0
� 1, lx,c

λ0
∼ lz,c
λ0
∼ 1, and σ � 1.

In the terminology of [25] this regime corresponds to the so-called weakly heterogeneous
regime. Let 0 < ε� 1 be the ratio of λ0 to the propagation distance. Then, we consider

L0 = L

ε
, λ0 ∼ lx,c ∼ lz,c ∼ 1 and σ =

√
ε.

The scaling used in Chapter 4 is somewhat different, and it is described below.

1.2.1 Wave Propagation

Results of Chapter 2 First of all, we are interested in the wave propagation in a shallow-
water acoustic waveguide model. The waveguide model that we consider can also be used for
electromagnetic wave propagation in dielectric waveguides and optical fibers [43, 44, 52, 54, 62].
In shallow-water waveguides the transverse section X can be considered as being the semi-
infinite interval [0 +∞). In this context, we assume that the medium parameters are given
by

1
K(x, z)

=


1
K̄

(
n2(x) +

√
εV (x, z)

)
if x ∈ [0, d], z ∈ [0, L/ε]

1
K̄
n2(x) if


x ∈ [0,+∞), z ∈ (−∞, 0) ∪ (L/ε,+∞)
or
x ∈ (d,+∞), z ∈ (−∞,+∞),

ρ(x, z) = ρ̄ if x ∈ [0,+∞), z ∈ R,

and where the index of refraction n(x) is given by

n(x) =
{
n1 > 1 if x ∈ [0, d)
1 if x ∈ [d,+∞).

See Figure 1.3 for an illustration of this model. Here, n(x) correspond to the Pekeris
waveguide model with ocean depths d, and the random process V (x, z) models the spatial
inhomogeneities. Throughout this manuscript the process V is a continuous real-valued
zero-mean Gaussian field with a covariance function given by

E [V (x, t)V (y, s)] = γ0(x, y)e−a|t−s| ∀(x, y) ∈ [0, d]2 and ∀(s, t) ∈ [0,+∞)2.

Here a > 0 and γ0 : [0, d] × [0, d] → R is a function which is the kernel of a nonnegative
operator. The properties of the random process V are described in Section 2.6.1.

In underwater acoustics the density of air is very small compared to the density of water,
then it is natural to use a pressure-release boundary condition. The pressure is very weak
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Figure 1.3: Illustration of the shallow-water random waveguide model with propagation axis
in the z-direction, transverse section [0,+∞), and ocean depth d. The transverse index of
refraction is the Pekeris profile n(x), and a perturbed section is localized in the ocean section
[0, d] between the plane z = 0 and the plane z = L/ε.

outside the waveguide, and by continuity, the pressure is zero at the free surface x = 0. This
consideration leads us to the Dirichlet boundary conditions:

p(t, 0, z) = 0 ∀(t, z) ∈ [0,+∞)× R.

As we study linear models of propagation the pressure p(t, x, z) can be expressed as the
superposition of monochromatic waves by taking its Fourier transform:

p̂(ω, x, z) =
∫
p(t, x, z)eiωtdt.

With such a model, a wave field can be decomposed into three kinds of modes:

p̂(ω, x, z) =
N(ω)∑
j=1

p̂j(ω, z)φj(ω, x) +
∫ k2(ω)

−∞
p̂γ(ω, z)φγ(ω, x)dγ,

where (φs(ω, .))s∈{1,...,N(ω)}∪(−∞,k2(ω)) is a basis of the Hilbert space L2(0,+∞) defined in
Section 2.2.1. We have N(ω) discrete propagating modes which propagate over long distances,
a continuum (−∞, 0) of evanescent modes which decrease exponentially with the propagation
distance, and a continuum (0, k2(ω)) of radiating modes representing modes which penetrate
under the bottom of the water. Here, k(ω) = ω/c is the wavenumber and c =

√
K̄/ρ̄ is the

effective sound speed of the medium.
In this chapter, we essentially revisit in detail the paper of W. Kohler and G. Papanicolaou

[39], but we take into account the three kinds of modes (see Sections 2.3).
According to the modal decomposition, we consider the profile Ψ(t, x) given in the

frequency domain by

Ψ̂(ω, x) = f̂(ω)

N(ω)∑
j=1

φj(ω, x0)φj(ω, x) +
∫
(−S,−ξ)∪(ξ,k2(ω))

φγ(ω, x0)φγ(ω, x)dγ

 ,
where x0 ∈ (0, d). The bound S in the spectral decomposition of the source profile is
introduced to have Ψ̂(ω, .) ∈ L2(0,+∞), and ξ > 0 is introduced for technical reasons. Note
that S can be arbitrarily large and ξ can be arbitrarily small. Therefore, the spatial profile of

12
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the source is an approximation of a Dirac distribution at x0, which models a point source at
x0. We consider solutions of the form

p̂(ω, x, z) =
N(ω)∑
j=1

p̂j(ω, z)φj(ω, x) +
∫
(−∞,−ξ)∪(ξ,k2(ω))

p̂γ(ω, z)φγ(ω, x)dγ

for technical reasons and this assumption leads us to simplified algebra. In such a decom-
position, the radiating and the evanescent modes are separated by the small band (−ξ, ξ)
with ξ � 1. The goal is to isolate the transition mode 0 between the radiating and the
evanescent modes in the continuum of modes (−∞, k2(ω)). Moreover, we assume that ε� ξ
and therefore we have two distinct scales. Let us remark that in Chapters 2 and 3, we consider
in a first step the asymptotic ε goes to 0 and in a second step the asymptotic ξ goes to 0.

Throughout this manuscript, we consider the forward scattering approximation discussed
in Section 2.3.4, and which is widely used in underwater acoustics and in fiber optics. In this
approximation the coupling between forward- and backward-propagating modes is assumed
to be negligible compared to the coupling between the forward-propagating modes. After a
long propagation distance the pressure field is essentially of the form

p̂
(
ω, x,

L

ε

)
'
ε�1

N(ω)∑
j=1

Tξ,ε
j (ω,L)(â0(ω))√

βj(ω)
eiβj(ω)L

ε φj(ω, x)

+
∫ k2(ω)

ξ

Tξ,ε
γ (ω,L)(â0(ω))

γ1/4 ei
√
γ L
ε φγ(ω, x)dγ,

where βj(ω) are the modal wavenumbers. Here, Tξ,ε(ω,L) is the transfer operator, from
CN(ω) × L2(ξ, k2(ω)) to itself, solution of a differential equation with random coefficients of
the form

d

dz
Tξ,ε(ω, z) = 1√

ε
Haa

(
ω,
z

ε

)
Tξ,ε(ω, z) + Gaa

(
ω,
z

ε

)
Tξ,ε(ω, z)

with Tξ,ε(ω, 0) = Id. The transfer operator Tξ,ε(ω,L) describes the coupling between the
three kinds of modes. Haa, defined by (2.30)-(2.33) page 45, describes the coupling between
the propagating and radiating modes with themselves, while Gaa, defined by (2.34)-(2.37)
page 45, describes the coupling between the evanescent modes with the propagating and
radiating modes. Moreover, the asymptotic behavior of Tξ,ε(ω,L), as ε→ 0 in first and ξ → 0
in second, is described precisely in Section 2.4.1, and can be described in terms of a diffusion
process with an infinitesimal generator which can be split into three parts and depends only
on the N(ω)-discrete propagating modes:

Lω1 + Lω2 + Lω3 .

The first operator Lω1 describes the coupling between the N(ω)-propagating modes. This part
is of the form of the infinitesimal generator obtained in [25, 30], from which the total energy
is conserved. The second operator Lω2 describes the coupling between the propagating modes
with the radiating modes. This part implies a mode-dependent and frequency-dependant
attenuation on the N(ω)-propagating modes, and a mode-dependent and frequency-dependent
phase modulation. The third operator Lω3 describes the coupling between the propagating
and the evanescent modes, and implies a mode-dependent and frequency-dependent phase
modulation. The frequency-dependent phase modulation does not remove energy from the
propagating modes but gives an effective dispersion.

Then, in Section 2.5, we are interested in the study of the asymptotic mean mode powers
of the propagating modes

T lj (ω,L) = lim
ξ→0

lim
ε→0

E
[∣∣Tξ,ε

j (ω,L)(yl)
∣∣2],

13
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Figure 1.4: Illustration of the radiative loss in the shallow-water random waveguide model
with propagation axis in the z-direction, transverse section [0,+∞), and ocean depth d.

where ylj = δjl, and ylγ = 0 for γ ∈ (0, k2(ω)). The initial condition yl means that an impulse
equal to one charges only the lth propagating mode. T lj (ω,L) is the expected power of the
jth propagating mode at the propagation distance z = L, when at z = 0 the energy is
concentrated on the lth propagating mode. The expected powers T lj (ω,L) are solution of the
following coupled power equations:

d

dz
T lj (ω, z) = −Λcj(ω)T lj (ω, z) +

N(ω)∑
n=1

Γcnj(ω)
(
T ln(ω, z)− T lj (ω, z)

)
,

with initial conditions T lj (ω, 0) = δjl, and where Γcjl(ω) is defined in Theorem 2.1 page 51.
These equations describe the transfer of energy between the propagating modes and Γc(ω)
is the energy transport matrix. The initial condition means that an impulse equal to one
charges only the lth propagating mode. In our context, we have the coefficients Λcj(ω) given
by the coupling between the propagating modes with the radiating modes. These coefficients,
defined in Theorem 2.2 page 52, are responsible for the radiative loss of energy in the ocean
bottom (see Figure 1.4). This loss of energy is described more precisely by the following result
of Section 2.5.1.

Theorem Let us assume that the energy transport matrix Γc(ω) is irreducible. Then, we
have ∀l ∈ {1, . . . , N(ω)}

lim
L→+∞

1
L

ln

N(ω)∑
j=1
T lj (ω,L)

 = −Λ∞(ω)

with
Λ∞(ω) = inf

X∈SN(ω)
+

〈(
− Γc(ω) + Λcd(ω)

)
X,X

〉
RN(ω) ,

which is positive as soon as one of the coefficients Λcj(ω) is positive. Here,

SN(ω)
+ =

{
X∈ RN(ω), Xj ≥ 0 ∀j∈{1, . . . , N(ω)} and ‖X‖22,RN(ω) =

〈
X,X

〉
RN(ω) =1

}
with

Λcd(ω) = diag
(
Λc1(ω), . . . ,ΛcN(ω)(ω)

)
,

and
〈
X,Y

〉
RN(ω) =

∑N(ω)
j=1 XjYj for (X,Y ) ∈ (RN(ω))2.

14



Chapter 1 Section 1.2.1

This result means that the total energy carried by the expected powers of the propagating
modes decay exponentially with the propagation distance, and the decay rate can be expressed
in terms of a variational formula over a finite-dimensional space.

In Section 2.5.2, we show that under the assumption that nearest neighbor coupling is the
main power transfer mechanism, the evolution of the mean mode powers of the propagating
modes can be described, in the limit of a large number of propagating modes N(ω)� 1, by a
diffusion model. Let us note that the limit of a large number of propagating modes N(ω)� 1
corresponds to the high-frequency regime ω → +∞. This diffusive continuous model is
equipped with boundary conditions which take into account the effect of the radiating modes
at the bottom and the free surface of the waveguide (see Figure 1.4). Let, ∀ϕ ∈ C0([0, 1]),
∀u ∈ [0, 1], and z ≥ 0,

T N(ω)
ϕ (z, u) = T [N(ω)u]

ϕ (z) =
N(ω)∑
j=1

ϕ
( j

N(ω)

)
T [N(ω)u]
j (ω, z),

where ϕ 7→ T N(ω)
ϕ (z, .) can be extended into an operator from L2(0, 1) to itself.

Theorem We have

1. ∀ϕ ∈ L2(0, 1) and ∀z ≥ 0,

lim
ω→+∞

T N(ω)
ϕ (z, u) = Tϕ(z, u) in L2(0, 1),

where Tϕ(z, u) satisfies the partial differential equation : ∀(z, u) ∈ (0,+∞)× (0, 1),

∂

∂z
Tϕ(z, u) = ∂

∂u

(
a∞(·) ∂

∂u
Tϕ
)

(z, u),

with the boundary conditions

∂

∂u
Tϕ(z, 0) = 0, Tϕ(z, 1) = 0, and Tϕ(0, u) = ϕ(u),

∀z > 0.

2. ∀u ∈ [0, 1], ∀z ≥ 0, and ∀ϕ ∈ C0([0, 1]) such that ϕ(1) = 0, we have

lim
ω→+∞

T N(ω)
ϕ (z, u) = Tϕ(z, u).

Here,
a∞(u) = a0

1−
(
1− π2

a2d2

)
(θu)2

,

with a0 = π2S0
2an4

1d
4θ2 , θ =

√
1− 1/n2

1, S0 =
∫ d
0
∫ d
0 γ0(x1, x2) cos

(
π
dx1

)
cos

(
π
dx2

)
dx1dx2. n1 is

the index of refraction in the ocean section [0, d], 1/a = lz,x is the correlation length of the
random inhomogeneities in the longitudinal direction, and γ0 is the covariance function of the
random inhomogeneities in the transverse direction.

This approximation gives us, in the high-frequency regime, a diffusion model for the transfer
of energy between the N(ω)-discrete propagating modes, with a reflecting boundary condition
at u = 0 (the top of the waveguide in Figure 1.3) and an absorbing boundary condition at
u = 1 (the bottom of the waveguide in Figure 1.3) which represents the radiative loss (see
Figure 1.4). In this high-frequency regime, we also observe in Section 2.5.2 that the energy
carried by the continuum of propagating modes decays exponentially with the propagation
distance.
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Figure 1.5: Illustration of negligible radiation losses in the shallow-water random waveguide
model with propagation axis in the z-direction, transverse section [0,+∞), and ocean depth
d.

Theorem ∀ϕ ∈ L2(0, 1) \ {0} such that ϕ ≥ 0, and ∀u ∈ [0, 1),

lim
L→+∞

1
L

ln [Tϕ(L, u)] = −Λ∞,

where
Λ∞ = inf

ϕ∈D

∫ 1

0
a∞(v)ϕ′(v)2dv > 0

and
D =

{
ϕ ∈ C∞([0, 1]), ‖ϕ‖L2(0,1) = 1, ∂

∂v
ϕ(0) = 0, ϕ(1) = 0

}
.

This result means that the energy carried by each propagating modes decays exponentially
with the propagation distance, and the decay rate can be expressed in terms of a variational
formula. Consequently, the spatial inhomogeneities of the medium and the geometry of the
shallow-water waveguide lead us to an exponential decay phenomenon caused by the radiative
loss into the ocean bottom.

In the case of negligible radiation losses, we also get in Section 2.5.3 a continuous diffusive
model for the coupled power equations in the high-frequency regime or in the limit of a large
number of propagating modes N(ω)� 1. This diffusive continuous model is equipped with
boundary conditions which take into account the negligible effect of the radiation losses at
the bottom and the free surface of the waveguide (see Figure 1.5).

Theorem We have

1. ∀ϕ ∈ L2(0, 1) and ∀z ≥ 0,

lim
ω→+∞

T N(ω)
ϕ (z, u) = Tϕ(z, u) in L2(0, 1),

where Tϕ(z, u) satisfies the partial differential equation : ∀(z, u) ∈ (0,+∞)× (0, 1),

∂

∂z
Tϕ(z, u) = ∂

∂u

(
a∞(·) ∂

∂u
Tϕ
)

(z, u),

with the boundary conditions

∂

∂u
Tϕ(z, 0) = 0, ∂

∂v
Tϕ(z, 1) = 0, and Tϕ(0, u) = ϕ(u),

∀z > 0.
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2. ∀u ∈ [0, 1), ∀z ≥ 0, and ∀ϕ ∈ C0([0, 1]) such that ϕ(1) = 0, we have

lim
ω→+∞

T N(ω)
ϕ (z, u) = Tϕ(z, u).

Here,
a∞(u) = a0

1−
(
1− π2

a2d2

)
(θu)2

,

with a0 = π2S0
2an4

1d
4θ2 , θ =

√
1− 1/n2

1, S0 =
∫ d
0
∫ d
0 γ0(x1, x2) cos

(
π
dx1

)
cos

(
π
dx2

)
dx1dx2. n1 is

the index of refraction in the ocean section [0, d], 1/a = lz,x is the correlation length of the
random inhomogeneities in the longitudinal direction, and γ0 is the covariance function of the
random inhomogeneities in the transverse direction.

This approximation gives us, in the high-frequency regime, a diffusion model for the transfer of
energy between the N(ω)-discrete propagating modes, with two reflecting boundary conditions
at u = 0 (the top of the waveguide in Figure 1.3) and u = 1 (the bottom of the waveguide
in Figure 1.3). Here, the two reflecting boundary conditions mean that there is no radiative
loss anymore (see Figure 1.5). As a result, the energy is conserved and the modal energy
distribution converges to a uniform distribution as L→ +∞. This result was already obtained
in [25, Chapter 20] and [30].

Theorem ∀ϕ ∈ L2(0, 1) and ∀u ∈ [0, 1],

lim
L→+∞

Tϕ(L, u) =
∫ 1

0
ϕ(v)dv,

that is, the energy carried by the continuum of propagating modes converges exponentially fast
to the uniform distribution over [0, 1] as L→ +∞.

Results of Chapter 3 In Chapter 3, we extend the analysis of Chapter 2 to the propagation
and the time-reversal of broadband pulses in the same waveguide model. In this chapter, the
source profile Ψε

q(t, x) is given, in the frequency domain, by

Ψ̂ε
q(ω, x) = 1

εq
f̂

(
ω − ω0
εq

)

×

N(ω)∑
j=1

φj(ω, x0)φj(ω, x) +
∫
(−S,−ξ)∪(ξ,k2(ω))

φγ(ω, x0)φγ(ω, x)dγ

 ,
with q > 0, and where the family (φs(ω, .))s∈{1,...,N(ω)}∪(−∞,k2(ω)) is a basis of the Hilbert
space L2(0,+∞) defined in Section 2.2.1. The restriction q > 0 allows us to freeze the number
of propagating and radiating modes, and gives simpler expressions of the transmitted wave.
The term 1

εq f̂(ω−ω0
εq ) is the Fourier transform of f(εqt)e−iω0t, which is a pulse with bandwidth

of order εq and carrier frequency ω0. In this chapter, we study the broadband case, that is
q ∈ (0, 1). However, for the sake of simplicity we shall consider the case q = 1/2 but the
analysis can be carried out for any q ∈ (0, 1).

In order to simplify the analysis of pulse propagation and time reversal, we assume that
the source location LS < 0 is sufficiently far away from 0 so that the evanescent modes
generated by the source are negligible. However, according to Proposition 2.2 in Section
2.4, this assumption is not restrictive and all the results of this chapter are also valid for
any LS < 0. In fact, Proposition 2.2 means that, in the asymptotic ε→ 0, the information
about the evanescent part of the source profile is lost during the propagation in the random
section [0, L/ε], and therefore it plays no role in the pulse propagation and in the time-reversal
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experiment. Moreover, in order to simplify the study of the pulse propagation and the
time-reversal experiment, we assume in Chapter 3 that the coupling mechanism between the
propagating and radiating modes with the evanescent modes is negligible. Furthermore, as
it has been observed in Chapter 2 or in [25], this mechanism implies mode-dependent and
frequency-dependent phase modulations, that is dispersion, but does not remove any energy
from the propagating modes in the pulse propagation. Dispersion is compensated by the
time-reversal mechanism and therefore plays no role in this experiment [25].

We observe the transmitted wave in a time window of order 1/
√
ε, which is comparable

to the pulse width, and centered at time t0/ε, which is of the order the travel time for a
distance of order 1/ε. The statistics of the transmitted wave is described in Section 3.3.2.
The transmitted wave can be decomposed into two parts:

ptr

(
t0
ε

+ t√
ε
, x,

L

ε

)
e
iω0

(
t0
ε

+ t√
ε

)
= p1,ξ,ε

tr (t0, t, x, L) + p2,ξ,ε
tr (t0, t, x, L),

where p1,ξ,ε
tr (t0, t, x, L) and p2,ξ,ε

tr (t0, t, x, L) are defined by (3.13) page 116. p1,ξ,ε
tr (t0, t, x, L) is

the projection of the transmitted wave over the propagating modes, and p2,ξ,ε
tr (t0, t, x, L) is

the projection of the transmitted wave over the radiating modes.
First, we have E

[
p2,ξ,ε
tr (t0, t, x, L)

]
= O(

√
ε) uniformly in t, and uniformly in x on each

bounded subset of [0,+∞). Consequently, the amplitude of the radiating part of the trans-
mitted wave is very small and it does not play any role in the pulse propagation. Second,
in the broadband case the pulse width is of order 1/

√
ε, which is much smaller that the

propagation distance, and therefore the propagating modes are separated in time by modal
dispersion. As a result, we show in Section 3.3.2 that the transmitted wave can be decomposed
into a sequence of modal waves with different arrival times and different modal speeds. Let
tj = β′j(ω0)L, where β′j(ω0) is the derivative of the jth modal wavenumber with respect to
the frequency, and let us consider

e−iβj(ω0)(−LS+L
ε )p1,ξ,ε

tr (tj , t, x, L) = pξ,εtr,j(t, x, L),

which is the transmitted wave observed in a time window of order 1/
√
ε, which is comparable

to the pulse width, and centered at time tj/ε, which is of the order the travel time for a
distance of order 1/ε.

Proposition The jth-transmitted wave, observed around time tj, pξ,εtr,j(t, x, L) converges in
distribution as ε→ 0 and as a continuous process in the three variables (t, x, L) to

pξtr,j(t, x, L) = 1
2
φj(ω0, x)φj(ω0, x0)eiW

j
LK̃ω0,ξ

j,L ∗ f(t),

where
̂̃
Kω0,ξ
j,L (ω) = e

1
2

(
Γcjj(ω0)+iΓsjj(ω0)−Λc,ξj (ω0)−iΛs,ξj (ω0)

)
L+iβ′′j (ω0)ω2 L

2 ,

and (W j)j is a N(ω0)-dimensional Brownian motion with covariance matrix Γ1(ω0). Moreover,
pξtr,j(t, x, L) converges almost surely and uniformly in (t, x, L) as ξ → 0 to

ptr,j(t, x, L) = 1
2
φj(ω0, x)φj(ω0, x0)eiW

j
LK̃ω0

j,L ∗ f(t),

where ̂̃Kω0
j,L(ω) = e

1
2(Γcjj(ω0)+iΓsjj(ω0)−Λcj(ω0)−iΛsj(ω0))L+iβ′′j (ω0)ω2 L

2 .

Here, Γcjj(ω0), Γsjj(ω0), Λc,ξ(ω0), Λs,ξj (ω0), Λc(ω0), and Λsj(ω0) are defined in Section 2.4.1.
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As in [25, Chpater 20], it is possible to observe coherent transmitted waves only around
times tj , j ∈ {1, . . . , N(ω0)}. The transmitted wave is composed of a sequence of transmitted
waves which are separated from each other. Each pulse corresponds to a single mode.
∀j ∈ {1, . . . , N(ω0)}, the jth modal wave travels with the group velocity 1/β′j(ω0). This result
means that we have stabilization of the transmitted wave up to a random phase; that is one
can observe deterministic intensity around the arrival times t0 = tj ∀j ∈ {1, . . . , N(ω0)}. The
random phase is characterized in terms of a Brownian motion. The pulse intensities decrease
exponentially with the propagation distance and the pulses spread dispersively through K̃ω0

j,L.
Moreover, there is no diffusion for the deterministic pulse profile.

In order to analyze the incoherent wave fluctuations at time t0 6= tj ∀j ∈ {1, . . . , N(ω0)},
we study in Section 3.3.3 the statistics as ε → 0 and ξ → 0 of the product of two transfer
operators Tξ,ε(ω + εs)⊗Tξ,ε(ω) at two nearby frequencies. This analysis was already carried
out for waveguides with bounded cross-section in [30]. In our context, this leads to the system
of transport equations which takes into account the radiation losses:

∂

∂z
W l
j(ω, r, z)+β′j(ω) ∂

∂r
W l
j(ω, r, z)

= −Λcj(ω)W l
j(ω, r, z) +

N(ω)∑
n=1

Γcnj(ω)
(
W l
n(ω, r, z)−W l

j(ω, r, z)
)
,

with initial conditions W l
j(ω, ., 0) = δ0(.)δjl. The system of transport equations describes

the coupling between the N(ω)-propagating modes. These equations are a generalization of
the coupled power equations affected by the modal dispersion. In other words it is a space
and time version of the coupled power equations with transport velocity equal to the group
velocity 1/β′j(ω) for the jth mode.

Consequently, we can apply this result to the study of the incoherent wave fluctuations.
For large propagation distance L/τ and small radiation losses τΛc(ω), with τ � 1, we get in
Section 3.3.3 that the limit mean transmitted intensity is given by

lim
τ→0

lim
ξ→0

lim
ε→0

1
τ
√
ε
E
[∣∣∣pξ,εtr ( t0τ , t, x, Lτ

)∣∣∣2] = e−Λ(ω0)LHx0(ω0, x)δ(t0 − β′(ω0)L).

Here, the effective velocity of the incoherent wave fluctuations is the harmonic average of the
modal group velocities 1/β′(ω0), with

β′(ω0) = 1
N(ω0)

N(ω0)∑
j=1

β′j(ω0),

and the effective radiative damping rate is the arithmetic average of the modal radiative
damping rates

Λ(ω0) = 1
N(ω0)

N(ω0)∑
j=1

Λcj(ω0).

As a result, the transmitted wave has also an incoherent part whose typical amplitude is of
order ε1/4. Moreover, for the transverse profile Hx0(ω0, x), we have in the high-frequency
regime or in the limit of large number of propagating modes N(ω0)� 1,

Hx0(ω0, x) '
ω0�1

1
4λocd

arcsin(θ)
θ

[π
2
− arccos(θ) + 1

2
sin(2 arccos(θ))

]
,

∀x ∈ [0, d]. Here, θ =
√

1− 1/n2
1 and λoc = 2πc

n1ω0
is the carrier wavelength in the ocean section

[0, d] of the waveguide. Consequently, the mean intensity becomes uniform over the ocean
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(a) (b)

Figure 1.6: Illustration of the time-reversal experiment in a waveguide with propagation axis
in the z-direction and cross-section X . A source is localized in the plane z = LS and DM ⊂ X
represents a time-reversal mirror located in the plane z = LM . In (a) we illustrate the first
step of the experiment. A source sends a pulse into a medium. The wave propagates and is
recorded by the time-reversal mirror. The recorded signal is reversed in time by the mirror.
In (b) we illustrate the second step of the experiment. The time-reversal mirror sends back
the time-reversed wave. The part of the signal that is recorded first is sent back last. The
back-propagating wave refocuses approximately at the source location.

cross-section [0, d]. The arrival time β′(ω0)L of the incoherent fluctuations takes a simple
form in the high-frequency regime:

lim
ω0→+∞

β′(ω0)L = n1
c

arcsin(θ)
θ

L.

1.2.2 Time reversal

The time-reversal experiment is carried out in two steps. In a first step (see Figure 1.6 (a)), a
source sends a broadband pulse into the medium. The wave propagates and is recorded by a
device called a time-reversal mirror located in the plane z = LM/ε, and for a time interval[ t0
ε ,

t1
ε

]
. We have chosen such a time window because it is of the order the travel time for

a distance of order 1/ε. We assume that the time-reversal mirror occupies the transverse
subdomain DM ⊂ [0, d]. A time-reversal mirror is a device that can receive a signal, record it,
and resend it time-reversed into the medium. In other words, what is recorded in first is send
in last. In a second step (see Figure 1.6 (b)), the wave emitted by the time-reversal mirror
has the property of refocusing near the original source location, and it has been observed
experimentally that random inhomogeneities enhance refocusing [19, 22, 42].

Results of Chapter 3 In this chapter we consider the shallow-water waveguide model
introduced in Chapter 2. Here LM = L, that is the time-reversal mirror is located at the
end of the random section. However, the properties of the fluctuations of the medium may
have changed between the two steps of the experiment. This situation is studied in detail
in Section 3.4.5. We study the refocused wave in a time window of order 1/

√
ε, which is

comparable to the pulse width, and centered at time tobs/ε, which is of the order the total
travel time for a distance of order 1/ε. In the following proposition we observe the refocused
wave at time tobs = t1, in which all propagating modes contribute to it. Let us note that we
cannot observe the recompression of the radiating part of the recorded wave by time reversal,
because it holds on a set with null Lebesgue measure.
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Proposition The refocused wave pTR
(
t1
ε + t√

ε
, x, LS

)
e
iω0

t√
ε converges in distribution as

ε→ 0 as a continuous process in (t, x) ∈ R× [0,+∞) to

pξTR(t1, t, x, LS) = f(−t) · 1
4

N(ω0)∑
j,l=1

Mjj(ω0)Xξ,l
j (ω0, L)φl(ω0, x0)φl(ω0, x).

Moreover, pξTR(t1, t, x, LS) converges in distribution as ξ → 0 as a continuous process in (t, x)
to

pTR(t1, t, x, LS) = f(−t) · 1
4

N(ω0)∑
j,l=1

Mjj(ω0)X l
j(ω0, L)φl(ω0, x0)φl(ω0, x),

where
(
X l(ω0, .)

)
j∈{1,...,N(ω0)} is the unique solution of the system of coupled Stratonovich

stochastic differential equations

dX l
j(ω0, z) = Lµ

(
X l(ω0, z)

)
(j)dz + i

√
2(1− µ)X l

j(ω0, z) ◦ dZj(ω0, z),

with X l
j(ω0, 0) = δjl, and

Lµφ(j) = −Λcj(ω0)φ(j) + (1− µ)Γcjj(ω0)φ(j) + µ

N(ω0)∑
n=1

Γcnj(ω0)
(
φ(n)− φ(j)

)
.

Here (φs(ω0, .))s∈{1,...,N(ω)}∪(−∞,k2(ω)) is a basis of the Hilbert space L2(0,+∞) defined in
Section 2.2.1. Consequently, the spatial profile of the refocused wave at the source location
is the superposition of the N(ω0)-discrete propagating modes with random weights which
depend on:

1. the time-reversal mirror through the coefficients Mjj(ω0) =
∫
DM φ2

j (ω0, x)dx,

2. the solution of a stochastic differential equation driven by the family of Brownian
motions Z(ω0, .) with covariance matrix Γ1(ω0).

Here, µ ∈ [0, 1] is a parameter which describes the degree of correlation between the two
realizations of the random medium (see Section 3.4 and (3.23) page 137). Then, we can
observe that the quality and the loss of statistical stability in the time-reversal experiment is
related to the degree of correlation between the two realizations of the random medium.

In the case µ = 1, which corresponds to the case of two realizations of the random medium
that are fully correlated, we observe the stabilization phenomenon of time-reversal refocusing.
This means that the profile of the refocused wave is deterministic. The case µ = 1 is also
the case in which the quality of the refocusing is maximal. In the other cases (µ ∈ [0, 1)),
even if the radiation losses are negligible, we show in Section 3.4.5 that the amplitude of
the refocused wave decays exponentially with the propagation distance. In fact the mean
refocused wave is given by

lim
ξ→0

lim
ε→0

E
[
pTR

( t1
ε

+ t√
ε
, x, LS

)]
e
iω0

t√
ε = f(−t)HαM

x0 (ω0, x, L).

Here,

HαM
x0 (ω0, x, L) = 1

4

N(ω0)∑
j,l=1

Mjj(ω0)T̃ lj (ω0, L)φl(ω0, x0)φl(ω0, x),

where
T̃ lj (ω0, L) = lim

ξ→0
lim
ε→0

E
[
T1,ξ,ε
j (ω0, L)(yl)T2,ξ,ε

j (ω0, L)(yl)
]
,

21



Chapter 1 Section 1.2.2

with ylj = δjl, and ylγ = 0 for γ ∈ (0, k2(ω)). Here, T1,ξ,ε is the transfer operator for the first
step of the time-reversal experiment, and T2,ξ,ε is the transfer operator for the second step
of the experiment. T̃ lj (ω0, L) is the asymptotic covariance for the jth propagating mode of
the transfer operators at distance z = L, with respect to the two steps of the time-reversal
experiment.The initial condition yl means that an impulse equal to one charges the lth
propagating mode at z = 0. T̃ lj (ω0, z) are the solutions of the coupled power equations:

d

dz
T̃ lj (ω0, z) =−

[
Λcj(ω0) + (1− µ)

(
Γ1
jj(ω0)− Γcjj(ω0)

)]
T̃ lj (ω0, z)

+ µ

N(ω0)∑
n=1

Γcnj(ω0)
(
T̃ ln(ω0, z)− T̃ lj (ω0, z)

)
and T̃ lj (ω0, 0) = δjl. These equations permit us to study the influence of the degree of
correlation, between the two realizations of the random medium, on the amplitude of the
refocused wave. We have the following result on the asymptotic covariances T̃ lj (ω0, L).

Theorem Let us assume that the energy transport matrix Γc(ω0) is irreducible. Then, we
have

lim
L→+∞

1
L

ln

N(ω)∑
j=1
T̃ lj (ω0, L)

 = −Λ̃∞(ω0)

with
Λ̃∞(ω0) = inf

X∈SN(ω0)
+

〈(
− µΓc(ω0) +Dd(ω0)

)
X,X

〉
RN(ω0) > 0,

and where
Dd(ω0) = diag

(
D1(ω0), . . . , DN(ω)(ω0)

)
,

with
Dj(ω0) = Λcj(ω0) + (1− µ)

[
Γ1
jj(ω0)− Γcjj(ω0)

]
.

This result means that if the two realizations of the random medium are not fully correlated
(µ ∈ [0, 1)), the amplitude of the refocused wave decays exponentially with the propagation
distance even if the radiation losses are negligible.

In the case µ = 1, we study in Section 3.4.7 the transverse profile of the deterministic
refocused wave field using the continuous diffusive model introduced in Chapter 2. We
consider a time-reversal mirror DM = [d1, d2] with a size of order λαMoc , where αM ∈ [0, 1]
and λoc = 2πc

n1ω0
is the carrier wavelength in the ocean section [0, d] of the waveguide. In the

case of a homogeneous waveguide, we get in Section 3.4.3 that the width of the focal spot is
diffraction limited.

Proposition For αM ∈ [0, 1), the transverse profile of the refocused wave in the high-frequency
regime ω0 → +∞ is given by

HαM
x0 (ω0, x, L) '

ω0�1

θ

λoc

d2 − d1
d

sinc
(
2πx− x0

λoc
θ
)
.

The width of the focal spot is given by λoc/(2θ), where λoc is the carrier wavelength in the
ocean section [0, d].

In the case of a random waveguide with radiation losses, we have in Section 3.4.7 the following
result.
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Proposition The transverse profile of the refocused wave in the high-frequency regime ω0 →
+∞ is given by

HαM
x0

(
ω0, x, L

)
'

ω0�1

θ

λoc

d2 − d1
d

H
(x− x0

λoc
θ, L

)
,

where
H(x̃, L) =

∫ 1

0
T1(L, u) cos(2πux̃)du,

and T1(L, u) is the solution of

∂

∂z
T1(z, u) = ∂

∂u

(
a∞(·) ∂

∂u
T1
)

(z, u),

with the boundary conditions:

∂

∂u
T1(z, 0) = 0, T1(z, 1) = 0 and T1(0, u) = 1,

∀z > 0. Here,
a∞(u) = a0

1−
(
1− π2

a2d2

)
(θu)2

,

with a0 = π2S0
2an4

1d
4θ2 , θ =

√
1− 1/n2

1, S0 =
∫ d
0
∫ d
0 γ0(x1, x2) cos

(
π
dx1

)
cos

(
π
dx2

)
dx1dx2. n1 is

the index of refraction in the ocean section [0, d], 1/a = lz,x is the correlation length of the
random inhomogeneities in the longitudinal direction, and γ0 is the covariance function of the
random inhomogeneities in the transverse direction.

The transverse profile of the refocused wave can be expressed in terms of the diffusive
continuous model introduced in Section 2.5.2, with a reflecting boundary condition at u = 0
(the top of the waveguide) and an absorbing boundary condition at u = 1 (the bottom of the
waveguide) which represents the radiative loss (see Figure 1.4). As it is illustrated in Figures
1.7 and 1.8 the radiation losses degrade the quality of the refocusing: the amplitude of the
refocused wave decays exponentially with the propagation distance (see Section 2.5.2), and
the width of the focal spot increases and converges to an asymptotic value that is significantly
larger than the diffraction limit λoc/(2θ), where λoc is the carrier wavelength in the ocean
section [0, d].

In the case of a random waveguide, if we assume that the radiation losses are negligible,
we have in Section 3.4.7 the following result.

Proposition For αM ∈ [0, 1], with negligible radiation losses, the transverse profile of the
refocused wave in the high-frequency regime ω0 → +∞ is given by

H0,αM
x0

(
ω0, x, L

)
'

ω0�1

θ

λoc

d2 − d1
d

sinc
(
2πx− x0

λoc
θ
)
.

In the case of negligible radiation losses (see Figure 1.5) the energy is conserved (see Section
2.5.3). The sinc profile obtained in Proposition 3.13 page 147 is the best transverse profile
that we can obtained.

Let us remark that, in the case of a random waveguide, the order of magnitude αM of the
time-reversal mirror plays no role in the transverse profile compared to the homogeneous case
(see Section 3.4.7).
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(a) (b)

Figure 1.7: Normalized transverse profile. In (a) and (b) the dashed curves are the transverse
profiles in the case where the radiation losses are negligible sinc(2πx̃), and the solid curves
represent the transverse profile H(x̃, L) in the presence of radiative loss. In (a) we represent
H(x̃, L) with L = 75, and in (b) we represent H(x̃, L) with L = 250.

Figure 1.8: Representation of the evolution of the resolution with respect to the propagation
distance L. Here a0 = 1, a = 1, n1 = 2, and d = 20.
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Figure 1.9: Representation of the waveguide model with propagation axis in the z-direction,
bounded cross-section [0, d], and two sections (−∞, L/ε1−α) and (L/ε1−α,+∞).

Results of Chapter 4 For the sake of simplicity, we do not consider in this chapter the
same waveguide model as in Chapters 2 and 3. The waveguide considered in this chapter
is the same as in [25, Chapter 20] and [30], that is, the transverse section X is a bounded
interval [0, d]. Consequently, in this chapter we do not consider the influence of the radiative
loss on the time-reversal experiment.

In [25, Chapter 20] and [30] the authors show that the size of the focal spot in the time-
reversal experiment is limited by the diffraction limit λ0/2 (where λ0 is the carrier wavelength).
We show in Chapter 4 that the main focal spot can be smaller than the diffraction limit by
inserting a random section in the vicinity of the source.

In this chapter the medium parameters are given by

1
Kε(x, z)

=


ε2αK 1

K̄

(
1 +
√
εV
(
x, zεα

))
if x ∈ (0, d), z ∈ [0, L/ε1−α]

ε2αK 1
K̄

if x ∈ (0, d), z ∈ (−∞, 0)
1
K̄

if x ∈ (0, d), z ∈ (L/ε1−α,+∞),

ρε(x, z) =
{
ε−2αρ ρ̄ if x ∈ (0, d), z ∈ (−∞, L/ε1−α]
ρ̄ if x ∈ (0, d), z ∈ (L/ε1−α,+∞),

where αρ and αK are such that αρ − αK = α ∈ (0, 1] (see Figure 1.9). The random process
V , described more precisely in Section 2.6.1, models the spatial inhomogeneities. We consider
a broadband source localized in the plane z = 0:

Fε(t, x, z) = f ε(t)Ψ(x)δ(z)ez, where f ε(t) = 1
2εα

f(εpt)e−iω0t with p ∈ (0, 1),

and Ψ(x) is the transverse profile of the source. The source amplitude is large, of order
1/εα, because transmission coefficients at the interface z = L/ε1−α are small, of order εα/2.
However, in Section 4.4.6, we show that the transmission coefficients can be made of order one
by inserting a quarter wavelength plate. In this Chapter, the two realizations of the random
medium during the time-reversal experiment are the same, and as in Chapter 3 the condition
p ∈ (0, 1) (broadband case) ensures the statistical stability property (see Section 4.4.5).

The important parameter is α, because it determines the order of magnitude of the
sound speed c1 of the first section (−∞, L/ε1−α). This configuration means that the order
of magnitude of the sound speed c1 ∼ εα is small compared to that c0 ∼ 1 of the section
(L/ε1−α,+∞). The first section can represent a solid with random inhomogeneities, and the
second can represent a homogeneous gas or liquid. The particular case α = 0 is equivalent
to that studied in [30] and [25, Chapter 20], in which no superresolution effect can be
detected. The parameter α represents a possible configuration of the waveguide model, but in
order to apply an asymptotic analysis we take α ∈ (0, 1/4). The regime of the first section
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(−∞, L/ε1−α) is given by

L0
λ0

= K1
ε
� 1, lz,c

λ0
= K2

εα

εα
∼ 1, lx,c

λ0
= K3

εα
� 1, and σ =

√
ε.

This regime is somewhat different from the weakly heterogeneous regime dicussed at the
begining of this presentation. However, in the z-direction, which is the main propagation axis,
this regime corresponds to the weakly heterogeneous regime.

As we study linear models of propagation the pressure p(t, x, z) can be expressed as the
superposition of monochromatic waves by taking its Fourier transform:

p̂(ω, x, z) =
∫
p(t, x, z)eiωtdt.

Moreover, a wave field can be decomposed as follows:

p̂(ω, x, z) =
∑
j≥1

p̂j(ω, z)φj(x),

where (φj(.))j≥1 is the basis of the Hilbert space L2(0, d) defined by

φj(x) =
√

2
d

sin
(
jπ

d
x

)
with λj = j2π2

d2 for j ≥ 1,

and corresponds to the eigenvectors and eigenvalues of the unperturbed waveguide.

• In the second section (L/ε1−α,+∞): for j ≤ N(ω) =
[
ωd
πc0

]
, the modes φj(x) are the

propagating modes for the waveguide with homogeneous parameters K(x, z) = K̄ and
ρ(x, z) = ρ̄, and we call these modes low modes; for j > N(ω), these modes are the
evanescent modes for the waveguide, and we call these modes high modes.

• In the first section (−∞, L/ε1−α): for j ≤ Nε(ω) =
[

ωd
πc0εα

]
, the modes φj(x) are the

propagating modes for the waveguide with homogeneous parameters K(x, z) = K̄/ε2αK

and ρ(x, z) = ρ̄/ε2αρ ; for j > Nε(ω), these modes are the evanescent modes for the same
waveguide.

We know that for the waveguide with homogeneous parameters K(x, z) = K̄ and ρ(x, z) =
ρ̄ the information on the small-scale features (position and shape) of the source, which are
carried by the high modes, is lost [30]. Let us remark that in Chapter 2, with a randomly
perturbed waveguide, we show in Proposition 2.2 page 50, that the information on the small-
scale features of the source is lost because of a low coupling mechanism between the high
modes and the low modes. Let us remark that the number of propagating modes of the first
section (−∞, L/ε1−α) goes to +∞ as ε→ 0. This implies that high modes are propagating
modes of the first section. By adding random inhomogeneities in the first section, we get an
efficient coupling between high modes and low modes.

In this chapter the source profile is given by

Ψ(x) =
ζ∑
j=1

φj(x0)φj(x) ∀x ∈ [0, d],

with ζ � N(ω0) to have a large number of high modes. This profile is an approximation of a
Dirac distribution which models a point source at x0.

In order to study the refocused wave around the original source location (see Sections
4.4.3 and 4.4.4), and under the assumption that nearest neighbor coupling is the main
power transfer mechanism, we analyze the asymptotic behavior of the product of two transfer
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matrices Uε
jm(ω, z) = Tε

jl(ω, z)Tε
mn(ω, z) at the same frequency. Here, Tε(ω, z) is the solution

of the Nε(ω)×Nε(ω) system of differential equations with random coefficients of the form:

d

dz
Tε(ω, z) = 1√

ε
Ha,ε

(
ω,
z

ε

)
Tε(ω, z) with Tε(ω, 0) = I.

Here Ha,ε is defined by (4.10) page 158 and represents the coupling of the Nε(ω)-propagating
modes of the first section (−∞, L/ε) due to the random heterogeneities. The asymptotic
behavior as ε→ 0 of the statistical properties of the matrix Uε is described in Section 4.3 in
terms of the diffusion model given by the infinite-dimensional stochastic differential equation:

dU(ω, z) = Jω(U(ω, z))dz + ψω1 (U(ω, z))(dB1
z ) + ψω2 (U(ω, z))(dB2

z ),

with Ujm(ω, 0) = δjlδmn, where (Bη
jm)η=1,2

j,m≥1
is a family of independent one-dimensional

standard Brownian motions, and Jω, ψω1 and ψω2 are defined in Theorem 4.1 page 160. As
a result, the transverse profile of the refocused wave in the asymptotic ε→ 0 is essentially
given by

HαM
x0 (ω0, x) = 1

2
∑
l≥1

N(ω0)∑
j=1

βj(ω0)
k(ω0)

T lj (ω0, L)Mjjφl(x)φl(x0),

up to an error which decays exponentially to 0 in the high-frequency regime (see Section 4.4.4).
Here, Mjj =

∫
DM φ2

j (x)dx, k(ω0) = ω0/c0 is the carrier wavenumber of the second section
(L/ε1−α,+∞) of the waveguide, and βj(ω0) =

√
k2(ω0)− λj is the jth modal wavenumber of

the second section of the waveguide.
Consequently, we are interested in the study of the asymptotic mean mode powers of the

propagating modes
T lj (ω,L) = lim

ε→0
E
[∣∣Tε

jl(ω,L)
∣∣2].

T lj (ω,L) is the expected power of the jth propagating mode at the propagation distance
z = L, when at z = 0 the energy is concentrated on the lth propagating mode. The expected
powers T lj (ω,L) are solution of the following coupled power equations:

d

dz
T lj (ω, z) = Λ(ω)

[
T lj+1(ω, z) + T lj−1(ω, z)− 2T lj (ω, z)

]
, j ≥ 1,

d

dz
T l1 (ω, z) = Λ(ω)

[
T l2 (ω, z)− T l1 (ω, z)

]
,

with T lj (ω, 0) = δjl. These equations describe the transfer of energy between the propagating
modes and Λ(ω) is the energy transport coefficient. The initial condition means that an
impulse equal to one charges only the lth propagating mode. As in Chapter 2, the evolution
of the mean mode powers is described in the high-frequency regime by a continuous diffusive
model (see Section 4.3). Moreover, as in Chapter 3, this continuous diffusive model can be used
to study the refocused transverse profile (see Section 4.4.4). In the high-frequency regime, we
can consider (T l(ω,L))l≥1 as a family of probability measures on R+. Let ∀ϕ ∈ C0

b ([0,+∞)),
∀u ∈ [0,+∞), and z ≥ 0,

T N(ω)
ϕ (z, u) = T [N(ω)u]

ϕ (ω, z) =
∑
j≥1

ϕ
( j

N(ω)

)
T [N(ω)u]
j (z).

Theorem ∀u ≥ 0, ∀z ≥ 0, and ∀ϕ ∈ C0
b ([0,+∞)), we have

lim
ω→+∞

T N(ω)
ϕ (z, u) = Tϕ(z, u) =

∫
R+
ϕ(v)W(z, u, v)dv,
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Figure 1.10: Representation of mode propagation in the time reversal experiment. The
pictures on the left-hand side illustrate the first step of the experiment. A source sends a
pulse into a medium. The wave propagates and is recorded by the time-reversal mirror. The
recorded signal is reversed in time by the mirror. The pictures on the right-hand side illustrate
the second step of the experiment. The time-reversal mirror sends back the time-reversed
wave. The part of the signal that is recorded first is sent back last. The back-propagating
wave refocuses approximately at the source location. In (a) we represent a homogeneous
waveguide, in (b) we add a homogeneous section with low speed propagation, and in (c) we
add a randomly heterogeneous section with low background propagation speed.

where ∀z > 0 and (u, v) ∈ [0,+∞)2,

∂

∂z
W(z, u, v) = σ2

2
∂2

∂u2W(z, u, v),

with
∂

∂u
W(z, 0, v) = 0 and W(0, u, v) = δ(u− v).

Here, σ2 = π2

d2aS(1, 1) and S(1, 1) = 4
d2
∫ d
0
∫ d
0 γ0(x1, x2) cos

(
π
dx1

)
cos

(
π
dx2

)
dx1dx2. Moreover,

1/a = lz,x is the correlation length of the random inhomogeneities in the longitudinal direction,
and γ0 is the covariance function of the random inhomogeneities in the transverse direction.

Let us note that W(z, u, v) can be computed. We have, ∀z > 0 and ∀(u, v) ∈ [0,+∞)2,

W(z, u, v) = 1√
2πσ2z

(
e−

(v−u)2

2σ2z + e−
(v+u)2

2σ2z

)
.

As in Chapter 3, this result is used to study the refocused transverse profile. Now, let us
describe the important mechanisms which lead us to the superresolution effect.

First, the case of a waveguide with homogeneous sound speed c0 (see Figure 1.10 (a)) is
well known; see for instance [25], where the authors obtain the classical diffraction limit λ0/2.
In this case, the small-scale features (position and shape) of the source are carried by the
high modes that decay exponentially fast with the propagation distance. Consequently, these
modes do not reach the time-reversal mirror, which is located in the far field. Only low modes
are recorded by the time-reversal mirror. In the second step of the time-reversal experiment,
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the mirror sends back the recorded low modes that carry only the large-scale features of the
original source. This loss of information is responsible for the diffraction-limited transverse
profile, and is described by the following result of Section 4.4.3. We consider a time-reversal
mirror DM = [d1, d2] with a size of order λαM0 , where αM ∈ [0, 1] and λ0 = 2πc

ω0
is the carrier

wavelength in the second section (L/ε1−α,+∞) of the waveguide.

Proposition For αM ∈ [0, 1), the spatial profile in the high-frequency regime is given by

HαM
x0,no section(ω0, x) '

ω0�1

d2 − d1
λ0d

sinc
(
2πx− x0

λ0

)
.

In this chapter, we are interested in comparing the two following cases with the previous
one. First, we assume that a homogeneous section with low sound speed c1 � 1 is inserted in
the vicinity of the source, as illustrated in Figure 1.10 (b), such that some high modes of the
previous case are propagating modes in this first section. However, we assume that the major
part of the waveguide has sound speed c0 so the high modes and the small-scale features of
the source do not reach the time-reversal mirror. Therefore, as in the homogeneous case, only
low modes are recorded by the time-reversal mirror and the small-scale features of the source
are lost. Then, we get in Section 4.4.3 the following result.

Proposition For αM ∈ [0, 1), the transverse profile of the refocused wave in the high-frequency
regime is given by

HαM
x0 (ω0, x) '

ω0�1

d2 − d1
λ0d

H(1)
(x− x0

λ0

)
,

where
H(1)(x̃) =

∫ 1

0

√
1− u2 cos (2πx̃u) du.

Second, if the additional section has low sound speed and is randomly perturbed, then
coupling mechanisms, between all the propagating modes of the first section, allow small-scale
features of the source, which are carried by the high modes, to be transferred to low modes.
Even if the high modes do not propagate over large distances in the second part of the
waveguide and are not recorded by the time-reversal mirror, a part of the small-scale features
of the source reaches the time-reversal mirror since they are carried by the low modes which
are recorded by the time-reversal mirror. This fact is illustrated in Figure 1.10 (c). These low
modes, time-reversed, come back to the randomly perturbed section in the second step of the
time-reversal experiment, and by coupling mechanisms they regenerate high modes with the
small-scale features of the source. This regeneration of small-scale features of the source is
responsible for the superresolution effect and we get in Section 4.4.4 the following result.

Proposition For αM ∈ [0, 1], in the high-frequency regime, we have

H̃αM
x0 (ω0, x) = d2 − d1

λ0d
H(2)

(x− x0
λ0

, L
)
,

where
H(2)(x̃, L) = e−x̃

2/r2
cH(1)(x̃) = e−x̃

2/r2
c

∫ 1

0

√
1− u2 cos (2πx̃u) du,

with
rc = 1

πσ
√

2L
= d

π2

√
a

2LS(1, 1)
,

and S(1, 1) = 4
d2
∫ d
0
∫ d
0 γ0(x1, x2) cos

(
π
dx1

)
cos

(
π
dx2

)
dx1dx2. Moreover, 1/a = lz,x is the

correlation length of the random inhomogeneities in the longitudinal direction, and γ0 is the
covariance function of the random inhomogeneities in the transverse direction.
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(a) (b)

Figure 1.11: Normalized transverse profiles in a random waveguide. Here L = 1. In (a) and
(b) we illustrate the case where αM ∈ [0, 1). The dashed curves are the transverse profiles in
the case where the section is missing, and the solid curves are the transverse profiles H(2)(x̃, L)
in the case where we add a random section, with σ = 0.5 in (a), and σ = 7 in (b).

Figure 1.12: Ratio between the FWHM (Full Width at Half Maximum) of the profile H(2)(x̃, L)
obtained when we add a random section and that of the profile obtained when this section is missing
sinc(2πx̃), in terms of the standard deviation σ of the random fluctuations. Here L = 1. The solid
curve represents the case where αM ∈ [0, 1), and the dashed curve represents the case where αM = 1.

Moreover, let us remark that, in the case where the additional section is randomly perturbed,
the order of magnitude αM of the time-reversal mirror plays no role in the transverse profile
compared to the homogeneous cases (see Section 4.4.4).
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Chapter 2
Wave Propagation in Shallow-Water
Acoustic Random Waveguides

Introduction
Acoustic wave propagation in shallow-water waveguides has been studied for a long time
because of its numerous domains of applications. One of the most important applications
is submarine detection with active or passive sonars, but it can also be used in underwater
communication, mines or archaeological artifacts detection, and to study the ocean’s structure
or ocean biology. Shallow-waters are complicated media because they have indices of refraction
with spatial and time dependences. However, the sound speed in water, which is about 1500
m/s, is sufficiently large with respect to the motions of water masses that we can consider
this medium as being time independent. Moreover, the presence of spatial inhomogeneities in
the water produces a mode coupling and can induce significant effects over large propagation
distances.

In shallow-water waveguides the transverse section can be represented as a semi-infinite
interval (see Figure 2.1) and then a wave field can be decomposed over three kinds of modes:
the propagating modes which propagate over long distances, the evanescent modes which
decrease exponentially with the propagation distance, and the radiating modes representing
modes which penetrate under the bottom of the water. The main purpose of this chapter is
to analyze how the propagating mode powers are affected by the radiating and evanescent
modes. This analysis is carried out using an asymptotic analysis based on a separation of scale
technique, where the wavelength and the correlation lengths of the inhomogeneities, which
are of the same order, are small compared to the propagation distance, and the fluctuations
of the medium are small compared to the wavelength. In the terminology of [25] this is the
so-called weakly heterogeneous regime.

Wave propagation in random waveguides with a bounded cross-section and Dirichlet
boundary conditions (see Figure 2.1) has been studied in [25, Chapter 20] or [30] for instance.
In this case we have only two kinds of modes, the propagating and the evanescent modes. In
such a model an asymptotic analysis of the mode powers show total energy conservation and
a uniform distribution of the energy carried by the propagating modes. In [30] coupled power
equations are derived under the assumption that evanescent modes are negligible. In [29] the
role of evanescent modes is studied in absence of radiating modes. In this chapter we take
into account the influence of the radiating and the evanescent modes on the coupled power
equations. In this case we show a mode-dependent and frequency-dependent attenuation on
the propagating modes in Theorem 2.3, that is, the total energy carried by the propagating
modes decreases exponentially with the size of the random section and we give an expression
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x

Ocean

Bottom

z

z

x

(a) (b)

Figure 2.1: Illustration of two kinds of waveguides. In (a) we represent a shallow-water
waveguide model with an unbounded cross-section. In (b) we represent a waveguide with a
bounded cross-section.

of the decay rate. Moreover, in the high-frequency regime, we show in Theorems 2.4 and
2.6 that the propagating mode powers converge to the solution of a diffusion equation. All
the results of this chapter are also valid for electromagnetic wave propagation in dielectric
waveguides and optical fibers [43, 44, 52, 54, 62].

The organization of this chapter is as follows. In Section 2.1 we present the waveguide
model that we consider in Chapter 2 and Chapter 3, and in Section 2.2 we present the mode
decomposition associated to that model and studied in detail in [61]. In Section 2.3 we study
the mode coupling when there are the three kinds of modes. In the same spirit as in [25,
chapter 20], we derive the coupled mode equation, we study the energy flux for the propagating
and the radiating modes, and the influence of the evanescent modes on the two other kinds of
modes. In Section 2.4, under the forward scattering approximation, we study the asymptotic
form of the joint distribution of the propagating and radiating mode amplitudes. We apply
this result in Section 2.5 to derive the coupled power equations for the propagating modes,
which was already obtained in [39] or [44] for instance. In this section, we study the influence
of the radiating and evanescent modes on the mean propagating mode powers. We show that
the total energy carried by the propagating modes decreases exponentially with the size of
the random section and we give an expression of the decay rate. In other words, the radiating
modes induce a mode-dependent attenuation on the propagating modes, that is why these
modes are sometimes called dissipative modes. Moreover, under the assumption that nearest
neighbor coupling is the main power transfer mechanism, we show, in the high-frequency
regime or in the limit of large number of propagating modes, that the mean propagating
mode powers converge to the solution of a diffusion equation. We can refer to [39, 44] for
further references and discussions about diffusion models. In that regime, we can also observe
the exponential decay behavior caused by the radiative loss.

2.1 Waveguide Model
We consider a two-dimensional linear acoustic wave model. The conservation equations of
mass and linear momentum are given by

ρ(x, z)∂u
∂t

+∇p = F,

1
K(x, z)

∂p

∂t
+∇.u = 0,

(2.1)

where p is the acoustic pressure, u is the acoustic velocity, ρ is the density of the medium,
K is the bulk modulus, and the source is modeled by the forcing term F(t, x, z). The third

32



Chapter 2 Section 2.1.0

Figure 2.2: Illustration of the shallow-water waveguide model.

coordinate z represents the propagation axis along the waveguide. The transverse section of
the waveguide is the semi-infinite interval [0,+∞), and x ∈ [0,+∞) represents the transverse
coordinate. Let d > 0, we assume that the medium parameters are given by

1
K(x, z)

=


1
K̄

(
n2(x) +

√
εV (x, z)

)
if x ∈ [0, d], z ∈ [0, L/ε]

1
K̄
n2(x) if


x ∈ [0,+∞), z ∈ (−∞, 0) ∪ (L/ε,+∞)
or
x ∈ (d,+∞), z ∈ (−∞,+∞).

ρ(x, z) = ρ̄ if x ∈ [0,+∞), z ∈ R.

In Chapters 2 and 3, we consider the Pekeris waveguide model. This kind of model has been
studied for half a century [51] and in this model the index of refraction n(x) is given by

n(x) =
{
n1 > 1 if x ∈ [0, d)
1 if x ∈ [d,+∞).

This profile can model an ocean with a constant sound speed. Such conditions can be
found during the winter in Earth’s mid latitudes and in water shallower than about 30 meters.
The Pekeris profile leads us to simplified algebra but it underestimates the complexity of the
medium. However, the analysis that we present in Chapters 2 and 3 can be extended to more
general profiles n(x) with general boundary conditions. In the Pekeris model that we consider
n1 represents the index of refraction of the ocean section [0, d], where d is the depth of the
ocean, and we consider that the index of refraction of the bottom of the ocean is equal to 1.
This model can also be used to study the propagation of electromagnetic waves in a dielectric
slab with randomly perturbed index of refraction and optical fiber [43, 44, 54, 62].

We consider a source that emits a signal in the z-direction, which is localized in the plane
z = LS .

F(t, x, z) = Ψ(t, x)δ(z − LS)ez. (2.2)
Ψ(t, x) represents the profile of the source and ez is the unit vector pointing in the z-direction.
LS < 0 is the location of the source on the propagating axis.

The random process (V (x, z), x ∈ [0, d], z ≥ 0) that we consider, and which represents
the spatial inhomogeneities is presented in Section 2.6.1. However, one can remark that the
process V is unbounded. This fact implies that the bulk modulus can take negative values.
In order to avoid this situation, we can work on the event(

∀(x, z) ∈ [0, d]× [0, L/ε], n1 +
√
εV (x, z) > 0

)
.
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In fact, the property (2.55) implies

lim
ε→0

P
(
∃(x, z) ∈ [0, d]× [0, L/ε] : n1 +

√
εV (x, z) ≤ 0

)
≤ lim

ε→0
P
(√

ε sup
z∈[0,L]

sup
x∈[0,d]

∣∣∣∣V (x, zε
)∣∣∣∣ ≥ n1

)
= 0.

2.2 Wave Propagation in a Homogeneous Waveguide
In this section, we assume that the medium parameters are given by

ρ(x, z) = ρ̄ and K(x, z) = K̄

n2(x)
, ∀(x, z) ∈ [0,+∞)× R.

From the conservation equations (2.1), we can derive the wave equation for the pressure field,

∆p− 1
c(x)2

∂2p

∂t2
= ∇.F, (2.3)

where c(x) = c/n(x) with c =
√

K̄
ρ̄ , and ∆ = ∂2

x + ∂2
z .

In underwater acoustics the density of air is very small compared to the density of water,
then it is natural to use a pressure-release condition. The pressure is very weak outside the
waveguide, and by continuity, the pressure is zero at the free surface x = 0. This consideration
leads us to consider the Dirichlet boundary conditions

p(t, 0, z) = 0 ∀(t, z) ∈ [0,+∞)× R.

Throughout this manuscript, we consider linear models of propagation. Therefore, the
pressure p(t, x, z) can be expressed as the superposition of monochromatic waves by taking
its Fourier transform. Here, the Fourier transform and the inverse Fourier transform, with
respect to time, are defined by

f̂(ω) =
∫
f(t)eiωtdt, f(t) = 1

2π

∫
f̂(ω)e−iωtdω.

In the half-space z > LS (resp., z < LS), taking the Fourier transform in (2.3), we get
that p̂(ω, x, z) satisfies the time harmonic wave equation without source term

∂2
z p̂(ω, x, z) + ∂2

xp̂(ω, x, z) + k2(ω)n2(x)p̂(ω, x, z) = 0, (2.4)

where k(ω) = ω
c is the wavenumber, and with Dirichlet boundary conditions p̂(ω, 0, z) = 0

∀z ∈ R. The source term implies the following jump conditions for the pressure field across
the plane z = LS

p̂(ω, x, L+
S )− p̂(ω, x, L−S ) = Ψ̂(ω, x),

∂z p̂(ω, x, L+
S )− ∂z p̂(ω, x, L−S ) = 0. (2.5)

2.2.1 Spectral Decomposition in Unperturbed Waveguides

This section is devoted to the presentation of the spectral decomposition of the Pekeris operator
∂2
x + k2(ω)n2(x). The spectral analysis of this operator is carried out in [61]. Throughout

Chapters 2 and 3, we shall be interested in solutions of (2.4) such that

p̂(ω, ., .)1(LS ,+∞)(z) ∈ C0
(
(LS ,+∞), H1

0 (0,+∞) ∩H2(0,+∞)
)
∩ C2

(
(LS ,+∞), H

)
,

p̂(ω, ., .)1(−∞,LS)(z) ∈ C0
(
(−∞, LS), H1

0 (0,+∞) ∩H2(0,+∞)
)
∩ C2

(
(−∞, LS), H

)
,
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where H = L2(0,+∞). H is equipped with the inner product defined by

∀(h1, h2) ∈ H ×H,
〈
h1, h2

〉
H

=
∫ +∞

0
h1(x)h2(x)dx.

Consequently, in the half-space z > LS (resp., z < LS), we can consider (2.4) as the operational
differential equation

d2

dz2 p̂(ω, ., z) +R(ω)
(
p̂(ω, ., z)

)
= 0 (2.6)

in H, where R(ω) is an unbounded operator on H with domain

D(R(ω)) = H1
0 (0,+∞) ∩H2(0,+∞),

and defined by

R(ω)(y) = d2

dx2 y + k2(ω)n2(x)y ∀y ∈ D(R(ω)).

According to [61], R(ω) is a self-adjoint operator on the Hilbert space H, and its spectrum is
given by

Sp
(
R(ω)

)
=
(
−∞, k2(ω)

]
∪
{
β2
N(ω)(ω), . . . , β2

1(ω)
}
. (2.7)

More precisely, we have βj(ω) > 0 ∀j ∈
{
1, . . . , N(ω)

}
, and

k2(ω) < β2
N(ω)(ω) < · · · < β2

1(ω) < n2
1k

2(ω).

Moreover, there exists a resolution of the identity Πω of R(ω) such that ∀y ∈ H, ∀r ∈ R,

Πω(r,+∞)(y)(x) =
N(ω)∑
j=1

〈
y, φj(ω, .)

〉
H
φj(ω, x)1(r,+∞)

(
βj(ω)2

)

+
∫ k2(ω)

r

〈
y, φγ(ω, .)

〉
H
φγ(ω, x)dγ1(−∞,k2(ω))(r),

and ∀y ∈ D(R(ω)), ∀r ∈ R,

Πω(r,+∞)(R(ω)(y))(x) =
N(ω)∑
j=1

βj(ω)2
〈
y, φj(ω, .)

〉
H
φj(ω, x)1(r,+∞)

(
βj(ω)2

)

+
∫ k2(ω)

r
γ
〈
y, φγ(ω, x)

〉
H
φγ(ω, x)dγ1(−∞,k2(ω))(r).

Let us describe these decompositions.

Discrete part of the decomposition ∀j ∈
{
1, . . . , N(ω)

}
, the jth eigenvector is given

by [61]

φj(ω, x) =
{

Aj(ω) sin(σj(ω)x/d) if 0 ≤ x ≤ d
Aj(ω) sin(σj(ω))e−ζj(ω)x−d

d if d ≤ x,

where
σj(ω) = d

√
n2

1k
2(ω)− β2

j (ω), ζj(ω) = d
√
βj(ω)2 − k2(ω),

and

Aj(ω) =
√√√√ 2/d

1 + sin2(σj(ω))
ζj(ω) − sin(2σj(ω))

2σj(ω)

. (2.8)
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According to [61], σ1(ω), . . . , σN(ω)(ω) are the solutions on (0, n1k(ω)dθ) of the equation

tan(y) = − y√
(n1kdθ)2 − y2 , (2.9)

such that 0 < σ1(ω) < · · · < σN(ω)(ω) < n1k(ω)dθ, and with θ =
√

1− 1/n2
1. This last

equation admits exactly one solution over each interval of the form
(
π/2 + (j − 1)π, π/2 + jπ

)
for j ∈ {1, . . . , N(ω)}, where

N(ω) =
[
n1k(ω)d

π
θ

]
.

From (2.9), we get the following results about the localization of the solutions which is used
to show the main result of Section 2.5.2.

Lemma 2.1 Let α > 1/3, we have as N(ω)→ +∞

sup
j∈{1,...,N(ω)−[N(ω)α]−1}

|σj+1(ω)− σj(ω)− π| = O
(
N(ω)

1
2−

3
2α
)
.

sup
j∈{1,...,N(ω)−[N(ω)α]−2}

∣∣σj+2(ω)− 2σj+1(ω) + σj(ω)
)∣∣ = O (N(ω)1−3α

)
.

Continuous part of the decomposition For γ ∈ (−∞, k2(ω)), we have [61]

φγ(ω, x) ={
Aγ(ω) sin(η(ω)x/d) if 0 ≤ x ≤ d

Aγ(ω)
(
sin(η(ω)) cos

(
ξ(ω)x−dd

)
+ η(ω)

ξ(ω) cos(η(ω)) sin
(
ξ(ω)x−dd

))
if d ≤ x,

where
η(ω) = d

√
n2

1k
2(ω)− γ, ξ(ω) = d

√
k2(ω)− γ,

and

Aγ(ω) =
√

dξ(ω)
π
(
ξ2(ω) sin2(η(ω)) + η2(ω) cos2(η(ω))

) . (2.10)

It is easy to check that the function γ 7→ Aγ(ω) is continuous on
(
−∞, k2(ω)

)
and

Aγ(ω) ∼
γ→−∞

1√
π|γ|1/4

. (2.11)

We can remark that φγ(ω, .) does not belong to H. Then,
〈
y, φγ(ω, .)

〉
H

is not defined in the
classical way. In fact,

〈
y, φγ(ω, .)

〉
H

= lim
M→+∞

∫ M

0
y(x)φγ(ω, x)dx on L2(−∞, k2(ω)

)
.

Moreover, we have ∀y ∈ H

‖y‖2H =
N(ω)∑
j=1

∣∣〈y, φj(ω, .)〉H ∣∣2 +
∫ k2(ω)

−∞

∣∣〈y, φγ(ω, .)〉H ∣∣2dγ.
Then,

Θω : H −→ Hω

y −→
((〈

y, φj(ω, .)
〉
H

)
j=1,...,N(ω),

(〈
y, φγ(ω, .)

〉
H

)
γ∈(−∞,k2(ω))

)
is an isometry, from H onto Hω = CN(ω) × L2(−∞, k2(ω)

)
.
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2.2.2 Modal Decomposition

In this section we apply the spectral decomposition introduced in Section 2.2.1 on a solution
p̂(ω, x, z) of the equation (2.6). Consequently, we get the modal decomposition for p̂(ω, x, z)
in the half-space z > LS ,

p̂(ω, x, z) =
N(ω)∑
j=1

p̂j(ω, z)φj(ω, x) +
∫ k2(ω)

−∞
p̂γ(ω, z)φγ(ω, x)dγ,

where p̂(ω, z) = Θω(p̂(ω, ., z)). For j ∈
{
1, . . . , N(ω)

}
, Θω ◦Πω({j}) represents the projection

over the jth propagating mode, and p̂j(ω, z) is the amplitude of the jth propagating mode.
Θω ◦ Πω(0, k2(ω)) represents the projection over the radiating modes, and p̂γ(ω, z) is the
amplitude of the γth radiating mode for almost every γ ∈ (0, k2(ω)). Finally, Θω ◦Πω(−∞, 0)
represents the projection over the evanescent modes and p̂γ(ω, z) is the amplitude of the γth
evanescent mode for almost every γ ∈ (−∞, 0).

Consequently, p̂(ω, z) satisfies

d2

dz2 p̂j(ω, z) + β2
j (ω)p̂j(ω, z) = 0,

d2

dz2 p̂γ(ω, z) + γ p̂γ(ω, z) = 0

in Hω and the pressure field can be written as an expansion over the complete set of modes

p̂(ω, x, z) =

N(ω)∑
j=1

âj,0(ω)√
βj(ω)

eiβj(ω)zφj(ω, x) +
∫ k2(ω)

0

âγ,0(ω)
γ1/4 ei

√
γzφγ(ω, x)dγ

+
∫ 0

−∞

ĉγ,0(ω)
|γ|1/4

e−
√
|γ|zφγ(ω, x)dγ

]
1(LS ,+∞)(z)

+

N(ω)∑
j=1

b̂j,0(ω)√
βj(ω)

e−iβj(ω)zφj(ω, x) +
∫ k2(ω)

0

b̂γ,0(ω)
γ1/4 e−i

√
γzφγ(ω, x)dγ

+
∫ 0

−∞

d̂γ,0(ω)
|γ|1/4

e
√
|γ|zφγ(ω, x)dγ

]
1(−∞,LS)(z),

(2.12)

under the assumption that
(
ĉγ,0(ω)e−

√
|γ|LS/|γ|1/4

)
γ
and

(
d̂γ,0(ω)e

√
|γ|LS/|γ|1/4

)
γ
belong to

L2(−∞, 0). Here, βj(ω) are the modal wavenumbers.
In the previous decomposition, âj,0(ω) (resp., b̂j,0(ω)) is the amplitude of the jth right-

going (resp., left-going) mode propagating in the right half-space z > LS (resp., left half-space
z < LS), âγ,0(ω) (resp., b̂γ,0(ω)) is the amplitude of the γth right-going (resp., left-going)
mode radiating in the right half-space z > LS (resp., left half-space z < LS), and ĉγ,0(ω)
(resp., d̂γ,0(ω)) is the amplitude of the γth right-going (resp., left-going) evanescent mode in
the right half-space z > LS (resp., left half-space z < LS).

We assume that the profile Ψ(t, x) of the source term (2.2) is given, in the frequency
domain, by

Ψ̂(ω, x) = f̂(ω)

N(ω)∑
j=1

φj(ω, x0)φj(ω, x) +
∫
(−S,−ξ)∪(ξ,k2(ω))

φγ(ω, x0)φγ(ω, x)dγ

 , (2.13)

where x0 ∈ (0, d). The bound S in the spectral decomposition of the source profile was
introduced to have Ψ̂(ω, .) ∈ H, and ξ was introduced for technical reasons. Note that S can
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be arbitrarily large and ξ can be arbitrarily small. Therefore, the spatial profile in (2.13) is
an approximation of a Dirac distribution at x0, which models a point source at x0.

Applying Θω on (2.5) and using (2.12), we get

âj,0(ω) = −b̂j,0(ω) =

√
βj(ω)
2

f̂(ω)φj(ω, x0)e−iβj(ω)LS ∀j ∈
{
1, . . . , N(ω)

}
,

âγ,0(ω) = −b̂γ,0(ω) =
{

γ1/4

2 f̂(ω)φγ(ω, x0)e−i
√
γLS for almost every γ ∈ (ξ, k2(ω))

0 for almost every γ ∈ (0, ξ),

ĉγ,0(ω) = −γ
1/4

2
f̂(ω)φγ(ω, x0)e

√
|γ|LS , d̂γ,0(ω) = γ1/4

2
f̂(ω)φγ(ω, x0)e−

√
|γ|LS

for almost every γ ∈ (−S,−ξ), and

ĉγ,0(ω) = d̂γ,0(ω) = 0

for almost every γ ∈ (−∞,−S) ∪ (−ξ, 0).

2.3 Mode Coupling in Random Waveguides
In this section we study the expansion of p̂(ω, x, z) when a random section [0, L/ε] is inserted
between two homogeneous waveguides (see Figure 2.2). In this section the medium parameters
are given by

1
K(x, z)

=


1
K̄

(
n2(x) +

√
εV (x, z)

)
if x ∈ [0, d], z ∈ [0, L/ε]

1
K̄
n2(x) if


x ∈ [0,+∞), z ∈ (−∞, 0) ∪ (L/ε,+∞)
or
x ∈ (d,+∞), z ∈ (−∞,+∞).

ρ(x, z) = ρ̄ if x ∈ [0,+∞), z ∈ R.

In the perturbed section, the pressure field can be decomposed using the resolution of the
identity Πω of the unperturbed waveguide.

p̂(ω, x, z) =
N(ω)∑
j=1

p̂j(ω, z)φj(ω, x) +
∫ k2(ω)

−∞
p̂γ(ω, z)φγ(ω, x)dγ,

where p̂(ω, z) = Θω(p̂(ω, ., z)). In what follows, we shall consider solutions of the form

p̂(ω, x, z) =
N(ω)∑
j=1

p̂j(ω, z)φj(ω, x) +
∫
(−∞,−ξ)∪(ξ,k2(ω))

p̂γ(ω, z)φγ(ω, x)dγ

for technical reasons. This assumption lead us to simplified algebra in the proof of Theorem
2.1. In such a decomposition, the radiating and the evanescent part are separated by the
small band (−ξ, ξ) with ξ � 1. The goal is to isolate the transition mode 0 between the
radiating and the evanescent part of the spectrum Sp

(
R(ω)

)
given by (2.7). Moreover, we

assume that ε� ξ and therefore we have two distinct scales. Let us remark that in Chapters
2 and 3, we shall consider in a first time the asymptotic ε goes to 0 and in a second time the
asymptotic ξ goes to 0.
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2.3.1 Coupled Mode Equations

In this section we give the coupled mode equations, which describes the coupling mechanism
between the amplitudes of the three kinds of modes.

In the random section [0, L/ε] the pressure field p̂(ω, z) satisfies the following coupled
equations in Hω.

d2

dz2 p̂j(ω, z) + β2
j (ω)p̂j(ω, z) +

√
εk2(ω)

N(ω)∑
l=1

Cωjl(z)p̂l(ω, z)

+
√
εk2(ω)

∫
(−∞,−ξ)∪(ξ,k2(ω))

Cωjγ′(z)p̂γ′(ω, z)dγ′ = 0,

d2

dz2 p̂γ(ω, z) + γ p̂γ(ω, z) +
√
εk2(ω)

N(ω)∑
l=1

Cωγl(z)p̂l(ω, z)

+
√
εk2(ω)

∫
(−∞,−ξ)∪(ξ,k2(ω))

Cωγγ′(z)p̂γ′(ω, z)dγ′ = 0,

(2.14)

where

Cωjl(z) =
〈
φj(ω, .), φl(ω, .)V (., z)

〉
H

=
∫ d

0
φj(ω, x)φl(ω, x)V (x, z)dx,

Cωjγ(z) = Cγj(z) =
〈
φj(ω, .), φγ(ω, .)V (., z)

〉
H

=
∫ d

0
φj(ω, x)φγ(ω, x)V (x, z)dx,

Cωγγ′(z) =
〈
φγ(ω, .), φγ′(ω, .)V (., z)

〉
H

=
∫ d

0
φγ(ω, x)φγ′(ω, x)V (x, z)dx.

(2.15)

We recall that p̂(ω, ., .) ∈ C0((0,+∞), H1
0 (0,+∞) ∩H2(0,+∞)

)
∩ C2((0,+∞), H

)
, then∫ −ξ

−∞
γ2|p̂γ(ω, z)|2dγ < +∞. (2.16)

In the previous coupled equation the coefficients Cω(z) represent the coupling between the
three kinds of modes, which are the propagating, radiating and evanescent modes.

Next, we introduce the amplitudes of the generalized right- and left-going modes â(ω, z)
and b̂(ω, z), which are given by

p̂j(ω, z) = 1√
βj(ω)

(
âj(ω, z)eiβj(ω)z + b̂j(ω, z)e−iβj(ω)z

)
,

d

dz
p̂j(ω, z) = i

√
βj(ω)

(
âj(ω, z)eiβj(ω)z − b̂j(ω, z)e−iβj(ω)z

)
,

p̂γ(ω, z) = 1
γ1/4

(
âγ(ω, z)ei

√
γz + b̂γ(ω, z)e−i

√
γz
)
,

d

dz
p̂γ(ω, z) = iγ1/4

(
âγ(ω, z)ei

√
γz − b̂γ(ω, z)e−i

√
γz
)

∀j ∈
{
1, . . . , N(ω)

}
and almost every γ ∈ (ξ, k2(ω)). Let

Hωξ = CN(ω) × L2(ξ, k2(ω)).

From (2.14), we obtain the coupled mode equation inHωξ ×Hωξ ×L2(−∞,−ξ) for the amplitudes
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(
â(ω, z), b̂(ω, z), p̂(ω, z)

)
:

d

dz
âj(ω, z) =

√
ε
ik2(ω)

2

N(ω)∑
l=1

Cωjl(z)√
βjβl

(
âl(ω, z)ei(βl−βj)z + b̂l(ω, z)e−i(βl+βj)z

)
+
√
ε
ik2(ω)

2

∫ k2(ω)

ξ

Cωjγ′(z)√
βj
√
γ′

(
âγ′(ω, z)ei

(√
γ′−βj

)
z + b̂γ′(ω, z)e−i

(√
γ′+βj

)
z
)
dγ′

+
√
ε
ik2(ω)

2

∫ −ξ
−∞

Cωjγ′(z)√
βj

p̂γ′(ω, z)dγ′e−iβjz,

(2.17)

d

dz
âγ(ω, z) =

√
ε
ik2(ω)

2

N(ω)∑
l=1

Cωγl(z)√√
γβl

(
âl(ω, z)ei(βl−

√
γ)z + b̂l(ω, z)e−i(βl+

√
γ)z)

+
√
ε
ik2(ω)

2

∫ k2(ω)

ξ

Cωγγ′(z)
γ1/4γ′1/4

(
âγ′(ω, z)ei

(√
γ′−√γ

)
z + b̂γ′(ω, z)e−i

(√
γ′+√γ

)
z
)
dγ′

+
√
ε
ik2(ω)

2

∫ −ξ
−∞

Cωγγ′(z)
γ1/4 p̂γ′(ω, z)dγ′e−iγz,

(2.18)

d

dz
b̂j(ω, z) = −

√
ε
ik2(ω)

2

N(ω)∑
l=1

Cωjl(z)√
βjβl

(
âl(ω, z)ei(βl+βj)z + b̂l(ω, z)e−i(βl−βj)z

)
−
√
ε
ik2(ω)

2

∫ k2(ω)

ξ

Cωjγ′(z)√
βj
√
γ′

(
âγ′(ω, z)ei

(√
γ′+βj

)
z + b̂γ′(ω, z)e−i

(√
γ′−βj

)
z
)
dγ′

−
√
ε
ik2(ω)

2

∫ −ξ
−∞

Cωjγ′(z)√
βj

p̂γ′(ω, z)dγ′e−iβjz,

(2.19)

d

dz
b̂γ(ω, z) = −

√
ε
ik2(ω)

2

N(ω)∑
l=1

Cωγl(z)√√
γβl

(
âl(ω, z)ei(βl+

√
γ)z + b̂l(ω, z)e−i(βl−

√
γ)z)

−
√
ε
ik2(ω)

2

∫ k2(ω)

ξ

Cωγγ′(z)
γ1/4γ′1/4

(
âγ′(ω, z)ei

(√
γ′+√γ

)
z + b̂γ′(ω, z)e−i

(√
γ′−√γ

)
z
)
dγ′

−
√
ε
ik2(ω)

2

∫ −ξ
−∞

Cωγγ′(z)
γ1/4 p̂γ′(ω, z)dγ′e−i

√
γz,

(2.20)

d2

dz2 p̂γ(ω, z) + γ p̂γ(ω, z) +
√
εgγ(ω, z) = 0, (2.21)

where

gγ(ω, z) = k2(ω)
N(ω)∑
l=1

Cωγl(z)√
βl

(
âl(ω, z)eiβlz + b̂l(ω, z)e−iβlz

)
+ k2(ω)

∫ k2(ω)

ξ

Cωγγ′(z)
γ′1/4

(
âγ′(ω, z)ei

√
γ′z + b̂γ′(ω, z)e−i

√
γ′z
)
dγ′

+ k2(ω)
∫ −ξ
−∞

Cωγγ′(z)p̂γ′(ω, z)dγ′.

(2.22)

Let us note that in absence of random perturbations, the amplitudes â(ω, z) and b̂(ω, z) are
constant.
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We assume that a pulse is emitted at the source location LS and propagates toward the
randomly perturbed slab [0, L/ε]. Using the previous section, the form of this incident field
at z = 0 is given by

p̂(ω, x, 0) =
N(ω)∑
j=1

âj,0(ω)√
βj(ω)

φj(ω, x) +
∫ k2(ω)

ξ

âγ,0(ω)
γ1/4 φγ(ω, x)dγ

+
∫ −ξ
−S

ĉγ,0(ω)
|γ|1/4

φγ(ω, x)dγ.

(2.23)

Consequently, by the continuity of the pressure field across the interfaces z = 0 and z = L/ε,
the coupled mode system is complemented with the boundary conditions

â(ω, 0) = â0(ω) and b̂

(
ω,
L

ε

)
= 0

in Hωξ . For j ∈
{
1, . . . , N(ω)

}
, âj,0(ω) represents the initial amplitude of the jth propagating

mode, and for γ ∈ (ξ, k2(ω)), âγ,0(ω) represents the initial amplitude of the γth radiating
mode at z = 0. Moreover, for γ ∈ (−S,−ξ), ĉγ,0(ω) represents the initial amplitude of the
γth evanescent mode at z = 0. The second condition implies that no wave comes from the
right homogeneous waveguide.

2.3.2 Energy Flux for the Propagating and Radiating Modes

In this section we study the energy flux for the propagating and radiating modes, and the
influence of the evanescent modes on this flux.

We begin this section by introducing the radiation condition for the evanescent modes

lim
z→+∞

∥∥Πω(−∞,−ξ)
(
p̂(ω, ., z)

)∥∥2
H

= 0.

This condition means that the energy carried by the evanescent modes decay as the propagation
distance becomes large. From the radiation condition and (2.21), we get for almost every
γ ∈ (−∞,−ξ)

p̂γ(ω, z) =
√
ε

2
√
|γ|

∫ z∧L/ε

0
gγ(ω, u)e

√
|γ|(u−z)du+

√
ε

2
√
|γ|

∫ L/ε

z∧L/ε
gγ(ω, u)e

√
|γ|(z−u)du

+ φγ(ω, x0)e−
√
|γ|(z−LS)1(−S,−ξ)(γ)

(2.24)

∀z ∈ [0,+∞). According to (2.12), the relation (2.24) can be viewed as a perturbation of the
form of the evanescent mode without a random perturbation. Using the same arguments as
in [25, Chapter 20], we get ∀z ∈ [0, L/ε],

d

dz

(
‖â(ω, z)‖2Hω

ξ
− ‖b̂(ω, z)‖2Hω

ξ

)
= −
√
εIm

(∫ −ξ
−∞

gγ(ω, z)p̂γ(ω, z)dγ
)
,

and

‖â(ω, z)‖2Hω
ξ
− ‖b̂(ω, z)‖2Hω

ξ
= ‖â0(ω)‖2Hω

ξ
− ‖b̂0(ω)‖2Hω

ξ
− ε

2

∫ −ξ
−∞

Gγ(ω, z)√
|γ|

dγ

−
√
ε

∫ −ξ
−S

φγ(ω, x0)e
√
|γ|LS

∫ z

0
Im
(
gγ(ω, u)

)
e−
√
|γ|udu dγ,

(2.25)

where
Gγ(ω, z) =

∫ z

0

∫ L/ε

z
Im
(
gγ(ω, u)gγ(ω, v)

)
e
√
|γ|(u−v)dvdu.
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Consequently, for z = L/ε, we get

‖â(ω,L/ε)‖2Hω
ξ

+ ‖b̂(ω, 0)‖2Hω
ξ

= ‖â0(ω)‖2Hω
ξ

−
√
ε

∫ −ξ
−S

φγ(ω, x0)e
√
|γ|LS

∫ L/ε

0
Im
(
gγ(ω, u)

)
e−
√
|γ|udu dγ.

The second term on the right side of the previous relation has the factor φγ(ω, x0)e
√
|γ|LS

which is the form of the evanescent mode at z = 0 without a random perturbation. Therefore,
if LS is far away from 0 and whatever the source (evanescent modes decay exponentially from
LS to 0) or if there is no excitation of modes γ ∈ (−∞,−ξ) by the source (that is when S = ξ),
we can get the conservation of the global energy flux for the propagating and radiating modes:

‖â(ω,L/ε)‖2Hω
ξ

+ ‖b̂(ω, 0)‖2Hω
ξ

= ‖â0(ω)‖2Hω
ξ
.

However, from (2.25) and even if there is no evanescent modes in (2.23), the local energy flux
is not conserved. The energy related to the evanescent modes is given by the last two terms
on the right side in (2.25). Let us estimate these two quantities. First,

sup
z∈[0,L/ε]

∣∣∣∣∣
∫ −ξ
−∞

Gγ(ω, z)√
|γ|

dγ

∣∣∣∣∣ ≤ K(ξ, d) sup
z∈[0,L]

sup
x∈[0,d]

∣∣∣∣V (x, zε
)∣∣∣∣2

× sup
z∈[0,L/ε]

‖â(ω, z)‖2Hω
ξ

+ ‖b̂(ω, z)‖2Hω
ξ

+ ‖p̂(ω, z)‖2L1(−∞,−ξ).

Second,

sup
z∈[0,L/ε]

∣∣∣ ∫ −ξ
−S

φγ(ω, x0)e
√
|γ|LS

∫ z

0
Im
(
gγ(ω, u)

)
e−
√
|γ|udu dγ

∣∣∣
≤ K(ξ, d) sup

z∈[0,L]
sup
x∈[0,d]

∣∣∣∣V (x, zε
)∣∣∣∣

× sup
z∈[0,L/ε]

‖â(ω, z)‖Hω
ξ

+ ‖b̂(ω, z)‖Hω
ξ

+ ‖p̂(ω, z)‖L1(−∞,−ξ).

In the two previous inequalities K(ξ, d) represents a constant which can change between the
different relations. However, it is difficult to get good a priori estimates about

sup
z∈[0,L/ε]

‖â(ω, z)‖2Hω
ξ

+ ‖b̂(ω, z)‖2Hω
ξ

+ ‖p̂(ω, z)‖2L1(−∞,−ξ). (2.26)

For this reason, let us introduce the stopping "time"

Lε = inf
(
L > 0, sup

z∈[0,L/ε]
‖â(ω, z)‖2Hω

ξ
+ ‖b̂(ω, z)‖2Hω

ξ
+ ‖p̂(ω, z)‖2L1(−∞,−ξ) ≥

1√
ε

)
.

The role of this stopping "time" is to limit the size of the random section to ensure that the
quantity (2.26) is not too large. Consequently, the energy carried by the evanescent modes
over the section [0, L/ε] for L ≤ Lε, is at most of order O

(
ε1/4 supz∈[0,L/ε] supx∈[0,d]|V (x, z)|2

)
,

and according to (2.55) the local energy flux for the propagating and the radiating modes is
conserved in the asymptotic ε→ 0. More precisely, we can show that ∀η > 0,

lim
ε→0

P
(

sup
z∈[0,L/ε]

∣∣∣‖â(ω, z)‖2Hω
ξ
− ‖b̂(ω, z)‖2Hω

ξ
− ‖â0(ω)‖2Hω

ξ
+ ‖b̂0(ω)‖2Hω

ξ

∣∣∣ > η, L ≤ Lε
)

= 0.

(2.27)
In Section 2.4, we shall see, under the forward scattering approximation, that the condition
L ≤ Lε is satisfied in the limit ε→ 0, that is we have limε→0 P(Lε ≤ L) = 0.
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2.3.3 Influence of the Evanescent Modes on the Propagating and Radiat-
ing Modes

We analyze, in this section, the influence of the evanescent modes on the coupling mechanism
between the propagating and the radiating modes.

First of all, we recall that Θω ◦Πω(−∞,−ξ)
(
p̂(ω, ., z)

)
represents the evanescent part of

the pressure field p̂(ω, ., z), where Θω and Πω are defined in Section 2.2.1. In this section we
consider F = L1(−∞,−ξ) equipped with the norm

‖y‖F =
∫ −ξ
−∞
|yγ |dγ,

which is a Banach space. Substituting (2.22) into (2.24), we get

(Id−
√
εΦω)

(
Θω ◦Πω(−∞,−ξ)

(
p̂(ω, ., .)

))
=
√
ε p̃(ω, .) + p̃0(ω, .). (2.28)

This equation holds in the Banach space
(
C
(
[0,+∞), F

)
, ‖.‖∞,F

)
, where

‖y‖∞,F = sup
z≥0
‖y(z)‖F ∀y ∈ C

(
[0,+∞), F

)
.

In (2.28), Φω is a linear bounded operator, from
(
C
(
[0,+∞), F

)
, ‖.‖∞,F

)
to itself, defined by

Φω
γ (y)(z) = k2(ω)

2
√
|γ|

∫ z∧L/ε

0

∫ −ξ
−∞

Cωγγ′(u)yγ′(u)dγ′e
√
|γ|(u−z)du

+ k2(ω)
2
√
|γ|

∫ L/ε

z∧L/ε

∫ −ξ
−∞

Cωγγ′(u)yγ′(u)dγ′e
√
|γ|(z−u)du

∀z ∈ [0,+∞), and for almost every γ ∈ (−∞,−ξ)

p̃γ(ω, z) = k2(ω)
2
√
|γ|

∫ z∧L/ε

0

[N(ω)∑
l=1

Cωγl(u)√
βl

(
âl(ω, u)eiβlu + b̂l(ω, u)e−iβlu

)
+
∫ k2(ω)

ξ

Cωγγ′(u)
γ′1/4

(
âγ′(ω, u)ei

√
γ′u + b̂γ′(ω, u)e−i

√
γ′u)]dγ′e√|γ|(u−z)du

+ k2(ω)
2
√
|γ|

∫ L/ε

z∧L/ε

[N(ω)∑
l=1

Cωγl(u)√
βl

(
âl(ω, u)eiβlu + b̂l(ω, u)e−iβlu

)
+
∫ k2(ω)

ξ

Cωγγ′(u)
γ′1/4

(
âγ′(ω, u)ei

√
γ′u + b̂γ′(ω, u)e−i

√
γ′u)]dγ′e√|γ|(z−u)du

∀z ∈ [0,+∞). Finally, for almost every γ ∈ (−∞,−ξ) and ∀z ∈ [0,+∞),

p̃γ,0(ω, z) = φγ(ω, x0)e−
√
|γ|(z−LS)1(−S,−ξ)(γ).

We remark that Θω ◦ Πω(−∞,−ξ)
(
p̂(ω, ., .)

)
∈ C

(
[0,+∞), F

)
thanks to (2.16). Moreover,

p̃(ω, .) ∈ C
(
[0,+∞), F

)
since

∫−ξ
−∞

Aγ(ω)
|γ| dγ < +∞, where Aγ(ω) is defined by (2.10) and

satisfies (2.11). We can check that the norm of the operator Φω is bounded by

‖Φω‖ ≤ K(ξ, d) sup
z∈[0,L/ε]

sup
x∈[0,d]

|V (x, z)| .
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Consequently, using (2.55), limε→0 P(Id −
√
εΦω is invertible) = 1. Then, the condition

(Id−
√
εΦω is invertible) is satisfied in the asymptotic ε→ 0. On the event (Id−

√
εΦω is

invertible), we have

Θω ◦Πω(−∞,−ξ)
(
p̂(ω, ., .)

)
=
(
Id−

√
εΦω)−1(

√
ε p̃(ω, .) + p̃0(ω, .))

=
√
ε p̃(ω, .) + p̃0(ω, .) +

√
εΦω(p̃0(ω, .))

+
+∞∑
j=1

(
√
εΦω)j

(√
εp̃(ω, .) +

√
εΦω(p̃0(ω, .))

)
.

(2.29)

Moreover,

‖Θω ◦Πω(−∞,−ξ)
(
p̂(ω, ., .)

)
−
√
ε p̃(ω, .)− p̃0(ω, .)−

√
εΦω(p̃0(ω, .))‖∞,F

≤ 2ε‖Φω‖ ‖p̃(ω, .)‖∞,F + 2ε‖Φω‖2 ‖p̃0(ω, .)‖∞,F
≤ K(ξ, d) ε sup

z∈[0,L/ε]
sup
x∈[0,d]

|V (x, z)|2 sup
z∈[0,L/ε]

‖â(ω, z)‖Hω
ξ

+ ‖b̂(ω, z)‖Hω
ξ
,

and therefore
Θω ◦Πω(−∞,−ξ)

(
p̂(ω, ., .)

)
=
√
εp̃(ω, .) + p̃0(ω, .) +

√
εΦω(p̃0(ω, .))

+O
(
ε sup
z∈[0,L/ε]

sup
x∈[0,d]

|V (x, z)|2 sup
z∈[0,L/ε]

‖â(ω, z)‖Hω
ξ

+ ‖b̂(ω, z)‖Hω
ξ

)
in C

(
[0,+∞), F

)
. Now, we consider

p̃γ,2(ω, z) = k2(ω)
2
√
|γ|

∫ z∧L/ε

0

[N(ω)∑
l=1

Cγl(u)√
βl

(
âl(ω, z ∧ L/ε)eiβlu + b̂l(ω, z ∧ L/ε)e−iβlu

)
+
∫ k2(ω)

ξ

Cγγ′(u)
γ′1/4

(
âγ′(ω, z ∧ L/ε)ei

√
γ′u + b̂γ′(ω, z ∧ L/ε)e−i

√
γ′u)]dγ′e√|γ|(u−z)du

+ k2(ω)
2
√
|γ|

∫ L/ε

z∧L/ε

[N(ω)∑
l=1

Cγl(u)√
βl

(
âl(ω, z ∧ L/ε)eiβlu + b̂l(ω, z ∧ L/ε)e−iβlu

)
+
∫ k2(ω)

ξ

Cγγ′(u)
γ′1/4

(
âγ′(ω, z ∧ L/ε)ei

√
γ′u + b̂γ′(ω, z ∧ L/ε)e−i

√
γ′u)]dγ′e√|γ|(z−u)du

∀z ∈ [0,+∞). Using (2.17), (2.18), (2.19), (2.20), and (2.29), we get

‖p̃(ω, .)− p̃2(ω, .)‖∞,F ≤ K(ξ, d)
√
ε sup
z∈[0,L/ε]

sup
x∈[0,d]

|V (x, z)|2

×
(

sup
z∈[0,L/ε]

‖â(ω, z)‖Hω
ξ

+ ‖b̂(ω, z)‖Hω
ξ

+ ‖p̂(ω, z)‖F
)

and then
Θω ◦Πω(−∞,−ξ)

(
p̂(ω, ., .)

)
=
√
ε p̃2(ω, .) + p̃0(ω, .) +

√
εΦω(p̃0(ω, .))

+O
(
ε sup
z∈[0,L/ε]

sup
x∈[0,d]

|V (x, z)|2 sup
z∈[0,L/ε]

‖â(ω, z)‖Hω
ξ

+ ‖b̂(ω, z)‖Hω
ξ

+ ‖p̂(ω, z)‖F
)

in C
(
[0,+∞), F

)
. Consequently, we can rewrite (2.17), (2.18), (2.19), and (2.20) in a closed

form in Hωξ ×Hωξ . ∀z ∈ [0, L/ε], we get

d

dz
â(ω, z) =

√
εHaa(ω, z)

(
â(ω, z)

)
+
√
εHab(ω, z)

(
b̂(ω, z)

)
+
√
εRa,LS (ω, z)

+ εGaa(ω, z)
(
â(ω, z)

)
+ εGab(ω, z)

(
b̂(ω, z)

)
+ ε R̃a,LS (ω, z)

+O
(
ε3/2 sup

z∈[0,L/ε]
sup
x∈[0,d]

|V (x, z)|2 sup
z∈[0,L/ε]

‖â(ω, z)‖Hω
ξ

+ ‖b̂(ω, z)‖Hω
ξ

+ ‖p̂(ω, z)‖F
)
,

44



Chapter 2 Section 2.3.3

d

dz
b̂(ω, z) =

√
εHba(ω, z)

(
â(ω, z)

)
+
√
εHbb(ω, z)

(
b̂(ω, z)

)
+
√
εRb,LS (ω, z)

+ εGba(ω, z)
(
â(ω, z)

)
+ εGbb(ω, z)

(
b̂(ω, z)

)
+ εR̃b,LS (ω, z)

+O
(
ε3/2 sup

z∈[0,L/ε]
sup
x∈[0,d]

|V (x, z)|2 sup
z∈[0,L/ε]

‖â(ω, z)‖Hω
ξ

+ ‖b̂(ω, z)‖Hω
ξ

+ ‖p̂(ω, z)‖F
)
.

Let us recall that these equations hold on the event
(
Id−

√
εΦω is invertible

)
which satisfies

limε→0 P(Id −
√
εΦω is invertible) = 1. In these equations, Haa(ω, z), Hab(ω, z), Hba(ω, z),

Hbb(ω, z), Gaa(ω, z), Gab(ω, z), Gba(ω, z) and Gbb(ω, z) are operators from Hωξ to itself
defined by:

Haa
j (ω, z)(y) = Hbb

j (ω, z)(y) = ik2(ω)
2

[N(ω)∑
l=1

Cωjl(z)√
βj(ω)βl(ω)

yle
i(βl(ω)−βj(ω))z

+
∫ k2(ω)

ξ

Cωjγ′(z)√
βj(ω)

√
γ′
yγ′e

i(
√
γ′−βj(ω))zdγ′

]
,

(2.30)

Haa
γ (ω, z)(y) = Hbb

γ (ω, z)(y) = ik2(ω)
2

[N(ω)∑
l=1

Cωγl(z)√√
γβl(ω)

yle
i(βl(ω)−√γ)z

+
∫ k2(ω)

ξ

Cωγγ′(z)
γ1/4γ′1/4

yγ′e
i(
√
γ′−√γ)zdγ′

]
,

(2.31)

Hab
j (ω, z)(y) = Hba

j (ω, z)(y) = ik2(ω)
2

[N(ω)∑
l=1

Cωjl(z)√
βj(ω)βl(ω)

yle
−i(βl(ω)+βj(ω))z

+
∫ k2(ω)

ξ

Cωjγ′(z)√
βj(ω)

√
γ′
yγ′e

−i(
√
γ′+βj(ω))zdγ′

]
,

(2.32)

Hab
γ (ω, z)(y) = Hba

γ (ω, z)(y) = ik2(ω)
2

[N(ω)∑
l=1

Cωγl(z)√√
γβl(ω)

yle
−i(βl(ω)+√γ)z

+
∫ k2(ω)

ξ

Cγγ′(z)
γ1/4γ′1/4

yγ′e
−i(
√
γ′+√γ)zdγ′

]
,

(2.33)

Gaa
j (ω, z)(y) = Gbb

j (ω, z)(y) =

ik4(ω)
4

[N(ω)∑
l=1

∫ −ξ
−∞

[ ∫ z

0

Cωjγ′(z)Cωγ′l(u)√
βj(ω)|γ′|βl(ω)

eiβl(ω)u−
√
|γ′|(z−u)du

+
∫ L/ε

z

Cωjγ′(z)Cωγ′l(u)√
βj(ω)|γ′|βl(ω)

eiβl(ω)u−
√
|γ′|(u−z)du

]
dγ′e−iβj(ω)zyl

]

+ ik4(ω)
4

[ ∫ k2(ω)

ξ

∫ −ξ
−∞

[ ∫ z

0

Cωjγ′(z)Cωγ′γ′′(u)√
βj(ω)|γ′|

√
γ′′
ei
√
γ′′u−
√
|γ′|(z−u)du

+
∫ L/ε

z

Cωjγ′(z)Cωγ′γ′′(u)√
βj(ω)|γ′|

√
γ′′
ei
√
γ′′u−
√
|γ′|(u−z)du

]
dγ′e−iβj(ω)zyγ′′dγ

′′
]
,

(2.34)
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Gaa
γ (ω, z)(y) = Gbb

γ (ω, z)(y) =

ik4(ω)
4

[N(ω)∑
l=1

∫ −ξ
−∞

[ ∫ z

0

Cωγγ′(z)Cωγ′l(u)√√
γ|γ′|βl(ω)

eiβl(ω)u−
√
|γ′|(z−u)du

+
∫ L/ε

z

Cωγγ′(z)Cωγ′l(u)√√
γ|γ′|βl(ω)

eiβl(ω)u−
√
|γ′|(u−z)du

]
dγ′e−i

√
γzyl

]

+ ik4(ω)
4

[ ∫ k2(ω)

ξ

∫ −ξ
−∞

[ ∫ z

0

Cωγγ′(z)Cωγ′γ′′(u)√√
γ|γ′|
√
γ′′

ei
√
γ′′u−
√
|γ′|(z−u)du

+
∫ L/ε

z

Cωγγ′(z)Cωγ′γ′′(u)√√
γ|γ′|
√
γ′′

ei
√
γ′′u−
√
|γ′|(u−z)du

]
dγ′e−i

√
γzyγ′′dγ

′′
]
,

(2.35)

Gab
j (ω, z)(y) = Gba

j (ω, z)(y) =

ik4(ω)
4

[N(ω)∑
l=1

∫ −ξ
−∞

[ ∫ z

0

Cωjγ′(z)Cωγ′l(u)√
βj(ω)|γ′|βl(ω)

e−iβl(ω)u−
√
|γ′|(z−u)du

+
∫ L/ε

z

Cωjγ′(z)Cωγ′l(u)√
βj(ω)|γ′|βl(ω)

e−iβl(ω)u−
√
|γ′|(u−z)du

]
dγ′e−iβj(ω)zyl

]

+ ik4(ω)
4

[ ∫ k2(ω)

ξ

∫ −ξ
−∞

[ ∫ z

0

Cωjγ′(z)Cωγ′γ′′(u)√
βj(ω)|γ′|

√
γ′′
e−i
√
γ′′u−
√
|γ′|(z−u)du

+
∫ L/ε

z

Cωjγ′(z)Cωγ′γ′′(u)√
βj(ω)|γ′|

√
γ′′
e−i
√
γ′′u−
√
|γ′|(u−z)du

]
dγ′e−iβj(ω)zyγ′′dγ

′′
]
,

(2.36)

Gab
γ (ω, z)(y) = Gba

γ (ω, z)(y) =

ik4(ω)
4

[N(ω)∑
l=1

∫ −ξ
−∞

[ ∫ z

0

Cωγγ′(z)Cωγ′l(u)√√
γ|γ′|βl(ω)

e−iβl(ω)u−
√
|γ′|(z−u)du

+
∫ L/ε

z

Cωγγ′(z)Cωγ′l(u)√√
γ|γ′|βl(ω)

e−iβl(ω)u−
√
|γ′|(u−z)du

]
dγ′e−i

√
γzyl

]

+ ik4(ω)
4

[ ∫ k2(ω)

ξ

∫ −ξ
−∞

[ ∫ z

0

Cωγγ′(z)Cωγ′γ′′(u)√√
γ|γ′|
√
γ′′

e−i
√
γ′′u−
√
|γ′|(z−u)du

+
∫ L/ε

z

Cωγγ′(z)Cωγ′γ′′(u)√√
γ|γ′|
√
γ′′

e−i
√
γ′′u−
√
|γ′|(u−z)du

]
dγ′e−i

√
γzyγ′′dγ

′′
]
.

(2.37)

The operators Haa(ω, z) and Hab(ω, z) represent the coupling between the propagating and
the radiating modes with themselves, while the operators Gaa(ω, z) and Gab(ω, z) represent
the coupling between the evanescent modes with the propagating and the radiating modes.
Moreover, Ra,LS (ω, z), R̃a,LS (ω, z), Rb,LS (ω, z), and R̃b,LS (ω, z) represent the influence of
the evanescent modes produced by the source term on the propagating and the radiating
modes. These terms are defined by

Ra,LS
j (ω, z) = Rb,LS

j (ω, z) = ik2(ω)
2

∫ −ξ
−S

Cωjγ′(z)√
βj(ω)

φγ′(ω, x0)e−
√
|γ′|(z−LS)dγ′e−iβj(ω)z, (2.38)

Ra,LS
γ (ω, z) = Rb,LS

γ (ω, z) = ik2(ω)
2

∫ −ξ
−S

Cωγγ′(z)
|γ|1/4

φγ′(ω, x0)e−
√
|γ′|(z−LS)dγ′e−i

√
γz, (2.39)
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R̃a,LS
j (ω, z) = R̃b,LS

j (ω, z) =

ik4(ω)
4

∫ −ξ
−∞

∫ −ξ
−S

∫ z

0

Cωjγ′(z)Cωγ′γ′′(u)√
βj(ω)|γ′|

φγ′′(ω, x0)e−
√
|γ′′|(u−LS)e−

√
|γ′|(z−u)du

+
∫ L/ε

z

Cωjγ′(z)Cωγ′γ′′(u)√
βj(ω)|γ′|

φγ′′(ω, x0)e−
√
|γ′′|(u−LS)e−

√
|γ′|(u−z)du

 dγ′′dγ′ e−iβj(ω)z,

(2.40)

R̃a,LS
γ (ω, z) = R̃b,LS

γ (ω, z) =

ik4(ω)
4

∫ −ξ
−∞

∫ −ξ
−S

∫ z

0

Cωγγ′(z)Cωγ′γ′′(u)√√
γ|γ′|

φγ′′(ω, x0)e−
√
|γ′′|(u−LS)e−

√
|γ′|(z−u)du

+
∫ L/ε

z

Cωγγ′(z)Cωγ′γ′′(u)√√
γ|γ′|

φγ′′(ω, x0)e−
√
|γ′′|(u−LS)e−

√
|γ′|(u−z)du

 dγ′′dγ′ e−i√γz.
(2.41)

2.3.4 Forward Scattering Approximation

In this section we introduce the forward scattering approximation, which is widely used in the
literature. In this approximation the coupling between forward- and backward-propagating
modes is assumed to be negligible compared to the coupling between the forward-propagating
modes. We refer to [30, 33] for justifications on the validity of this approximation.

The physical explanation is as follows. The coupling between a right-going propagating
mode and a left-going propagating mode involves a coefficient of the form∫ +∞

0
E[Cωjl(0)Cωjl(z)] cos

(
(βl(ω) + βj(ω))z

)
dz,

and the coupling between two right-going propagating modes or two left-going propagating
modes involves a coefficient of the form∫ +∞

0
E[Cωjl(0)Cωjl(z)] cos

(
(βl(ω)− βj(ω))z

)
dz

∀(j, l) ∈
{
1, . . . , N(ω)

}2. Therefore, if we assume that∫ +∞

0
E[Cωjl(0)Cωjl(z)] cos

(
(βl(ω) + βj(ω))z

)
dz = 0 ∀(j, l) ∈

{
1, . . . , N(ω)

}2
.

There is no coupling between right-going and left-going propagating modes, which justifies the
forward scattering approximation, but there is still coupling between right-going propagating
modes which will be described in Section 2.4.

In our context the operator R(ω), introduced in Section 2.2.1, has a continuous spec-
trum and it becomes technically complex to apply a limit theorem for the rescaled process
(â(ω, z/ε), b̂(ω, z/ε)). The reason is the following. This process is not bounded and the
stopping times which are the first exit times of closed balls are not lower semicontinuous for
the topology of C([0, L],Hωξ,w), where Hωξ,w stands for Hωξ equipped with the weak topology.
In our context the continuous part (ξ, k2(ω)) of the spectrum imposes us to use the norm
‖.‖Hω

ξ
to control some quantities. Moreover, according to Theorem 2.1, in which the energy

of the limit process is not conserved, it seems not possible to show a limit theorem on
C
(
[0, L], (Hωξ , ‖.‖Hωξ )

)
in view of (2.27). In [25] and [30] there is a finite number of propagating

modes, then the weak topology and the strong topology are the same. In [33] or in Chapter 4
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the number of propagating modes increases as ε goes to 0. However, in this last case, the
problem can be corrected by considering the first exit times of a closed ball related to the
weak topology and by considering the process in an appropriate finite-dimensional dual space.

In our context if we forget these technical problems, according to [25, 30] the forward
scattering approximation should be valid in the asymptotic ε→ 0 under the assumption that
the power spectral density of the process V , i.e. the Fourier transform of its z-autocorrelation
function, possesses a cut-off wavenumber. In other words, we can consider the case where∫ +∞

0
E[Cωjl(0)Cωjl(z)] cos

(
(βl(ω) + βj(ω))z

)
dz = 0 ∀(j, l) ∈

{
1, . . . , N(ω)

}2
.

Let us remark that the continuous part (0, k2(ω)) of the spectrum, which corresponds to
the radiating modes, does not play any role in the previous assumption. The reason is that
the radiating part of the process plays no role in the coupling mechanism as we can see in
Theorems 2.1 and 2.2 below and therefore remains constant.

Finally, we shall consider the simplified equation on [0, L/ε],

d

dz
â(ω, z) =

√
εHaa(ω, z) (â(ω, z)) +

√
εRa,LS (ω, z)

+ εGaa(ω, z) (â(ω, z)) + ε R̃a,LS (ω, z)

+O
(
ε3/2 sup

z∈[0,L/ε]
sup
x∈[0,d]

|V (x, z)|2 sup
z∈[0,L/ε]

‖â(ω, z)‖Hω
ξ

+ ‖p̂(ω, z)‖F
)

in Hωξ . We shall see in Section 2.4, under the forward scattering approximation, that

lim
ε→0

P (Lε ≤ L) = 0 ∀L > 0,

where
Lε = inf

(
L > 0, sup

z∈[0,L/ε]
‖â(ω, z)‖2Hω

ξ
+ ‖p̂(ω, z)‖2F ≥

1√
ε

)
.

Consequently, we can show that ∀ η > 0

lim
ε→0

P
(

sup
z∈[0,L/ε]

∣∣∣‖â(ω, z)‖2Hω
ξ
− ‖â0(ω)‖2Hω

ξ

∣∣∣ > η
)

= 0.

This result means that the local energy flux for the propagating and the radiating modes is
conserved in the asymptotic ε→ 0.

2.4 Coupled Mode Processes
In this section, we study the asymptotic behavior, as ε→ 0 in first and ξ → 0 in second, of
the statistical properties of the coupling mechanism in terms of a diffusion process.

Let us define the rescaled process

âε(ω, z) = â

(
ω,
z

ε

)
∀z ∈ [0, L].

This scaling corresponds to the size of the random section [0, L/ε]. This process satisfies the
rescaled coupled mode equations on [0, L]

d

dz
âε(ω, z) = 1√

ε
Haa

(
ω,
z

ε

)
(âε(ω, z)) + 1√

ε
Ra,LS

(
ω,
z

ε

)
+ Gaa

(
ω,
z

ε

)
(âε(ω, z)) + R̃a,LS

(
ω,
z

ε

)
+O

(√
ε sup
z∈[0,L/ε]

sup
x∈[0,d]

|V (x, z)|2 sup
z∈[0,L]

‖âε(ω, z)‖Hω
ξ

+ ‖p̂(ω, z/ε)‖F
) (2.42)
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in Hωξ , with the initial condition âε(ω, 0) = â0(ω). We shall see that under the forward
scattering approximation the condition Lε > L is readily fulfilled in the asymptotic ε goes to
0.

Proposition 2.1 ∀L > 0,
lim
ε→0

P (Lε ≤ L) = 0,

where
Lε = inf

(
L > 0, sup

z∈[0,L/ε]
‖â(ω, z)‖2Hω

ξ
+ ‖p̂(ω, z)‖2F ≥

1√
ε

)
,

and
lim

M→+∞
lim
ε→0

P
(

sup
z∈[0,L]

‖âε(ω, z)‖2Hω
ξ
≥M

)
= 0.

This result means that the amplitude âε(ω, z) is asymptotically uniformly bounded in the
limit ε→ 0 on [0, L]. More precisely, according to Section 2.3.2, we have ∀ η > 0

lim
ε→0

P
(

sup
z∈[0,L]

∣∣∣‖âε(ω, z)‖2Hω
ξ
− ‖â0(ω)‖2Hω

ξ

∣∣∣ > η
)

= 0,

that is the local energy flux for the propagating and the radiating modes is conserved in the
asymptotic ε→ 0.

Proof Using Gronwall’s inequality, ∀L > 0 we get

lim
M→+∞

lim
ε→0

P
(

sup
z∈[0,L]

‖âε(ω, z)‖2Hω
ξ
≥M, L ≤ Lε

)
= 0.

This result means that the process âε(ω, .) is asymptotically uniformly bounded on [0, L] and
then Lε is large compared to L in the asymptotic ε→ 0. In fact, ∀L > 0 and ∀M > 0

P (Lε ≤ L) ≤ P
(
Lε ≤ L, sup

z∈[0,L∧Lε]
‖âε(ω, z)‖2Hω

ξ
≤M

)

+ P
(

sup
z∈[0,L∧Lε]

‖âε(ω, z)‖2Hω
ξ
≥M

)
.

Moreover,

P
(
Lε ≤ L, sup

z∈[0,L∧Lε]
‖âε(ω, z)‖2Hω

ξ
≤M

)
= 0

for ε small enough, since for Lε ≤ L

ε−1/2 ≤ sup
z∈[0,Lε]

‖âε(ω, z)‖2Hω
ξ

+ ‖p̂(ω, .)‖2F

≤M +K(ξ, d)ε sup
z∈[0,L/ε]

sup
x∈[0,d]

|V (x, z)|2M + 2‖p̃0(ω, .)‖2∞,F

according to (2.29). �

Let us introduce âε1(ω, .) the unique solution of the differential equation on [0, L]

d

dz
âε1(ω, z) = 1√

ε
Haa

(
ω,
z

ε

)
(âε1(ω, z)) + Gaa

(
ω,
z

ε

)
(âε1(ω, z)) (2.43)

49



Chapter 2 Section 2.4.1

in Hωξ , with initial condition âε1(ω, 0) = â0(ω). Using Gronwall’s inequality and (2.54) we can
state that

lim
M→+∞

lim
ε→0

P
(

sup
z∈[0,L]

‖âε1(ω, z)‖Hωξ ≥M
)

= 0.

The relation between the solution of the full system (2.42) and the one of the simplified
system (2.43) is given by the following proposition.

Proposition 2.2

∀η > 0 and ∀µ > 0, lim
ε→0

P
(

sup
z∈[µ,L]

‖âε(ω, z)− âε1(ω, z)‖Hωξ > η

)
= 0.

Proposition 2.2 means that the information about the evanescent part of the source profile
is lost in the asymptotic ε goes to 0. In fact, the coupling mechanism described by the
system (2.42) implies that the information about the evanescent part of the source profile is
transmitted to the propagating modes through the coefficients Ra,LS (ω, z) and R̃a,LS (ω, z)
defined by (2.38), (2.39), (2.40) and (2.41) page 46. In these expressions we have the term
φγ′(ω, x)e−

√
|γ′|(z−LS) which comes from the right-hand side of (2.24) page 41 and which is

the form of evanescent modes without a random perturbation. This term is responsible for the
loss of information about the evanescent part of the source profile because of its exponentially
decreasing behavior.

Proof We begin by proving that ∀L > 0, ∀η > 0 and ∀µ > 0

lim
ε→0

P
(

sup
z∈[µ,L]

‖âε(ω, z)− âε1(ω, z)‖2Hω
ξ
> η, L ≤ Lε

)
= 0.

In fact, Ra,LS (ω, z) decreases exponentially fast with the propagation distance. Moreover,
R̃a,LS (ω, z) can be treated as Gaa in the proof of Theorem 2.1 because e−

√
|γ′|(u−LS) cannot

be compensated by e−iβj(ω)z nor by e−i
√
γz. Moreover, using Proposition 2.1 we get the result.

�

Finally, we introduce the transfer operator Tξ,ε(ω, z) from Hωξ to itself, which is the unique
operator solution of the differential equation

d

dz
Tξ,ε(ω, z) = 1√

ε
Haa

(
ω,
z

ε

)
Tξ,ε(ω, z) + Gaa

(
ω,
z

ε

)
Tξ,ε(ω, z) (2.44)

with Tξ,ε(ω, 0) = Id. Then,

∀z ∈ [0, L], â1(ω, z) = Tξ,ε(ω, z)(â0(ω)),

and we get the following result.

Proposition 2.3

∀η > 0 and ∀µ > 0, lim
ε→0

P
(

sup
z∈[µ,L]

‖âε(ω, z)−Tξ,ε(ω, z)(â0(ω))‖2Hω
ξ
> η

)
= 0.
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2.4.1 Limit Theorem

This section presents the basic theoretical results of this chapter. Proofs are given in the
appendix at the end of this chapter. In [30] and [39], the authors used the limit theorem
stated in [48] since the number of propagating modes was fixed. However, in our configuration,
in addition to the N(ω)-discrete propagating modes the wave field consists of a continuum of
radiating modes. The two following results are based on a diffusion-approximation result for
the solution of an ordinary differential equation with random coefficients. This result is an
extension of that stated in [48] to the case of processes with values in a Hilbert space.

Theorem 2.1 ∀L > 0 and ∀y ∈ Hωξ = CN(ω) × L2(ξ, k2(ω)), the family
(
Tξ,ε(ω, .)(y)

)
ε∈(0,1),

solution of the differential equation (2.44), converges in distribution on C([0, L],Hωξ,w) as
ε→ 0 to a limit denoted by Tξ(ω, .)(y). Here Hωξ,w stands for the Hilbert space Hωξ equipped
with the weak topology. This limit is the unique diffusion process on Hωξ , starting from y,
associated to the infinitesimal generator

Lωξ = Lω1 + Lω2,ξ + Lω3,ξ,

where

Lω1 = 1
2

N(ω)∑
j,l=1
j 6=l

Γcjl(ω)
(
TjTj∂Tl∂Tl + TlTl∂Tj∂Tj − TjTl∂Tj∂Tl − TjTl∂Tj∂Tl

)

+ 1
2

N(ω)∑
j,l=1

Γ1
jl(ω)

(
TjTl∂Tj∂Tl + TjTl∂Tj∂Tl − TjTl∂Tj∂Tl − TjTl∂Tj∂Tl

)

+ 1
2

N(ω)∑
j=1

(
Γcjj(ω)− Γ1

jj(ω)
) (
Tj∂Tj + Tj∂Tj

)
+ i

2

N(ω)∑
j=1

Γsjj(ω)
(
Tj∂Tj − Tj∂Tj

)
,

and

Lω2,ξ = −1
2

N(ω)∑
j=1

(
Λc,ξj (ω) + iΛs,ξj (ω)

)
Tj∂Tj +

(
Λc,ξj (ω)− iΛs,ξj (ω)

)
Tj∂Tj ,

Lω3,ξ = i

N(ω)∑
j=1

κξj(ω)
(
Tj∂Tj − Tj∂Tj

)
.

Here, we have considered the classical complex derivative with the following notation: If
v = v1 + iv2, then ∂v = 1

2 (∂v1 − i∂v2) and ∂v = 1
2 (∂v1 + i∂v2). We have used the following

notations. ∀(j, l) ∈
{
1, . . . , N(ω)

}2 and j 6= l

Γcjl(ω) = k4(ω)
2βj(ω)βl(ω)

∫ +∞

0
E
[
Cωjl(0)Cωjl(z)

]
cos

(
(βl(ω)− βj(ω))z

)
dz,

Γcjj(ω) = −
N(ω)∑
l=1
l 6=j

Γcjl(ω),

Γsjl(ω) = k4(ω)
2βj(ω)βl(ω)

∫ +∞

0
E
[
Cωjl(0)Cωjl(z)

]
sin
(
(βl(ω)− βj(ω))z

)
dz,

Γsjj(ω) = −
N(ω)∑
l=1
l 6=j

Γsjl(ω),
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and ∀(j, l) ∈
{
1, . . . , N(ω)

}2,

Γ1
jl(ω) = k4(ω)

2βj(ω)βl(ω)

∫ +∞

0
E
[
Cωjj(0)Cωll (z)

]
dz,

Λc,ξj (ω) =
∫ k2(ω)

ξ

k4(ω)
2
√
γ′βj(ω)

∫ +∞

0
E
[
Cωjγ′(0)Cωjγ′(z)

]
cos

(
(
√
γ′ − βj(ω))z

)
dzdγ′,

Λs,ξj (ω) =
∫ k2(ω)

ξ

k4(ω)
2
√
γ′βj(ω)

∫ +∞

0
E
[
Cωjγ′(0)Cωjγ′(z)

]
sin
(
(
√
γ′ − βj(ω))z

)
dzdγ′,

κξj(ω) =
∫ −ξ
−∞

k4(ω)
2βj(ω)

√
|γ′|

∫ +∞

0
E
[
Cωjγ′(0)Cωjγ′(z)

]
cos

(
βj(ω)z

)
e−
√
|γ′|zdzdγ′.

The coupling coefficients Cω(z) are defined by (2.15) page 39. We get the following result in
the asymptotic ξ → 0.

Theorem 2.2 ∀L > 0 and ∀y ∈ Hω0 = CN(ω) × L2(0, k2(ω)), the family
(
Tξ(ω, .)(y)

)
ξ∈(0,1)

converges in distribution on C([0, L], (Hω0 , ‖.‖Hω0 )) as ξ → 0 to a limit denoted by T0(ω, .)(y).
This limit is the unique diffusion process on Hω0 , starting from y, associated to the infinitesimal
generator

Lω = Lω1 + Lω2 + Lω3 ,

where

Lω2 = −1
2

N(ω)∑
j=1

(
Λcj(ω) + iΛsj(ω)

)
Tj∂Tj +

(
Λcj(ω)− iΛsj(ω)

)
Tj∂Tj ,

Lω3 = i

N(ω)∑
j=1

κj(ω)
(
Tj∂Tj − Tj∂Tj

)
.

Here, we have ∀j ∈
{
1, . . . , N(ω)

}
Λcj(ω) = lim

ξ→0
Λc,ξj (ω), Λsj(ω) = lim

ξ→0
Λs,ξj (ω), κj(ω) = lim

ξ→0
κξj(ω).

Theorems 2.1 and 2.2 describe the asymptotic behavior, as ε→ 0 in first and ξ → 0 in
second, of the statistical properties of the transfer operator Tξ,ε(ω,L), in terms of a diffusion
process.

The infinitesimal generator Lω is composed of three parts which represent different
behaviors on the diffusion process. We can remark that the infinitesimal generator depends
only on the N(ω)-discrete coordinates. Therefore, the radiating part of the limit process
remains constant in L2(0, k2(ω)) during the propagation and does not play any role in the
diffusion process of the propagating modes. The first operator Lω1 describes the coupling
between the N(ω)-propagating modes. This part is of the form of the infinitesimal generator
obtained in [25, 30], and the total energy is conserved. The second operator Lω2 describes
the coupling between the propagating modes with the radiating modes. This part implies a
mode-dependent and frequency-dependent attenuation on the N(ω)-propagating modes that
we study in Section 2.5.1, and a mode-dependent and frequency-dependent phase modulation.
The third operator Lω3 describes the coupling between the propagating and the evanescent
modes, and implies a mode-dependent and frequency-dependent phase modulation. The
purely imaginary part of the operator Lω does not remove energy from the propagating modes
but gives an effective dispersion.

Moreover, let us remark that the convergence in Theorem 2.1 holds on C([0, L], (Hωξ , ‖.‖Hωξ ))
for the N(ω)-discrete propagating mode amplitudes.
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2.4.2 Mean Mode Amplitudes

In this section we study the asymptotic mean mode amplitudes. From Theorem 2.2, we get
the following result about the mean mode amplitudes.

Proposition 2.4 ∀y ∈ Hω0 , ∀z ∈ [0, L], ∀j ∈
{
1, . . . , N(ω)

}
lim
ξ→0

lim
ε→0

E
[
Tξ,ε
j (ω, z)(y)

]
= E

[
T0
j (ω, z)(y)

]
= exp

[(
Γcjj(ω)− Γ1

jj(ω)− Λcj(ω)
2

)
z + i

(
Γsjj(ω)− Λsjj(ω)

2
+ kj(ω)

)
z

]
yj(ω).

(2.45)

First, let us remark that the mean amplitude of the radiating part remains constant on
L2(0, k2(ω)). Second, ∀j ∈

{
1, . . . , N(ω)

}
, the coefficient (Γ1

jj(ω) + Λcj(ω) − Γcjj(ω))/2 is
nonnegative. In fact, for (j, l) ∈ {1, . . . , N(ω)}2 such that j 6= l, Γcjl(ω) and Γ1

jj(ω) are
nonnegative because they are proportional to the power spectral density of Cωjl and Cωjj at
βl(ω)− βj(ω) and 0 frequencies. Therefore, −Γcjj(ω) is also nonnegative. Moreover, Λcj(ω) is
also nonnegative because it is proportional to the integral over (0, k2(ω)) of the power spectral
density of Cωjγ at √γ − βj(ω) frequency.

The exponential decay rate for the mean jth-propagating mode is given by∣∣∣E[T0
j (ω,L)(y)

]∣∣∣ = ∣∣yj∣∣ exp
[
−
(

Γ1
jj(ω)− Γcjj(ω) + Λcj(ω)

2

)
L

]
,

which depends on the effective coupling between the propagating modes, and the coupling
between the propagating and the radiating modes. This exponential decay corresponds to a
loss of coherence of the transmitted field.

2.5 Coupled Power Equations
This section is devoted to the analysis of the asymptotic mean mode powers of the propagating
modes. More precisely, we study the asymptotic effects of the coupling between the propagating
modes with the radiating modes. Let

T lj (ω, z) = lim
ξ→0

lim
ε→0

E
[∣∣Tξ,ε

j (ω,L)(yl)
∣∣2] = E

[∣∣T0
j (ω, z)(yl)

∣∣2], (2.46)

be the asymptotic mean mode power of the jth propagating modes. T lj (ω,L) is the expected
power of the jth propagating mode at the propagation distance z = L. Here yl ∈ Hω0 is
defined by ylj = δjl and ylγ = 0 for γ ∈ (0, k2(ω)), and where δjl is the Kronecker symbol.
The initial condition yl means that an impulse equal to one charges only the lth propagating
mode. From Theorem 2.2, we have the coupled power equations:

d

dz
T lj (ω, z) = −Λcj(ω)T lj (ω, z) +

N(ω)∑
n=1
n6=j

Γcnj(ω)
(
T ln(ω, z)− T lj (ω, z)

)
, (2.47)

with initial conditions T lj (ω, 0) = δjl. These equations describe the transfer of energy between
the propagating modes and Γc(ω) is the energy transport matrix. In our context, we also
have the coefficients Λcj(ω) given by the coupling between the propagating modes with the
radiating modes. These coefficients, defined in Theorem 2.2, are responsible for the radiative
loss of energy in the ocean bottom (see Figure 2.3). This loss of energy is described more
precisely in the following section.
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Figure 2.3: Illustration of the radiative loss in the shallow-water random waveguide model.

2.5.1 Exponential Decay of the Propagating Modes Energy

In this section, we assume that at least one of the coefficients Λc(ω) is positive. With
this assumption, we show that the total energy carried by the propagating modes decays
exponentially with the size L of the random section. In the opposite situation, that is when
there is no radiative loss Λc(ω) = 0, it has been shown in [30] and [25, Chapter 20] that the
energy of the propagating modes is conserved and for large L the asymptotic distribution of
the energy becomes uniform over the propagating modes.

Let us define

SN(ω)
+ =

{
X ∈ RN(ω), Xj ≥ 0 ∀j ∈ {1, . . . , N(ω)} and ‖X‖22,RN(ω) =

〈
X,X

〉
RN(ω) = 1

}
with

〈
X,Y

〉
RN(ω) =

∑N(ω)
j=1 XjYj for (X,Y ) ∈ (RN(ω))2, and

Λcd(ω) = diag
(
Λc1(ω), . . . ,ΛcN(ω)(ω)

)
.

Theorem 2.3 Let us assume that the energy transport matrix Γc(ω) is irreducible. Then, we
have

lim
L→+∞

1
L

ln

N(ω)∑
j=1
T lj (ω,L)

 = −Λ∞(ω)

with
Λ∞(ω) = inf

X∈SN(ω)
+

〈(
− Γc(ω) + Λcd(ω)

)
X,X

〉
RN(ω) , (2.48)

which is positive as soon as one of the coefficients Λcj(ω) is positive.

This result means that the total energy carried by the expected powers of the propagating
modes decays exponentially with the propagation distance, and the decay rate can be expressed
in terms of a variational formula over a finite-dimensional space.

Proof The coupled power equations admit a probabilistic representation in terms of a
jump Markov process. If we denote by

(
Y
N(ω)
t

)
t≥0 a jump Markov process with state space

{1, . . . , N(ω)} and intensity matrix Γc(ω), then we have using the Feynman-Kac formula:

T lj (ω, z) = E

exp
(
−
∫ z

0
Λc
Y
N(ω)
s

(ω)ds
)

1(
Y
N(ω)
z =j

)∣∣∣Y N(ω)
0 = l

 . (2.49)
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Moreover, we have supposed that Γc(ω) is irreducible. Then,
(
Y
N(ω)
t

)
t≥0 in an ergodic process

with invariant measure µN(ω), which is the uniform distribution over {1, . . . , N(ω)}. That
is, µN(ω)(j) = 1/N(ω) ∀j ∈ {1, . . . , N(ω)}. The self-adjoint generator of the jump Markov
process (Y N(ω)

t )t≥0 is given by

LN(ω)φ(j) =
N(ω)∑
n=1

Γcnj(ω) (φ(n)− φ(j)) ,

for every function φ from {1, . . . , N(ω)} to R, and it is easy to check that LN(ω)µN(ω) = 0.
Let us consider the local times

lT (j) =
∫ T

0
1(

Y
N(ω)
s =j

)ds
for j ∈ {1, . . . , N(ω)} and T > 0, which corresponds to the time spent by the process(
Y
N(ω)
t

)
t≥0 in the state j during the time interval [0, T ]. According to [20], we have a large

deviation principle for 1
T lT viewed as a random process with values inMN(ω)

1 which is the
set of probability measures on {1, . . . , N(ω)}. More precisely, we have

lim
L→+∞

1
L

ln E
[
exp

(
− L

〈
Λc, 1

L
lL
〉
RN(ω)

)∣∣∣Y N(ω)
0 = l

]
= lim

L→+∞

1
L

ln E
[
exp

(
−
∫ L

0
Λc
Y
N(ω)
s

ds
)∣∣∣Y N(ω)

0 = l
]

= − inf
µ∈MN(ω)

1

(
I(µ) +

〈
Λc(ω), µ

〉)
with

I(µ) =
∥∥(− Γc(ω)

)1/2√
µ
∥∥2
2,RN(ω) =

〈(
− Γc(ω)

)√
µ,
√
µ
〉
RN(ω) .

Consequently,

lim
L→+∞

1
L

ln

N(ω)∑
j=1
T lj (ω,L)

 = −Λ∞(ω).

Let us assume that Λ∞(ω) = 0. As SN(ω)
+ is a compact space, there exists X0 ∈ SN(ω)

+ such
that

Λ∞(ω) =
〈(
− Γc(ω) + Λcd(ω)

)
X0, X0

〉
RN(ω) = 0.

Moreover, −Γc(ω) and Λcd(ω) are two nonnegative matrices and 0 is a simple eigenvalue of
−Γc(ω) by the Perron-Frobenius theorem. Then,〈

(−Γc(ω))X0, X0
〉
RN(ω) = 0⇔ X0 = √µN(ω),

and 〈
Λcd(ω)X0, X0

〉
RN(ω) = 0⇒ ∃j ∈ {1, . . . , N(ω)}, X0(j) = 0.

Therefore,
Λ∞(ω) > 0.

�

The expression (2.48) of Λ∞(ω) is not simple. However, we have the following inequalities.

min
j∈{1,...,N(ω)}

Λcj(ω) ≤ Λ∞(ω) ≤ Λ(ω) = 1
N(ω)

N(ω)∑
j=1

Λcj(ω), (2.50)
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but the lower bound is not a sharp bound. In fact, this bound is equal to 0 if the vector Λc(ω)
has only one coordinate equal to 0. To finish this section, let us investigate some special cases
in which we can give a simple expression of Λ∞(ω).

First, we assume that ∀j ∈ {1, . . . , N(ω)}, Λcj(ω) = Λ(ω) > 0. In this case, using (2.50)

Λ∞(ω) = Λ(ω).

This means that if all the coefficients which represent the radiation losses are equal, the decay
rate of the total energy of the propagating modes is given by this coefficient.

Second, we assume that the coupling matrix is small, that is we replace Γc(ω) by τΓc(ω)
with τ � 1. If ∀j ∈ {1, . . . , N(ω)}, Λcj(ω) > 0 we have

lim
τ→0

Λτ∞(ω) = min
j∈{1,...,N(ω)}

Λcj(ω).

From (2.50), it is the smallest value that Λ∞(ω) can take. This result is consistent with
the fact that the coupling process on the transfer of energy between propagating modes is
negligible and the decay rate of the energy of a particular propagating mode j is given by its
own decay coefficient Λj(ω). Then, for the total energy of propagating modes the decay rate
is given by the minimum of those decay coefficients. Consequently, if there exists Λcj0(ω) = 0,
we have

lim
τ→0

Λτ∞(ω) = 0.

The reason is the energy of the j0th propagating mode stays approximately constant with a
weak transfer of energy, and

lim
τ→0

1
τ
Λτ∞(ω) = inf

X∈Ṽ

〈(
− Γc(ω)

)
X,X

〉
RN(ω) > 0,

where
Ṽ =

{
X ∈ SN(ω)

+ , suppX ⊂ {1, . . . , N(ω)} \ supp(Λc(ω))
}
,

because √µN(ω) 6∈ Ṽ .
Now, we assume that the coupling matrix is large, that is we replace Γc(ω) by 1

τ Γ
c(ω)

with τ � 1. In this case, we have

lim
τ→0

Λτ∞(ω) = Λ(ω).

From (2.50), it is the largest value that Λ∞(ω) can take. The strong coupling produces
a uniform distribution of energy over the propagating modes and the decay rate becomes〈
Λc(ω), µN(ω)

〉
RN(ω) = Λ(ω) for each mode. A more convenient way to get this result is to use

a probabilistic representation. In fact, we have

T lj (ω, z) = E

exp
(
−
∫ z

0
Λc
Y
N(ω)
s/τ

(ω)
)

1(
Y
N(ω)
z =j

)∣∣∣Y N(ω)
0 = l


= E

exp
(
−z τ

z

∫ z/τ

0
Λc
Y
N(ω)
s

(ω)
)

1(
Y
N(ω)
z/τ

=j
)∣∣∣Y N(ω)

0 = l

 ,
where

(
Y
N(ω)
t

)
t≥0 is a jump Markov process with state space {1, . . . , N(ω)} and intensity

matrix Γc(ω). Using the ergodic properties of
(
Y
N(ω)
t

)
t≥0, we get that

lim
τ→0
T τ,lj (ω,L) = 1

N(ω)
exp

(
−Λ(ω)L

)
.
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Figure 2.4: Illustration of negligible radiation losses in the shallow-water random waveguide
model.

Finally, if we assume that the radiation losses are negligible, that is we replace Λc(ω) by
τΛc(ω) with τ � 1, we have

lim
τ→0

Λτ∞(ω) = 0.

In fact, if the radiative loss is negligible, the coupling process becomes dominant, and we can
show that

∀L > 0, sup
z∈[0,L]

‖T τ,lj (ω, z)− T 0,l
j (ω, z)‖2,RN(ω) = O(τ),

where T 0,l(ω, .) satisfies (2.47) without the coefficient Λc(ω). In this situation

T 0,l
j (ω,L) = P

(
Y
N(ω)
L = j

∣∣∣Y N(ω)
0 = l

)
,

and the total energy is conserved (see Figure 2.4), and

lim
τ→0

1
τ
Λτ∞(ω) = Λ(ω) > 0.

As it was already observed in [30] the modal energy distribution converges as L→ +∞ to a
uniform distribution:

lim
L→+∞

T 0,l
j (ω,L) = 1

N(ω)
.

2.5.2 High-Frequency Approximation to Coupled Power Equations

In this section we give, under the assumption that nearest neighbor coupling is the main
power transfer mechanism, an approximation of the solution of the coupled power equations
(2.47) in the high-frequency regime or in the limit of large number of propagating modes
N(ω) � 1. Let us note that the limit of a large number of propagating modes N(ω) � 1
corresponds to the high-frequency regime ω → +∞. Next, we analyze the energy carried by
the propagating modes in this regime.

The coupled power equations can be approximated in the high-frequency regime by a
diffusion equation. This approximation has been already obtained in [39] for instance, in
which we can find further references about this topic. We can also refer to [44] for more
discussions on this approximation. For an application of such a diffusion model to acoustic
propagation in random sound channels we refer to [45], and for applications to time reversal
of waves we refer to [33] and Chapters 3 and 4 of this manuscript .
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Using the form of the covariance function (2.52) page 65, we find

Γcjl(ω) =
ak4(ω)Ij,l(ω)

2βj(ω)βl(ω)(a2 + (βj(ω)− βl(ω))2)

and
Λcj(ω) =

∫ k2(ω)

0

ak4(ω)Ij,γ(ω)
2βj(ω)√γ(a2 + (βj(ω)−√γ)2)

dγ,

where

Ijl =1
4
A2
jA

2
l

[
S
(
σj − σl, σj − σl

)
+ S

(
σj + σl, σj + σl

)
− S

(
σj − σl, σj + σl

)
− S

(
σj + σl, σj − σl

)]
,

Ijγ =1
4
A2
jA

2
γ

[
S
(
σj − η, σj − η

)
+ S

(
σj + η, σj + η

)
− S

(
σj − η, σj + η

)
− S

(
σj + η, σj − η

)]
,

with
S(v1, v2) =

∫ d

0

∫ d

0
γ0(x1, x2) cos

(v1
d
x1
)
cos

(v2
d
x2
)
dx1dx2,

and where Aj(ω), Aγ(ω), σj(ω), η(ω), φj(ω, x), and φγ(ω, x) are defined in Section 2.2.1.

Band-Limiting Idealization

In this section, we introduce a band-limiting idealization hypothesis in which the power
spectral density of the random fluctuations is assumed to be limited in both the transverse
and the longitudinal directions.

We assume that the support of S lies in the square
[
− 3π

2 ,
3π
2
]
×
[
− 3π

2 ,
3π
2
]
. Then,

Ijl(ω) =
{

1
4A

2
j (ω)A2

l (ω)S
(
σj(ω)− σl(ω), σj(ω)− σl(ω)

)
if |j − l| = 1

0 otherwise,

and

Ijγ(ω) =
{

1
4A

2
j (ω)A2

l (ω)S
(
σj(ω)− η(ω), σj(ω)− η(ω)

)
if |σj(ω)− η(ω)| ≤ 3π

2
0 otherwise.

From this assumption we get ∀ 0 < γ < k2(ω) and j ∈ {1, . . . , N(ω)− 2},

η(ω)− σj(ω) ≥ n1k(ω)d
√

1− 1
n2

1
− σj(ω) ≥ n1k(ω)dθ − (N(ω)− 2)π

≥ π
(
n1k(ω)d

π
θ −N(ω)

)
︸ ︷︷ ︸

∈[0,1)

+2π.

Then, for j ∈ {1, . . . , N(ω)− 2},

inf
0<γ<k2

η(ω)− σj(ω) > 3π
2
,

and
Λcj(ω) = 0, ∀j ∈ {1, . . . , N(ω)− 2}.
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Consequently, the coupled power equations (2.47) become

d

dz
T lN (z) = −ΛcNT lN (z) + ΓcN−1N

(
T lN−1(z)− T lN (z)

)
,

d

dz
T lN−1(z) = −ΛcN−1T lN−1(z) + ΓcN−1N−2

(
T lN−2(z)− T lN−1(z)

)
+ ΓcN−1N

(
T lN (z)− T lN−1(z)

)
,

d

dz
T lj (z) = Γcj−1 j

(
T lj−1(z)− T lj (z)

)
+ Γcj+1 j

(
T lj+1(z)− T lj (z)

)
for j ∈ {2, . . . , N − 2},

d

dz
T l1 (z) = Γc2 1

(
T l2 (z)− T l1 (z)

)
,

(2.51)

with T lj (0) = δjl.
The band-limiting idealization hypothesis is tantamount to a nearest neighbor coupling.

More precisely, this assumption implies that ∀(j, l) ∈ {1, . . . , N(ω)}2 the jth mode amplitude
can exchange informations with the lth amplitude mode if they are direct neighbors, that is,
if they satisfy |j − l| ≤ 1.

High-Frequency Approximation

The evolution of the mean mode powers of the propagating modes can be described, in the
high-frequency regime or in the limit of a large number of propagating modes N(ω)� 1, by a
diffusion model. This diffusive continuous model is equipped with boundary conditions which
take into account the effect of the radiating modes at the bottom and the free surface of the
waveguide (see Figure 2.3 page 54).

Let, ∀ϕ ∈ C0([0, 1]), ∀u ∈ [0, 1], and z ≥ 0,

T N(ω)
ϕ (z, u) = T [N(ω)u]

ϕ (ω, z) =
N(ω)∑
j=1

ϕ
( j

N(ω)

)
T [N(ω)u]
j (ω, z),

where ϕ 7→ T N(ω)
ϕ (z, .) can be extended to an operator from L2(0, 1) to itself. Here, L2(0, 1)

is equipped with the inner product defined as follows: ∀(ϕ,ψ) ∈ L2(0, 1)2

〈
ϕ,ψ

〉
L2(0,1) =

∫ 1

0
ϕ(v)ψ(v)dv.

Theorem 2.4 We have

1. ∀ϕ ∈ L2(0, 1) and ∀z ≥ 0,

lim
ω→+∞

T N(ω)
ϕ (z, u) = Tϕ(z, u) in L2(0, 1),

where Tϕ(z, u) satisfies the partial differential equation : ∀(z, u) ∈ (0,+∞)× (0, 1),

∂

∂z
Tϕ(z, u) = ∂

∂u

(
a∞(·) ∂

∂u
Tϕ
)

(z, u),

with the boundary conditions

∂

∂u
Tϕ(z, 0) = 0, Tϕ(z, 1) = 0, and Tϕ(0, u) = ϕ(u),

∀z > 0.
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2. ∀u ∈ [0, 1], ∀z ≥ 0, and ∀ϕ ∈ C0([0, 1]) such that ϕ(1) = 0, we have

lim
ω→+∞

T N(ω)
ϕ (z, u) = Tϕ(z, u).

Here,
a∞(u) = a0

1−
(
1− π2

a2d2

)
(θu)2

,

with a0 = π2S0
2an4

1d
4θ2 , θ =

√
1− 1/n2

1, S0 =
∫ d
0
∫ d
0 γ0(x1, x2) cos

(
π
dx1

)
cos

(
π
dx2

)
dx1dx2. n1 is

the index of refraction in the ocean section [0, d], 1/a = lz,x is the correlation length of the
random inhomogeneities in the longitudinal direction, and γ0 is the covariance function of the
random inhomogeneities in the transverse direction.

This theorem is a continuum approximation in the limit of a large number of propagating
modes N(ω) � 1. This approximation gives us, in the high-frequency regime, a diffusion
model for the transfer of energy between the N(ω)-discrete propagating modes, with a
reflecting boundary condition at x = 0 (the top of the waveguide in Figure 2.2 page 33) and
an absorbing boundary condition at u = 1 (the bottom of the waveguide in Figure 2.2) which
represents the radiative loss (see Figure 2.3).

Exponential Decay in the High-Frequency Regime

In this high-frequency regime, we also observe that the energy carried by the continuum of
propagating modes decays exponentially with the propagation distance. The exponential
decay of the energy in the high-frequency regime is given by the following result.

Theorem 2.5 ∀ϕ ∈ L2(0, 1) \ {0} such that ϕ ≥ 0, and ∀u ∈ [0, 1),

lim
L→+∞

1
L

ln [Tϕ(L, u)] = −Λ∞,

where
Λ∞ = inf

ϕ∈D

∫ 1

0
a∞(v)ϕ′(v)2dv > 0

and
D =

{
ϕ ∈ C∞([0, 1]), ‖ϕ‖L2(0,1) = 1, ∂

∂v
ϕ(0) = 0, ϕ(1) = 0

}
.

This result means that the energy carried by each propagating mode decays exponentially
with the propagation distance, and the decay rate can be expressed in terms of a variational
formula. Consequently, the spatial inhomogeneities of the medium and the geometry of the
shallow-water waveguide lead us to an exponential decay phenomenon caused by the radiative
loss into the ocean bottom.

Proof We can see that the operator P∞ = ∂
∂v

(
a∞(·) ∂∂v

)
on L2([0, 1]), with domain

D(P∞) =
{
ϕ ∈ H2(0, 1), ∂

∂v
ϕ(0) = 0, ϕ(1) = 0

}
is self-adjoint. P∞ has a compact resolvent Rλ = (λId−P∞)−1 because [0, 1] is a compact set
and then it has a point spectrum (λj)j≥1 with eigenvectors denoted by (φ∞,j)j≥1. Moreover,
all the eigenspaces are finite-dimensional subspaces of D(P∞) and ∀ϕ ∈ D(P∞) \ {0}〈

P∞(ϕ), ϕ
〉
L2(0,1) < 0.

Let us organize the point spectrum in the nonincreasing way, · · · < λ2 < λ1 < 0. We have

Tϕ(L, v) =
∑
j≥1

〈
ϕ, φ∞,j

〉
L2(0,1)e

λjLφ∞,j(v).
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Lemma 2.2 λ1 is a simple eigenvalue and one can choose φ∞,1 such that φ∞,1(v) > 0
∀v ∈ [0, 1).

Proof (of Lemma 2.2) This lemma is a consequence of the Krein-Rutman theorem, but
not its strongest form [55]. Indeed, the set of nonnegative functions in L2([0, 1]) has an empty
interior. However, using the smoothness of the eigenvectors, the proof also works in our case
as we shall see it.

Using the maximum principle we know that if ϕ ∈ L2([0, 1]) such that ϕ ≥ 0, we have
Tϕ(L, .) ≥ 0, and then Rλ(ϕ) ≥ 0. Consequently, applying the Krein-Rutman theorem [55]
to the resolvent operator Rλ with λ > 0 and which is a compact operator, the spectral
radius ρ(Rλ) is an eigenvalue, for which one can associate an eigenvector ϕρ(Rλ) such that
∀v ∈ [0, 1], ϕρ(Rλ)(v) ≥ 0. However, we have ∀v ∈ [0, 1), ϕρ(Rλ)(v) > 0. In fact, let us assume
that there exists v0 ∈ [0, 1) such that ϕρ(Rλ)(v0) = 0, then Rλ(ϕRλ)(v0) = 0. Moreover,
Rλ(ϕRλ) = ρ(Rλ)ϕρ(Rλ) is an eigenvector for P∞, and then ϕρ(Rλ) is a smooth function on
[0, 1]. Therefore, according to the proof of Theorem 2.4 we have

Rλ(ϕRλ)(v0) =
∫ +∞

0
e−λtTϕρ(Rλ)(t, v0)dt

=
∫ +∞

0
e−λtEPv0

[
ϕρ(Rλ)(x(t))1(t<τ1)

]
dt

= EPv0
[ ∫ τ1

0
e−λtϕρ(Rλ)(|x(t)|)dt

]
= 0,

where Pv0 is the unique solution of the martingale problem associated to La∞ = ∂
∂v

(
a∞(·) ∂∂v

)
and starting from v0. Here, we have chosen a∞ such that ∀v ∈ [0, 1], a∞(v) = a∞(−v) = a∞(v),
and the martingale problem associated to La∞ is well-posed. Moreover, τ1 = inf(t ≥ 0, |x(t)| ≥
1). Consequently, Pv0

( ∫ τ1
0 e−λtϕρ(Rλ)(|x(t)|)dt = 0

)
= 1. However, we know that there exists

v1 ∈ (0, 1) such that ϕρ(Rλ)(v1) > 0, and then v1 < v0 < 1. Therefore, Pv0(τ1 < τv1) = 1, and
by the Markov property

0 < EPv0
[
e−τv1 1(τv1<+∞)

]
= EPv0

[
e−τv1 1(τv1<+∞,τ1<τv1 )

]
< EP1

[
e−τv1 1(τv1<+∞)

]
< EPv0

[
e−τv1 1(τv1<+∞)

]
,

which is impossible. Therefore, ∀v ∈ [0, 1), ϕρ(Rλ) > 0. Now, to see that the eigenvalue ρ(Rλ)
is simple, let ϕ ∈ L2(0, 1) \ {0} such that Rλ(ϕ) = ρ(Rλ)ϕ, and let

PRλ : R −→ C0([0, 1])
t 7−→ ϕRλ − tϕ,

which is a continuous function. We recall that ϕ is a smooth function on [0, 1]. Let us show that
∃t ∈ R such that ϕ = t ϕρ(Rλ), that is 0 ∈ PRλ(R). To do this let us assume that 0 6∈ PRλ(R).
By linearity one can assume that ∃v0 ∈ [0, 1) such that ϕ(v0) > 0. Let η > 0 be small enough
to have v0 ∈ [0, 1 − η]. Let K+

η =
{
ϕ ∈ C0([0, 1 − η]), ∀v ∈ [0, 1 − η], ϕ(v) ≥ 0

}
, then the

interior of K+
η for the sup norm on [0, 1] is K++

η =
{
ϕ ∈ C0([0, 1−η]), ∀v ∈ [0, 1−η], ϕ(v) > 0

}
.

Moreover, for t small enough ϕRλ − tϕ ∈ K++
η , and ϕRλ − tϕ 6∈ K+

η for t large enough. Then
∃t0 ∈ R such that ϕRλ − t0ϕ ∈ K+

η \ K++
η . However, ϕRλ − t0ϕ ≥ 0, but ϕRλ − t0ϕ 6= 0

because 0 6∈ PRλ(R). Following the previous work we have

ρ(Rλ)(ϕRλ − t0ϕ) = Rλ(ϕRλ − t0ϕ) ∈ K++
η .
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Consequently, ρ(Rλ) = 1/(λ − λ1) implies that λ1 is also a simple eigenvalue and one can
choose

φ∞,1 = Rλ(ϕRλ) = ρ(Rλ)ϕRλ ∈ K
++
η .

That concludes the proof of Lemma 2.2. �

As a result, ∀ϕ ∈ L2(0, 1) \ {0} such that ϕ ≥ 0, ∀v ∈ [0, 1) we get

lim
L→+∞

1
L

ln [Tϕ(L, v)] = λ1,

and
λ1 = sup

ϕ∈D(P∞)
‖ϕ‖L2([0,1])=1

〈
P∞(ϕ), ϕ

〉
L2([0,1]) = −Λ∞ < 0.

�

In Theorem 2.5, we take ϕ ∈ L2(0, 1) \ {0} such that ϕ ≥ 0, which can be consider as being
the initial repartition of energy over the continuum of modes. However, the result of Theorem
2.5 is also valid for any ϕ ∈ L2(0, 1) \ {0} such that

〈
ϕ, φ∞,1

〉
L2(0,d) > 0.

2.5.3 High-Frequency Approximation to Coupled Power Equation with
Negligible Radiation Losses

In the case of negligible radiation losses, we also get a continuous diffusive model for the
coupled power equations in the high-frequency regime or in the limit of a large number of
propagating modes N(ω)� 1. This diffusive continuous model is equipped with boundary
conditions which take into account the negligible effect of the radiation losses at the bottom
and the free surface of the waveguide (see Figure 2.4 page 57).

Now, let us assume that the radiation losses are negligible, that is, Λc(ω) = τ Λ̃c(ω) with
τ � 1. We have already remarked that, if the radiation losses are negligible, then the coupling
process is predominant and we have

∀L > 0, sup
z∈[0,L]

‖T τ,lj (ω, z)− T 0,l
j (ω, z)‖2,RN(ω) = O(τ),

where T 0,l(ω, .) satisfies

d

dz
T 0,l
N (z) = ΓcN−1N

(
T 0,l
N−1(z)− T

0,l
N (z)

)
,

d

dz
T 0,l
j (z) = Γcj−1 j

(
T 0,l
j−1(z)− T

0,l
j (z)

)
+ Γcj+1 j

(
T 0,l
j+1(z)− T

0,l
j (z)

)
for j ∈ {2, . . . , N − 1},

d

dz
T 0,l

1 (z) = Γc2 1

(
T 0,l

2 (z)− T 0,l
1 (z)

)
,

with T 0,l
j (0) = δjl.

High Frequency Approximation

Let, ∀ϕ ∈ C0([0, 1]), ∀u ∈ [0, 1], and z ≥ 0,

T N(ω)
ϕ (z, u) = T [N(ω)u]

ϕ (z) =
N(ω)∑
j=1

ϕ
( j

N(ω)

)
T [N(ω)u]
j (z),

where ϕ 7→ T N(ω)
ϕ (z, .) can be extended into an operator from L2(0, 1) to itself.
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Theorem 2.6 We have

1. ∀ϕ ∈ L2(0, 1) and ∀z ≥ 0,

lim
ω→+∞

T N(ω)
ϕ (z, u) = Tϕ(z, u) in L2(0, 1),

where Tϕ(z, u) satisfies the partial differential equation : ∀(z, u) ∈ (0,+∞)× (0, 1),

∂

∂z
Tϕ(z, u) = ∂

∂u

(
a∞(·) ∂

∂u
Tϕ
)

(z, u),

with the boundary conditions

∂

∂u
Tϕ(z, 0) = 0, ∂

∂v
Tϕ(z, 1) = 0, and Tϕ(0, u) = ϕ(u),

∀z > 0.

2. ∀u ∈ [0, 1), ∀z ≥ 0, and ∀ϕ ∈ C0([0, 1]) such that ϕ(1) = 0, we have

lim
ω→+∞

T N(ω)
ϕ (z, u) = Tϕ(z, u).

Here,
a∞(u) = a0

1−
(
1− π2

a2d2

)
(θu)2

,

with a0 = π2S0
2an4

1d
4θ2 , θ =

√
1− 1/n2

1, S0 =
∫ d
0
∫ d
0 γ0(x1, x2) cos

(
π
dx1

)
cos

(
π
dx2

)
dx1dx2. n1 is

the index of refraction in the ocean section [0, d], 1/a = lz,x is the correlation length of the
random inhomogeneities in the longitudinal direction, and γ0 is the covariance function of the
random inhomogeneities in the transverse direction.

This theorem is a continuum approximation in the limit of a large number of propagating
modes in the case where the radiation losses are negligible.This approximation gives us, in the
high-frequency regime, a diffusion model for the transfer of energy between the N(ω)-discrete
propagating modes, with two reflecting boundary conditions at u = 0 (the top of the waveguide
in Figure 2.2 page 33) and u = 1 (the bottom of the waveguide in Figure 2.2). Here, the two
reflecting boundary conditions mean that there is no radiative loss anymore (see Figure 2.4).

Asymptotic behavior of T (L, v) as L→ +∞

In the case where the radiation losses are negligible, we have seen in Section 2.5.1 that the
decay rate satisfies limτ→0 Λτ∞(ω) = 0 and T 0,l(ω,L) converge to the uniform distribution
over {1, . . . , N(ω)} as L → +∞ [30]. In the high-frequency regime we have the following
continuous version.

Theorem 2.7 ∀ϕ ∈ L2(0, 1) and ∀u ∈ [0, 1],

lim
L→+∞

Tϕ(L, u) =
∫ 1

0
ϕ(v)dv,

that is, the energy carried by the continuum of propagating modes converges exponentially fast
to the uniform distribution over [0, 1] as L→ +∞.

As a result, the energy is conserved and the modal energy distribution converges to a uniform
distribution as L→ +∞.
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Proof We can see that the operator P∞ = ∂
∂v

(
a∞(·) ∂∂v

)
on L2([0, 1]), with domain

D(P∞) =
{
ϕ ∈ H2(0, 1), ∂

∂v
ϕ(0) = 0, ∂

∂v
ϕ(1) = 0

}
is self-adjoint. Moreover, P∞ has a compact resolvant because [0, 1] is a compact set and then
it has a point spectrum (λj)j≥0 with eigenvectors denoted by (φ∞,j)j≥0. Moreover, all the
eigenspaces are finite-dimensional subspaces of D(P∞) and ∀ϕ ∈ D(P∞) \ {0}〈

P∞(ϕ), ϕ
〉
L2(0,1) ≤ 0.

Let us remark that λ0 = 0 is a simple eigenvalue with eigenvector φ∞,0 = 1. Then, the
spectrum is include in (−∞, 0] and we have the following decomposition

Tϕ(z, v) =
∫ 1

0
ϕ(v)dv +

∑
j≥1

〈
ϕ, φ∞,j

〉
L2(0,1)e

λjzφ∞,j(v).

Therefore, ∀u ∈ [0, 1],

lim
L→+∞

Tϕ(L, u) =
∫ 1

0
ϕ(v)dv,

with exponential rate λ1 < 0. �

Conclusion
In Chapter 2 we have analyzed the propagation of waves in a shallow-water acoustic waveguide
with random perturbations. In such a waveguide, the wave field can be decomposed into three
kinds of modes, which are the propagating, the radiating, and the evanescent modes, and the
random perturbations produce a coupling between these modes.

We have shown that the evolution of the propagating mode amplitudes can be described
as a diffusion process (Theorems 2.1 and 2.2). This diffusion takes into account the main
coupling mechanisms: The coupling with the evanescent modes induces a mode-dependent
and frequency-dependent phase modulation on the propagating modes, the coupling with the
radiating modes, in addition to a mode-dependent and frequency-dependent phase modulation,
induces a mode-dependent and frequency-dependent attenuation on the propagating modes.
In other words, the propagating modes lose energy in the form of radiation into the bottom of
the waveguide and their total energy decays exponentially with the propagation distance. We
can express the decay rate in terms of a variational formula over a finite-dimensional space
(Theorem 2.3).

Under the assumption that nearest neighbor coupling is the main power transfer mechanism,
the evolution of the mean mode powers of the propagating modes can be described, in the
high frequency regime or in the limit of a large number of propagating modes, by a continuous
diffusive model with boundary conditions which take into account the effect of the radiation
losses at the bottom and the free surface of the waveguide. In this regime, we observe that
the energy carried by the continuum of propagating modes also decay exponentially with the
propagation distance. The exponential decay rate can be expressed in terms of a variational
formula (Theorem 2.5).

The diffusive systems obtained in Chapter 2 will be used in Chapter 3 of this manuscript
to analyze pulse propagation and refocusing during time-reversal experiments in underwater
acoustics.
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2.6 Appendix

2.6.1 Gaussian Random Field

This section is a short remainder about some properties of Gaussian random fields that we
shall use in the proofs of Theorems 2.1 and 4.1, and in Sections 2.3.2 and 2.3.3. All the results
exposed in this section can be shown using the standard properties of Gaussian random fields
presented in [1] and [2] for instance.

In this thesis, the random perturbations of the medium parameters are modeled using
a random process denoted by (V (x, t), x ∈ [0, d], t ≥ 0). Throughout this manuscript the
process V is a continuous real-valued zero-mean Gaussian field with a covariance function
given by

E [V (x, t)V (y, s)] = γ0(x, y)e−a|t−s| ∀(x, y) ∈ [0, d]2 and ∀(s, t) ∈ [0,+∞)2. (2.52)

Here, a > 0; γ0 : [0, d]× [0, d]→ R is a Lipschitz function, which is the kernel of a nonnegative
operator, that is, there exists a nonnegative operator Qγ0 from L2(0, d) to itself such that
∀(ϕ,ψ) ∈ L2(0, d)2

〈
Qγ0(ϕ), ψ

〉
L2(0,d) =

∫ d

0

∫ d

0
γ0(x, y)ϕ(x)ψ(y)dxdy.

Consequently, one can consider the process (V (., t))t≥0 as being a continuous zero-mean
Gaussian field with values in L2(0, d) and covariance operator Qγ0 . In other words, ∀n ∈ N∗,
∀(ϕ1, . . . , ϕn) ∈ L2(0, d)n, and ∀(t1 . . . , tn) ∈ [0,+∞)n(

Vϕ1(t1), . . . , Vϕn(tn)
)

=
(〈
V (., t1), ϕ1

〉
L2(0,d), . . . ,

〈
V (., tn), ϕn

〉
L2(0,d)

)
is a real-valued zero-mean Gaussian vector such that ∀(j, l) ∈ {1, . . . , n}2

E
[
Vϕj (tj)Vϕl(tl)

]
=
〈
Qγ0(ϕj), ϕl

〉
L2(0,d)e

−a|tj−tl|. (2.53)

With this point of view we have the following proposition.

Proposition 2.5 We have

1. (V (., t))t≥0 is a continuous zero-mean stationary Gaussian field with values in L2(0, d)
and autocorrelation function given by (2.53). Then, we have ∀n ∈ N∗ and ∀t ≥ 0,

E
[(∫ d

0

∣∣V (x, t)∣∣2dx)n] = E
[(∫ d

0

∣∣V (x, 0)∣∣2dx)n] < +∞. (2.54)

2. We have the following Markov property. Let

Ft = σ(V (., s), s ≤ t)

be the σ-algebra generated by (V (., s), s ≤ t). We have(
V (., t+ h)

∣∣∣Ft) =
(
V (., t+ h)

∣∣∣σ(V (., t))
)
,

where the equality holds in law, and this law is the one of a Gaussian field with mean

E
[
V (., t+ h)|Ft

]
= e−ahV (., t)

and covariance, ∀(ϕ,ψ) ∈ L2(0, d)2,

E
[
Vϕ(t+ h)Vψ(t+ h)− E

[
Vϕ(t+ h)|Ft

]
E
[
Vψ(t+ h)|Ft

]∣∣∣Ft]
=
〈
Qγ0(ϕ), ψ

〉
L2(0,d)

(
1− e−2ah

)
.
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The Markov property of the random process (V (., t))t≥0 is a direct consequence of the
exponential form of the autocorrelation function (2.53) with respect to the variable t [1].
This property will be used in the proof of Theorems 2.1 and 4.1, which are based on the
perturbed-test-function method.

Now, we are interested in some estimation on the supremum of V (x, t) with respect to the
two variables x and t. To this end, let us introduce some notations [2]. Let ε > 0 be a small
parameter and L > 0. We consider the following pseudo-metric on the square [0, d]× [0, L/ε]
defined by

m
(
(x, t), (y, s)

)
= E

[
(V (x, t)− V (y, s))2

]1/2
≤ Kγ0

[
|t− s|+ |x− y|

]
.

Let us remark that [0, d]× [0, L/ε] associated to the pseudo-metric m is a compact set. From
Theorem 1.3.3 in [2], we have

E

 sup
x∈[0,d]
t∈[0,L/ε]

∣∣V (x, t)
∣∣
 ≤ K ∫ diam([0,d]×[0,L/ε])/2

0
H1/2(r)dr

≤ K1

∫ supx∈[0,d] γ0(x,x)

0

√
ln
(
K2

dL

r2ε

)
dr,

where H(r) = ln(N(r)), and N(r) denotes the smallest number of balls, for the pseudo-metric
m, with radius r to cover the square [0, d]× [0, L/ε]. Here, diam stands for the diameter with
respect to the pseudo-metric m. Consequently, we have the following proposition.

Proposition 2.6 ∀µ > 0 and ∀K > 0,

lim
ε→0

P
(
εµ sup

x∈[0,d]
sup

t∈[0,L/ε]

∣∣V (x, t)
∣∣ ≥ K) = 0. (2.55)

Moreover, according to Theorem 2.1.1 in [2], one can show that the limit (2.55) is obtained
exponentially fast as ε→ 0.

2.6.2 Proof of Theorem 2.1

The proof of this theorem is in two parts. The process
(
Tξ,ε(z)

)
z≥0 is not adapted with

respect to the filtration F εz = Fz/ε. Then, the first part of the proof consists in simplifying
the problem and introducing a new process for which the martingale approach can be used.
The first part of the proof follows the ideas of [36]. The second part of proof of this theorem
is based on a martingale approach using the perturbed-test-function method and follows the
ideas developed in [16].

Then, let us introduce T̃ξ,ε(.) the unique solution of the differential equation

d

dz
T̃ξ,ε(z) = 1√

ε
Haa

(
z

ε

)
T̃ξ,ε(z) +

〈
Gaa〉T̃ξ,ε(z), (2.56)

with Tξ,ε(0) = Id and where
〈
Gaa〉 is defined, ∀y ∈ Hξ, by

〈
Gaa〉

j
(y) =

∫ −ξ
−∞

ik4

2βj
√
|γ′|

∫ +∞

0
E
[
Cjγ′(0)Cjγ′(z)

]
cos

(
βjz

)
e−
√
|γ′|zdzdγ′yj

∀j ∈
{
1, . . . , N

}
and

〈
Gaa〉

γ
(y) = 0 for γ ∈ (ξ, k2). We have the following proposition that

describes the relation between the two processes Tξ,ε(z) and T̃ξ,ε(z).
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Proposition 2.7

∀y ∈ Hξ and ∀η > 0, lim
ε→0

P
(

sup
z∈[0,L]

‖Tξ,ε(z)(y)− T̃ξ,ε(z)(y)‖2Hξ > η

)
= 0.

Let us remark that the new process
(
T̃ξ,ε(z)

)
z≥0 is adapted to the filtration F εz and

‖T̃ξ,ε(z)(y)‖2Hξ = ‖y‖2Hξ ∀z ≥ 0.

Let ry = ‖y‖Hξ ,
Bry ,Hξ =

{
λ ∈ Hξ, ‖λ‖Hξ =

√
〈λ, λ〉Hξ ≤ ry

}
the closed ball with radius ry, and {gn, n ≥ 1} a dense subset of Bry ,Hξ . We equip Bry ,Hξ
with the distance dBry,Hξ defined by

dBry,Hξ (λ, µ) =
+∞∑
j=1

1
2j
∣∣∣〈λ− µ, gn〉Hξ ∣∣∣

∀(λ, µ) ∈ (Bry ,Hξ)2, and then (BHξ , dBry,Hξ ) is a compact metric space.

Using a particular tightness criteria, we prove the tightness of the family (T̃ξ,ε(.))ε∈(0,1) on
C([0,+∞), (Bry ,Hξ , dBry,Hξ )), which is a polish space. In a second part, we shall characterize
all subsequence limits as solutions of a well-posed martingale problem in the Hilbert space
Hξ.

We have the following version of the Arzelà-Ascoli theorem [14, 35] for processes with
values in a complete separable metric space.

Theorem 2.8 A set B ⊂ C([0,+∞), (Bry ,Hξ , dBry,Hξ )) has a compact closure if and only if

∀T > 0, lim
η→0

sup
g∈A

mT (g, η) = 0,

with
mT (g, η) = sup

(s,t)∈[0,T ]2
|t−s|≤η

dBry,Hξ (g(s), g(t)).

From this result, we obtain the classical tightness criterion.

Theorem 2.9 A family of probability measure
(
Pε
)
ε∈(0,1) on C([0,+∞), (Bry ,Hξ , dBry,Hξ )) is

tight if and only if

∀T > 0, η′ > 0 lim
η→0

sup
ε∈(0,1)

Pε
(
g ; mT (g, η) > η′

)
= 0.

From the definition of the metric dBry,Hξ , the tightness criterion becomes the following.

Theorem 2.10 A family of processes (Xε)ε∈(0,1) is tight on C([0,+∞), (Bry ,Hξ , dBry,Hξ )) if
and only if

(〈
Xε, λ

〉
Hξ

)
ε∈(0,1) is tight on C([0,+∞),C) ∀λ ∈ Hξ.

This last theorem looks like the tightness criterion of Mitoma and Fouque [47, 23].
For any λ ∈ Hξ, we set T̃ξ,ε

λ (z)(y) =
〈
T̃ξ,ε(z)(y), λ

〉
Hξ

. According to Theorem 2.10,

the family (T̃ξ,ε(.)(y))ε is tight on C([0,+∞), (Bry ,Hξ , dBry,Hξ )) if and only if the family

(T̃ξ,ε
λ (.)(y))ε is tight on C([0,+∞),C) ∀λ ∈ Hξ. Furthermore, (T̃ξ,ε(.)(y))ε is a family of

continuous processes. Then, it is sufficient to prove that ∀λ ∈ Hξ, (T̃ξ,ε
λ (.)(y))ε is tight on

D([0,+∞),C), which is the set of cad-lag functions with values in C.
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Proof (of Proposition 2.7) Differentiating the square norm and using the fact that Haa(z)
is skew Hermitian, we get

‖Tξ,ε(z)(y)− T̃ξ,ε(z)(y)‖2Hξ

≤ 2
∣∣∣ ∫ z

0

〈(
Gaa

(
z

ε

)
−
〈
Gaa〉)Tξ,ε(z)(y),Tξ,ε(z)(y)− T̃ξ,ε(z)(y)

〉
Hξ
du
∣∣∣

+ 2
∥∥〈Gaa〉∥∥ ∫ z

0
‖Tξ,ε(u)(y)− T̃ξ,ε(u)(y)‖2Hξ .

Let η′ > 0, we will split the interval [0, z/ε] into intervals of length η′/
√
ε. The idea is that over

these intervals the fast dynamic of Gaa averages out while Tξ,ε does not move significantly.
We have∣∣∣ε ∫ z/ε

0

〈(
Gaa(u))−

〈
Gaa〉)Tξ,ε(εu)(y),Tξ,ε(εu)(y)− T̃ξ,ε(εu)(y)

〉
Hξ
du
∣∣∣

≤
∣∣∣ε ∫

[
z√
εη′

]
η′√
ε

0

〈(
Gaa(u)−

〈
Gaa〉)Tξ,ε(εu)(y),Tξ,ε(εu)(y)− T̃ξ,ε(εu)(y)

〉
Hξ
du
∣∣∣

+
∣∣∣ε ∫ z/ε[

z√
εη′

]
η′√
ε

〈(
Gaa(u)−

〈
Gaa〉)Tξ,ε(εu)(y),Tξ,ε(εu)(y)− T̃ξ,ε(εu)(y)

〉
Hξ
du
∣∣∣,

with ∣∣∣ε ∫ z/ε[
z√
εη′

]
η′√
ε

〈(
Gaa(u)−

〈
Gaa〉)Tξ,ε(εu)(y),Tξ,ε(εu)(y)− T̃ξ,ε(εu)(y)

〉
Hξ
du
∣∣∣

≤

ε1/4√η′(∫ L

0

∥∥Gaa
(
u

ε

)∥∥2
du

)1/2

+
√
εη′‖

〈
Gaa〉‖


× sup
z∈[0,L]

‖Tξ,ε(z)(y)‖Hξ‖T
ξ,ε(z)(y)− T̃ξ,ε(z)(y)‖Hξ

since 0 ≤ z −
[

z√
εη′

]√
εη′ ≤

√
εη′, and

∣∣∣ε ∫
[

z√
εη′

]
η′√
ε

0

〈(
Gaa(u)−

〈
Gaa〉)Tξ,ε(εu)(y),Tξ,ε(εu)(y)− T̃ξ,ε(εu)(y)

〉
Hξ
du
∣∣∣

≤
√
ε

[
L√
εη′

]
−1∑

m=0

∣∣∣√ε ∫ (m+1) η
′
√
ε

m η′√
ε

〈(
Gaa(u)−

〈
Gaa〉)Tξ,ε(εu)(y),Tξ,ε(εu)(y)− T̃ξ,ε(εu)(y)

〉
Hξ
du
∣∣∣.

Moreover,

Tξ,ε(εu)(y) = Tξ,ε(mη′
√
ε)(y) +

∫ u

m η′√
ε

√
εHaa(v)Tξ,ε(εv)(y) + εGaa(v)Tξ,ε(εv)(y)dv

and

T̃ξ,ε(εu)(y) = T̃ξ,ε(mη′
√
ε)(y) +

∫ u

m η′√
ε

√
εHaa(v)T̃ξ,ε(εv)(y) + ε

〈
Gaa〉T̃ξ,ε(εv)(y)dv.
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Therefore, we have

√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

〈(
Gaa(u)−

〈
Gaa〉)Tξ,ε(εu)(y),Tξ,ε(εu)(y)− T̃ξ,ε(εu)(y)

〉
Hξ
du

=
√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

〈(
Gaa(u)−

〈
Gaa〉)Tξ,ε(mη′

√
ε)(y),Tξ,ε(mη′

√
ε)(y)− T̃ξ,ε(mη′

√
ε)(y)

〉
Hξ
du

+
∫ (m+1) η

′
√
ε

m η′√
ε

∫ u

m η′√
ε

ε
〈(

Gaa(u)−
〈
Gaa〉)Haa(v)Tξ,ε(εv)(y),Tξ,ε(εu)(y)− T̃ξ,ε(εu)(y)

〉
Hξ

+ ε3/2
〈(

Gaa(u)−
〈
Gaa〉)Gaa(v)Tξ,ε(εv)(y),Tξ,ε(εu)(y)− T̃ξ,ε(εu)(y)

〉
Hξ

+ ε
〈(

Gaa(u)−
〈
Gaa〉)Tξ,ε(mη′

√
ε)(y),Haa(v)

(
Tξ,ε(εv)(y)− T̃ξ,ε(εv)(y)

)〉
Hξ

+ ε3/2
〈(

Gaa(u)−
〈
Gaa〉)Tξ,ε(mη′

√
ε)(y),Gaa(v)Tξ,ε(εv)(y)−

〈
Gaa〉T̃ξ,ε(εv)(y)

〉
Hξ
du.

Consequently, by the Gronwall’s inequality

sup
z∈[0,L]

‖Tξ,ε(z)(y)− T̃ξ,ε(z)(y)‖2Hξ ≤ B(ε, η′)e2
∥∥〈Gaa〉∥∥L,

where

B(ε, η′) = 2

ε1/4√η′(∫ L

0

∥∥Gaa
(
u

ε

)∥∥2
du

)1/2

+
√
εη′‖

〈
Gaa〉‖


× sup
z∈[0,L]

‖Tξ,ε(z)(y)‖Hξ‖T
ξ,ε(z)(y)− T̃ξ,ε(z)(y)‖Hξ

+ 2
√
ε

[
L√
εη′

]
−1∑

m=0

∫ (m+1) η
′
√
ε

m η′√
ε

∫ u

m η′√
ε

(
2ε
[
‖Gaa(u)‖+ ‖

〈
Gaa

〉
‖
]
‖Haa(v)‖

+ ε3/2
[
‖Gaa(u)‖+ ‖

〈
Gaa

〉
‖
]2) sup

z∈[0,L]
‖Tξ,ε(z)(y)‖Hξ‖T

ξ,ε(z)(y)− T̃ξ,ε(z)(y)‖Hξdv du

+
∣∣∣√ε∫ (m+1) η

′
√
ε

m η′√
ε

〈(
Gaa(u)−

〈
Gaa〉)Tξ,ε(mη′

√
ε)(y),Tξ,ε(mη′

√
ε)(y)− T̃ξ,ε(mη′

√
ε)(y)

〉
Hξ
du
∣∣∣,

and
P
(

sup
z∈[0,L]

‖Tξ,ε(z)(y)− T̃ξ,ε(z)(y)‖2Hξ > η
)
≤ P

(
B(ε, η′) ≥ ηe−2

∥∥〈Gaa〉∥∥L).
Setting η′′ = ηe−2

∥∥〈Gaa〉∥∥L, we have

P
(
B(ε, η′) ≥ η′′

)
≤ P

(
B(ε, η′) ≥ η′′, sup

z∈[0,L]
‖Tξ,ε(z)(y)‖2Hξ ≤M

)
+ P

(
sup
z∈[0,L]

‖Tξ,ε(z)(y)‖2Hξ ≥M
)
.

We already know that the process T̃ξ,ε(.)(y) is bounded. Moreover,

P
(
B(ε, η′) ≥ η′′, sup

z∈[0,L]
‖Tξ,ε(z)(y)‖2Hξ ≤M

)
≤ 1
η′′

E
[
B(ε, η′)1(

supz∈[0,L] ‖Tξ,ε(z)(y)‖2
Hξ
≤M
)]
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with

E
[
B(ε, η′)1(

supz∈[0,L] ‖Tξ,ε(z)(y)‖2
Hξ
≤M
)] ≤ K[η′2 + ε1/4

√
η′ +

√
ε(η′ + η′2)

]

+ 2
√
ε

[
L√
εη′

]
−1∑

m=0
E
[
1(

supz∈[0,L] ‖Tξ,ε(z)(y)‖2
Hξ
≤M
)

×
∣∣∣√ε∫ (m+1) η

′
√
ε

m η′√
ε

〈(
Gaa(u)−

〈
Gaa〉)Tξ,ε(mη′

√
ε)(y),Tξ,ε(mη′

√
ε)(y)− T̃ξ,ε(mη′

√
ε)(y)

〉
Hξ
du
∣∣∣]

≤ K
[
η′2 + ε1/4

√
η′ +

√
ε(η′ + η′2)

]
+ 2
√
εK

[
L√
εη′

]
−1∑

m=0
E

∥∥∥√ε ∫ (m+1) η
′
√
ε

m η′√
ε

Gaa(u)−
〈
Gaa〉 du∥∥∥2

1/2

,

since
∫ (m+1) η

′
√
ε

m η′√
ε

∫ u
m η′√

ε

dv du = η′

ε and

E
[∥∥Gaa

(
u

ε

)∥∥2
]
≤ K E

[( ∫ d

0
|V (x, 0)|2dx

)2
]

(2.57)

for u ∈ [0, L]. As a result, it remains us to estimate only one term.

Lemma 2.3

lim
ε→0

√
ε

[
L√
εη′

]
−1∑

m=0
E

∥∥∥√ε ∫ (m+1) η
′
√
ε

m η′√
ε

Gaa(u)−
〈
Gaa〉 du∥∥∥2

1/2

= 0.

Proof (of Lemma 2.3) Let us remark that we have the following decomposition. For
j ∈

{
1, . . . , N

}
, almost every γ ∈ (ξ, k2), and ∀y ∈ Hξ,

Gaa
j (z)(y) =

N∑
l=1

Gaa
jl (z)yl +

∫ k2

ξ
Gaa
jγ′(z)yγ′dγ′,

Gaa
γ (z)(y) =

N∑
l=1

Gaa
γl (z)yl +

∫ k2

ξ
Gaa
γγ′(z)yγ′dγ′.

Letting

P =
√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

Gaa(u)−
〈
Gaa〉 du,

70



Chapter 2 Section 2.6.2

we have (j, l)2 ∈
{
1, . . . , N

}2 such that j 6= l, and almost every γ ∈ (ξ, k2)

Pjj =
√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

Gaa
jj (u)−

〈
Gaa〉

jj
du,

Pjl =
√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

Gaa
jl (u)du,

Pjγ′ =
√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

Gaa
jγ′(u)du,

Pγl =
√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

Gaa
γl (u)du,

Pγγ′ =
√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

Gaa
γγ′(u)du,

and

1
2
‖P‖2 ≤

N∑
j,l=1
|Pjl|2 +

N∑
j=1

∫ k2

ξ
|Pjγ′ |2dγ′ +

∫ k2

ξ

N∑
l=1
|Pγl|2dγ +

∫ k2

ξ

∫ k2

ξ
|Pγγ′ |2dγ′ dγ.

Moreover,

E
[
V (x1, z1)V (x2, z2)V (x3, z3)V (x4, z4)

]
=E

[
V (x1, z1)V (x2, z2)

]
E
[
V (x3, z3)V (x4, z4)

]
+ E

[
V (x1, z1)V (x3, z3)

]
E
[
V (x2, z2)V (x4, z4)

]
+ E

[
V (x1, z1)V (x4, z4)

]
E
[
V (x2, z2)V (x3, z3)

]
= γ0(x1, x2)γ0(x3, x4)e−a|z1−z2|e−a|z3−z4|

+ γ0(x1, x3)γ0(x2, x4)e−a|z1−z3|e−a|z2−z4|

+ γ0(x1, x4)γ0(x2, x3)e−a|z1−z4|e−a|z2−z3|,

which is the fourth order moment of a Gaussian field. To compute the expectation of the
square norm of P we must know these moments. Following that decomposition, the square
norm of P can be decomposed in three parts. First, after a long computation, the two parts
corresponding to the two last terms of the previous decomposition are dominated by

√
ε

uniformly in m. Then, we focus our attention on the part corresponding to the first part of
the previous decomposition. For E

[
|Pjγ′ |2

]
, E
[
|Pγl|2

]
, and E

[
|Pjl|2

]
with j 6= l, we get after

a long computation terms of the form

ε

∫ (m+1) η
′
√
ε

m η′√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

ei(
√
γ′−βj)u1e−i(

√
γ′−βj)u2du1 du2 = O(ε),

ε

∫ (m+1) η
′
√
ε

m η′√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

ei(βl−
√
γ)u1e−i(βl−

√
γ)u2du1 du2 = O(ε),

ε

∫ (m+1) η
′
√
ε

m η′√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

ei(βl−βj)u1e−i(βl−βj)u2du1 du2 = O(ε).

For E
[
|Pγγ′ |2

]
we separate the integral into two parts.∫ k2

ξ

∫ k2

ξ
E
[
|Pγγ′ |2

]
dγ′ dγ =

∫
I≥µ

E
[
|Pγγ′ |2

]
dγ′ dγ +

∫
I<µ

E
[
|Pγγ′ |2

]
dγ′ dγ,
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where µ > 0 and

I≥µ =
{
(γ, γ′) ∈ (ξ, k2)2,

∣∣√γ −√γ′∣∣ ≥ µ},
I<µ =

{
(γ, γ′) ∈ (ξ, k2)2,

∣∣√γ −√γ′∣∣ < µ
}
.

Consequently, ∫
I<µ

E
[
|Pγγ′ |2

]
dγ′ dγ ≤ K

∫
I<µ

dγ′ dγ,

and on I≥µ we get terms of the form

ε

∫
I≥µ

∫ (m+1) η
′
√
ε

m η′√
ε

∫ (m+1) η
′
√
ε

m η′√
ε

ei(
√
γ′−√γ)u1e−i(

√
γ′−√γ)u2du1 du2dγ

′dγ = O(ε).

Now, it remains us to study E
[
|Pjj |2

]
. After a long computation, the terms of order one

produced by Gaa
jj are compensated by the terms of order one given by

〈
Gaa〉

j
. Moreover, the

other terms are dominated by
√
ε.

As a result, we get

lim
ε→0

√
ε

[
L√
εη′

]
−1∑

m=0
E

∥∥∥√ε ∫ (m+1) η
′
√
ε

m η′√
ε

Gaa(u)−
〈
Gaa〉 du∥∥∥2

1/2

≤ K
√∫

I<µ
dγ′ dγ

and one can conclude the proof of Lemma 2.3 by letting µ→ 0.�

From the previous lemma, we finally get, ∀η′ > 0

lim
ε→0

P
(

sup
z∈[0,L]

‖Tξ,ε(z)(y)− T̃ξ,ε(z)(y)‖2Hξ > η
)
≤ e2

∥∥〈Gaa〉∥∥L
η

Kη′2,

since using the Gronwall’s inequality and (2.57) we have

lim
M→+∞

lim
ε→0

P
(

sup
z∈[0,L]

‖Tξ,ε(z)(y)‖2Hξ ≥M
)

= 0.

Consequently, we conclude the proof of Proposition 2.7 by letting η′ → 0. �

According to Proposition 2.7, to study the convergence in distribution of the process(
Tξ,ε(.)(y)

)
ε
it suffices to study the convergence for

(
T̃ξ,ε(.)(y)

)
ε
. Moreover, we shall consider

the complex case for more convenient manipulations. Letting λ ∈ Hξ, we consider the equation

d

dt
T̃ξ,ε
λ (t)(y) = 1√

ε
Hλ

(
T̃ξ,ε(t)(y), C

(
t

ε

)
,
t

ε

)
+Gλ

(
T̃ξ,ε(t)(y)

)
,

with Hλ =
〈
H,λ

〉
Hξ

, Gλ =
〈〈

Gaa〉(.), λ〉Hξ , where, for j ∈ {1, . . . , N} and almost every
γ ∈ (ξ, k2)

Hj (T, C, s) = ik2

2

[ N∑
l=1

Cjl√
βjβl

ei(βl−βj)sTl +
∫ k2

ξ

Cjγ′√
βj
√
γ′
ei(
√
γ′−βj)sTγ′dγ

′
]
,

Hγ (T, C, s) = ik2

2

[ N∑
l=1

Cγl√√
γβl

ei(βl−
√
γ)sTl +

∫ k2

ξ

Cγγ′

γ1/4γ′1/4
ei(
√
γ′−√γ)sTγ′dγ

′
]
.

The proof of Theorem 2.1 is based on the perturbed-test-function approach. Using the
notion of a pseudogenerator, we prove tightness and characterize all subsequence limits.
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Pseudogenerator

We recall the techniques developed by Kurtz and Kushner [41]. Let Mε be the set of all
F ε-measurable functions f(t) for which supt≤T E [|f(t)|] < +∞ and where T > 0 is fixed. The
p− lim and the pseudogenerator are defined as follows. Let f and f δ inMε ∀δ > 0. We say
that f = p− limδ f

δ if

sup
t,δ

E[|f δ(t)|] < +∞ and lim
δ→0

E[|f δ(t)− f(t)|] = 0 ∀t.

The domain of Aε is denoted by D (Aε). We say that f ∈ D (Aε) and Aεf = g if f and g are
in D (Aε) and

p− lim
δ→0

[Eεt[f(t+ δ)]− f(t)
δ

− g(t)
]

= 0,

where Eεt is the conditional expectation given F εt and F εt = Ft/ε. A useful result about Aε is
given by the following theorem.

Theorem 2.11 Let f ∈ D (Aε). Then

M ε
f (t) = f(t)−

∫ t

0
Aεf(u)du

is an (F εt )-martingale.

Tightness

We consider the classical complex derivative with the following notation: If v = α+ iβ, then
∂v = 1

2 (∂α − i∂β) and ∂v = 1
2 (∂α + i∂β).

Proposition 2.8 ∀λ ∈ Hξ, the family
(
T̃ξ,ε
λ (.)(y)

)
ε∈(0,1) is tight on D ([0,+∞),C).

Proof According to Theorem 4 in [41], we need to show the three following lemmas. Let
λ ∈ Hξ, f be a smooth function, and f ε0(t) = f

(
T̃ξ,ε
λ (t)(y)

)
. We have,

Aεf ε0(t) = ∂vf
(
T̃ξ,ε
λ (t)(y)

) [ 1√
ε
Hλ

(
T̃ξ,ε(t)(y), C

(
t

ε

)
,
t

ε

)
+Gλ

(
T̃ξ,ε(t)(y)

)]
+ ∂vf

(
T̃ξ,ε
λ (t)(y)

) [ 1√
ε
Hλ

(
T̃ξ,ε(t)(y), C

(
t

ε

)
,
t

ε

)
+Gλ

(
T̃ξ,ε(t)(y)

)]
.

Let

f ε1(t) = 1√
ε
∂vf

(
T̃ξ,ε
λ (t)(y)

) ∫ +∞

t
Eεt
[
Hλ

(
T̃ξ,ε(t)(y), C

(
u

ε

)
,
u

ε

)]
du

+ 1√
ε
∂vf

(
T̃ξ,ε
λ (t)(y)

) ∫ +∞

t
Eεt

[
Hλ

(
T̃ξ,ε(t)(y), C

(
u

ε

)
,
u

ε

)]
du.

Lemma 2.4 ∀T > 0, limε sup0≤t≤T |f ε1(t)| = 0 almost surely, and supt≥0 E [|f ε1(t)|] = O (
√
ε).

Proof (of Lemma 2.4) Using the Markov property of the Gaussian field V , we have

f ε1(t) = ik2√ε
2

∂vf
(
T̃ξ,ε
λ (t)(y)

)
F ε1,λ(t)−

ik2√ε
2

∂vf
(
T̃ξ,ε
λ (t)(y)

)
F ε1,λ(t)
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with

F ε1,λ(t) =
N∑
j=1

[
N∑
l=1

Cjl
(
t
ε

)√
βjβl

ei(βl−βj)
t
ε T̃ξ,ε

l (t)(y) a+ i(βl − βj)
a2 + (βl − βj)2

+
∫ k2

ξ

Cjγ′
(
t
ε

)√
βεj
√
γ′
ei(
√
γ′−βj) tε T̃ξ,ε

γ′ (t)(y)
a+ i(

√
γ′ − βj)

a2 + (
√
γ′ − βj)2

dγ′

λj
+
∫ k2

ξ

 N∑
l=1

Cγl
(
t
ε

)√√
γβl

ei(βl−
√
γ) t
ε T̃ξ,ε

l (t)(y)
a+ i(βl −

√
γ)

a2 + (βl −
√
γ)2

+
∫ k2

ξ

Cγγ′
(
t
ε

)
γ1/4γ′1/4

ei(
√
γ′−√γ) t

ε T̃ξ,ε
γ′ (t)(y)

a+ i(
√
γ′ −√γ)

a2 + (
√
γ′ −√γ)2

dγ′
]
λγdγ.

Using (2.54), we easily get
E [|f ε1(t)|] ≤

√
εK(f, λ).

and
|f ε1(t)| ≤ K(λ, f)

√
ε sup

0≤t≤T/ε
sup
x∈[0,d]

|V (x, t)| .

Then, we can conclude with (2.55).�

Lemma 2.5 {Aε (f ε0 + f ε1) (t), ε ∈ (0, 1), 0 ≤ t ≤ T} is uniformly integrable ∀T > 0.

Proof (of Lemma 2.5) A computation gives us

Aε (f ε0 + f ε1) (t) = F̃λ

(
T̃ξ,ε(t)(y), C

(
t

ε

)
⊗ C

(
t

ε

)
,
t

ε

)
,

where
C(T )⊗ C(T )q1 q2 q3 q4 = Cq1 q2(T )Cq3 q4(T )

for (q1, q2, q3, q4) ∈
(
{1, . . . , N} ∪ (ξ, k2)

)4, with
F̃λ (T, C, s) = ∂vf(T)

[
F̃ 1,ε
λ (T, C, s) +Gλ (T)

]
+ ∂vf(T)

[
F̃ 1
λ (T, C, s) +Gλ (T)

]
+ ∂2

vf(T)F̃ 2
λ (T, C, s) + ∂2

vf(T)F̃ 2
λ (T, C, s)

+ ∂v∂vf(T)F̃ 3
λ (T, C, s) + ∂v∂vf(T)F̃ 3

λ (T, C, s),

and

F̃ 1
λ(T, C, s) =

− k4

4

N∑
j=1

 N∑
l,l′=1

Cjlll′√
βjβ2

l βl′
ei(βl′−βj)sTl′

a+ i(βl − βj)
a2 + (βl − βj)2

+
N∑
l=1

∫ k2

ξ

Cjllγ′′√
βjβ2

l

√
γ′′
ei(
√
γ′′−βj)sTγ′′

a+ i(βl − βj)
a2 + (βl − βj)2 dγ

′′

+
∫ k2

ξ

N∑
l′=1

Cjγ′γ′l′√
βjγ′βl′

ei(βl′−βj)sTl′
a+ i(

√
γ′ − βj)

a2 + (
√
γ′ − βj)2 dγ

′

+
∫ k2

ξ

∫ k2

ξ

Cjγ′γ′γ′′√
βjγ′
√
γ′′
ei(
√
γ′′−βj)sTγ′′

a+ i(
√
γ′ − βj)

a2 + (
√
γ′ − βj)2 dγ

′dγ′′

λj
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− k4

4

∫ k2

ξ

 N∑
l,l′=1

Cγlll′√√
γβ2

l βl′
ei(βl′−

√
γ)sTl′

a+ i(βl −
√
γ)

a2 + (βl −
√
γ)2

+
N∑
l=1

∫ k2

ξ

Cγllγ′′√√
γβ2

l

√
γ′′
ei(
√
γ′′−√γ)sTγ′′

a+ i(βl −
√
γ)

a2 + (βl −
√
γ)2 dγ

′′

+
∫ k2

ξ

N∑
l′=1

Cγγ′γ′l′√√
γγ′βl′

ei(βl′−
√
γ)sTl′

a+ i(
√
γ′ −√γ)

a2 + (
√
γ′ −√γ)2 dγ

′

+
∫ k2

ξ

∫ k2

ξ

Cγγ′γ′γ′′√√
γγ′
√
γ′′
ei(
√
γ′′−√γ)sTγ′′

a+ i(
√
γ′ − βj)

a2 + (
√
γ′ −√γ)2 dγ

′dγ′′

λγdγ,
F̃ 2
λ(T, C, s)

= −k
4

4

N∑
j,j′=1

 N∑
l,l′=1

Cjlj′l′√
βjβlβj′βl′

ei(βl−βj+βl′−βj′ )sTlTl′
a+ i(βl − βj)
a2 + (βl − βj)2

+
N∑
l=1

∫ k2

ξ

Cjlj′γ′2√
βjβlβj′

√
γ′2

ei(βl−βj+
√
γ′2−βj′ )sTlTγ′2

a+ i(βl − βj)
a2 + (βl − βj)2 dγ

′
2

+
∫ k2

ξ

N∑
l′=1

Cjγ′1j′l′√
βj
√
γ′1βj′βl′

ei(
√
γ′1−βj+βl′−βj′ )sTγ′1

Tl′
a+ i(

√
γ′1 − βj)

a2 + (
√
γ′1 − βj)2

dγ′1

+
∫ k2

ξ

∫ k2

ξ

Cjγ′1j′γ′2√
βj
√
γ′1βj′

√
γ′2

ei(
√
γ′1−βj+

√
γ′2−βj′ )sTγ′1

Tγ′2

a+ i(
√
γ′1 − βj)

a2 + (
√
γ′1 − βj)2

dγ′1dγ
′
2

λjλj′
− k4

4

N∑
j=1

∫ k2

ξ

 N∑
l,l′=1

Cjlγ2l′√
βjβl
√
γ2βl′

ei(βl−βj+βl′−
√
γ2)sTlTl′

a+ i(βl − βj)
a2 + (βl − βj)2

+
N∑
l=1

∫ k2

ξ

Cjlγ2γ′2√
βjβl
√
γ2γ

′
2

ei(βl−βj+
√
γ′2−
√
γ2)sTlTγ′2

a+ i(βl − βj)
a2 + (βl − βj)2 dγ

′
2

+
∫ k2

ξ

N∑
l′=1

Cjγ′1γ2l′√
βj
√
γ′1γ2βl′

ei(
√
γ′1−βj+βl′−

√
γ2)sTγ′1

Tl′
a+ i(

√
γ′1 − βj)

a2 + (
√
γ′1 − βj)2

dγ′1

+
∫ k2

ξ

∫ k2

ξ

Cjγ′1γ2γ′2√
βj
√
γ′1γ2γ′2

ei(
√
γ′1−βj+

√
γ′2−
√
γ2)sTγ′1

Tγ′2

a+ i(
√
γ′1 − βj)

a2 + (
√
γ′1 − βj)2

dγ′1dγ
′
2

λjλγ2dγ2

− k4

4

∫ k2

ξ

N∑
j′=1

 N∑
l,l′=1

Cγ1lj′l′√√
γ1βlβj′βl′

ei(βl−
√
γ1+βl′−βj′ )sTlTl′

a+ i(βl −
√
γ1)

a2 + (βl −
√
γ1)2

+
N∑
l=1

∫ k2

ξ

Cγ1lj′γ′2√√
γ1βlβj′

√
γ′2

ei(βl−
√
γ1+
√
γ′2−βj′ )sTlTγ′2

a+ i(βl −
√
γ1)

a2 + (βl −
√
γ1)2 dγ

′
2

+
∫ k2

ξ

N∑
l′=1

Cγ1γ′1j
′l′√√

γ1γ′1βj′βl′
ei(
√
γ′1−
√
γ1+βl′−βj′ )sTγ′1

Tl′
a+ i(

√
γ′1 −

√
γ1)

a2 + (
√
γ′1 −

√
γ1)2

dγ′1

+
∫ k2

ξ

∫ k2

ξ

Cγ1γ′1j
′γ′2√√

γ1γ′1βj′
√
γ′2

ei(
√
γ′1−
√
γ1+
√
γ′2−βj′ )sTγ′1

Tγ′2

a+ i(
√
γ′1 −

√
γ1)

a2 + (
√
γ′1 −

√
γ1)2

dγ′1dγ
′
2

λγ1λj′
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− k4

4

∫ k2

ξ

∫ k2

ξ

 N∑
l,l′=1

Cγ1lγ2l′√√
γ1βl
√
γ2βl′

ei(βl−
√
γ1+βl′−

√
γ2)sTlTl′

a+ i(βl −
√
γ1)

a2 + (βl −
√
γ1)2

+
N∑
l=1

∫ k2

ξ

Cγ1lγ2γ′2√√
γ1βl

√
γ2γ′2

ei(βl−
√
γ1+
√
γ′2−
√
γ2)sTlTγ′2

a+ i(βl −
√
γ1)

a2 + (βl −
√
γ1)2 dγ

′
2

+
∫ k2

ξ

N∑
l′=1

Cγ1γ′1γ2l′√√
γ1γ′1γ2βl′

ei(
√
γ′1−
√
γ1+βl′−

√
γ2)sTγ′1

Tl′
a+ i(

√
γ′1 −

√
γ1)

a2 + (
√
γ′1 −

√
γ1)2

dγ′1

+
∫ k2

ξ

∫ k2

ξ

Cγ1γ′1γ2γ′2

(γ′1γ2γ′2)1/4 e
i(
√
γ′1−
√
γ1+
√
γ′2−
√
γ2)sTγ′1

Tγ′2

a+ i(
√
γ′1 −

√
γ1)

a2 + (
√
γ′1 −

√
γ1)2

dγ′1dγ
′
2

]
λγ1λγ2dγ1dγ2,

F̃ 3
λ(T, C, s)

= k4

4

N∑
j,j′=1

 N∑
l,l′=1

Cjlj′l′√
βjβlβj′βl′

ei(βl−βj−βl′+βj′ )sTlTl′
a+ i(βl − βj)
a2 + (βl − βj)2

+
N∑
l=1

∫ k2

ξ

Cjlj′γ′2√
βjβlβj′

√
γ′2

ei(βl−βj−
√
γ′2+βj′ )sTlTγ′2

a+ i(βl − βj)
a2 + (βl − βj)2 dγ

′
2

+
∫ k2

ξ

N∑
l′=1

Cjγ′1j′l′√
βj
√
γ′1βj′βl′

ei(
√
γ′1−βj−βl′+βj′ )sTγ′1

Tl′
a+ i(

√
γ′1 − βj)

a2 + (
√
γ′1 − βj)2

dγ′1

+
∫ k2

ξ

∫ k2

ξ

Cjγ′1j′γ′2√
βj
√
γ′1βj′

√
γ′2

ei(
√
γ′1−βj−

√
γ′2+βj′ )sTγ′1

Tγ′2

a+ i(
√
γ′1 − βj)

a2 + (
√
γ′1 − βj)2

dγ′1dγ
′
2

λjλj′
+ k4

4

N∑
j=1

∫ k2

ξ

 N∑
l,l′=1

Cjlγ2l′√
βjβl
√
γ2βl′

ei(βl−βj−βl′+
√
γ2)sTlTl′

a+ i(βl − βj)
a2 + (βl − βj)2

+
N∑
l=1

∫ k2

ξ

Cjlγ2γ′2√
βjβl

√
γ2γ′2

ei(βl−βj−
√
γ′2+√γ2)sTlTγ′2

a+ i(βl − βj)
a2 + (βl − βj)2 dγ

′
2

+
∫ k2

ξ

N∑
l′=1

Cjγ′1γ2l′√
βj
√
γ′1γ2βl′

ei(
√
γ′1−βj−βl′+

√
γ2)sTγ′1

Tl′
a+ i(

√
γ′1 − βj)

a2 + (
√
γ′1 − βj)2

dγ′1

+
∫ k2

ξ

∫ k2

ξ

Cjγ′1γ2γ′2√
βj
√
γ′1γ2γ′2

ei(
√
γ′1−βj−

√
γ′2+√γ2)sTγ′1

Tγ′2

a+ i(
√
γ′1 − βj)

a2 + (
√
γ′1 − βj)2

dγ′1dγ
′
2

λjλγ2dγ2

+ k4

4

∫ k2

ξ

N∑
j′=1

 N∑
l,l′=1

Cγ1lj′l′√√
γ1βlβj′βl′

ei(βl−
√
γ1−βl′+βj′ )sTlTl′

a+ i(βl −
√
γ1)

a2 + (βl −
√
γ1)2

+
N∑
l=1

∫ k2

ξ

Cγ1lj′γ′2√√
γ1βlβj′

√
γ′2

ei(βl−
√
γ1−
√
γ′2+βj′ )sTlTγ′2

a+ i(βl −
√
γ1)

a2 + (βl −
√
γ1)2 dγ

′
2

+
∫ k2

ξ

N∑
l′=1

Cγ1γ′1j
′l′√√

γ1γ′1βj′βl′
ei(
√
γ′1−
√
γ1−βl′+βj′ )sTγ′1

Tl′
a+ i(

√
γ′1 −

√
γ1)

a2 + (
√
γ′1 −

√
γ1)2

dγ′1

+
∫ k2

ξ

∫ k2

ξ

Cγ1γ′1j
′γ′2√√

γ1γ′1βj′
√
γ′2

ei(
√
γ′1−
√
γ1−
√
γ′2+βj′ )sTγ′1

Tγ′2

a+ i(
√
γ′1 −

√
γ1)

a2 + (
√
γ′1 −

√
γ1)2

dγ′1dγ
′
2

λγ1λj′
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+ k4

4

∫ k2

ξ

∫ k2

ξ

 N∑
l,l′=1

Cγ1lγ2l′√√
γ1βl
√
γ2βl′

ei(βl−
√
γ1−βl′+

√
γ2)sTlTl′

a+ i(βl −
√
γ1)

a2 + (βl −
√
γ1)2

+
N∑
l=1

∫ k2

ξ

Cγ1lγ2γ′2√√
γ1βl

√
γ2γ′2

ei(βl−
√
γ1−
√
γ′2+√γ2)sTlTγ′2

a+ i(βl −
√
γ1)

a2 + (βl −
√
γ1)2 dγ

′
2

+
∫ k2

ξ

N∑
l′=1

Cγ1γ′1γ2l′√√
γ1γ′1γ2βl′

ei(
√
γ′1−
√
γ1−βl′+

√
γ2)sTγ′1

Tl′
a+ i(

√
γ′1 −

√
γ1)

a2 + (
√
γ′1 −

√
γ1)2

dγ′1

+
∫ k2

ξ

∫ k2

ξ

Cγ1γ′1γ2γ′2

(γ1γ′1γ2γ′2)1/4 e
i(
√
γ′1−
√
γ1−
√
γ′2+√γ2)sTγ′1

Tγ′2

a+ i(
√
γ′1 −

√
γ1)

a2 + (
√
γ′1 −

√
γ1)2

dγ′1dγ
′
2

]
λγ1λγ2dγ1dγ2.

This expression combined with (2.54) gives us, supε,t E
[
|Aε (f ε0 + f ε1) (t)|2

]
< +∞. �

Lemma 2.6
lim

M→+∞
lim
ε→0

P
(

sup
0≤t≤T

|T̃ξ,ε
λ (t)(y)| ≥M

)
= 0.

Proof (of Lemma 2.6) We recall that ‖T̃ξ,ε(t)(y)‖Hξ = ‖y‖Hξ and then

|T̃ξ,ε
λ (t)(y)| ≤ ‖T̃ξ,ε(t)(y)‖Hξ‖λ‖Hξ = ‖y‖Hξ‖λ‖Hξ .

�
This last lemma completes the proof of Proposition 2.8. �

Martingale problem

In this section, we shall characterize all subsequence limits by showing they are solution
of a well-posed martingale problem. To do that, we consider a converging subsequence of
(T̃ξ,ε(.)(y))ε∈(0,1) which converges to a limit Tξ(.)(y). For the sake of simplicity we denote by
(T̃ξ,ε(.)(y))ε∈(0,1) the subsequence.

Convergence Result

Proposition 2.9 ∀λ ∈ Hξ and ∀f smooth test function,

f
(
Tξ
λ(t)(y)

)
−
∫ t

0
∂vf

(
Tξ
λ(s)(y)

) 〈
Jξ(Tξ(s)(y)), λ

〉
Hξ

+ ∂vf
(
Tξ
λ(s)(y)

)〈
Jξ(Tξ(s)(y)), λ

〉
Hξ

+∂2
vf
(
Tξ
λ(s)(y)

) 〈
K
(
Tξ(s)(y)

)
(λ), λ

〉
Hξ

+ ∂2
vf
(
Tξ
λ(s)(y)

)〈
K
(
Tξ(s)(y)

)
(λ), λ

〉
Hξ

+∂v∂vf
(
Tξ
λ(s)(y)

) 〈
L
(
Tξ(s)(y)

)
(λ), λ

〉
Hξ

+ ∂v∂vf
(
Tξ
λ(s)(y)

)〈
L
(
Tξ(s)(y)

)
(λ), λ

〉
Hξ
ds

is a martingale, where

Jξ(T)j =

Γcjj − Γ1
jj − Λc,ξj
2

+ i

Γsjj − Λs,ξj
2

+ κξj

Tj ,

K(T)(λ)j = −1
2

N∑
l=1

Γ1
jlTjTlλl −

1
2

N∑
l=1
l 6=j

(
Γcjl + iΓsjl

)
TjTlλl,

L(T)(λ)j = 1
2

N∑
l=1

Γ1
jlTjTlλl +

1
2

N∑
l=1
l 6=j

ΓcjlTlTlλj ,
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and
Jξ(T)γ = K(T)(λ)γ = L(T)(λ)γ = 0

for almost every γ ∈ (ξ, k2), and for (T, λ) ∈ H2
ξ .

Proof (of Proposition 2.9) Let

f ε2(t) =
∫ +∞

t
Eεt
[
F̃λ

(
T̃ξ,ε(t)(y), C

(
u

ε

)
⊗ C

(
u

ε

)
,
u

ε

)]
− F̃λ

(
T̃ξ,ε(t)(y),E[C(0)⊗ C(0)], u

ε

)
du.

Lemma 2.7
sup
t≥0

E [|f ε2(t)|] = O (ε)

and
Aε (f ε0 + f ε1 + f ε2) (t) = F̃λ

(
T̃ξ,ε(t)(y),E[C(0)⊗ C(0)], t

ε

)
+A(ε, t),

where supt≥0 E [|A(ε, t)|] = O(
√
ε).

Proof (of Lemma 2.7) Using a change of variable we get f ε2(t) = εB(ε, t) with

B(ε, t) =
∫ +∞

0
Eεt
[
F̃λ

(
T̃ξ,ε(t)(y), C

(
u+ t

ε

)
⊗ C

(
u+ t

ε

)
, u+ t

ε

)]
− F̃λ

(
T̃ξ,ε(t)(y),E[C(0)⊗ C(0)], u+ t

ε

)
du.

By a computation, we get that supε,t≥0 E [|B(ε, t)|] < +∞, and after a long but straightforward
computation we get the second part of the lemma. �

Next, let G̃λ
(
T̃ξ,ε(t)(y), tε

)
= F̃λ

(
T̃ξ,ε(t)(y),E[C(0)⊗ C(0)], tε

)
and

f ε3(t) = −
∫ t

0

[
G̃λ
(
T̃ξ,ε(t)(y), u

ε

)
− lim
T→+∞

1
T

∫ T

0
G̃λ
(
T̃ξ,ε(t)(y), s

)
ds
]
du.

Lemma 2.8 ∀T ′ > 0, we have

lim
ε→0

sup
0≤t≤T ′

E [|f ε3(t)|] = 0.

Proof (of Lemma 2.8) Using a change of variable, we get

f ε3(t) = −ε
∫ t

ε

0

[
G̃λ

(
T̃ξ,ε(t)(y), u

)
− lim
T→+∞

1
T

∫ T

0
G̃λ

(
T̃ξ,ε(t)(y), s

)
ds

]
du.

Let µ > 0, we have∣∣∣ ∫ t
ε

0

[
G̃λ

(
Tξ,ε(t)(y), u

)
− lim
T→+∞

1
T

∫ T

0
G̃λ

(
Tξ,ε(t), s

)
ds

]
du
∣∣∣

≤ K(µ, T ′, ξ, y) + K(T ′, ξ, y)
ε

4∑
j=1

∫
Ij<µ

dγ1 . . . dγj ,

where

Ij<µ =
{
(γl)l∈{1,...,j} ∈ (ξ, k2)j ,∃(ql)l∈{1,...,4−j} ∈ {β1, . . . , βN}4−j

and (µl)l∈{1,...,4} ∈ {−1, 1}4, with
∣∣∣ j∑
l=1

µl
√
γl +

4−j∑
l=1

µl+jql
∣∣∣ < µ

}
.
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Finally,

lim
ε→0

sup
0≤t≤T ′

E
[
ε

∣∣∣∣∣
∫ t

ε

0

[
G̃λ

(
Tξ,ε(t)(y), u

)
− lim
T→+∞

1
T

∫ T

0
G̃λ

(
Tξ,ε(t)(y), s

)
ds

]
du

∣∣∣∣∣
]

≤ K(T ′, ξ, y)
4∑
j=1

∫
Ij<µ

dγ1 . . . dγj ,

and then by letting µ→ 0 we get the announced result. �

Let f ε(t) = f ε0(t) + f ε1(t) + f ε2(t) + f ε3(t). A computation gives

Aεf ε(t) = lim
T→+∞

1
T

∫ T

0
G̃λ

(
T̃ξ,ε(t)(y), s

)
ds+ C(ε, t)

= G̃∞λ

(
T̃ξ,ε(t)(y)

)
+ C(ε, t),

where, ∀µ > 0,

lim
ε→0

sup
0≤t≤T ′

E [|C(ε, t)|] ≤ K(T ′, ξ, y)
4∑
j=1

∫
Ij<µ

dγ1 . . . dγj ,

using the boundness condition (2.54). Moreover, for (T, λ) ∈ H2
ξ , G̃∞ is defined as follow

G̃∞λ (T) =∂vf (T)
〈
Jξ(T), λ

〉
Hξ

+ ∂vf (T) 〈Jξ(T), λ〉Hξ

+ ∂2
vf (T)

〈
K̃ (T) (λ), λ

〉
Hξ

+ ∂2
vf (T)

〈
K̃ (T) (λ), λ

〉
Hξ

+ ∂v∂vf (T)
〈
L̃ (T) (λ), λ

〉
Hξ

+ ∂v∂vf (T)
〈
L̃ (T) (λ), λ

〉
Hξ
,

where

K̃(T)(λ)j = −k
4

4
∑

βj+βj′=βl+βl′

Cjlj′l′√
βjβlβj′βl′

TlTl′
a+ i(βl − βj)
a2 + (βl − βj)2

λj′

L̃(T)(λ)j = k4

4
∑

βj−βj′=βl−βl′

Cjlj′l′√
βjβlβj′βl′

TlTl′
a+ i(βl − βj)
a2 + (βl − βj)2

λj′

for j ∈ {1, . . . , N}, with
C = E

[
C(0)⊗ C(0)

]
,

and
K̃(T)(λ)γ = L̃(T)(λ)γ = 0

for almost every γ ∈ (ξ, k2).
We assume that the following nondegeneracy condition holds. The wavenumbers βj are

distinct along with their sums and differences. This assumption is also considered in [25], [30]
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and [39]. As a result we get

G̃∞λ

(
T̃ξ,ε(t)(y)

)
= ∂vf

(
T̃ξ,ε
λ (t)(y)

) 〈
Jξ(T̃ξ,ε(t)(y)), λ

〉
Hξ

+ ∂vf
(
T̃ξ,ε
λ (t)(y)

) 〈
Jξ(T̃ξ,ε(t)(y)), λ

〉
Hξ

+ ∂2
vf
(
T̃ξ,ε
λ (t)(y)

) 〈
K
(
T̃ξ,ε(t)(y)

)
(λ), λ

〉
Hξ

+ ∂2
vf
(
T̃ξ,ε
λ (t)(y)

) 〈
K
(
T̃ξ,ε(t)(y)

)
(λ), λ

〉
Hξ

+ ∂v∂vf
(
T̃ξ,ε
λ (t)(y)

) 〈
L
(
T̃ξ,ε(t)(y)

)
(λ), λ

〉
Hξ

+ ∂v∂vf
(
T̃ξ,ε
λ (t)(y)

) 〈
L
(
T̃ξ,ε(t)(y)

)
(λ), λ

〉
Hξ
.

(2.58)

By Theorem 2.11,
(
M ε
fε(t)

)
t≥0 is an (F εt )-martingale. Then, for every bounded continuous

function h, every sequence 0 < s1 < · · · < sn ≤ s < t, and every family (λj)j∈{1,...,n} with
values in Hnξ we have

E
[
h
(
T̃ξ,ε
λj (sj)(y), 1 ≤ j ≤ n

)(
f ε(t)− f ε(s)−

∫ t

s
Aεf ε(u)du

)]
= 0.

Finally, using (2.58) and Lemmas 2.4, 2.7, and 2.8, we can conclude the proof of Proposition
2.9. �

Uniqueness In order to prove uniqueness, we decompose Tξ(.)(y) into real and imaginary
parts. Then, let us consider the new process

Yξ(t) =
[
Y1,ξ(t)
Y2,ξ(t)

]
, where Y1,ξ(t) = Re

(
Tξ(t)(y)

)
and Y2,ξ(t) = Im

(
Tξ(t)(y)

)
.

This new process takes its values in Gξ × Gξ, where Gξ = RN × L2((ξ, k2),R). Gξ × Gξ is
equipped with the inner product defined by

〈T,S〉Gξ×Gξ =
N∑
j=1

T1
jS1

j + T2
jS2

j +
∫ k2

ξ
T1
γS1

γ + T2
γS2

γdγ

∀(T,S) ∈ Gξ × Gξ. We also use the notation Yξ
λ(t) =

〈
Yξ(t), λ

〉
Gξ×Gξ

with λ ∈ Gξ × Gξ. We
introduce the operator Υ on Gξ × Gξ given by

Υ :Gξ × Gξ −→ Gξ × Gξ,[
T1

T2

]
7−→

[
T2

−T1

]
.

By Proposition 2.9, we get the following result.

Proposition 2.10 ∀λ ∈ Gξ × Gξ, ∀f ∈ C∞b (R)

f
(
Yξ
λ(t)

)
−
∫ t

0

〈
Bξ(Yξ(s)), λ

〉
Gξ×Gξ

f ′
(
Yξ
λ(s)

)
+ 1

2
〈
A
(
Yξ(s)

)
(λ), λ

〉
Gξ×Gξ

f
′′(Yξ

λ(s)
)
ds
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is a martingale, where

A(Y)(λ) = A1(Y)(λ) +A2(Y)(λ) +A3(Y)(λ),

with, for j ∈ {1, . . . , N},

Bξ(Y)j =

Γcjj − Λc,ξj
2

Yj −

Γsjj − Λs,ξj
2

+ κξj

Υj(Y)

A1(Y)(λ)j = Υj(Y)
N∑
l=1

Γ1
jl

[
Υ1
l (Y)λ1

l + Υ2
l (Y)λ2

l

]
A2(Y)(λ)j = −Yj

N∑
l=1
l 6=j

Γcjl
[
Y1
l λ

1
l + Y2

l λ
2
l

]
+ Υj(Y)

N∑
l=1
l 6=j

Γcjl
[
Υ1
l (Y)λ1

l + Υ2
l (Y)λ2

l

]

A3(Y)(λ)j = λj

N∑
l=1
l 6=j

Γcjl
[
(Y1

l )2 + (Y2
l )2
]
,

and
Bξ
γ(Y) = Aγ(Y)(λ) = Aγ(Y)(λ) = Aγ(Y)(λ) = 0

for almost every γ ∈ (ξ, k2), and for (Y, λ) ∈
(
Gξ × Gξ

)2.
Proof (of Proposition 2.10) Using Proposition 2.9,

f
(
Yξ
λ(t)

)
−
∫ t

0
Re
(〈
Jξ(Tξ(s)(y)), λ

〉
Hξ

)
f ′
(
Yξ
λ(s)

)
+ 1

2
Re
(〈

(L+K)
(
Tξ(s)(y)

)
(λ), λ

〉
Hξ

)
f
′′(Yξ

λ(s)
)
ds

is a martingale. Let us remark that we also denote by λ the function λ1 + iλ2, and

Re
(〈

Tξ(t)(y), λ
〉
Hξ

)
=
〈
Yξ(t), λ

〉
Gξ×Gξ

and Im
(〈

Tξ(t)(y), λ
〉
Hξ

)
=
〈
Υ(Yξ(t)), λ

〉
Gξ×Gξ

.

Then, we have

Re
(〈
Jξ(Tξ(s)(y)), λ

〉
Hξ

)
=
〈
Bξ(Yξ(s)), λ

〉
Gξ×Gξ

Re
(〈

(L+K)(Tξ(s)(y))(λ), λ
〉
Hξ

)
=
〈
A(Yξ(s))(λ), λ

〉
Gξ×Gξ

.

�

As a consequence of Proposition 2.10, ∀λ ∈ G × G, letting successively f ∈ C∞b (R) such that
f(s) = s and f(s) = s2 if |s| ≤ ry‖λ‖G×G , we get that

〈
M ξ(t), λ

〉
Gξ×Gξ

= M ξ
λ(t) =

〈
Yξ(t)−

∫ t

0
Bξ(Yξ(s))ds, λ

〉
Gξ×Gξ

is a continuous martingale with quadratic variation given by

< M ξ
λ > (t) =

∫ t

0

〈
A(Yξ(s))(λ), λ

〉
Gξ×Gξ

ds.
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Proposition 2.11 ∀f ∈ C2
b (Gξ × Gξ),

M ξ
f (t) = f(Yξ(t))−

∫ t

0
Lξf(Yξ(s))ds (2.59)

is a continuous martingale, where ∀Y ∈ Gξ × Gξ

Lξf(Y) = 1
2
trace

(
A(Y)D2f(Y)

)
+
〈
Bξ(Y), Df(Y)

〉
Gξ×Gξ

.

Moreover, the martingale problem associated to the generator Lξ is well-posed.

Proof (of Proposition 2.11) We begin with the following lemma.

Lemma 2.9
A :Gξ × Gξ −→ L+

1 (Gξ × Gξ) ,
Bξ :Gξ × Gξ −→ Gξ × Gξ,

where L+
1 (Gξ × Gξ) is a set of nonnegative operators with finite trace.

Proof ∀(Y, λ) ∈ (Gξ × Gξ)2, we have

〈A(Y)(λ), λ〉Gξ×Gξ = Re
(〈

(L+K)(T)(λ), λ
〉
Hξ

)
= Re

( N∑
j,l=1

Γ1
jl

[
Tjλj −Tjλj

][
Tlλl −Tlλl

])

+
N∑

j,l=1
j 6=l

Γcjl
∣∣∣Tjλl −Tlλj

∣∣∣2.
with T = Y1 + iY2 and λ = λ1 + iλ2. First, ∀(j, l) ∈ {1, . . . , N}2 such that j 6= l, Γcjl is
nonnegative because it is proportional to the power spectral density of Cjl at βl−βj frequency.
Second, the matrix Γ1 is nonnegative since ∀X ∈ CN , we have

tXΓ1X = k4

2

N∑
j,l=1

∫ +∞

0
E[Cjj(0)Cll(z)]dzX̃jX̃l = k4

2

∫ +∞

0
E[CX̃(0)CX̃(z)]dz ≥ 0

because it is proportional to the power spectral density of CX̃(z) =
∑
j Cjj(z)X̃j at 0 frequency,

and with X̃j = Xj/βj , ∀j ∈ {1, . . . , N}. Moreover,

trace(A(Y)) =
N∑
j=1

Γ1
jj

[
(Y1

j )2 + (Y2
j )2
]
≤ sup

j∈{1,...,N}
Γ1
jj ‖Y‖2Gξ×Gξ .

�

Consequently, following the proof of Theorem 4.1.4 in [63], (2.59) is a martingale. However,
Bξ and A are not bounded functions but this problem can be compensated by the fact that
the process Yξ(.) takes its values in Bry ,Gξ×Gξ .

Moreover, from this lemma there exists a linear operator σ from Gξ×Gξ to L2(Gξ×Gξ), which
is the set of Hilbert-Schmidt operators from Gξ ×Gξ to itself, such that A(Y) = σ(Y) ◦ σ∗(Y).
According to Theorem 3.2.2 and 4.4.1 in [63], the martingale problem associated to Lξ is
well-posed because ∀Y ∈ Gξ × Gξ

‖σ(Y)‖ ≤ K(N)‖Y‖Gξ×Gξ .

�
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Let us recall that the process Yξ(.) is an element of C([0,+∞), (Bry ,Gξ×Gξ , dBry,Gξ×Gξ )),
and we cannot assert that Yξ(.) is uniquely determined. In fact, we need to know if its law is
supported by C([0,+∞), (Gξ × Gξ, ‖.‖Gξ×Gξ)). Letting

f(Y) = ‖Π(ξ, k2)⊗Π(ξ, k2)(Y− y)‖2Gξ×Gξ ,

where

Π(ξ, k2)⊗Π(ξ, k2) :Gξ × Gξ −→ Gξ × Gξ,[
Y1

Y2

]
7−→

[
Π(ξ, k2)(Y1)
Π(ξ, k2)(Y2)

]
.

As Yξ(.) is a solution on C([0,+∞), (Bry ,Gξ×Gξ , dBry,Gξ×Gξ )) of the martingale associated to
Lξ, we get

E[f(Yξ(t))] = 0 ∀t ≥ 0,

and therefore Π(ξ, k2)⊗Π(ξ, k2)(Yξ(.)) = Π(ξ, k2)⊗Π(ξ, k2)(Re(y), Im(y)). Consequently,
the process Yξ(.) is strongly continuous since the weak and the strong topologies are the same
on RN . Finally, Yξ(.) is uniquely characterized as being the unique solution of the martingale
problem associated to Lξ and starting from (Re(y), Im(y)), and that concludes the proof of
Theorem 2.1.

2.6.3 Proof of Theorem 2.2

Let H0 = CN × L2(0, k2) and y ∈ H0. We begin by showing the tightness of the process
(Tξ(.)(yξ))ξ, which is the unique solution of the martingale problem associated to Lξ and
starting from yξ = Π(ξ,+∞)(y). As the radiating part Π(0, k2)(Tξ(.)(yξ)) of the process
Tξ(.)(yξ) is constant equal to Π(ξ, k2)(yξ), to prove the tightness of (Tξ(.)(yξ))ξ is suffices
to show the tightness of the finite-dimensional process (Π(k2,+∞)(Tξ(.)(yξ)))ξ. Let Eξt be
the conditional expectation given σ(Tξ(u)(yξ), 0 ≤ u ≤ t). Then, ∀t ≥ 0, ∀h ∈ (0, 1) and
∀s ∈ [0, h], we have

Eξt
[
‖Tξ(t+ s)(yξ)−Tξ(t)(yξ)‖2CN

]
≤ Eξt

[
‖Y1,ξ(t+ s)−Y1,ξ(t)‖2RN

]
+ Eξt

[
‖Y2,ξ(t+ s)−Y2,ξ(t)‖2RN

]
≤

N∑
j=1
l=1,2

Eξt
[
(Yl,ξ

j (t+ s)−Yl,ξ
j (t))2

]

≤
N∑
j=1
l=1,2

Eξt
[( ∫ t+s

t
Lξf lj(Yξ(u))du

)2]
+ Eξt

[(
M ξ

f lj
(t+ s)−M ξ

f lj
(t)
)2]

,

with ∀Y ∈ G0 × G0, f lj(Y) = Yl
j . Therefore, using that the process Tξ(.)(yξ) takes its values

in Bry ,Hξ , we first get

Eξt
[( ∫ t+s

t
Lξf lj(Yξ(u))du

)2]
≤ K h2,

and second,

Eξt
[(
M ξ

f lj
(t+ s)−M ξ

f lj
(t)
)2]

= Eξt
[
< M ξ

f lj
>t+s − < M ξ

f lj
>t
]
≤ K h
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with
< M ξ

f lj
>t=

∫ t

0
Lξ(f lj)2(Yξ(u))− 2f lj(Yξ(u))Lξf lj(Yξ(u)) du.

Consequently, the process (Tξ(.)(yξ))ξ is tight on C([0,+∞), (H0, ‖.‖H0)). Now, to characterize
all limits of converging subsequences, let us denote by T0(.)(y) such a limit point. First, for
every smooth function f on H0, for every bounded continuous function h, and every sequence
0 < s1 < · · · < sn ≤ s < t, we have

E
[
h
(
Tξ(sj)(yξ), 1 ≤ j ≤ n

)(
f(Tξ(t)(yξ))− f(Tξ(s)(yξ))−

∫ t

s
Lξf(Tξ(u)(yξ))du

)]
= 0.

Second,

sup
T∈Bry,H0

∣∣∣Lf(T)− Lξf(T)
∣∣∣ ≤ K sup

j∈{1,...,N}

∣∣Λc,ξj − Λcj
∣∣+ ∣∣Λs,ξj − Λsj

∣∣+ ∣∣κξj − κj∣∣.
Consequently, T0(.)(y) is a solution of the martingale problem associated to L and starting
from y. However, following the proof of the uniqueness in Theorem 2.1, this martingale
problem is well-posed and therefore Tξ(.)(yξ) converges in distribution to the unique solution
of the martingale problem associated to L and starting from y.

2.6.4 Proof of Theorem 2.4

The proof of this theorem follows ideas developed in [59, Chapter 11]. In order to prove
this theorem we use a probabilistic representation of T lj (ω, z) by using the Feynman-Kac
formula. To this end, we introduce the jump Markov process

(
XN
t

)
t≥0 with state space{

− (N − 1)/N, . . . , 0, . . . , (N − 1)/N
}
and generator given by

LNφ
(
l

N

)
= Γcl l+1

(
φ

(
l − 1
N

)
− φ

(
l

N

))
+ Γcl+2 l+1

(
φ

(
l + 1
N

)
− φ

(
l

N

))
for l ∈ {1, . . . , N − 2},

LNφ
(
l

N

)
= Γc|l|+2 |l|+1

(
φ

(
l − 1
N

)
− φ

(
l

N

))
+ Γc|l| |l|+1

(
φ

(
l + 1
N

)
− φ

(
l

N

))
for l ∈ {−(N − 2), . . . ,−1},

LNφ(0) = Γc2 1
2

(
φ

( 1
N

)
− φ(0)

)
+ Γc2 1

2

(
φ

(−1
N

)
− φ(0)

)
,

and
LNφ

(±(N − 1)
N

)
= ΓcN−1N

(
φ

(±(N − 2)
N

)
− φ

(±(N − 1)
N

))
.

Using the Feynman-Kac formula, we get for (j, l) ∈ {1, . . . , N(ω)}2

T lj (ω,L) = E l−1
N

[
e
−ΛcN

∫ L
0 1(|XNv |=N−1

N )dv−ΛcN−1

∫ L
0 1(|XNv |=N−2

N )dv1(|XN
L |+

1
N

= j
N )

]
.

Let f be a bounded continuous function on [0, 1], we consider T l(ω,L) as a family of bounded
measures on [0, 1] by setting

T lf (ω,L) = E l−1
N

[
e
−ΛcN

∫ L
0 1(|XNv |=N−1

N )dv−ΛcN−1

∫ L
0 1(|XNv |=N−2

N )dvf
(
|XN

L |+
1
N

)]
.
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In the first part of the proof, we consider the case v ∈ [0, 1) and in a second part we shall
treat the case v = 1.

Let u ∈ [0, 1) such that l(N)/N → u. We begin by introduce some notations. Throughout
the proof we denote by τ (l)

j/N the lth passage in j/N , for j ∈ {−(N − 1), . . . , N − 1}. To
avoid the unboundness in LN of the reflecting barriers LNφ(±(N − 1)/N), we introduce the
stopping time

ταN = τ
(1)
(N−[Nα])/N ∧ τ

(1)
−(N−[Nα])/N

with α ∈ (0, 1). Let XN,τ
t = XN

t∧ταN
, ∀t ≥ 0, be the stopped process and d(N) = (l(N)− 1)/N .

We denote by PNd(N) the law of (XN
t )t≥0 starting from d(N) and by PN,τd(N) the law of (XN,τ

t )t≥0
starting from d(N). Let

La∞ = ∂

∂v

(
a∞(·) ∂

∂v

)
,

where a∞(·) ∈ C1(R) is an extension over R of a∞(·), which is defined on [−1, 1], and such
that the martingale problem associated to La∞ and starting from u is well posed. We denote
by Pu this unique solution. Let ϕ ∈ C∞0 (R),

Mϕ(t) = ϕ(x(t))− ϕ(x(0))−
∫ t

0
La∞ϕ(x(s))ds,

and τr = inf(u ≥ 0, |x(t)| ≥ r) for r ∈ (0, 1).

Lemma 2.10 ∀ϕ ∈ C∞0 (R). ∀α ∈ (2/3, 1),

lim
N→+∞

sup
v∈
[
−N−[Nα]

N
,− 1

N

]
∪
[

1
N
,
N−[Nα]

N

]|LNϕ(v)− La∞ϕ(v)| = 0,

where LNϕ(v) is defined as follows. ∀j ∈ {1, . . . , N − 2},

LNϕ(v) = Γcj j+1

(
ϕ

(
j − 1
N

)
− ϕ

(
j

N

))
+ Γcj+1 j+2

(
ϕ

(
j + 1
N

)
− ϕ

(
j

N

))
,

for v ∈ [j/N, (j + 1)/N ], and

LNϕ(v) = Γcj j+1

(
ϕ

(−j + 1
N

)
− ϕ

(−j
N

))
+ Γcj+1 j+2

(
ϕ

(−j − 1
N

)
− ϕ

(−j
N

))
,

if v ∈ [−(j + 1)/N,−j/N ].

Proof (of Lemma 2.10) We shall restrict the proof of this lemma to the proof of

lim
N→+∞

sup
v∈
[

1
N
,
N−[Nα]

N

]|LNϕ(v)− La∞ϕ(v)| = 0,

since the other case is completely similar by symmetry. We start the proof of this technical
lemma by proving Lemma 2.1 page 36.
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Proof (of Lemma 2.1) Let he(v) = v√
(n1kdθ)2−v2

and g(v) = arctan(v). We recall that

∀j ∈
{
1, . . . , N

}
, tan(σj) = −he(σj) First,∣∣σj+1 − σj − π

∣∣ ≤ ∣∣g( tan
(
σj+1 − (j + 1)π

))
− g

(
tan

(
σj − jπ

))∣∣
≤ K|tan (σj+1)− tan (σj)|
≤ K|he(σj+1)− he(σj)|
≤ K sup

v∈[σj ,σj+1]
h′e(v)

where h′e(v) = (n1kdθ)2

((n1kdθ)2−v2)
3
2
which is a positive and increasing function. Moreover,

σN−[Nα] ≤ (N − [Nα])π

and then
sup

j∈{1,...,N−[Nα]}

∣∣σj+1 − σj − π
∣∣ = O (N 1

2−
3
2α
)
.

Second, in the same way we have

σj+2−2σj+1 + σj

= g
(
tan

(
σj+2 − (j + 2)π

))
− 2g

(
tan

(
σj+1 − (j + 1)π

))
+ g

(
tan

(
σj − jπ

))
= −

(
g(he(σj+2))− 2g(he(σj+1)) + g(he(σj))

)
and

g(he(σj+2))− 2g(he(σj+1)) + g(he(σj)) =
[
g′(he(σj+1))− g′(he(σj))

]
.
[
he(σj+2)− he(σj+1)

]
+ g′(he(σj))

[
he(σj+2)− 2he(σj+1) + he(σj)

]
+
∫ he(σj+2)

he(σj+1)
(he(σj+2)− t) g′′(t) dt

−
∫ he(σj+1)

he(σj)
(he(σj+1)− t) g′′(t) dt.

Moreover, ∣∣g′(he(σj+1))− g′(he(σj))
∣∣.∣∣he(σj+2)− he(σj+1)

∣∣ ≤ KN1−3α.

he(σj+2)− 2he(σj+1) + he(σj) =
∫ σj+2

σj+1
h′e(t)− h′e(t− π) dt

+
∫ σj+2

σj+1
h′e(t− π) dt−

∫ σj+1

σj

h′e(t) dt,

with ∣∣∣∣∣
∫ σj+2

σj+1
h′e(t)− h′e(t− π) dt

∣∣∣∣∣ ≤ K h′′e(σN−[Nα]) = O(N
1
2−

5
2α),

because h′′e(v) = 3(n1kdθ)2v
((n1kdθ)2−v2)5/2 , and

∣∣∣ ∫ σj+2

σj+1
h′e(t− π) dt−

∫ σj+1+π

σj+π
h′e(t− π) dt

∣∣∣
≤ h′e(σN−[Nα]) (|σj+2 − σj+1 − π|+ |σj+2 − σj+1 − π|)
≤ KN1−3α.
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Finally,∣∣∣ ∫ he(σj+2)

he(σj+1)
(he(σj+2)− t) g′′(t) dt−

∫ he(σj+1)

he(σj)
(he(σj+1)− t) g′′(t) dt

∣∣∣
≤ K

(
(he(σj+2)− he(σj+1))2 + (he(σj+1)− he(σj))2

)
≤ KN1−3α,

and
sup

j∈{1,...,N−[Nα]−2}
|σj+2 − 2σj+1 + σj | = O(N1−3α).

This completes the proof of Lemma 2.1 since we can take α > 1/3 and we haveN
1
2−

5
2α ≤ N1−3α.

�

From this lemma, we immediately get

sup
j∈{1,...,N−[Nα]−1}

∣∣S(σj+1 − σj , σj+1 − σj)− S(π, π)
∣∣

≤ K sup
j∈{1,...,N−[Nα]−1}

∣∣σj+1 − σj − π
∣∣ = O (N 1

2−
3
2α
)
.

Before showing that
sup

j∈{1,...,N−[Nα]}

∣∣∣A2
j −

2
d

∣∣∣ = O(Nα−1),

where Aj is defined by (2.8), we prove that

sup
j∈{1,...,[Nα]}

∣∣σj − jπ∣∣ = O( 1
N1−α

)
.

In fact, ∀j ∈
{
1, . . . , Nα

}
∣∣σj − jπ∣∣ = ∣∣g( tan

(
σj − jπ

))
− arctan(tan(0))

∣∣∣
≤ K

∣∣ tan(σj)
∣∣

≤ K he(σ[Nα]).

Moreover, σ[Nα] ≤ Nαπ and then

h(σ[Nα]) = O
( 1
N1−α

)
.

Consequently,

sup
j∈{1,...,N−[Nα]}

∣∣∣A2
j −

2
d

∣∣∣ ≤ K sup
j∈{1,...,N−[Nα]}

∣∣∣∣∣sin2(σj)
ζj

− sin(2σj)
2σj

∣∣∣∣∣ ≤ K

N1−α

because

sup
j∈{1,...,N−[Nα]}

∣∣∣sin2(σj)
ζj

− sin(2σj)
2σj

∣∣∣ ≤ 1√
(n1kdθ)2 − σ2

N−[Nα]

+ sup
j∈{[Nα]+1,...,N−[Nα]}

∣∣∣∣∣sin(2σj)
2σj

∣∣∣∣∣+ sup
j∈{1,...,[Nα]}

∣∣∣∣∣sin(2σj)
2σj

∣∣∣∣∣
≤ K

N1/2+α/2 + 1
2σ[Nα]+1

+ sup
j∈{1,...,[Nα]}

∣∣∣∣∣sin(2σj)− sin(2jπ)
2σj

∣∣∣∣∣
≤ K

(
1

N1/2+α/2 + 1
Nα

+ 1
σ1

sup
j∈{1,...,[Nα]}

∣∣σj − jπ∣∣
)
.
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Now, let us introduce

BN
j = a

2n2
1

√
1− σ2

j

n2
1k

2d2

√
1− σ2

j+1
n2

1k
2d2

1
4A

2
jA

2
j+1S(σj+1 − σj , σj+1 − σj)
a2 + (βj − βj+1)2

.

Then, for j ∈
{
1, . . . , N − 2

}
and v ∈

[
j
N ,

j+1
N

]
.

LNϕ(v) =
(
n1kdθ

Nπ

)2 ( Nπ

n1dθ

)2[(
ϕ
( [Nv] + 1

N

)
− ϕ

( [Nv]
N

))
BN
j+1

+
(
ϕ
( [Nv]− 1

N

)
− ϕ

( [Nv]
N

))
BN
j

]
.

Consequently, from the following decomposition

N2
[(
ϕ
( [Nv] + 1

N

)
− ϕ

( [Nv]
N

))
BN
j+1 +

(
ϕ
( [Nv]− 1

N

)
− ϕ

( [Nv]
N

))
BN
j

]
− n2

1d
2θ2

π2 La∞ϕ(v)

= N2
[
ϕ
( [Nv] + 1

N

)
− 2ϕ

( [Nv]
N

)
+ ϕ

( [Nv]− 1
N

)][
BN
j −

n2
1d

2θ2

π2 a∞(v)
]

+N
[
ϕ
( [Nv] + 1

N

)
− ϕ

( [Nv]
N

)][
N(BN

j+1 −BN
j )− n2

1d
2θ2

π2
d

dv
a∞(v)

]
+ n2

1d
2θ2

π2 a∞(v)
[
N2
(
ϕ
( [Nv] + 1

N

)
− 2ϕ

( [Nv]
N

)
+ ϕ

( [Nv]− 1
N

))
− ϕ′′(v)

]
+ n2

1d
2θ2

π2
d

dv
a∞(v)

[
N
(
ϕ
( [Nv] + 1

N

)
− ϕ

( [Nv]
N

))
− ϕ′(v)

]
,

and because it is easy to show that

sup
v∈
[

1
N
,
N−[Nα]

N

]∣∣∣N(ϕ( [Nv] + 1
N

)
− ϕ

( [Nv]
N

))
− ϕ′(v)

∣∣∣ = O( 1
N

)

sup
v∈
[

1
N
,
N−[Nα]

N

]∣∣∣N2
(
ϕ
( [Nv] + 1

N

)
− 2ϕ

( [Nv]
N

)
+ ϕ

( [Nv]− 1
N

))
− ϕ′′(v)

∣∣∣ = O( 1
N

)
,

it suffices to show the two following points

•
lim
N

sup
j∈{1,...,N−[Nα]−1}

sup
v∈[ jN , j+1

N ]

∣∣∣BN
j −

n2
1d

2θ2

π2 a∞(v)
∣∣∣ = 0.

•
lim
N

sup
j∈{1,...,N−[Nα]−1}

sup
v∈[ jN , j+1

N ]

∣∣∣N(BN
j −BN

j+1

)
− n2

1d
2θ2

π2
d

dv
a∞(v)

∣∣∣ = 0.

We decompose the proof of these two points into two sublemmas.

Lemma 2.11

lim
N

sup
j∈{1,...,N−[Nα]−1}

sup
v∈[ jN , j+1

N ]

∣∣∣BN
j −

n2
1d

2θ2

π2 a∞(v)
∣∣∣ = 0
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Proof (of Lemma 2.11) ∀j ∈
{
1, . . . , N − [Nα] − 1

}
and ∀v ∈

[
j
N ,

j+1
N

]
, we have the

following inequalities,

1

1− σ2
j

n2
1k

2d2

≤ 1√(
1− σ2

j

n2
1k

2d2

)(
1− σ2

j+1
n2

1k
2d2

) ≤ 1

1− σ2
j+1

n2
1k

2d2

.

Moreover, for l ∈ {j, j + 1}∣∣∣ 1
1− (θv)2

− 1

1− σ2
l

n2
1k

2d2

∣∣∣ ≤ ∣∣∣j + 1
N

θ − j − 1
n1kd

π
∣∣∣ 2θ
(1− θ2)2

≤ K

N
.

Consequently,

sup
j∈{1,...,N−[Nα]−1}

sup
v∈[ jN , j+1

N ]

∣∣∣ 1
1− (θv)2

− 1√(
1− σ2

j

n2
1k

2d2

)(
1− σ2

j+1
n2

1k
2d2

)∣∣∣ = O( 1
N

)
.

Next,

∣∣∣n1k
(√√√√1−

σ2
j

n2
1k

2d2 −

√√√√1−
σ2
j+1

n2
1k

2d2

)
− π

d

σj
n1kd√

1− σ2
j

n2
1k

2d2

∣∣∣

≤ K
∣∣∣n1k

(√√√√1−
σ2
j

n2
1k

2d2 −

√√√√1−
σ2
j+1

n2
1k

2d2

)
− 1
d
(σj+1 − σj)

σj
n1kd√

1− σ2
j

n2
1k

2d2

∣∣∣
+K

∣∣∣(σj+1 − σj − π)
σj
n1kd√

1− σ2
j

n2
1k

2d2

∣∣∣
≤ K

N

1
(1− θ2)3/2

(σj+1 − σj)2 +K
∣∣σj+1 − σj − π

∣∣ θ√
1− θ2

≤ KN
1
2−

3
2α

and then

sup
j∈{1,...,N−[Nα]−1}

∣∣∣ 1
a2 + (βj − βj+1)2

− 1

a2 + π2

d2

σ2
j

n2
1k

2d2

1−
σ2
j

n2
1k

2d2

∣∣∣ = O(N 1
2−

3
2α
)
.

Moreover ∀j ∈
{
1, . . . , N − [Nα]− 1

}
and ∀v ∈

[
j
N ,

j+1
N

]
, we have

∣∣∣ σj
n1kd√

1− σ2
j

n2
1k

2d2

− θv√
1− (θv)2

∣∣∣ ≤ K∣∣∣ σj
n1kd

− θv
∣∣∣ ≤ K

N
,

and finally

sup
j∈{1,...,N−[Nα]−1}

sup
v∈
[
j
N
, j+1
N

] ∣∣∣ 1
a2 + (βj − βj+1)2

− 1
a2 + π2

d2
(θv)2

1−(θx)2

∣∣∣ = O(N 1
2−

3
2α
)
.

This concludes the proof of Lemma 2.11.�
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Lemma 2.12

lim
N

sup
j∈{1,...,N−[Nα]−1}

sup
v∈[ jN , j+1

N ]

∣∣∣N(BN
j −BN

j+1

)
− n2

1d
2θ2

π2
d

dv
a∞(v)

∣∣∣ = 0.

Proof (of Lemma 2.12) We separate the proof of this lemma into two step. First, for
j ∈

{
1, . . . , N − [Nα]− 2

}
let

CNj = N

 1√
1− σ2

j+1
n2

1k
2d2

√
1− σ2

j+2
n2

1k
2d2

− 1√
1− σ2

j

n2
1k

2d2

√
1− σ2

j+1
n2

1k
2d2

 .
We can write ∀v ∈

[ j
N ,

j+1
N

]
CNj −

2θ2v

(1− (θv)2)2
= 1√

1− σ2
j+1

n2
1k

2d2

N

∫ σj+2
n1kd

σj
n1kd

w

(1− w2)
3
2
dw − 2θ2v

(1− (θv)2)2

= 1√
1− σ2

j+1
n2

1k
2d2

(
N

∫ σj+2
n1kd

σj
n1kd

w

(1− w2)
3
2
dw −N

( σj+2
n1kd

− σj
n1kd

) θv

(1− (θv)2)
3
2

)

+N
( σj+2
n1kd

− σj
n1kd

) θv

(1− (θv)2)
3
2

( 1√
1− σ2

j+1
n2

1k
2d2

− 1√
1− (θv)2

)

+
(
N
( σj+2
n1kd

− σj
n1kd

)
− 2θ

) θv

(1− (θv)2)2
.

We can check that the function v 7→ θv
(1−(θv)2)2 is bounded on [0, 1] and

∣∣∣N( σj+2
n1kd

− σj
n1kd

)
− 2θ

∣∣∣ ≤ N

n1kd

∣∣∣σj+2 − σj − 2π
∣∣∣+ 2θ

∣∣∣ Nπ
n1dkθ

− 1
∣∣∣ ≤ KN

1
2−

3
2α.

Moreover, v 7→ θv
(1−(θv)2)2 is bounded on [0, 1] and

∣∣∣ 1√
1− (θv)2

− 1√
1− σ2

j+1
n2

1k
2

∣∣∣ ≤ K

N

θ

(1− θ2)3/2
.

Finally, 0 ≤ 1√
1−

σ2
j+1

n2
1k

2d2

≤ 1√
1−θ2 and

∣∣∣N ∫ σj+2
n1kd

σj
n1kd

w

(1− w2)
3
2
dw −N

( σj+2
n1kd

− σj
n1kd

) θv

(1− (θv)2)
3
2

∣∣∣
≤ N

∫ σj+2
n1kd

σj
n1kd

|w − θv|dw 2θ2 + 1
(1− θ2)

5
2

≤ KN
[(
θv − σj

n1kd

)2
+
(
θv − σj+2

n1kd

)2]
≤ K

N
.
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Consequently,

sup
j∈{1,...,N−[Nα]−1}

sup
v∈
[
j
N
, j+1
N

] ∣∣∣CNj − 2θ2v

(1− (θv)2)2
∣∣∣ = O(N

1
2−

3
2α).

Second, for j ∈
{
1, . . . , N − [Nα]− 1

}
and v ∈

[ j
N ,

j+1
N

]
, we have

∣∣∣N( 1
a2 + (βj+1 − βj+2)2

− 1
a2 + (βj − βj+1)2

)
+

π2

d2
2θ2v

(1−(θv)2)2(
a2 + π2

d2
(θv)2

1−(θv)2

)2

∣∣∣
≤
∣∣∣N( 1

a2 + (βj+1 − βj+2)2
− 1
a2 + (βj − βj+1)2

)
−N

(
(βj+1 − βj+2)− (βj − βj+1)

) −2(βj − βj+1)(
a2 + (βj − βj+1)2

)2 ∣∣∣
+
∣∣∣N((βj+1 − βj+2)− (βj − βj+1)

) −2(βj − βj+1)(
a2 + (βj − βj+1)2

)2 +
π2

d2
2θ2v

(1−(θv)2)2(
a2 + π2

d2
(θv)2

1−(θv)2

)2

∣∣∣.
For the first term on the right of the previous inequality, we have∣∣∣N( 1

a2 + (βj+1 − βj+2)2
− 1
a2 + (βj − βj+1)2

)
−N

(
(βj+1 − βj+2)− (βj − βj+1)

) −2(βj − βj+1)(
a2 + (βj − βj+1)2

)2 ∣∣∣
≤ KN

(
(βj+1 − βj+2)− (βj − βj+1)

)2
,

and we shall see just below that

sup
j∈{1,...,N−[Nα]−2}

|βj+2 − 2βj+1 − βj | = O
( 1
N

)
.

Now, for the second term we have previously get

sup
j∈{1,...,N−[Nα]−1}

sup
v∈
[
j
N
, j+1
N

] ∣∣∣βj − βj+1 −
π

d

θv√
1− (θv)2

∣∣∣ = O(N
1
2−

3
2α).

Then, to finish the proof of this lemma it suffices to show that

sup
j∈{1,...,N−[Nα]−2}

sup
v∈
[
j
N
, j+1
N

] ∣∣∣N(βj − 2βj+1 + βj+2
)
+

π
d θ

(1− (θv)2)
3
2

∣∣∣ = O(N2−3α).

To show this relation we shall use the following decompositions. For l ∈ {j, j + 1}√
1−

σ2
l

n2
1k

2d2 −

√
1−

σ2
l+1

n2
1k

2d2 −
1

n1kd
(σl+1 − σl)

σl
n1kd√

1− σ2
l

n2
1k

2d2

=
∫ σl+1

n1kd

σl
n1kd

(
σl+1
n1kd

− w
) 1

(1− w2)
3
2
dw,
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and

Nn1k
(√√√√1−

σ2
j

n2
1k

2d2 − 2

√√√√1−
σ2
j+1

n2
1k

2d2 +

√√√√1−
σ2
j+2

n2
1k

2d2

)
+

π
d θ(

1− (θv)2
) 3

2

= N

d

(
(σj+1 − σj)

σj
n1kd√

1− σ2
j

n2
1k

2d2

− (σj+2 − σj+1)
σj+1
n1kd√

1− σ2
j+1

n2
1k

2d2

)
+

π
d θ

(1− (θv)2)
3
2

+Nn1k
( ∫ σj+1

n1kd

σj
n1kd

( σj+1
n1kd

− w
) 1
(1− w2)

3
2
dw −

∫ σj+2
n1kd

σj+1
n1kd

( σj+2
n1kd

− w
) 1
(1− w2)

3
2
dw
)
.

First, using Lemma 2.1 we have∫ σj+1
n1kd

σj
n1kd

( σj+1
n1kd

− w
) 1
(1− w2)

3
2
dw −

∫ σj+2
n1kd

σj+1
n1kd

( σj+2
n1kd

− w
) 1
(1− w2)

3
2
dw = O(N

1
2−

3
2α−2).

Second, we have

N

d

(
(σj+1 − σj)

σj
n1k√

1− σ2
j

n2
1k

2

−(σj+2 − σj+1)
σj+1
n1k√

1− σ2
j+1
n2

1k
2

)
+

π
d θ

(1− (θv)2)
3
2

= N

d

(
σj+1 − σj − π

)[ σj
n1kd√

1− σ2
j

n2
1k

2d2

−
σj+1
n1kd√

1− σ2
j+1

n2
1k

2d2

]

− N

d
(σj+2 − 2σj+1 + σj)

σj+1
n1kd√

1− σ2
j+1

n2
1k

2d2

+ π

d

(
N
[ σj

n1kd√
1− σ2

j

n2
1k

2d2

−
σj+1
n1kd√

1− σ2
j+1

n2
1k

2d2

]
+ θ

(1− (θv)2)
3
2

)
,

where, according to Lemma 2.1, the first and the third term are O(N
1
2−

3
2α), and the second

term is O(N2−3α). That concludes the proof of Lemma 2.12 for α ∈ (2/3, 1).�

Consequently, thanks to Lemma 2.11 and Lemma 2.12, we get

sup
v∈
[

1
N
,
N−[Nα]

N

]|LNϕ(v)− La∞ϕ(v)| = O
(
N (2−3α)∨(α−1)),

this concludes the proof of Lemma 2.10.�

Lemma 2.13 PN,τd(N) is tight on D([0,+∞),R).

Proof (of Lemma 2.13) Let Mt = σ(x(u), 0 ≤ u ≤ t). According to Theorem 3 in [41,
Chapter 3], we have to show the two following points. First,

lim
K→+∞

lim
N

PN,τd(N)

(
sup
t≥0
|x(t)| ≥ K

)
= 0.

The first point is satisfied since we have ∀N , PN,τd(N)

(
supt≥0|x(t)| ≤ 1

)
= 1. Second, for each

N , h ∈ (0, 1), s ∈ [0, h] and t ≥ 0,

EPN,τ
d(N)

(
(x(t+ s)− x(t))2|Mt

)
≤ K h.
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Concerning the second point, letting ϕ ∈ C∞b (R) such that ϕ(s) = s if |s| ≤ 1, we have

EPN,τ
d(N)

(
(x(t+ s)− x(t))2|Mt

)
≤ 2 EPN,τ

d(N)
(
(MN

ϕ (t+ s)−MN
ϕ (t))2|Mt

)
+ 2 EPN,τ

d(N)

((∫ t+s

t
LNϕ(x(w))dw

)2 ∣∣∣Mt

)
,

with
MN
ϕ (t) = ϕ(x(t))− ϕ(x(0))−

∫ t

0
LNϕ(x(s))ds,

which is a (Mt)t≥0-martingale under PNd(N) and we know that

PN,τd(N)

(
sup
t≥0
|x(t)| ≤ N − [Nα]

N

)
= 1.

Moreover, by Lemma 2.10

sup
N

sup
v∈
[
−N−[Nα]

N
,− 1

N

]
∪
[

1
N
,
N−[Nα]

N

]|LNϕ(v)|< +∞

and the fact that LNϕ(0) = 0, we get

EPN,τ
d(N)

((∫ t+s

t
LNϕ(x(w))dw

)2 ∣∣∣Mt

)
≤ Ch2.

We recall that
< MN

ϕ >t=
∫ t

0

(
LNϕ2 − 2ϕLNϕ

)
(x(s))ds.

Then, using the martingale property of (MN
ϕ (t))t≥0, we have

EPN,τ
d(N)

(
(MN

ϕ (t+ s)−MN
ϕ (t))2|Mt

)
= EPN

d(N)
(
(MN

ϕ ((t+ s) ∧ ταN )−MN
ϕ (t ∧ ταN ))2|Mt

)
= EPN

d(N)
(
MN
ϕ ((t+ s) ∧ ταN )2 −MN

ϕ (t ∧ ταN )2|Mt

)
= EPN

d(N)
(
< MN

ϕ >(t+s)∧ταN − < MN
ϕ >t∧ταN |Mt

)
= EPN

d(N)

(∫ (t+s)∧ταN

t∧ταN

(
LNϕ2 − 2ϕLNϕ

)
(x(w))dw

∣∣∣Mt

)
≤ C h.

In fact, by Lemma 2.10 we have

sup
N

sup
v∈
[
−N−[Nα]

N
,− 1

N

]
∪
[

1
N
,
N−[Nα]

N

]|LNϕ(v)| < +∞,

sup
N

sup
v∈
[
−N−[Nα]

N
,− 1

N

]
∪
[

1
N
,
N−[Nα]

N

]|LNϕ2(v)| < +∞,

in addition to LNϕ(0) = 0 and supN LNϕ2(0) = Γc1 2
N2 < +∞. �

Lemma 2.14 Let Qu be a limit point of the relatively compact sequence
(
PN,τd(N)

)
N
. Then,

∀ϕ ∈ C∞0 (R) and ∀r ∈ (0, 1), (Mϕ(t ∧ τr))t≥0 is a (M)t-martingale under Qu.
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Proof (of Lemma 2.14) Let
(
PN
′,τ

d(N ′)

)
N ′

be a converging subsequence. Throughout this
proof we will take N for N ′ to simplify the notations. Let 0 ≤ t1 < t2 and Φ be a bounded
continuousMt1-measurable function. We have

EPN,τ
d(N)

(
MN
ϕ (t2 ∧ τr)Φ

)
= EPN,τ

d(N)
(
MN
ϕ (t1 ∧ τr)Φ

)
.

Furthermore, ∀t ≥ 0

EPN,τ
d(N)

(∫ t∧τr

0
LNϕ(x(s))dsΦ

)
= EPN,τ

d(N)

(∫ t∧τr

0
LNϕ(x(s))1(x(s)∈IαN)dsΦ

)
+ EPN,τ

d(N)

(∫ t∧τr

0
LNϕ(x(s))1(x(s)=0)dsΦ

)
,

with IαN = [−(N − [Nα])/N,−1/N ] ∪ [1/N, (N − [Nα])/N ]. Using Lemma 2.10

lim
N

∣∣∣∣EPN,τ
d(N)

(∫ t∧τr

0

(
LNϕ(x(s))− La∞ϕ(x(s))

)
1(x(s)∈IαN)dsΦ

)∣∣∣∣ = 0.

Consequently, we have to prove the two following points:

• limN EPN,τ
d(N) (Mϕ(t ∧ τr)Φ) = EQu (Mϕ(t ∧ τr)Φ).

• limN EPN,τ
d(N)

(∫ t∧τr
0 1(x(s)=0)ds

)
= 0.

We prove the first point as follows. The problem is to apply the mapping theorem to the
functional Mϕ(t∧ τr) and to do this we must have Qu(DMϕ(t∧τr)) = 0, where DMϕ(t∧τr) is the
set of discontinuities of Mϕ(t∧ τr) for the Skorokhod topology. While Mϕ(t) is continuous for
this topology, it is not necessarily true for τr. However, we can follow the proof of Lemma
11.1.3 in [59] and then use a family of stopping times for which we can apply the mapping
theorem.

We know that the size of the jumps of (XN
t )t is constant equal to 1/N , therefore we have

Qu(C([0,+∞),R)) = 1 (see Theorem 13.4 in [14] for instance). Then

Qu
(
DMϕ(t∧τr)

)
= Qu

(
DMϕ(t∧τr) ∩ C([0,+∞),R)

)
.

We recall that the Skorokhod topology on C([0,+∞),R) coincides with the usual topology
defined on this space. Therefore, DMϕ(t∧τr) ∩ C([0,+∞),R) is the set of discontinuities of
Mϕ(t ∧ τr) under the topology of C([0,+∞),R), and τr restrict to C([0,+∞),R) is lower
semi-continuous. Consequently, according to the proof of lemmas 11.1.2 in [59], there exists a
sequence (rn)n such that rn ↗ r and

Qu
(
(τrn < +∞) ∩Dτrn ∩ C([0,+∞),R)

)
= Qu

(
(τrn < +∞) ∩Dτr

))
= 0.

Then, Qu(DMϕ(t∧τrn )) = 0 and we can apply the mapping theorem to Mϕ(t ∧ τrn), i.e

lim
N

EPN,τ
d(N) (Mϕ(t ∧ τrn)Φ) = EQu (Mϕ(t ∧ τrn)Φ) .

Finally, we obtain
EQu (Mϕ(t2 ∧ τrn)Φ) = EQu (Mϕ(t1 ∧ τrn)Φ) ,

and
lim
n

EQu (Mϕ(t ∧ τrn)Φ) = EQu (Mϕ(t ∧ τr)Φ)
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because τrn ↗ τr. Consequently,

EQu (Mϕ(t2 ∧ τr)Φ) = EQu (Mϕ(t1 ∧ τr)Φ) .

For the second point, we have

EPN,τ
d(N)

(∫ t∧τr

0
1(x(s)=0)ds

)
= Ed(N)

[∫ t∧τr

0
1(XN

s =0)ds

]
≤ E0

[∫ t

0
1(XN

s =0)ds

]
,

since the stopped process spends less time in 0 than the original process and the last inequality
is given by the Markov property. We denote by N0

t the number of returns in 0 during the
time interval [0, t] and by (Yj)j≥0 the renewal process associated with the return times in 0,
(σ(i)

0 )i≥1, of the process (XN
t )t, with Y0 = σ

(0)
0 = 0. Moreover, for α′ ∈ (0, 1)

E0

[∫ t

0
1(XN

s =0)ds

]
≤ tP0

(
N0
t ≥ [N1+α′ ]

)
+ E0

[N1+α′ ]∑
j=0

∫ σ
(j+1)
0

σ
(j)
0

1(XN
s =0)ds


≤ t

[N1+α′ ]
E0[N0

t ] +
[N1+α′ ] + 1

Γc2 1
,

since
( ∫ σ(j+1)

0

σ
(j)
0

1(XN
s =0)ds

)
j
is an i.i.d sequence with mean 1/Γc2 1. We recall that N0

t + 1 is a
stopping time for (Yj)j≥1. Then,

E0

[
σ

(N0
t +1)

0

]
= E0

N0
t +1∑
j=1

Yj

 =
(
E0
[
N0
t

]
+ 1

)
E0
[
σ

(1)
0

]
.

Furthermore,

E0

[
σ

(N0
t +1)

0

]
= E0

[
σ

(N0
t +1)

0

(
1(
XN
t =0

) + 1(
XN
t 6=0

))]
= E0

[
inf
(
s > TNt , X

N
t+s = 0

)
1(
XN
t =0

)]+ E0

[
inf
(
s > 0, XN

t+s = 0
)
1(
XN
t 6=0

)]
where TNt = inf

(
s > 0, XN

t+s 6= 0
)
. Then, using the Markov property we get

E0

[
inf
(
s > TNt , X

N
t+s = 0

)
1(
XN
t =0

)] =
(
t+ E0

[
σ

(1)
0

] )
P0
(
XN
t = 0

)
≤ tP0

(
XN
t = 0

)
+ 2N − 1

Γc1 2

and

E0

[
inf
(
s > 0, XN

t+s = 0
)
1(
XN
t 6=0

)] =
N−1∑

j=−(N−1)
j 6=0

E0

[
inf
(
s > 0, XN

t+s = 0
)
1(
XN
t =j

)]

=
N−1∑

j=−(N−1)
j 6=0

(
t+ Ej

[
τ

(1)
0

] )
P0
(
XN
t = j

)

=
N∑
j=1

j∑
l=1

N − l
Γcl l+1

P0
(
|XN

t | = j
)

+ tP0(XN
t 6= 0)

≤ KN − 1
N2 E0

[
|XN

t |1(XN
t 6=0

)]+ tP0(XN
t 6= 0),
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where K is a constant independent of N . Consequently,

E0[N0
t ] ≤ K̃

Γc1 2
2N − 1

− 2N − 1
Γc1 2

= O(N),

and
E0

[∫ t

0
1(XN

s =0)ds

]
= O

( 1
Nα′∧(1−α′)

)
.

�

From Lemma 2.14, we have ∀r ∈ (0, 1), Qu = Pu onMτr . From this relation and the fact
that Qu(C([0,+∞),R)) = Pu(C([0,+∞),R)) = 1, Qu = Pu onMτ1 since τr ↗ τ1 as r ↗ 1.

Let f ∈ C∞([0, 1]) with compact support included in [0, 1) and let
(
PN
′,τ

d(N ′)

)
N ′

be a
converging subsequence as in the previous proof. We have

T l(N
′)

f (ω, t) = Ed(N ′)
[
f

(
|XN ′

t |+
1
N ′

)
1(t<τα

N′)

]
+ r(N ′), (2.60)

with

r(N) = Ed(N)

[
e
−ΛcN

∫ t
0 1(|XNv |=N−1

N )dv−ΛcN−1

∫ t
0 1(|XNv |=N−2

N )dv

× f

(
|XN

t |+
1
N

)(
1(ταN≤t<τ

0
N+λ) + 1(t≥τ0

N+λ)

)]
,

where τ0
N = τ

(1)
(N−1)/N ∧ τ

(1)
−(N−1)/N and λ ∈ (0, t). Using Lemma 2.13 and Lemma 2.14, we can

study the first term on the right in (2.60).

Ed(N ′)
[
f

(
|XN ′

t |+
1
N ′

)
1(t<τα

N′)

]
= EPN′

d(N′)

[
f

(
|x(t)|+ 1

N ′

)
1(t<τα

N′)

]
= EPN

′,τ
d(N′)

[
f

(
|x(t)|+ 1

N ′

)
1(t<τα

N′)

]
,

since (t < ταN ) ∈MταN
and PNd(N) = PN,τd(N) onMταN

. Moreover,

EPN
′,τ

d(N′)

[
f

(
|x(t)|+ 1

N ′

)
1(t<τα

N′)

]
= EPN

′,τ
d(N′)

[
f

(
|x(t)|+ 1

N ′

)]
− f

(
N ′ − [N ′α] + 1

N ′

)
PN
′,τ

d(N ′) (t ≥ ταN ′)

= EPN
′,τ

d(N′) [f(|x(t)|)] + o(1).

Consequently,
lim
N ′

Ed(N ′)
[
f

(
|XN ′

t |+
1
N ′

)
1(t<τα

N′)

]
= EQu [f(|x(t)|)].

However,
EQu

[
f(|x(t)|)1(τ1≤t)

]
= 0.

In fact, let τs = inf(t ≥ 0, ∀v > t, x(v) = x(t)) be the first time for which the process becomes
constant. From the Portmanteau theorem

1 = lim
N ′

PN
′,τ

d(N ′)

(
(τs ≤ τ1)

)
≤ Qu

(
(τs ≤ τ1)

)
,
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where A denote the closure under the Skorokhod topology of a subset A of D([0,+∞),R).
Moreover, we have

(τs ≤ τ1) ∩ (τ1 ≤ t) ∩ (x(0) = u) ∩ C([0,+∞),R)
= (τs ≤ τ1) ∩ (τ1 ≤ t) ∩ (x(0) = u) ∩ C([0,+∞),R).

Then,

Qu
(
|x(t)| ∈ supp(f), τ1 ≤ t

)
≤ Qu

(
|x(t)| ∈ supp(f), τs ≤ τ1 ≤ t

)
≤ Qu

(
|x(t)| ∈ supp(f), |x(t)| = 1

)
= 0,

and

lim
N ′

Ed(N ′)
[
f

(
|XN ′

t |+
1
N ′

)
1(t<τα

N′)

]
= EQu

[
f(|x(t)|)1(t<τ1)

]
= EPu

[
f(|x(t)|)1(t<τ1)

]
.

Finally, by the following lemma we get

lim
N ′
T l(N

′)
f (ω, t) = EPu

[
f(|x(t)|)1(t<τ1)

]
.

We can remark that this limit does not depend on the subsequence (N ′). The following lemma
represents the loss of energy from the propagating modes produced by the coupling between the
propagating and the radiating modes. Moreover, this lemma implies the absorbing condition
at the boundary 1 in Theorem 2.4, which implies the dissipation behavior in Theorem 2.5.

Lemma 2.15 limN ′ r(N ′) = 0.

Proof

|r(N ′)| ≤ ‖f‖∞

Ed(N ′)

e−Λc
N′
∫ t

0 1(
|XN′s |=

N′−1
N′
)ds

1(t≥τ0
N′+λ)


+ Pd(N ′)

(
|XN ′

t |+
1
N ′
∈ supp(f), ταN ′ ≤ t < τ0

N ′ + λ

))
.

First, let α′ ∈ (3/4, 1) and NN
t the number of passages in (N − 1)/N during the time interval

[0, t].

Ed(N ′)

e−Λc
N′
∫ t

0 1(
|XN′s |=

N′−1
N′
)ds

1(t≥τ0
N′+λ)

 ≤ Ed(N ′)

e−Λc
N′
∫ t

0 1(
|XN′s |=

N′−1
N′
)ds

×
(

1(t≥τ (1)
(N′−1)/N′+λ) + 1(t≥τ (1)

−(N′−1)/N′+λ)

)]
.

We shall work only with Ed(N ′)

e−Λc
N′
∫ t

0 1(
|XN′s |=

N′−1
N′
)ds

1(t≥τ (1)
(N′−1)/N′+λ)

 but the same proof

works for the other term.

Ed(N ′)

e−Λc
N′
∫ t

0 1(
|XN′s |=

N′−1
N′
)ds

1(t≥τ (1)
(N′−1)/N′+λ)


≤ Ed(N ′)

e−Λc
N′
∫ t

0 1(
XN
′

s =N′−1
N′
)ds

1(NN′
t ≥[Nα′ ]+1)


+ Pd(N ′)

(
NN ′
t ≤ [Nα′ ], t− τ (1)

(N ′−1)/N ′ ≥ λ
)
.
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On (NN ′
t ≥ [N ′α

′
] + 1), we have

e
−Λc

N′
∫ t

0 1(
|XN′s |=

N′−1
N′
)ds
≤ e
−Λc

N′
∑NN

′
t −1

j=1

∫ τ(j+1)
(N′−1)/N′

τ
(j)
(N′−1)/N′

1(
XN
′

s =N′−1
N′
)ds

≤
[N ′α

′
]∏

j=1
e

−Λc
N′
∫ τ(j+1)

(N′−1)/N′

τ
(j)
(N′−1)/N′

1(
XN
′

s =N′−1
N′
)ds
.

We denote by σ(1)
(N−1)/N the time of the first return in (N − 1)/N , then

Ed(N ′)

e−Λc
N′
∫ t

0 1(
XN
′

s =N′−1
N′
)ds

1(NN′
t ≥[N ′α′ ]+1)



≤
[N ′α

′
]∏

j=1
Ed(N ′)

e
−Λc

N′
∫ τ(j+1)

(N′−1)/N′

τ
(j)
(N′−1)/N′

1(
XN
′

s =N′−1
N′
)ds

≤

EN′−1
N′

e−Λc
N′
∫ σ(1)

(N′−1)/N′
0 1(

XN
′

s =N′−1
N′
)ds


[N ′α

′
]

since
(∫ τ (j+1)

(N−1)/N

τ
(j)
(N−1)/N

1(XN
s =N−1

N )ds
)
j

is an i.i.d sequence. Moreover, we can check that ΛcN ≥

CN3/2 and then

EN′−1
N′

e−Λc
N′
∫ σ(1)

(N′−1)/N′
0 1(

XN
′

s =N′−1
N′
)ds ≤ EN′−1

N′

e−C N ′3/2
∫ σ(1)

(N′−1)/N′
0 1(

XN
′

s =N′−1
N′
)ds .

In fact, a computation gives

ΛcN = ak4A2
N

16πβN

∫ n1kd

n1kdθ

η
√
η2 − (n1kdθ)2√

(n1kd)2 − η2
(
1 + (βN − 1

d

√
(n1kd)2 − η2)2

)
× S(η − σN , η − σN )

(η2 − (n1kdθ)2) sin2(η) + η2 cos2(η)
dη.

However, we recall that the support of S lies in the square
[
−3π

2 ,
3π
2

]
×
[
−3π

2 ,
3π
2

]
, then we

can restrict the integration over
[
n1kdθ, n1kdθ + 3π

2

]
. Moreover,

(
βN −

√
(n1k)2 − η2/d2

)2
= (η − σ)2 y2

1− y2 , for some y ∈
[
σN
n1kd

,
η

n1kd

]
≤
(3π

2

)2 η2/(n1kd)2

1− η2/(n1kd)2
≤ K,

where K stands for a constant independent of N , because θ < 1 and k � 1. Therefore,

ΛcN ≥ K ′
∫ n1kdθ+ 3π

2

n1kdθ
η
√
η2 − (n1kdθ)2dη ≥ K ′′N3/2,
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where we assume that the function S has a positive minimum, and then K ′′ > 0.
Now, let us remark that ∀v ∈ [0, ln(N1/4)]

e−v ≤ 1− 1
N1/4 v

and

EN′−1
N′

∫ σ
(1)
(N′−1)/N′

0
1(
XN′
s =N′−1

N′
)ds

 = 1
ΓcN ′−1N ′

.

Then, we get

EN′−1
N′

e−K′′N ′3/2
∫ σ(1)

(N′−1)/N′
0 1(

XN
′

s =N′−1
N′
)ds ≤ 1− K ′′

N ′3/4

(
1− 1

ln(N ′1/4)

)

and

Ed(N ′)

e−ΛN′
∫ t

0 1(
XN
′

s =N′−1
N′
)ds

1(NN′
t ≥[N ′α′ ]+1)

 ≤ e[N ′α′ ] ln
[
1− K′′

N′3/4

(
1− 1

ln(N′1/4)

)]
.

Moreover,

Pd(N)
(
NN
t ≤ [Nα′ ], t− τ (1)

(N−1)/N ≥ λ
)
≤ Pd(N)

(
τ

([Nα′ ])
(N−1)/N − τ

(1)
(N−1)/N ≥ λ

)
≤ 1
λ

Ed(N)

(
τ

([Nα′ ])
(N−1)/N − τ

(1)
(N−1)/N

)
≤ Nα′

λ
E(N−1)/N

[
σ

(1)
(N−1)/N

]
≤ K

N1−α′ .

Consequently,

lim
N ′

Ed(N ′)

e−Λc
N′
∫ t

0 1(
|XN′s |=

N′−1
N′
)ds

1(t≥τ0
N′+λ)

 = 0.

Second, let cf ∈ (0, 1) such that supp(f) ⊂ [0, cf − 1/N ′] and x ∈ [0, cf ), then

Pd(N)

(
|XN

t |+
1
N
∈ supp(f), ταN ≤ t < τ0

N + λ

)
≤ Pd(N)

(
XN
t ∈ [−cf , cf ], ταN ≤ t < τ0

N + λ
)

≤ Pd(N)

(
XN
t ∈ [−cf , cf ], XN

ταN
= N − [Nα]

N
, ταN ≤ t < τ0

N + λ

)
+ Pd(N)

(
XN
t ∈ [−cf , cf ], XN

ταN
= −N − [Nα]

N
, ταN ≤ t < τ0

N + λ

)
.

We shall treat only the case where XN
ταN

= (N − [Nα])/N , but the following proof works also
in the other case. Let c̃f ∈ (cf , 1), ρ ∈ (0, 1) such that [c̃f − ρ, c̃f + ρ] ⊂ (cf , 1) and λ′ ∈ (0, 1).
Using the strong Markov property we have

Pd(N)

(
XN
t ∈ [−cf , cf ], XN

ταN
= N − [Nα]

N
, ταN ≤ t < τ0

N + λ

)
≤ PN−[Nα]

N

(
τ

(1)
(N−1)/N > λ′

)
+ PN[Nc̃f ]

N

(
τc̃f±ρ ≤ λ+ λ′

)
,
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where τc̃f±ρ = inf(t ≥ 0, |x(t)− c̃f | ≥ ρ). First, a computation gives

PN−[Nα]
N

(
τ

(1)
(N−1)/N > λ′

)
≤ 1
λ′

EN−[Nα]
N

[
τ

(1)
(N−1)/N

]
= 1
λ′

N−2∑
l=N−[Nα]

N + 1 + l

Γcl+1 l+2
≤ K

N1−α .

Second, the sequence (r(N ′))N ′ is bounded. Let (r(N ′′))N ′′ be a converging subsequence. We
recall that PNc(N) = PN,τc(N) onMταN

, where c(N) = [Nc̃f ]/N , and by Lemma 2.13 the sequence(
PN
′′,τ

c(N ′′)

)
N ′′

is tight. Let
(
PN
′′′,τ

c(N ′′′)

)
N ′′′

be a converging subsequence to Qc̃f . Moreover,

τc̃f±ρ ≤ ταN and therefore
(
τc̃f±ρ ≤ λ+ λ′

)
∈ MταN

. Consequently, by the Portmanteau
theorem

lim
N ′′′

PN
′′′

c(N ′′′)

(
τc̃f±ρ ≤ λ+ λ′

)
= lim

N ′′′
PN
′′′,τ

c(N ′′′)

(
τc̃f±ρ ≤ λ+ λ′

)
≤ lim

N ′′′
PN
′′′,τ

c(N ′′′)

((
τc̃f±ρ ≤ λ+ λ′

))
≤ Qc̃f

((
τc̃f±ρ ≤ λ+ λ′

))
.

We recall that Qc̃f (C([0,+∞),R)) = 1 and we can show that(
τc̃f±ρ ≤ λ+ λ′

)
∩ C([0,+∞),R) =

(
τc̃f±ρ ≤ λ+ λ′

)
∩ C([0,+∞),R).

Then,
lim
N ′′′

PN
′′′,τ

c(N ′′′)

(
τc̃f±ρ ≤ λ

′
)
≤ Qc̃f

(
τc̃f±ρ ≤ λ+ λ′

)
,

and
lim
N ′′′

r(N ′′′) ≤ Qc̃f

(
τc̃f±ρ ≤ λ+ λ′

)
.

Finally, limN ′′′ r(N ′′′) = 0 and the limit of all subsequences (r(N ′′))N ′′ of (r(N ′))N ′ is 0. �

To finish,
(
T l(N)
f (ω, t)

)
N

is a bounded sequence. Let
(
T l(N

′)
f (ω, t)

)
N ′

be a converging
subsequence. By the previous work, there exists an another subsequence such that

lim
N ′′
T l(N

′′)
f (ω, t) = EPu

[
f(|x(t)|)1(t<τ1)

]
,

where the limit does not depend on the particular subsequence, then all subsequence limits of(
T l(N)
f (ω, t)

)
N

are equal to EPu
[
f(|x(t)|)1(t<τ1)

]
. Consequently,

lim
N
T l(N)
f (ω, t) = EPu

[
f(|x(t)|)1(t<τ1)

]
.

Now, we have to show that this equality holds even for a sequence (l(N))N such that
l(N)/N → u = 1, i.e limN T l(N)

f (ω, t) = 0. To do this, we write for λ ∈ (0, t),

T l(N)
f (ω, t) ≤ ‖f‖∞

(
Pd(N)

(
t < τ

(1)
(N−1)/N) + λ

)
+ Ed(N)

e−ΛN
∫ t

0 1(XNu =N−1
N )du1(

t≥τ (1)
(N−1)/N+λ

)).
We have already shown in Lemma 2.15 that the second term on the right in the previous
inequality goes to 0. The proof did not depend of the sequence (d(N))N . Moreover, we have

Pd(N)
(
t < τ

(1)
(N−1)/N) + λ

)
≤ 1
t− λ

Ed(N)
[
τ

(1)
(N−1)/N)

]
,
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and

Ed(N)
[
τ

(1)
(N−1)/N)

]
=

N−2∑
j=l(N)−1

N + 1 + j

Γj+1,j+2
≤ K

(
1− l(N)

N

)
.

Consequently, we have ∀u ∈ [0, 1] and ∀(l(N))N such that l(N)/N → u,

lim
N
T l(N)
f (ω, t) = EPu

[
f(|x(t)|)1(t<τ1)

]
, (2.61)

where the limit satisfies the required conditions. Finally, from the decomposition used in the
proof of Theorem 2.5, we have ∀ϕ ∈ L2(0, 1) and ϕ̃ a smooth function with compact support

‖T Nϕ (L, .)− Tϕ(L, .)‖L2(0,1) ≤ 2‖ϕ− ϕ̃‖L2(0,1) + ‖T Nϕ̃ (L, .)− Tϕ̃(L, .)‖L2(0,1).

Using the density of the smooth functions with compact support in L2(0, 1) for ‖.‖L2(0,1) and
the dominated convergence theorem we get the first point of Theorem 2.4. The second point
is a direct consequence of the probabilistic representation (2.61) and the density for the sup
norm over [0, 1] in {ϕ ∈ C0([0, 1]), ϕ(1) = 0} of the smooth functions with compact support
included in [0, 1).

2.6.5 Proof of Theorem 2.6

As in the proof of Theorem 2.4, we use a probabilistic representation of T 0,l
j (z) by using the

Feynman-Kac formula. However, we introduce the jump Markov process which is a symmetric
version with respect to reflecting barrier (N − 1)/N of that used in the proof of Theorem 2.4.

Let
(
XN
t

)
t≥0 be a jump Markov process with state space

{
− (N − 1)/N, . . . , (N −

1)/N, . . . , 3(N − 1)/N
}
and generator given by

LNφ
(
l

N

)
= Γc|l|+2 |l|+1

(
φ

(
l − 1
N

)
− φ

(
l

N

))
+ Γc|l| |l|+1

(
φ

(
l + 1
N

)
− φ

(
l

N

))
for l ∈ {−(N − 2), . . . ,−1},

LNφ
(
l

N

)
= Γcl l+1

(
φ

(
l − 1
N

)
− φ

(
l

N

))
+ Γcl+2 l+1

(
φ

(
l + 1
N

)
− φ

(
l

N

))
for l ∈ {1, . . . , N − 2},

LNφ
(
l

N

)
= Γc|l−2(N−1)|+2 |l−2(N−1)|+1

(
φ

(
l − 1
N

)
− φ

(
l

N

))
+ Γc|l−2(N−1)| |l−2(N−1)|+1

(
φ

(
l + 1
N

)
− φ

(
l

N

))
for l ∈ {N, . . . , 2N − 3},

LNφ
(
l

N

)
= Γcl+2−2(N−1) l+1−2(N−1)

(
φ

(
l + 1
N

)
− φ

(
l

N

))
+ Γcl−2(N−1) l+1−2(N−1)

(
φ

(
l − 1
N

)
− φ

(
l

N

))
for l ∈ {2N − 1, . . . , 3N − 2},

LNφ
(
−N − 1

N

)
= ΓcN−1N

(
φ

(
−N − 2

N

)
− φ

(
−N − 1

N

))
,

LNφ
(3N − 3

N

)
= ΓcN−1N

(
φ

(3N − 4
N

)
− φ

(3N − 3
N

))
,
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LNφ(0) = Γc2 1
2

(
φ

( 1
N

)
− φ(0)

)
+ Γc2 1

2

(
φ

(−1
N

)
− φ(0)

)
,

LNφ
(
N − 1
N

)
=

ΓcN−1N
2

(
φ

(
N − 2
N

)
− φ

(
N − 1
N

))
+

ΓcN−1N
2

(
φ

(
N

N

)
− φ

(
N − 1
N

))
,

LNφ
(2N − 2

N

)
= Γc2 1

2

(
φ

(2N − 3
N

)
− φ

(2N − 2
N

))
+ Γc2 1

2

(
φ

(2N − 1
N

)
− φ

(2N − 2
N

))
.

We recall that T 0,l(z) can be viewed as a probability measure on [0, 1] by setting

T 0,l
f (z) =

N∑
j=1

f

(
j

N

)
T 0,l
j (z)

for all bounded continuous function f on [0, 1]. Let 0 < r � 1 and f be a smooth function
with support included in [0, 1− r). In order to make the link between T 0,l(z) and the process
XN , let us introduce an extension of f by setting

fN,s(v) =


f (−v + 1/N) if v ∈

[
− (N − 1)/N, 0

]
f (v + 1/N) if v ∈

[
0, (N − 1)/N

]
f (−v + (2N − 1)/N) if v ∈

[
(N − 1)/N, 2(N − 1)/N

]
f (v − (2N − 3)/N) if v ∈

[
2(N − 1)/N, (3N − 3)/N

]
.

With these two functions we get the following representation. ∀l ∈ {1, . . . , N},

T 0,l
f (z) = E l−1

N

[
fN,s(XN

z )
]
.

Moreover, we have

T 0,l
f (z) = E l−1

N

[
fs(XN

z )
]
+O

( 1
N

)
= E l−1

N

[
fs(gr(XN

z ))
]
+O

( 1
N

)
,

where

gr(v) =
{

v if v ∈ (−(1− r), 1− r) ∪ (1 + r, 3− r)
vs elsewhere,

with vs ∈ (1− r, 1− r/2), and where

fs(v) =


f(−v) if v ∈ [−1, 0]
f(v) if v ∈ [0, 1]

f(−v + 2) if v ∈ [1, 2]
f(v − 2) if v ∈ [2, 3].

Let u ∈ [0, 1) such that l(N)/N → u. One can assume u ∈ [0, 1−r) by changing r if necessary.
As in the proof of Theorem 2.4, we have the following lemma.

Lemma 2.16 ∀ϕ ∈ C∞0 (R).

lim
N→+∞

sup
v∈IN

∣∣∣LNϕ( [Nv]
N

)
− Lar,∞ϕ(v)

∣∣∣ = 0,

where

IN =
[
−N − 1− [Nr]

N
,− 1

N

]
∪
[ 1
N
,
N − 1− [Nr]

N

]
∪
[
N − 1 + [Nr]

N
,
2N − 3
N

]
∪
[2N − 1

N
,
3N − 3− [Nr]

N

]
,
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and ar,∞ is a C1-extended version of a∞ such that

ar,∞(v) =


a∞(−v) if v ∈ (−(1− r), 0]
a∞(v) if v ∈ [0, 1− r)

a∞(−v + 2) if v ∈ (1 + r, 2]
a∞(v − 2) if v ∈ [2, 3− r),

and the martingale problem associated to Lar,∞ and starting from u is well-posed.

Lemma 2.17 The law of the process (gr(XN ))N starting from d(N) = (l(N)− 1)/N is tight
on D([0,+∞),R).

Proof (of Lemma 2.17) Let FNt = σ(XN
s , s ≤ t). According to Theorem 3 in [41, Chapter

3]. We have to show only the two following points. First, we have

lim
K→+∞

lim
N

Pd(N)

(
sup
t≥0
|gr(XN

t )| ≥ K
)

= 0,

since ∀N , supt≥0|gr(XN
t )| ≤ 3. Second, we have for each N , h ∈ (0, 1), s ∈ [0, h] and t ≥ 0,

Ed(N)
(
(gr(XN

t+s)− gr(XN
t ))2|FNt

)
≤ K h.

In fact, we have

Ed(N)
(
(gr(XN

t+s)− gr(XN
t ))2|FNt

)
≤ 2 Ed(N)

(
(MN

gr (t+ s)−MN
gr (t))

2|FNt
)

+ 2 Ed(N)

((∫ t+s

t
LNgr(XN

w )dw
)2 ∣∣∣FNt

)
,

with
MN
gr (t) = gr(XN

t )− gr(XN
0 )−

∫ t

0
LNgr(XN

s )ds,

which is a (FNt )t≥0-martingale. We also have

sup
N

sup
v∈[−N−1

N
,3N−1

N ]\
{

0,2N−1
N

}|LNgr(v)|< +∞

since by Lemma 2.16
sup
N

sup
v∈IN∪{vs}

∣∣LNgr(v)∣∣ < +∞.

Moreover, LNgr(0) = LNgr(2(N − 1)/N) = 0. Then, we get

Ed(N)

((∫ t+s

t
LNgr(XN

w )dw
)2 ∣∣∣FNt

)
≤ Ch2.

We recall that
< MN

gr >t=
∫ t

0

(
LNgr2 − 2grLNgr

)
(XN

s )ds.

Consequently, by the martingale property of (MN
gr (t))t≥0,

Ed(N)
(
(MN

gr (t+ s)−MN
gr (t))

2|FNt
)

= Ed(N)
(
(MN

gr (t+ s)−MN
gr (t))

2|FNt
)

= Ed(N)
(
MN
gr (t+ s)2 −MN

gr (t)
2|FNt

)
= Ed(N)

(
< MN

gr >t+s − < MN
Id >t |FNt

)
= Ed(N)

(∫ t+s

t

(
LNg2

r − 2grLNgr
)

(XN
w )dw

∣∣∣FNt )
≤ C h.
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In fact, in addition to the previous arguments, we also have

sup
N

sup
v∈IN∪{vs}

|LNg2
r (v)| < +∞,

supN LNg2
r (0) = Γc1 2

N2 < +∞, and supN LNg2
r (2(N − 1)/2) = 2Γc1 2

N2 < +∞. That concludes the
proof Lemma 2.17. �

Now, let us introduce some notations. ∀j ∈ N∗, let

τ (j)
r = inf

(
t > τ (j−1)

r,c , x(t) ∈ [−1,−(1− r)) ∪ (1− r, 1 + r) ∪ (3− r, 3]
)

τ (j)
r,c = inf

(
t > τ (j)

r , x(t) ∈ (−(1− r), 1− r) ∪ (1 + r, 3− r)
)
,

with τ (0)
r,c = 0. Using the previous lemma, there exists (N ′) such that

lim
N ′→+∞

Ed(N ′)
[
fs(gr(XN ′

z ))
]
= EQu[fs(x(z))].

Moreover,

EQu[f s(x(z))] =
∑
j≥1

EQu
[
fs(x(z))1(τ (j−1)

r,c ≤z<τ (j)
r )

]
=
∑
j≥1

EQu
[
EQu

[
f s(x(z))1(τ (j−1)

r,c ≤z<τ (j)
r )

∣∣∣M
τ

(j−1)
r,c

]]
,

whereMt = σ(x(s), 0 ≤ s ≤ t). With the following lemma we can identify each excursion
between τ (j−1)

r,c and τ (j)
r .

Lemma 2.18 ∀j ∈ N∗, the conditional law Qu
(
·
∣∣M

τ
(j−1)
r,c

)
coincide up to the stopping time

τ
(j)
r with the conditional law Pru

(
·
∣∣M

τ
(j−1)
r,c

)
, where Pru is the unique solution of the martingale

problem associated to Lar,∞ and starting from u.

Proof (of Lemma 2.18) This proof is a conditional version of Lemma 2.14. Moreover, this
lemma follows from Lemma 2.16 and the fact that we are studying excursions between τ (j−1)

r,c

and τ (j)
r . By Lemma 2.16, in addition to gr(XN

z ) = XN
z for τ (j−1)

r,c ≤ z < τ
(j)
r ,

lim
N

Ed(N)

∫ t∧τ (j)
r

τ
(j−1)
r,c

∣∣∣LNϕ(XN
s )− Lar,∞ϕ(XN

s )
∣∣∣ ds∣∣∣M

τ
(j−1)
r,c

 = 0,

and we also have

E0

[∫ t

0
1(XN

s =0)ds

]
= O

( 1
Nα′∧(1−α′)

)
,

E2(N−1)/N

[∫ t

0
1(XN

s =2(N−1)/N)ds

]
= O

( 1
Nα′∧(1−α′)

)
by symmetry of the process XN . As in the proof of Lemma 2.14, we get that ∀ϕ ∈ C∞0 (R)

ϕ(x(t ∧ τ (j)
r ))− ϕ(x(τ (j−1)

r,c ))−
∫ t∧τ (j)

r

τ
(j−1)
r,c

Lar,∞ϕ(x(s))ds

is a martingale under the conditional law Qu
(
·
∣∣M

τ
(j−1)
r,c

)
. Finally, from the uniqueness of the

martingale problem associated to Lar,∞ , Qu
(
·
∣∣M

τ
(j−1)
r,c

)
coincide up to the stopping time τ (j)

r

with Pru
(
·
∣∣M

τ
(j−1)
r,c

)
(see Theorem 6.2.2 in [59]). That concludes the proof of Lemma 2.18.�
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From the previous lemma, ∀j ∈ N∗, we have

EQu
[
fs(x(z))1(τ (j−1)

r,c ≤z<τ (j)
r )

]
= EPru

[
fs(x(z))1(τ (j−1)

r,c ≤z<τ (j)
r )

]
and then

lim
N ′→+∞

Ed(N ′)
[
fs(gr(XN ′

z ))
]
= EQu[fs(x(z))] = EPrv

[
fs(x(z))

]
,

where the limit does not depend to (N ′). Consequently,

lim
N→+∞

T 0,l(N)
f (z) = EPru

[
fs(x(z))

]
= Tf (z, u),

with
∂

∂z
Tf (z, u) = Lar,∞Tf (z, u) = La∞Tf (z, u).

For the boundary conditions, first let h ∈ (0, 1) such that 0 < h� 1, we have

1
h

(
Tf (z, h)− Tf (z,−h)

)
= 1
h

lim
N→+∞

(
E [Nh]

N

[
f s(XN

z )
]
− E− [Nh]

N

[
fs(XN

z )
])

= 0,

because of the symmetry of the process XN and fs, and therefore,

2 ∂
∂u
Tf (z, 0) = 0.

Second, in the same way, let h ∈ (0, 1) such that h� 1. Moreover, one can assume r < h by
changing r if necessary. Then, we have

1
h

(
Tf (z, 1− h)− Tf (z, 1 + h)

)
= 1
h

lim
N→+∞

(
E [N(1−h)]

N

[
fs(XN

z )
]
− E [N(1+h)]

N

[
fs(XN

z )
])

= 0,

and therefore,
2 ∂
∂u
Tf (z, 1) = 0.

As a result, using the density of the smooth functions with compact support in L2(0, 1) for
‖.‖L2(0,1) and the dominated convergence theorem we get the first point of Theorem 2.6. The
second point is a consequence of the maximum principle and the density for the sup norm over
[0, 1] in {ϕ ∈ C0([0, 1]), ϕ(1) = 0} of the smooth functions with compact support included in
[0, 1). �
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Chapter 3
Pulse Propagation and Time Reversal in
Shallow-Water Acoustic Random
Waveguides

Introduction
This chapter is devoted to the study of the propagation and the time reversal of a broadband
pulse in the random waveguide model introduced in Chapter 2.

Acoustic pulse propagation in shallow-water waveguides has numerous domains of ap-
plications. One of the most important applications is submarine detection with active or
passive sonars. Pulse propagation in random media has been studied in different contexts, in
one-dimensional random media in [17] and [25, Chapter 8], in three-dimensional randomly
layered media in [25, Chapter 14], and in random waveguides in [25, Chapter 20] and [30].
In these cases, it has been observed that the amplitude of the coherent wave decays with
the propagation distance, since the coherent energy is converted into small incoherent wave
fluctuations.

The time-reversal experiments of M. Fink and his group in Paris have attracted considerable
attention because of the surprising effect of enhanced spatial focusing and time compression in
random media. The refocusing properties have numerous applications, in detection, destruction
of kidney stones, and wireless communication for instance. Time-reversal experiments have
been intensively analyzed experimentally and theoretically. This experiment is carried out in
two steps. In the first step (see Figure 3.1 (a)), a source sends a pulse into a medium. The
wave propagates and is recorded by a device called a time-reversal mirror. A time-reversal
mirror is a device that can receive a signal, record it, and resend it time-reversed into the
medium. In the second step (see Figure 3.1 (b)), the wave emitted by the time-reversal
mirror has the property of refocusing near the original source location, and it has been
observed experimentally that random inhomogeneities enhance refocusing [19, 22, 42]. Time-
reversal refocusing in one-dimensional media has been studied in [18, 25], in three-dimensional
randomly layered media in [26], in the paraxial approximation in [10, 15, 49], and in random
waveguides in [30, 25, 33].

The pulse propagation and the time reversal of a broadband pulse, in the case of a
waveguide with a bounded cross-section and Dirichlet boundary conditions, is carried out in
[25, Chapter 20]. However, it does not take into account radiation losses. In this chapter,
the waveguide model introduced in Chapter 2 permits us to decompose the wave field into
three kinds of modes: the propagating modes, the evanescent modes, and the radiating
modes. However, in this chapter, for the sake of simplicity we do not consider the effect
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Time−reversal
Source

Ocean

Bottom

mirror
Time−reversal

Source
Ocean

Bottom

mirror

(a) (b)

Figure 3.1: Representation of the time-reversal experiment. In (a) we represent the first step
of the experiment, and in (b) we represent the second step of the experiment.

of the evanescent modes on the propagating and the radiating modes. We have seen, in
Chapter 2, that the presence of evanescent modes induces an effective dispersion, and we
know that dispersion effects can be compensated for by time reversal [25]. We have seen
that the presence of radiating modes produces an effective diffusion, and we anticipate that
diffusive effects cannot be fully compensated for by time reversal. Therefore, it is interesting
to understand these effects. The main result of this chapter is the analysis of the influence of
the radiation losses on the refocused wave in the time-reversal experiment. In Propositions
3.11 and 3.12, we show that the radiative loss affects the quality of the time-reversal refocusing.
First, the amplitude of the refocused wave decays exponentially with the propagation distance.
Second, the width of the main focal spot increases and converges to an asymptotic value,
which is significantly larger than the diffraction limit λoc/(2θ) obtained in Proposition 3.6
(where λoc is the carrier wavelength in the ocean section [0, d] with index of refraction n1,
and θ =

√
1− 1/n2

1).
This Chapter is in two parts. The first part concerns the propagation of a broadband

pulse and the second part concerns the time-reversal experiment. In Section 3.1 we recall the
waveguide model introduced in Chapter 2. In Section 3.2 we recall the mode decomposition
associated to this model with the simplification that we neglect the effect of the evanescent
modes. Section 3.3 concerns the study of the propagation of a broadband pulse. In this section
we show that the coherent transmitted wave is a sequence of modal waves with different
arrival times and different modal speeds. The amplitude of each modal wave is exponentially
damped and the rates depend on the effective coupling between the propagating modes and
the radiation losses. The study of the incoherent wave fluctuations requires the analysis of
the product of two transfer operators at two nearby frequencies. Then, we derive an effective
system of transport equations which takes into account the effect of the radiation losses.
Applying this result to the study of the intensity of the incoherent wave fluctuations, we
observe that it is exponentially damped and becomes uniform across the waveguide section
[0, d] when the propagation distance is large. In Section 3.4 we study the time-reversal
experiment in which the spatial random inhomogeneities may have changed during the two
steps of the experiment. In this case, both the amplitude and the statistical stability of the
refocused wave depend on the degree of correlation between the two realizations of the random
medium. Moreover, we describe the refocused transverse profile in terms of the solution of
the continuous diffusive model introduced in Section 2.5.2. Consequently, we show that the
quality of the time-reversal refocusing is degraded by the radiative loss.
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3.1 Waveguide Model
In this chapter we conserve the setting of Chapter 2, which is illustrated in Figure 2.2 page
33, but with some simplifications. We consider a two-dimensional linear acoustic waveguide
model. The conservation equations of mass and linear momentum are given by

ρ(x, z)∂u
∂t

+∇p = Fε
q,

1
K(x, z)

∂p

∂t
+∇.u = 0,

(3.1)

where p is the acoustic pressure, u is the acoustic velocity, ρ is the density of the medium, K
is the bulk modulus, and the source is modeled by the forcing term Fε

q(t, x, z) given by

Fε
q(t, x, z) = Ψε

q(t, x)δ(z − LS)ez.

Here, Ψε
q(t, x) is the profile of the source. The third coordinate z represents the propagation

axis along the waveguide. The transverse section of the waveguide is the semi-infinite interval
[0,+∞), and x ∈ [0,+∞) represents the transverse coordinate. Let d > 0, the medium
parameters are given by

1
K(x, z)

=


1
K̄

(
n2(x) +

√
εV (x, z)

)
if x ∈ [0, d], z ∈ [0, L/ε]

1
K̄
n2(x) if


x ∈ [0,+∞), z ∈ (−∞, 0) ∪ (L/ε,+∞)
or
x ∈ (d,+∞), z ∈ (−∞,+∞).

ρ(x, z) = ρ̄ if x ∈ [0,+∞), z ∈ R,

and where the process V is described in Section 2.6.1. We consider the Pekeris waveguide
model. This kind of model has been studied for half a century [51] and in this model the
index of refraction n(x) is given by

n(x) =
{
n1 > 1 if x ∈ [0, d)
1 if x ∈ [d,+∞).

This profile can model an ocean with a constant sound speed, where d represents the ocean
depth. Such conditions can be found during the winter in Earth’s mid latitudes and in water
shallower than about 30 meters.

From the conservation equations (3.1), we derive the wave equation for the pressure field,

∆p− 1
c(x, z)2

∂2p

∂t2
= ∇.Fε

q, (3.2)

where c(x, z) =
√
K(x, z)/ρ(x, z), ∆ = ∂2

x + ∂2
z , and c =

√
K̄/ρ̄. In underwater acoustics

the density of air is very small compared to the density of water, then it is natural to use a
pressure-release condition. The pressure is very weak outside the waveguide, and by continuity,
the pressure is zero at the free surface x = 0. This consideration leads us to consider the
Dirichlet boundary conditions

p(t, 0, z) = 0 ∀(t, z) ∈ [0,+∞)× R.

In addition to the classical scales which are the wavelength, the correlation length, the
standard deviation, and the propagation distance, we also consider the bandwidth of the
pulse. This scale plays a key role in the pulse propagation and the time-reversal experiment.
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In this chapter, the source profile Ψε
q(t, x) is given, in the frequency domain, by

Ψ̂ε
q(ω, x) = 1

εq
f̂

(
ω − ω0
εq

)

×

N(ω)∑
j=1

φj(ω, x0)φj(ω, x) +
∫
(−S,−ξ)∪(ξ,k2(ω))

φγ(ω, x0)φγ(ω, x)dγ

 , (3.3)

with q > 0. The restriction q > 0 allows us to freeze the number of propagating and
radiating modes and gives simpler expressions of the transmitted field. Here, we have used
the decomposition with respect to the resolution of the identity Πω associated to the operator
R(ω) and introduced in Section 2.2.1. We refer to Section 2.2.1 for a summary of the spectral
analysis of this operator. The Fourier transform and the inverse Fourier transform, with
respect to time, are defined by

f̂(ω) =
∫
f(t)eiωtdt, f(t) = 1

2π

∫
f̂(ω)e−iωtdω.

We also recall that S can be arbitrarily large and ξ can be arbitrarily small. Consequently,
the spatial profile (3.3) is an approximation of a Dirac distribution at x0, which models a
point source at x0. Moreover, 1

εq f̂(ω−ω0
εq ) is the Fourier transform of f(εqt)e−iω0t, which is

a pulse with bandwidth of order εq and carrier frequency ω0. In this chapter, we study the
broadband case, that is for q ∈ (0, 1). In the broadband case the pulse width is of order 1/εq,
which is much smaller that the propagation distance, and therefore the propagating modes
are separated in time by the modal dispersion. In the broadband case, the transmitted wave
can be described by a front stabilization theory (Section 3.3.2), and the statistical stability of
the time-reversal refocusing can be study in a simple way (Section 3.4.6).

The case q = 1, that we shall not treat in this chapter, corresponds to the narrowband
case. In this case the order of the pulse width is comparable to the propagation distance, and
consequently the modes overlap during the propagation.

However, for the sake of simplicity, we shall consider the case q = 1/2 and the analysis
that follows could be carried out ∀q ∈ (0, 1).

According to (2.12) page 37, the evanescent part of the wave field decreases exponentially
fast with the propagation distance. For more convenient manipulations in the study of the
time-reversal experiment we assume that the source location LS is sufficiently far away from
0 so that the evanescent modes generated by the source are negligible. With this assumption
and using 2.23 page 41, we can assume that the incident pulse coming from the left is given,
at z = 0, by:

pξ,εinc(t, x, 0) = 1
2π

∫ N(ω)∑
j=1

âεj,0(ω)√
βj(ω)

φj(ω, x) +
∫ k2(ω)

ξ

âεγ,0(ω)
γ1/4 φγ(ω, x)dγ

 e−iωtdω,
where

âεj,0(ω) =

√
βj(ω)
2εq

f̂

(
ω − ω0
εq

)
φj(ω, x0)e−iβj(ω)LS = 1

2εq
f̂

(
ω − ω0
εq

)
ãj(ω) (3.4)

∀j ∈
{
1, . . . , N(ω)

}
,

âεγ,0(ω) = γ1/4

2εq
f̂

(
ω − ω0
εq

)
φγ(ω, x0)e−i

√
γLS = 1

2εq
f̂

(
ω − ω0
εq

)
ãγ(ω) (3.5)

for almost every γ ∈ (ξ, k2(ω)). Let us remark that this assumption is not restrictive and all
the results of this chapter are valid for any LS < 0. Indeed, according to Proposition 2.2 page
50, in the asymptotic ε→ 0, the information about the evanescent part of the source profile
are lost during the propagation in the random section [0, L/ε], and therefore they play no
role in the pulse propagation and in the time-reversal experiment.

110



Chapter 3 Section 3.2.1

3.2 Mode Coupling in Random Waveguides
In this section, we study the Fourier transform p̂(ω, x, z) of the pressure p(t, x, z) when a
random section [0, L/ε] is inserted between two homogeneous waveguides. In the half-space
z ≥ 0, by taking the Fourier transform in (3.2), we get the perturbed time harmonic wave
equation

∂2
z p̂(ω, x, z) + ∂2

xp̂(ω, x, z) + k2(ω)(n2(x) +
√
εṼ (x, z))p̂(ω, x, z) = 0, (3.6)

where k(ω) = ω
c is the wavenumber, and where

Ṽ (x, z) =
{
V (x, z) if x ∈ [0, d], z ∈ [0, L/ε]

0 elsewhere.

Moreover, we consider Dirichlet boundary conditions p̂(ω, 0, z) = 0 ∀z ∈ R. As in Chapter 2,
we are interested in smooth solutions such that

p̂(ω, ., .) ∈ C0
(
[0,+∞),D

(
R(ω)

))
∩ C2

(
[0,+∞), H

)
,

with H = L2(0,+∞), in order to consider (3.6) as an operational differential equation. Here,

R(ω) = ∂2

∂x2 + k2(ω)n2(x)

is the Pekeris operator of the unperturbed waveguide, with domain D
(
R(ω)

)
= H1

0 (0,+∞) ∩
H2(0,+∞). We recall that H is equipped with the inner product defined by

∀(h1, h2) ∈ H ×H,
〈
h1, h2

〉
H

=
∫ +∞

0
h1(x)h2(x)dx.

We refer to Section 2.2.1 for a summary of the spectral analysis of this operator. In the
perturbed section [0, L/ε], a solution of (3.6) can be decomposed using the resolution of the
identity Πω associated to R(ω),

p̂(ω, x, z) =
N(ω)∑
j=1

p̂j(ω, z)φj(ω, x) +
∫ k2(ω)

−∞
p̂γ(ω, z)φγ(ω, x)dγ,

where p̂(ω, z) = Θω(p̂(ω, ., z)). The operator Θω is defined in Section 2.2.1. However, in what
follows, we shall consider solutions of the form

p̂(ω, x, z) =
N(ω)∑
j=1

p̂j(ω, z)φj(ω, x) +
∫ k2(ω)

ξ
p̂γ(ω, z)φγ(ω, x)dγ (3.7)

to simplify the study of the time-reversal experiment. This assumption is tantamount to
neglecting the coupling mechanism with the evanescent modes. Furthermore, as it has been
observed in Chapter 2 or in [25], this mechanism implies mode-dependent and frequency-
dependent phase modulations, that is dispersion, but does not remove any energy from the
propagating modes in the pulse propagation. Dispersion is compensated by the time-reversal
mechanism and therefore plays no role in this experiment [25]. This assumption leads us to
simplified algebra in the proof of Theorem 3.1 page 114. Moreover, we assume that ε � ξ
and therefore we have two distinct scales. We shall consider in a first time the asymptotic ε
goes to 0 and in a second time the asymptotic ξ goes to 0.
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3.2.1 Coupled Mode Equations

In this section we give the coupled mode equations, which describes the coupling mechanism
between the amplitudes of the two kinds of modes. According to the decomposition (3.7), we
consider the coupling between the propagating modes with the radiating modes.

In the random section [0, L/ε], p̂(ω, z) satisfies the following coupled equation in Hωξ =
CN(ω) × L2(ξ, k2(ω)).

d2

dz2 p̂j(ω, z) + β2
j (ω)p̂j(ω, z) +

√
εk2(ω)

N(ω)∑
l=1

Cωjl(z)p̂l(ω, z)

+
√
εk2(ω)

∫ k2(ω)

ξ
Cωjγ′(z)p̂γ′(ω, z)dγ′ = 0,

d2

dz2 p̂γ(ω, z) + γ p̂γ(ω, z) +
√
εk2(ω)

N(ω)∑
l=1

Cωγl(z)p̂l(ω, z)

+
√
εk2(ω)

∫ k2(ω)

ξ
Cωγγ′(z)p̂γ′(ω, z)dγ′ = 0,

(3.8)

where the coupling coefficients Cω(z) are defined by (2.15) page 39, and they represent the
coupling between the propagating and radiating modes.

Next, we introduce the amplitudes of the generalized right- and left-going modes â(ω, z)
and b̂(ω, z), which are given by

p̂j(ω, z) = 1√
βj(ω)

(
âj(ω, z)eiβj(ω)z + b̂j(ω, z)e−iβj(ω)z

)
,

d

dz
p̂j(ω, z) = i

√
βj(ω)

(
âj(ω, z)eiβj(ω)z − b̂j(ω, z)e−iβj(ω)z

)
,

p̂γ(ω, z) = 1
γ1/4

(
âγ(ω, z)ei

√
γz + b̂γ(ω, z)e−i

√
γz
)
,

d

dz
p̂γ(ω, z) = iγ1/4

(
âγ(ω, z)ei

√
γz − b̂γ(ω, z)e−i

√
γz
)

∀j ∈
{
1, . . . , N(ω)

}
and almost every γ ∈ (ξ, k2(ω)). From (3.8), we obtain the coupled mode

equation in Hωξ ×Hωξ for the amplitudes (â, b̂),

d

dz
â(ω, z) =

√
εHaa(ω, z)

(
â(ω, z)

)
+
√
εHab(ω, z)

(
b̂(ω, z)

) (3.9)

d

dz
b̂(ω, z) =

√
εHba(ω, z)

(
â(ω, z)

)
+
√
εHbb(ω, z)

(
b̂(ω, z)

)
, (3.10)

where Haa(ω, z), Hab(ω, z), Hba(ω, z), and Hbb(ω, z) are defined by (2.30)-(2.33) page 45.
This system is complemented with the boundary conditions

â(ω, 0) = âε0(ω) and b̂

(
ω,
L

ε

)
= 0

in Hωξ , and where âε0(ω) is defined by (3.4) and (3.5). For j ∈
{
1, . . . , N(ω)

}
, âj,0(ω0)

represents the initial amplitude of the jth propagating mode, and for γ ∈ (ξ, k2(ω)), âγ,0(ω)
represents the initial amplitude of the γth radiating mode at z = 0. Moreover, the second
condition means that no wave is coming from the right homogeneous waveguide. According
to Section 2.3.2 this system leads us to the local and global conservation relations

‖â(ω, z)‖2Hω
ξ
− ‖b̂(ω, z)‖2Hω

ξ
= ‖â(ω, 0)‖2Hω

ξ
− ‖b̂(ω, 0)‖2Hω

ξ
∀z ∈ [0, L/ε] ,

‖â (ω,L/ε) ‖2Hω
ξ

+ ‖b̂(ω, 0)‖2Hω
ξ

= ‖â(ω, 0)‖2Hω
ξ
.
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3.2.2 Propagator and Forward Scattering Approximation

In this section we introduce the forward scattering approximation, which is widely used in the
literature. In this approximation the coupling between forward- and backward-propagating
modes is assumed to be negligible compared to the coupling between the forward-propagating
modes. We refer to Section 2.3.4 for the physical explanation and to [30, 33] for justifications
on the validity of this approximation.

Let us define the rescaled processes

âε(ω, z) = âj

(
ω,
z

ε

)
and b̂ε(ω, z) = b̂

(
ω,
z

ε

)
for z ∈ [0, L].

These scalings correspond to the size of the random section [0, L/ε], and they satisfy the
rescaled coupled mode equation

d

dz
âε(ω, z) = 1√

ε
Haa

(
ω,
z

ε

) (
âε(ω, z)

)
+ 1√

ε
Hab

(
ω,
z

ε

) (
b̂ε(ω, z)

)
d

dz
b̂ε(ω, z) = 1√

ε
Hba

(
ω,
z

ε

) (
âε(ω, z)

)
+ 1√

ε
Hbb

(
ω,
z

ε

) (
b̂ε(ω, z)

)
,

(3.11)

with the two-point boundary conditions

âε(ω, 0) = âε0(ω) and b̂ε(ω,L) = 0

in Hωξ . We can rewrite (3.11) in a vector form as

d

dz
Xε(ω, z) = 1√

ε
H
(
ω,
z

ε

)
(Xε(ω, z)).

where

Xε(ω, z) =
[
âε(ω, z)
b̂ε(ω, z)

]
and H(ω, z) =

[
Haa(ω, z) Hab(ω, z)
Hab(ω, z) Haa(ω, z)

]
.

Now, we introduce the propagator matrix Pε(ω, z), that is, the solution of the differential
equation

d

dz
P(ω, z) = 1√

ε
H
(
ω,
z

ε

)
Pε(ω, z) with Pε(ω, 0) = Id.

Therefore, we get [
âε(ω, z)
b̂ε(ω, z)

]
= Pε(ω, z)

[
âε(ω, 0)
b̂ε(ω, 0)

]
,

and by the symmetry of H(ω, z) we have a particular form for the propagator, which is

Pε(ω, z) =
[
Pa
ε (ω, z) Pb

ε(ω, z)
Pb
ε(ω, z) Pa

ε (ω, z)

]
.

Here, Pa
ε (ω, z) and Pb

ε(ω, z) are operators which represent, respectively, the coupling between
right-going modes and the coupling between right-going and left-going modes.

In what follows, we shall consider the forward scattering approximation already discussed
in Section 2.3.4, that is, we assume that the power spectral density of the process V , i.e. the
Fourier transform of its z-autocorrelation function, possesses a cut-off wavenumber. In other
words, we consider the case where∫ +∞

0
E[Cωjl(0)Cωjl(z)] cos

(
(βl(ω) + βj(ω))z

)
dz = 0 ∀(j, l) ∈

{
1, . . . , N(ω)

}2
.
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Under this approximation, we can neglect the left-going propagating modes in the asymptotic
ε→ 0. Consequently, we can consider the simplified coupled amplitude equation on [0, L]

d

dz
âε(ω, z) = 1√

ε
Haa

(
ω,
z

ε

)
(âε(ω, z)) with âε(ω, 0) = âε0(ω),

which implies the conservation relation

‖âε(ω, z)‖2Hω
ξ

= ‖â(ω, 0)‖2Hω
ξ
∀z ∈ [0, L].

Finally, we introduce the transfer operator Tξ,ε(ω, z), which is the solution of

d

dz
Tξ,ε(ω, z) = 1√

ε
Haa

(
ω,
z

ε

)
Tξ,ε(ω, z) with Tξ,ε(ω, 0) = Id. (3.12)

From this equation, one can check that the transfer operator Tξ,ε(ω, z) is unitary since Haa

is skew-Hermitian and
∀z ≥ 0, âε(ω, z) = Tξ,ε(ω, z)(âε0(ω)).

3.2.3 Limit Theorem

This section presents a simplified version of results introduced in Section 2.4.1. In [30] and
[39], for the study of the pulse propagation and the time-reversal experiment the authors
used the limit theorem stated in [48] since the number of propagating modes was fixed.
However, in our configuration, in addition to the N(ω)-discrete propagating modes we have a
continuum of radiating modes on the interval (ξ, k2(ω)). The two following results are based
on a diffusion-approximation result for the solution of an ordinary differential equation with
random coefficients. This result is an extension of that stated in [48] to the case of processes
with values in a Hilbert space.

Theorem 3.1 ∀y ∈ Hωξ = CN(ω) × L2(ξ, k2(ω)), the family of processes
(
Tξ,ε(ω, .)(y)

)
ε∈(0,1)

converges in distribution, as ε → 0 on C([0,+∞),Hωξ,w), to a limit denoted by Tξ(ω, .)(y).
Here Hωξ,w stands for the Hilbert space Hωξ equipped with the weak topology. This limit is the
unique diffusion process on Hωξ , starting from y, associated to the infinitesimal generator

Lωξ = Lω1 + Lω2,ξ,

where Lω1 and Lω2,ξ are defined in Theorem 2.1 page 51.

We can get the following result in the asymptotic ξ → 0.

Theorem 3.2 ∀y ∈ Hω0 ,The family of processes
(
Tξ(ω, .)(y)

)
ξ∈(0,1) converges in distribution,

as ξ → 0 on C([0,+∞), (Hω0 , ‖.‖Hω0 )), to a limit denoted by T0(ω, .)(y). Here Hω0 = CN(ω) ×
L2(0, k2(ω)). This limit is the unique diffusion process on Hω0 , starting from y, associated to
the infinitesimal generator

Lω = Lω1 + Lω2 ,

where Lω2 is defined in Theorem 2.2 page 52.

The infinitesimal generator Lω is composed of two parts which induce different behaviors
on the diffusion process and we recall their interpretation. The first operator Lω1 describes
the coupling between the N(ω)-discrete propagating modes. This part is of the form of
the infinitesimal generator obtained in [25, 30], and for which the total energy is conserved.
The second operator Lω2 describes the coupling between the propagating modes with the
radiating modes. This part implies a mode-dependent and frequency-dependent attenuation
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on the N(ω)-propagating modes already studied in Section 2.5.1, and a mode-dependent and
frequency-dependent phase modulation. We use these results in the following section which
concerns the study of the pulse propagation.

Moreover, let us remark that the convergence in Theorem 2.1 holds on C([0, L], (Hωξ , ‖.‖Hωξ ))
for the N(ω)-discrete propagating mode amplitudes.

3.3 Pulse Propagation in Random Waveguides
In this section we study the pulse propagation in the broadband case q = 1/2. The analysis
in the case of waveguides with bounded cross-section (see Figure 2.1 page 32) is carried out
in [25, Chapter 20].

Using the modal decomposition, the transmitted field at time t and z = L/ε is given by

ptr

(
t, x,

L

ε

)
= 1

2π

∫
p̂(ω, x, L/ε)e−iωtdω

= 1
4π
√
ε

∫
f̂

(
ω − ω0√

ε

)N(ω)∑
j=1

1√
βj(ω)

Tξ,ε
j (ω,L)(ã(ω))φj(ω, x)eiβj(ω)L

ε

+
∫ k2(ω)

ξ

1
γ1/4 Tξ,ε

γ (ω,L)(ã(ω))φγ(ω, x)ei
√
γ L
ε dγ

]
e−iωtdω,

where ã(ω) is defined by (3.4) and (3.5). We observe the transmitted wave in a time window
of order 1/

√
ε, which is of the order of the pulse width, and centered at time t0/ε, which is

of the order of the travel time for a distance of order 1/ε. Let us assume, throughout this
chapter, that f̂ has a compact support included in (−hc, hc), and then by making the change
of variable ω = ω0 +

√
εh we get

pξ,εtr (t0, t, x, L) = ptr

(
t0
ε

+ t√
ε
, x,

L

ε

)

= e
−iω0

(
t0
ε

+ t√
ε

)
1
4π

∫
f̂(h)e

−ih
(
t+ t0√

ε

)

×

N(ω0)∑
j=1

1√
βj(ω0 +

√
εh)

Tξ,ε
j (ω0 +

√
εh, L)(ã(ω0 +

√
εh))φj(ω0 +

√
εh, x)eiβj(ω0+

√
εh)L

ε

+
∫ k2(ω0+

√
εh)

ξ

1
γ1/4 Tξ,ε

γ (ω0 +
√
εh, L)(ã(ω0 +

√
εh))φγ(ω0 +

√
εh, x)ei

√
γ L
ε dγ

]
dh.

Here, ε is small enough to have N(ω0 + εqh) = N(ω0). In this section we consider the case
q = 1/2, but the same analysis can be carried out for any q ∈ (0, 1). In this case the pulse
width, which is of order 1/

√
ε, is much smaller than the propagation distance. The transmitted

wave can be decomposed as follows.

pξ,εtr (t0, t, x, L)e
iω0

(
t0
ε

+ t√
ε

)
= p1,ξ,ε

tr (t0, t, x, L) + p2,ξ,ε
tr (t0, t, x, L),
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with

p1,ξ,ε
tr (t0, t, x, L) = 1

4π

∫
f̂(h)e

−ih
(
t+ t0√

ε

)
N(ω0)∑
j=1

1√
βj(ω0 +

√
εh)

eiβj(ω0+
√
εh)L

ε

×Tξ,ε
j (ω0 +

√
εh, L)(ã(ω0 +

√
εh))φj(ω0 +

√
εh, x)dh,

p2,ξ,ε
tr (t0, t, x, L) = 1

4π

∫
f̂(h)e

−ih
(
t+ t0√

ε

) ∫ k2(ω0+
√
εh)

ξ

1
γ1/4 e

i
√
γ L
ε

×Tξ,ε
γ (ω0 +

√
εh, L)(ã(ω0 +

√
εh))φγ(ω0 +

√
εh, x)dγdh,

(3.13)

where p1,ξ,ε
tr (t0, t, x, L) is the projection of the transmitted wave over the propagating modes,

and p2,ξ,ε
tr (t0, t, x, L) is the projection of the transmitted wave over the radiating modes.

3.3.1 Broadband Pulse in Homogeneous Waveguides

In this section, we study the transmitted wave through a homogeneous waveguide. In the
homogeneous case, that is, when the transfer operator Tξ,ε(ω, z) = Id, we have

p1,ξ,ε
tr,hom(t0, t, x, L) = 1

4π

∫
f̂(h)e

−ih
(
t+ t0√

ε

)
N(ω0)∑
j=1

eiβj(ω0+
√
εh)(−LS+L

ε )

× φj(ω0 +
√
εh, x0)φj(ω0 +

√
εh, x)dh,

p2,ξ,ε
tr,hom(t0, t, x, L) = 1

4π

∫
f̂(h)e

−ih
(
t+ t0√

ε

) ∫ k2(ω0+
√
εh)

ξ
ei
√
γ(−LS+L

ε )

× φγ(ω0 +
√
εh, x0)φγ(ω0 +

√
εh, x)dγdh.

First of all, let us remark that by integration by parts we get p2,ξ,ε
tr,hom(t0, t, x, L) = O(ε)

uniformly in t, and uniformly in x on each bounded subset of [0,+∞). Consequently, the
amplitude of the radiating part of the wave is very small. This amplitude is smaller than
the error obtained when we make the approximation ω0 +

√
εh → ω0 for the propagating

part p1,ξ,ε
tr,hom of the transmitted wave, and smaller than the error produced by the diffusion

approximation, which are of order O(
√
ε).

The propagating part p1,ξ,ε
tr,hom can be treated in the same way as in [25, Chapter 20]. Let

us remark that the coefficients βj(ω) are smooth in ω. This fact can be shown by using the
implicit function theorem on (2.9) page 36. Consequently, we can consider the following
expansion

βj(ω0 +
√
εh) = βj(ω0) +

√
εhβ′j(ω0) + ε

h2

2
β′′j (ω0) +O(ε3/2). (3.14)

Therefore,

p1,ξ,ε
tr,hom(t0, t, x, L) = 1

2

N(ω0)∑
j=1

eiβj(ω0)(−LS+L
ε )φj(ω0, x0)φj(ω0, x)

× 1
2π

∫
f̂(h)e

ih

(
β′
j

(ω0)L−t0
√
ε

−t
)
eiβ
′′
j (ω0)Lh

2
2 dh

+O(
√
ε),

and because of the fast phase ei
β′
j

(ω0)L−t0
√
ε

h, we have for any ξ > 0

lim
ε→0

e
iω0

(
tj
ε

+ t√
ε

)
e−iβj(ω0)(−LS+L

ε )pξ,εtr,hom(tj , t, x, L) = p1,ξ,ε
tr,hom,j(t, x, L).
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Here,
p1,ξ,ε
tr,hom,j(t, x, L) = 1

2
φj(ω0, x)φj(ω0, x0)Kω0

j,L ∗ f(t),

with
tj = β′j(ω0)L and K̂ω0

j,L(ω) = eiβ
′′
j (ω0)Lω

2
2 .

Moreover, ∀t0 6= tj
lim
ε→0

pξ,εtr,hom(t0, t, x, L) = 0.

As a result, the radiating modes play no role on the shape of the transmitted wave for ε� 1.
Consequently, in a homogeneous waveguide, we can observe for ε� 1 a train of separated
waves with arrival times tj , j ∈ {1, . . . , N(ω0)}. The wave with arrival time tj corresponds to
the jth-propagating mode, travels with the group velocity 1/β′j(ω0), and is dispersed by the
convolution kernel Kω0

j,L(t). Moreover, the total energy of the transmitted wave is given by

N(ω0)∑
j=1

∫∫ ∣∣ptr,hom,j(t, x, L)
∣∣2dxdt =

∫
|Kω0

j,L ∗ f(t)|2dt · 1
4

N(ω0)∑
j=1
|φj(ω0, x0)|2

=
∫
|f(t)|2dt · 1

4

N(ω0)∑
j=1
|φj(ω0, x0)|2,

which is not equal to the total energy of the incident pulse. In fact, the total energy of the
incident pulse in the asymptotic ε→ 0 is given by

∫∫
|p0
inc(t, x, 0)|2dxdt =

∫
|f(t)|2dt · 1

4

N(ω0)∑
j=1
|φj(ω0, x0)|2 +

∫ k2(ω0)

ξ
|φγ(ω0, x0)|2

 ,
where p0

inc(t, x, 0) = limε p
ξ,ε
inc(t/

√
ε, x, 0), and therefore, the missing energy was converted

into radiative waves with small amplitudes. As the convergence is obtained in the space of
continuous functions, equipped with the supremum norm over the compact sets, this energy
cannot be detected.

3.3.2 Broadband Pulse in Random Waveguides

Now, we are interested in the transmitted wave through a randomly perturbed waveguide.
First, let us investigate the radiating part p2,ξ,ε

tr of the transmitted wave. Using the perturbed-
test-function method we get

E
[
p2,ξ,ε
tr (t0, t, x, L)

]
= p2,ξ,ε

tr,hom(t0, t, x, L) +O(
√
ε).

Then, p2,ξ,ε
tr,hom(t0, t, x, L) is an approximation of the mean transmitted wave E

[
p2,ξ,ε
tr (t0, t, x, L)

]
,

but we know that p2,ξ,ε
tr,hom(t0, t, x, L)=O(ε). Consequently, the amplitude of the radiating part

of the transmitted wave is very small and it does not play any role in the pulse propagation.
Now, let us consider

e−iβj(ω0)(−LS+L
ε )p1,ξ,ε

tr (tj , t, x, L) = pξ,εtr,j(t, x, L),

which is the transmitted wave observed in a time window of order 1/
√
ε, which is comparable

to the pulse width, and centered at time tj/ε, which is of the order the travel time for a
distance of order 1/ε. Let us note that tj = β′j(ω0)L is the arrival time for the jth modal
wave in the homogeneous case.

According to the analysis developed in [17] and [25, Chapter 20] for instance, we can state
the following proposition.
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Proposition 3.1 The jth-transmitted wave, observed around time tj, pξ,εtr,j(t, x, L) converges
in distribution as ε→ 0 and as a continuous process in the three variables (t, x, L) to

pξtr,j(t, x, L) = 1
2
φj(ω0, x)φj(ω0, x0)eiW

j
LK̃ω0,ξ

j,L ∗ f(t),

where
̂̃
Kω0,ξ
j,L (ω) = e

1
2

(
Γcjj(ω0)+iΓsjj(ω0)−Λc,ξj (ω0)−iΛs,ξj (ω0)

)
L+iβ′′j (ω0)ω2 L

2 ,

and (W j)j is a N(ω0)-dimensional Brownian motion with covariance matrix Γ1(ω0). Moreover,
pξtr,j(t, x, L) converges almost surely and uniformly in (t, x, L) as ξ → 0 to

ptr,j(t, x, L) = 1
2
φj(ω0, x)φj(ω0, x0)eiW

j
LK̃ω0

j,L ∗ f(t),

where ̂̃Kω0
j,L(ω) = e

1
2(Γcjj(ω0)+iΓsjj(ω0)−Λcj(ω0)−iΛsj(ω0))L+iβ′′j (ω0)ω2 L

2 .

Here, Γcjj(ω0), Γsjj(ω0), Λc,ξ(ω0), Λs,ξj (ω0), Λc(ω0), and Λsj(ω0) are defined in Section 2.4.1.

As in [25, Chpater 20], it possible to observe coherent transmitted waves only around
times tj , j ∈ {1, . . . , N(ω0)}. The transmitted wave is composed of a sequence of transmitted
waves which are separated from each other. Each pulse corresponds to a single mode.
∀j ∈ {1, . . . , N(ω0)}, the jth modal wave travels with the group velocity 1/β′j(ω0). This result
means that we have stabilization of the transmitted wave up to a random phase; that is one
can observe deterministic intensity around the arrival times t0 = tj ∀j ∈ {1, . . . , N(ω0)}. The
random phase is characterized in terms of a Brownian motion. The pulse intensities decrease
exponentially with the propagation distance and the pulse spreads dispersively through K̃ω0

j,L.
Moreover, there is no diffusion for the deterministic pulse profile.

Consequently, the coherent waves are given by

E
[
ptr,j(t, x, L)

]
= 1

2
φj(ω0, x)φj(ω0, x0)e−Γ1

jj(ω0)L2 K̃ω0
j,L ∗ f(t),

where e−Γ1
jj(ω0)L2 is given by the averaging of the random phase. Moreover, the intensity of

each coherent wave observed around times tj is deterministic and given by

E
[ ∫∫

|ptr,j(t, x, L)|2dxdt
]

=
∫
|f(t)|2dt · 1

4
e(Γ

c
jj(ω0)−Λcj(ω0))L|φj(ω0, x0)|2,

where the damping term e(Γ
c
jj(ω0)−Λcj(ω0))L is responsible for a mode-dependent attenuation.

We refer to Section 2.4.2 for a discussion about the nonnegativity of Γcjj(ω0) and Λcj(ω0).

3.3.3 Incoherent Fluctuations in the Broadband Case

We have seen that one can observe coherent waves with deterministic intensity only around
the times tj = β′j(ω0)L, j ∈ {1, . . . , N(ω0)}. In this section we study the transmitted wave at
time t0 6= tj ∀j ∈ {1, . . . , N(ω0)}. This analysis has already been carried out in [25, Chapter
20] in the case of waveguides with bounded cross-section. We observe the mean transmitted
intensity in a time window of order 1/

√
ε, which is of the order of the pulse width, and

centered at time t0/ε, which is of the order of the travel time for a distance of order 1/ε. The
mean transmitted intensity is given by∣∣pξ,εtr (t0, t, x, L)

∣∣2 = 1
16π2

∫∫
f̂(h)f̂(h′)e−i(h−h

′)
(
t+ t0√

ε

)
×
〈
Tξ,ε(ω0 +

√
εh)(ã(ω0 +

√
εh)), λεx(ω0 +

√
εh)
〉
Hω0+

√
εh

ξ

×
〈
Tξ,ε(ω0 +

√
εh′)(ã(ω0 +

√
εh′)), λεx(ω0 +

√
εh′)

〉
Hω0+

√
εh′

ξ

dhdh′,
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where

λεx,j(ω) = 1√
βj(ω)

φj(ω, x)e−iβj(ω)L
ε and λεx,γ(ω) = 1

γ1/4φγ(ω, x)e
−i√γ L

ε

in Hωξ . The expansion (3.14) gives us terms of the form e
i√
ε
(β′j(ω0)L−t0)(h−h′), and then we

make the change of variable h′ = h−
√
εs. These terms mean that the coherent field can be

observed only around the times tj , j ∈ {1, . . . , N(ω)}. Therefore,

∣∣pξ,εtr (t0, t, x, L)
∣∣2 =

√
ε

16π2

∫∫
f̂(h)f̂(h−

√
εs)e−i

√
εs
(
t+ t0√

ε

)
×
〈
Tξ,ε(ω0 +

√
εh)(ã(ω0 +

√
εh)), λεx(ω0 +

√
εh)
〉
Hω0+

√
εh

ξ

×
〈
Tξ,ε(ω0 +

√
εh− εs)(ã(ω0 +

√
εh− εs)), λεx(ω0 +

√
εh− εs)

〉
Hω0+

√
εh−εs

ξ

dhds.

One can remark that in the asymptotic ε→ 0 the mean transmitted intensity does not depend
on t anymore, which means that the transmitted intensity becomes locally stationary.

Following [25, Chapter 20], in order to analyze the incoherent fluctuations we need to
study the statistics, as ε → 0 and ξ → 0, of the the product of two transfer operators
Tξ,ε(ω + εs)⊗Tξ,ε(ω) at two nearby frequencies. In the following proposition we summarize
the results that we need in this section. Following [50], it is possible to show a functional
limit theorem for the process Vξ,ε(ω, s) = Tξ,ε(ω + εs) ⊗ Tξ,ε(ω) with values in a space of
distributions. Vξ,ε represents the product of two transfer operators at two nearby frequencies,
and where ⊗ is defined by ∀(λ, µ) ∈ Hωξ ×H

ω+εs
ξ ,

(λ⊗ µ)rs = λrµs

for (r, s) ∈
(
{1, . . . , N(ω)} ∪ (ξ, k2(ω))

)
×
(
{1, . . . , N(ω+εs)} ∪ (ξ, k2(ω + εs))

)
, and

Hωξ ⊗Hω+εs
ξ =

{
λ⊗ µ, (λ, µ) ∈ Hωξ ×Hω+εs

ξ

}
.

Proposition 3.2 ∀(y1, y2) ∈ Hωξ ×H
ω+hc
ξ and ∀λ ∈ Hωξ ⊗H

ω+hc
ξ , the autocorrelation function

of the transfer operator at two nearby frequencies as ε→ 0 is given by

lim
ε→0

〈
Vξ,ε(ω, s, L)(y1, y2), λ

〉
Hω
ξ
⊗Hω+εs

ξ

=
N(ω)∑
j,l=1
Ŵξ,l
j (ω, s, L)e−isβ

′
j(ω)Ly1

l y
2
l λjj +

N(ω)∑
j,m=1
j 6=m

eQ
ξ
jm(ω)Ly1

j y
2
mλjm

+
N(ω)∑
j=1

∫ k2(ω)

ξ
e

1
2 (Γcjj(ω)−Γ1

jj(ω)−Λc,ξj (ω))L− i
2 (Γsjj(ω)−Λs,ξj (ω))Ly1

j y
2
γ′λjγ′dγ

′

+
∫ k2(ω)

ξ

N(ω)∑
m=1

e
1
2 (Γcmm(ω)−Γ1

mm(ω)−Λc,ξm (ω))L+ i
2 (Γsmm(ω)−Λs,ξm (ω))Ly1

γy
2
mλγmdγ

+
∫ k2(ω)

ξ

∫ k2(ω)

ξ
y1
γy

2
γ′λγγ′dγdγ

′.

Here,

Qξjm(ω) =1
2
[
Γcjj(ω) + Γcmm(ω)− (Γ1

jj(ω) + Γ1
mm(ω)− 2Γ1

jm(ω))− (Λc,ξj (ω) + Λc,ξm (ω))
]

+ i

2
[
Γsmm(ω)− Γsjj(ω)− (Λs,ξm (ω)− Λs,ξj (ω))

]
,
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and Ŵξ,l
j (ω, s, L) stands for the Fourier transform of the distribution Wξ,l(ω, ., z) which

satisfies the system of transport equations

∂

∂z
Wξ,l
j (ω, r, z)+β′j(ω) ∂

∂r
Wξ,l
j (ω, r, z)

= −Λc,ξj (ω)Wξ,l
j (ω, r, z) +

N(ω)∑
n=1

Γcnj(ω)
(
Wξ,l
n (ω, r, z)−Wξ,l

j (ω, r, z)
)
,

with initial conditions Wξ,l
j (ω, ., 0) = δ(.)δjl. Here, Γcjj(ω0), Γsjj(ω0), Λc,ξ(ω0), Λs,ξj (ω0),

Λc(ω0), and Λsj(ω0) are defined in Section 2.4.1.

Let us note that the matrix Qξ(ω) has coefficients with negative real part and Wξ,l
j (ω, r, z)

are measures. The system of transport equations, for a waveguide with bounded cross-section
and without radiation losses, has been already obtained in [30]. In our context, the system of
coupled transport equations takes into account the radiative loss. The system of transport
equations describes the coupling between the N(ω)-propagating modes. These equations are
a generalization of the coupled power equations affected by the modal dispersion. In other
words it is a space and time version of the coupled power equations with transport velocity
equal to the group velocity 1/β′j(ω) for the jth mode.

Following Section 20.6.2 in [25, Chapter 20], we introduce a probabilistic representation
of the system of coupled transport equations. Let

(
Y
N(ω)
t

)
t≥0 be a jump Markov process

with state space {1, . . . , N(ω)} and intensity matrix Γc(ω). Then, ∀ϕ ∈ S, where S is the
set of infinitely differentiable functions which are rapidly decreasing at infinity, we have the
probabilistic representation

Wξ,l
j (ω,L)(ϕ) = E

[
e
−
∫ L

0 Λc,ξ
Y
N(ω)
v

(ω)dv
ϕ
( ∫ L

0
β′
Y
N(ω)
v

(ω)dv
)
1(Y N(ω)

L =l)
∣∣Y N(ω)

0 = j
]
.

Consequently, limξ→0Wξ,l
j (ω,L)(ϕ) = W̃ϕ,l(ω, j, 0, L), where

W̃ϕ,l(ω, j, r, L) = E
[
e
−
∫ L

0 Λc
Y
N(ω)
v

(ω)dv
ϕ
(
r +

∫ L

0
β′
Y
N(ω)
v

(ω)dv
)
1(Y N(ω)

L =l)
∣∣Y N(ω)

0 = j
]

and statisfies the system of transport equations

∂

∂z
W̃ l
j(ω, r, z) =− Λcj(ω)W̃ l

j(ω, r, z)

+ β′j(ω) ∂
∂r
W̃ l
j(ω, r, z) +

N(ω)∑
n=1

Γcnj(ω)
(
W̃ l
n(ω, r, z)− W̃ l

j(ω, r, z)
)
,

with initial conditions W̃ l
j(ω, r, 0) = ϕ(r)δjl. Decomposing with respect to the first jump of(

Y
N(ω)
t

)
t≥0, we have

W l
j(ω, r, L) = δjle

(Γcjj(ω)−Λcj(ω))Lδ(r − β′j(ω)L) +W l
j,c(ω, r, L)dr.

Consequently, if j 6= l, W l
j(ω, ., L) has a density with respect to the Lebesgue measure, and

W l
l (ω, ., L) is a sum of a Dirac mass at β′j(ω)L and a density with respect to the Lebesgue

measure. As a result, the following proposition describes the asymptotic mean transmitted
intensity.
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Proposition 3.3

lim
ξ→0

lim
ε→0

1√
ε
E
[∣∣pξ,εtr (t0, t, x, L)

∣∣2] = 1
2π

∫
|f̂(h)|2dh · pinctr (t0, x, L),

where the limits hold in S ′ with respect to t0, and

pinctr (t0, x, L) =1
4

N(ω0)∑
j=1

φ2
j (ω0, x)φ2

j (ω0, x0)e(Γ
c
jj(ω)−Λcj(ω))Lδ(t0 − β′j(ω)L)

+ 1
4

N(ω0)∑
j,l=1

βl(ω0)
βj(ω0)

φ2
j (ω0, x)φ2

l (ω0, x0)W l
j,c(ω0, t0, L).

This result means that the transmitted wave has also an incoherent part whose typical
amplitude is of order ε1/4.

Proof We have∫ ∣∣pξ,εtr (t0, t, x, L)
∣∣2ϕ(t0)dt0 =

√
ε

8π

∫∫
f̂(h)f̂(h−

√
εs)ϕ̂(s)

×
〈
Tξ,ε(ω0 +

√
εh)(ã(ω0 +

√
εh)), λεx(ω0 +

√
εh)
〉
Hω0+

√
εh

ξ

×
〈
Tξ,ε(ω0 +

√
εh− εs)(ã(ω0 +

√
εh− εs)), λεx(ω0 +

√
εh− εs)

〉
Hω0+

√
εh−εs

ξ

dhds

+O(
√
ε).

Using the perturbed-test-function method and after a computation, we get∫∫
f̂(h)f̂(h−

√
εs)ϕ̂(s)

× E
[〈

Vξ,ε(ω0 +
√
εh, s, L)

(
ã(ω0 +

√
εh), ã(ω0 +

√
εh− εs)

)
,

λεx(ω0 +
√
εh)⊗ λεx(ω0 +

√
εh− εs)

〉
Hω0+

√
εh

ξ
⊗Hω0+

√
εh−εs

ξ

]
dhds

=
∫∫

f̂(h)f̂(h−
√
εs)ϕ̂(s)E

[〈
Vξ(ω0, s, L)

(
ã(ω0), ã(ω0)

)
, λ̃εx(h, s, ω0)

〉
Hω0
ξ
⊗Hω0

ξ

]
dhds

+O(
√
ε),

with

E
[〈

Vξ(ω0, s, L)
(
ã(ω0), ã(ω0)

)
, λ̃εx(h, s, ω0)

〉
Hω0
ξ
⊗Hω0

ξ

]
=

N(ω0)∑
j,m=1

E
[
Vξ
jm(ω0, s, L)

(
ã(ω0), ã(ω0)

)]
λ̃εx,mj(h, s, ω0)

+
N(ω0)∑
j=1

∫ k2(ω0)

ξ
e

1
2 (Γcjj(ω0)−Γ1

jj(ω0)−Λc,ξj (ω0))L− i
2 (Γsjj(ω0)−Λs,ξj (ω0))Lφj(ω0, x0)φj(ω0, x)

× φγ(ω0, x0)φγ(ω0, x)ei(
√
γ−βj(ω0))

(
−LS+L

ε

)
e
−ihβ′j(ω0) L√

ε e−i
h2
2 β
′′
j (ω0)Ldγ

+
∫ k2(ω0)

ξ

N(ω0)∑
m=1

e
1
2 (Γcmm(ω0)−Γ1

mm(ω0)−Λc,ξm (ω0))L+ i
2 (Γsmm(ω0)−Λs,ξm (ω0))Lφm(ω0, x0)φm(ω0, x)

× φγ′(ω0, x0)φγ′(ω0, x)ei(βm(ω0)−
√
γ′)
(
−LS+L

ε

)
e
ihβ′m(ω0) L√

ε ei
h2
2 β
′′
m(ω0)Ldγ′

+
∫ k2(ω0)

ξ

∫ k2(ω0)

ξ
φγ′(ω0, x0)φγ′(ω0, x)φγ(ω0, x0)φγ(ω0, x)ei(

√
γ−
√
γ′)
(
−LS+L

ε

)
dγdγ′,
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and

λ̃εx,mj(h, s, ω) =φj(ω0, x)φm(ω0, x)√
βj(ω0)βm(ω0)

ei(βm(ω0)−βj(ω0))L
ε e
i(β′m(ω0)−β′j(ω0))L h√

ε

× ei(β
′′
m(ω0)−β′′j (ω0))Lh

2
2 eisβ

′
m(ω0)L.

Let us remark that the three last terms on the right side are O(ε) because they have a term
of the form

∫ k2(ω)
ξ φγ(ω, x0)φγ(ω, x)ei

√
γ L
ε = O(ε). Here,

E
[
Vξ
jm(ω0, s, L)

(
ã(ω0), ã(ω0)

)]
= eQjm(ω0)Lãj(ω0)ãm(ω0) if j 6= m,

and

E
[
Vξ
jm(ω0, s, L)

(
ã(ω0), ã(ω0)

)]
=

N(ω0)∑
l=1
Ŵξ,l
j (ω0, s, L)e−isβ

′
j(ω0)L|ãl(ω0)|2 if m = j.

However, because of the fast phase ei(β
′
m(ω0)−β′j(ω0))L h√

ε , in the asymptotic ε→ 0 we have only
terms which correspond to the case m = j. Consequently,

lim
ε→0

1√
ε

∫
E
[∣∣pξ,εtr (t0, t, x, L)

∣∣2]ϕ(t0)dt0 = 1
8π

∫
|f̂(h)|2dh ·

N(ω0)∑
j,l=1

βl(ω0)
βj(ω0)

φ2
j (ω0, x)φ2

l (ω0, x0)

×Wξ,l
j (ω0, L)(ϕ).

�

Now, we study pinctr (t0, x, L) in the asymptotic L� 1. In order to do that let us rescale
the propagation distance using a small parameter τ � 1, that is we consider L/τ . Then, we
have

lim
ξ→0

lim
ε→0

1
τ
√
ε

∫
E
[∣∣∣pξ,εtr ( t0τ , t, x, Lτ

)∣∣∣2]ϕ(t0)dt0 = 1
2π

∫
|f̂(h)|2dh · pinc,τtr (x, L)(ϕ)

where

pinc,τtr (x, L)(ϕ) = 1
4

N(ω0)∑
j,l=1

βl(ω0)
βj(ω0)

φ2
j (ω0, x)φ2

l (ω0, x0)

× E
[
e
−
∫ L/τ

0 Λc
Y
N(ω)
v

(ω)dv
ϕ
(
τ

∫ L/τ

0
β′
Y
N(ω)
v

(ω)dv
)
1(Y N(ω)

L =l)
∣∣Y N(ω)

0 = j
]
.

Consequently, according to Theorem 2.3 page 54, limτ→0 p
inc,τ
tr (t0, x, L) = 0, because of the

radiation losses. Then, we rescale the modal radiative damping rates, and let us consider
τΛc(ω0).

Proposition 3.4 Let us assume that the radiation losses are given by τΛc(ω0). Then,

lim
τ→0

pinc,τtr (t0, x, L) = e−Λ(ω0)LHx0(ω0, x)δ(t0 − β′(ω0)L)

where the limit holds in S ′ with respect to t0. Here, the transverse profile is given by

Hx0(ω0, x) = 1
4N(ω0)

N(ω0)∑
j,l=1

βl(ω0)φ2
l (ω0, x0)

N(ω0)∑
j=1

1
βj(ω0)

φ2
j (ω0, x).
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This result means that the effective velocity of the incoherent wave fluctuations is the harmonic
average of the modal group velocities 1/β′(ω0), with

β′(ω0) = 1
N(ω0)

N(ω0)∑
j=1

β′j(ω0),

and the effective radiative damping rate is the arithmetic average of the modal radiative
damping rates

Λ(ω0) = 1
N(ω0)

N(ω0)∑
j=1

Λcj(ω0).

Proposition 3.4 is a consequence of the ergodic theorem for
(
Y
N(ω)
t

)
t≥0. In [25, Chapter

20], the authors show, in the continuum limit N(ω0) � 1, that the mean intensity of the
small fluctuations becomes uniform over the bounded cross-section of their waveguide model.
Moreover, the spatial extent of the autocorrelation function of the small fluctuations is of order
the wavelength, in the continuum limit N(ω0)� 1 which corresponds to the high-frequency
regime ω0 ↗ +∞. In the following proposition, we study the transverse profile of the mean
transmitted energy of the small incoherent fluctuations in a window of order the carrier
wavelength λoc = 2πc

n1ω0
, in the ocean section [0, d] and centered at any point x ∈ [0, d].

Proposition 3.5 In the high-frequency regime the transverse profile is given, ∀x ∈ [0, d] and
∀x̃ ∈ R, by

lim
ω0→+∞

λocHx0(ω0, x+ λocx̃) = 1
4θd

arcsin(θ)
[π
2
− arccos(θ) + 1

2
sin(2 arccos(θ))

]
.

Here, θ =
√

1− 1/n2
1, λoc = 2πc

n1ω0
is the carrier wavelength in the ocean section [0, d] of the

waveguide.

In summary, from Proposition 3.4, at time t0 = β′(ω0)L one can observe exponentially
damped small fluctuations for large propagation distance and small radiation losses. Moreover,
the arrival time β′(ω0)L, of the incoherent fluctuations, takes a simple form in the high-
frequency regime:

lim
ω0→+∞

β′(ω0) = n1
c

∫ 1

0

1√
1− θ2s2

ds = n1
c

arcsin(θ)
θ

.

From Proposition 3.5, we can see that the mean intensity of the small fluctuations becomes
uniform over the ocean cross-section [0, d] of the waveguide, in the high frequency regime or
in the limit of a large number of propagating modes N(ω0)� 1.

3.4 Time Reversal in a Waveguide
Time-reversal experiments with sonar in shallow water [40, 57] were carried out by William
Kuperman and his group in San Diego. This experiment is carried out in two steps. In the
first step (see Figure 3.2 (a)), a source sends a pulse into the medium. The wave propagates
and is recorded by a device called a time-reversal mirror. A time-reversal mirror is a device
that can receive a signal, record it, and resend it time-reversed into the medium. In other
words, what is recorded first is send out last. In the second step (see Figure 3.2 (b)), the wave
emitted by the time-reversal mirror has the property of refocusing near the original source
location, and it has been observed that random inhomogeneities enhance refocusing [19, 22].
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Time−reversal
Source

Ocean

Bottom

mirror
Time−reversal

Source
Ocean

Bottom

mirror

(a) (b)

Figure 3.2: Representation of the time-reversal experiment. In (a) we represent the first step
of the experiment, and in (b) we represent the second step of the experiment.

This experiment has already been analyzed in waveguides with bounded cross-section in [25,
Chapter 20] and [30].

However, the properties of the fluctuations of the medium may have changed between the
two steps of the experiment. That is why we distinguish, in what follows, the two steps of the
experiment by using the indices 1 and 2. The influence on the time-reversal experiment of
time-dependent random media is carried out in [3] for one-dimensional environments, and
in [11] for three-dimensional environments with the parabolic approximation of the wave
equation. In order to characterize the two realizations of the medium parameters for the two
steps of the experiment, let us introduce

(
(V 1(x, t), V 2(x, t)), x ∈ [0, d], t ≥ 0

)
a continuous

real-valued zero-mean Gaussian field with a covariance function given by

E
[
V j(x, t)V j(y, s)

]
= γ0(x, y)e−a|t−s| and E

[
V j(x, t)V l(y, s)

]
= γ̃0(x, y)e−a|t−s|

for (j, l) ∈ {1, 2}2 and j 6= l. Here a > 0, γ0 and γ̃0 are Lipschitz functions from [0, d] ×
[0, d] to R, which are kernels of nonnegative operators Qγ0 and Qγ̃0 . As in Section 2.6.1,
(V 1(., t), V 2(., t))t≥0 can be consider as a process with values in L2(0, d)× L2(0, d), and we
have the following results. Let

Ft = σ
(
(V 1(., s), V 2(., s)), s ≤ t

)
be the σ-algebra generated by

(
(V 1(., s), V 2(., s)), s ≤ t

)
. We have the Markov property(

(V 1(., t+ h),V 2(., t+ h)),
∣∣∣Ft)

=
(
(V 1(., t+ h), V 2(., t+ h)),

∣∣∣σ(V 1(., t), V 2(., t)
))
,

where the equality holds in law, and this law is the one of a Gaussian field with mean

E
[
V j(., t+ h)|Ft

]
= e−ahV j(., t),

and with covariances for (j, l) ∈ {1, 2}2 and j 6= l,

E
[
V j
ϕ (t+ h)V j

ψ(t+ h)−E
[
V j
ϕ (t+ h)|Ft

]
E
[
V j
ψ(t+ h)|Ft

]
|Ft
]
=
〈
Qγ0(ϕ), ψ

〉
L2(0,d)

(
1− e−2ah

)
E
[
V j
ϕ (t+ h)V l

ψ(t+ h)−E
[
V j
ϕ (t+ h)|Ft

]
E
[
V l
ψ(t+ h)|Ft

]
|Ft
]
=
〈
Qγ̃0(ϕ), ψ

〉
L2(0,d)

(
1− e−2ah

)
∀(ϕ,ψ) ∈ L2(0, d)2. Moreover, we also have the following two properties: ∀T > 0, ∀K > 0
and ∀µ > 0

lim
ε→0

P
(
εµ sup

z∈[0,T ]
sup
x∈[0,d]

∣∣∣∣V 1
(
x,
z

ε

)∣∣∣∣+ ∣∣∣∣V 2
(
x,
z

ε

)∣∣∣∣ ≥ K) = 0.
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Figure 3.3: Representation of the first step of the time-reversal experiment.

∀n ∈ N∗ and ∀z ≥ 0,

E
[( ∫ d

0
|V 1(x, z)|2dx

)n
+
( ∫ d

0
|V 2(x, z)|2dx

)n]
= E

[( ∫ d

0
|V 1(x, 0)|2

)n
+
( ∫ d

0
|V 2(x, 0)|2

)n]
< +∞.

We recall that the process (V 1, V 2) is unbounded and this fact implies that the bulk modulus
can take negative values. However, as in Chapter 2, this situation can be avoided since

lim
ε→0

P
(
∃j ∈ {1, 2}, ∃(x, z) ∈ [0, d]× [0, L/ε] : n1 +

√
εV j(x, z) ≤ 0

)
≤ lim

ε→0
P
(
√
ε sup
z∈[0,L]

sup
x∈[0,d]

∣∣∣∣V 1
(
x,
z

ε

)∣∣∣∣+ ∣∣∣∣V 2
(
x,
z

ε

)∣∣∣∣ ≥ n1

)
= 0.

3.4.1 First Step of the Experiment

In the first step of the experiment (see Figure 3.3), a source sends a pulse into the medium,
the wave propagates and is recorded by the time-reversal mirror located in the plane z = L/ε.
We assume that the time-reversal mirror occupies the transverse subdomain DM ⊂ [0, d] and
in the first step of the experiment the time-reversal mirror plays the role of a receiving array.
The transmitted wave is recorded for a time interval

[ t0
ε ,

t1
ε

]
and is re-emitted time-reversed

into the waveguide toward the source. We have chosen such a time window because it is of
the order of the total travel time of the section [0, L/ε].

According to the previous section, the wave recorded by the time-revesal mirror is given
by

ptr

(
t, x,

L

ε

)
= 1

4π
√
ε

∫
f̂

(
ω − ω0√

ε

)

×

N(ω)∑
j=1

1√
βj(ω)

T1,ξ,ε
j (ω,L)(ã(ω))φj(ω, x)eiβj(ω)L

ε e−iωt

+
∫ k2(ω)

ξ

1
γ1/4 T1,ξ,ε

γ (ω,L)(ã(ω))φγ(ω, x)ei
√
γ L
ε dγe−iωt

]
dω,

where T1,ξ,ε(ω,L) is the transfer operator associated to V 1 during the first step of the
experiment.
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Figure 3.4: Representation of the second step of the time-reversal experiment.

3.4.2 Second Step of the Experiment

In the second step of the experiment (see Figure 3.4), the time-reversal mirror plays the role
of a source array, and the time-reversed signal is transmitted back. Now, the source term is
given by

Fε
TR(t, x, z) = −f εTR(t, x)δ(z − L/ε)ez,

with
f εTR(t, x) = pεtr

(
t1
ε
− t, x, LM

ε

)
G1(t1 − εt)G2(x),

where
G1(t) = 1[t0,t1](t) and G2(x) = 1DM (x).

Here, G1 represents the time window in which the transmitted wave is recorded, and G2
represents the spatial window in which the transmitted wave is recorded. In our study of this
experiment, we are interested in the spatial effects of the refocusing, so we assume that we
record the field for all time at the time-reversal mirror, that is the source has the form

f εTR(t, x) = ptr

(
t1
ε
− t, x, L

ε

)
G2(x). (3.15)

Now, we are interested in the propagation from z = L/ε to z = 0. The decomposition with
respect to the resolution of the identity Πω associated to R(ω) (see Section 2.2.1) gives

p̂TR(ω, x, z) =
N(ω)∑
m=1

b̂2m(ω, z)√
βm(ω)

e−iβm(ω)zφm(ω, x) +
∫ k2(ω)

ξ

b̂2γ(ω, z)
γ1/4 e−i

√
γzφγ(ω, x)dγ,

with

b̂2m(ω,L) =
√
βm(ω)
2

eiβm(ω)L
ε
〈
f̂ εTR(ω, .), φm(ω, .)

〉
H
,

b̂2γ(ω,L) = γ1/4

2
ei
√
γ L
ε
〈
f̂ εTR(ω, .), φγ(ω, .)

〉
H

in Hωξ . Then, at the source location z = LS , we get

p̂TR(ω, x, LS) =
N(ω)∑
n=1

b̂2n(ω, 0)√
βn(ω)

eiβn(ω)LSφn(ω, x) +
∫ k2(ω)

ξ

b̂2γ(ω, 0)
γ1/4 ei

√
γLSφγ(ω, x)dγ.
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We recall that the transfer operator T2,ξ,ε(ω, z) associated to V 2 is unitary, and therefore

b̂2(ω, 0) =
(
T2,ξ,ε)∗(ω,L)

(
b̂2(ω,L)

)
,

where
(
T2,ξ,ε)∗(ω, z) stands for the adjoint operator of T2,ξ,ε(ω, z). Consequently,

p̂TR(ω, x, LS) =
N(ω)∑
n=1

1√
βn(ω)

(
T2,ξ,ε)∗

n
(ω,L)

(
b̂2(ω,L)

)
e−iβn(ω)LSφn(ω, x)

+
∫ k2(ω)

ξ

1
γ1/4

(
T2,ξ,ε)∗

γ
(ω,L)

(
b̂2(ω,L)

)
e−i
√
γLSφγ(ω, x)dγ

=
〈
b̃x(ω), (T2,ξ,ε)∗(ω,L)(b̂2(ω,L))

〉
Hω
ξ

=
〈
T2,ξ,ε(ω,L)(b̃x(ω)), b̂2(ω,L)

〉
Hω
ξ
,

where

b̃x,n(ω) = 1√
βn(ω)

φn(ω, x)e−iβn(ω)LS and b̃x,γ(ω) = 1
γ1/4φγ(ω, x)e

−i√γLS (3.16)

in Hωξ . Moreover, one can write

b̂2m(ω,L) = 1
4
√
ε
f̂

(
ω − ω0√

ε

)
eiωt1

〈
T1,ξ,ε(ω,L)(ã(ω)), λεm(ω)

〉
Hω
ξ
,

b̂2γ(ω,L) = 1
4
√
ε
f̂

(
ω − ω0√

ε

)
eiωt1

〈
T1,ξ,ε(ω,L)(ã(ω)), λεγ(ω)

〉
Hω
ξ
,

in Hωξ , where λε(ω) is defined by

λε(ω)mj =
√
βm(ω)
βj(ω)

e−i(βm(ω)−βj(ω))L
εMmj(ω),

λε(ω)mγ′ =
√
βm(ω)√

γ′
e−i(βm(ω)−

√
γ′)L

εMmγ′(ω),

λε(ω)γj =
√ √

γ

βj(ω)
e−i(

√
γ−βj(ω))L

εMγj(ω),

λε(ω)γγ′ =
γ1/4

γ′1/4
e−i(

√
γ−
√
γ′)L

εMγγ′(ω),

(3.17)

with
Mrs(ω) =

∫ d

0
G2(x)φr(ω, x)φs(ω, x)dx

for (r, s) ∈
(
{1, . . . , N(ω)} ∪ (ξ, k2(ω))

)2. (Mrs(ω)) represents the coupling produced by the
time-reversal mirror between the modes during the two steps of the time-reversal experiment.
Therefore,

p̂TR(ω, x, LS) = 1
4
√
ε
f̂

(
ω − ω0√

ε

)
eiωt1

〈
Uξ,ε(ω,L)

(
ã(ω), b̃x(ω)

)
, λε(ω)

〉
Hω
ξ
⊗Hω

ξ
.

Here, we consider ∀(λ, µ) ∈ (Hωξ )2,

(λ⊗ µ)rs = λrµs
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for (r, s) ∈
(
{1, . . . , N(ω)} ∪ (ξ, k2(ω))

)2, and
Hωξ ⊗Hωξ =

{
λ⊗ µ, (λ, µ) ∈ (Hωξ )2

}
.

We equip Hωξ ⊗Hωξ with the inner product defined by

〈
λ, µ

〉
Hω
ξ
⊗Hω

ξ
=

N(ω)∑
j,l=1

λjlµjl +
N(ω)∑
j=1

∫ k2(ω)

ξ
λjγ′µjγ′dγ

′

+
∫ k2(ω)

ξ

N(ω)∑
l=1

λγlµγldγ +
∫ k2(ω)

ξ

∫ k2(ω)

ξ
λγγ′µγγ′dγdγ

′

∀(λ, µ) ∈ (Hωξ ⊗Hωξ )2, which gives a structure of Hilbert space, and the process Uξ,ε(ω,L) is
defined by

Uξ,ε(ω,L)(y1, y2) = T1,ξ,ε(ω,L)(y1)⊗T2,ξ,ε(ω,L)(y2)

∀(y1, y2) ∈ (Hωξ )2.
We study the refocused wave in a time window of order 1/

√
ε, which is comparable to

the pulse width, and centered at time tobs/ε, which is of the order the total travel time for a
distance of order 1/ε. Finally, the refocused wave at the source location is given by

pTR
( tobs
ε

+ t√
ε
, x, LS

)
= 1

2π

∫
p̂TR(ω, x, LS)e−iωtdω

= 1
8π
√
ε

∫
f̂

(
ω − ω0√

ε

)〈
Uξ,ε(ω,L)

(
ã(ω), b̃x(ω)

)
, λε(ω)

〉
Hω
ξ
⊗Hω

ξ
e
iω

(
t1−tobs

ε
− t√

ε

)
dω,

where ã(ω) is defined by (3.4) and (3.5), b̃x(ω) is defined by (3.16), and λε(ω) is defined by
(3.17).

In what follows, we consider a time-reversal mirror of the form DM = [d1, d2] with

d2 = dM + λαMoc d̃2 and d1 = dM − λαMoc d̃1,

where dM ∈ (0, d), (d̃2, d̃1) ∈ (0,+∞)2, and αM ∈ [0, 1]. Here, λoc = 2πc/(n1ω0) is the carrier
wavelength in the ocean section [0, d] of the waveguide. The time-reversal coupling matrix
are given by

Mjl(ω) = (d2 − d1)Aj(ω)Al(ω)

×
[
cos

(
(σj(ω)− σl(ω))

(
d2 + d1

2d

)
π

)
sinc

(
(σj(ω)− σl(ω))

(
d2 − d1

2d

)
π

)
− cos

(
(σj(ω) + σl(ω))

(
d2 + d1

2d

)
π

)
sinc

(
(σj(ω) + σl(ω))

(
d2 − d1

2d

)
π

)]
,

for (j, l) ∈ {1, . . . , N(ω)}2, where Aj(ω) and σj(ω) are defined in Section 2.2.1. We give only
the coefficients Mjl(ω) for (j, l) ∈ {1, . . . , N(ω)}2, because, in what follows, that is only these
terms which play a role. The parameter αM represents the order of the magnitude of the size
of the time-reversal mirror with respect to the wavelength in the ocean cross-section [0, d]. In
fact, we shall see that the size of the mirror plays a role in the homogeneous case only when
it is of the order the carrier wavelength λoc = 2πc/(n1ω0).

Moreover, we shall study the spatial profile of the refocused wave in the continuum limit
N(ω0)� 1, which corresponds to the high-frequency regime ω0 ↗ +∞. However, we know
that the main focal spot must be of order λoc, which tends to 0 in this continuum limit.
Therefore, we study the spatial profile in a window of size λoc centered around x0.
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3.4.3 Refocused Field in a Homogeneous Waveguide

We study the refocused wave in a time window of order 1/
√
ε, which is comparable to the

pulse width, and centered at time tobs/ε, which is of the order the total travel time for a
distance of order 1/ε. In this section we assume that the medium is homogeneous, that is
T1,ξ,ε(ω,L) = T2,ξ,ε(ω,L) = Id. Then, the refocused wave at the original source location is
given by

pTR
( tobs
ε

+ t√
ε
, x,LS

)
= eiω0

t1−tobs
ε e

−iω0
t√
ε · 1

4

N(ω0)∑
j,m=1

ei(βm(ω0)−βj(ω0))(−LS+L
ε )Mjm(ω0)

× φj(ω0, x0)φm(ω0, x)Kω0
j,m,L ∗ f

(
(β′m(ω0)− β′j(ω0))L+ t1 − tobs√

ε
− t
)

+O(
√
ε),

where
K̂ω0
j,m,L(ω) = K̂ω0

j,L(ω)K̂ω0
m,L(ω) = ei(β

′′
j (ω0)−β′′m(ω0))Lω

2
2 , (3.18)

and Kω0
j,j,L = δ0. Consequently, in the asymptotic ε → 0, we can observe a refocused wave

only for a finite set of times given by

tjm = t1 + (β′m(ω0)− β′j(ω0))L. (3.19)

For m 6= j, we have

pTR
( tjm
ε

+ t√
ε
, x, LS

)
=eiω0

t1−tjm
ε e

−iω0
t√
ε ei(βm(ω0)−βj(ω0))(−LS+L

ε )Mjm(ω0)

× 1
4
φj(ω0, x0)φm(ω0, x)Kω0

j,m,L ∗ f(−t)

+O(
√
ε).

At time tjm (j 6= m) one can observe only one mode. In this expression we observe the
mth mode, emitted by the time-reversal mirror during the second step of the experiment,
which propagates toward the source location. This mode is coupled with the jth modes
recorded by the time-reversal mirror during the first step of the experiment through the
coefficient Mjm(ω0). This coupling is produced by the time-reversal mechanism through the
time-reversal mirror and is characterized by the coupling matrix Mjm(ω0). Moreover, we
can see that the refocused wave shape is dispersed by Kω0

j,L(t) during the first step of the
experiment and by Kω0

m,L(−t) during the second step.
Now, for tobs = t1 we get

pTR
( t1
ε

+ t√
ε
, x, LS

)
= e
−iω0

t√
ε f(−t)HαM

x0 (ω0, x) +O(
√
ε),

where

HαM
x0 (ω0, x) = 1

4

N(ω0)∑
j=1

Mjj(ω0)φj(ω0, x0)φj(ω0, x).

Here, we have a contribution of all the modes. The refocused wave is a superposition of modes
where each mode is coupled with itself by the time-reversal mirror through the terms Mjj(ω0).
Then, we find the time-reversed pulse shape with a transverse profile that we can study in
the high-frequency regime.
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Proposition 3.6 For αM ∈ [0, 1), the transverse profile of the refocused wave in the contin-
uum limit is given by

lim
ω0→+∞

λ1−αM
oc

θ
HαM
x0

(
ω0, x0 + λoc

θ
x̃
)

= d̃2 + d̃1
d

sinc(2πx̃).

The width of the focal spot is given by the diffraction limit λoc/(2θ).

Proof First, we have

d

d̃2 + d̃1

λ1−αM
oc

θ
HαM
x0

(
ω0, x0 + λoc

θ
x̃
)

= λoc
2θ

N−[Nα]∑
j=1

+
N∑

j=N−[Nα]+1

φj(ω0, x0)

φj(ω0, x0 + λocx̃/θ)
A2
jd

2

[
1− cos

(
σj

2dM + λαMoc (d̃2 − d̃1)
d

)
sinc

(
σj
λαMoc (d̃2 + d̃1)

d

)]
,

and the second sum on the right of the previous equality is a O(Nα−1). Moreover,

∣∣∣λoc2θ

N−[Nα]∑
j=1

φj(ω0, x0)φj(ω0, x0 + λocx̃/θ)

×
A2
jd

2
cos

(
σj

2dM + λαMoc (d̃2 − d̃1)
d

)
sinc

(
σj
λαMoc (d̃2 + d̃1)

d

)∣∣∣ ≤ Kλ1−αM
oc ln(N).

Now, for the first sum of the previous equality we have

φj(ω0, x0)φj
(
ω0, x0 + λoc

θ
x̃
)

=
A2
j

2

[
cos

(
σj
λoc
θd
x̃
)
− cos

(
σj

2x0 + λocx̃/θ

d

)]
,

and

cos
(
σj

2x0 + λocx̃/θ

d

)
= cos

(
(σj − jπ)2x0 + λocx̃/θ

d

)
cos

(
jπ

2x0 + λocx̃/θ

d

)
− sin

(
(σj − jπ)2x0 + λocx̃/θ

d

)
sin
(
jπ

2x0 + λocx̃/θ

d

)
.

Then using the Abel transform and Lemma 2.1, we get

λoc
∣∣∣N−[Nα]∑

j=1
cos

(
σj

2x0 + λocx̃/θ

d

)∣∣∣ ≤ KN 1
2−

3
2α.

Let us recall that
sup

j∈{1,...,N−[Nα]}

∣∣∣A2
j −

2
d

∣∣∣ = O(Nα−1),

and then

λocd

8θ

N−[Nα]∑
j=1

A4
j cos

(
σj
λoc
θd
x̃
)

= λoc
2θd

N−[Nα]∑
j=1

cos
(
2 j
N
πx̃
)

+O(Nα−1),

with

lim
ω0→+∞

λoc
2θd

N−[Nα]∑
j=1

cos
(
2 j
N
πx̃
)

=
∫ 1

0
cos(2uπx̃)du = sinc(2πx̃).

That concludes the proof of Proposition 3.6.�
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3.4.4 Limit Theorem

To study the time-reversed field in the case of a random waveguide we need to know the
asymptotic distribution of the process Uξ,ε(ω, .) as ε goes to 0 and ξ goes to 0. Let us remark
that ∀(y1, y2) ∈ (Hωξ )2, with Hωξ = CN(ω) × L2(ξ, k2(ω)),

‖Uξ,ε(ω, z)(y1, y2)‖2Hω
ξ
⊗Hω

ξ
= ‖y1 ⊗ y2‖2Hω

ξ
⊗Hω

ξ
∀z ≥ 0.

Let ry = ‖y1 ⊗ y2‖Hω
ξ
⊗Hω

ξ
,

Bry ,Hωξ⊗Hωξ =
{
λ ∈ Hωξ ⊗Hωξ , ‖λ‖Hωξ⊗Hωξ ≤ ry

}
the closed ball with radius ry, and {gn, n ≥ 1} a dense subset of Bry ,Hωξ⊗Hωξ . We equip
Bry ,Hωξ⊗Hωξ with the distance dBry,Hωξ ⊗Hωξ defined by

dBry,Hωξ ⊗H
ω
ξ
(λ, µ) =

+∞∑
j=1

1
2j

∣∣∣∣〈λ− µ, gn〉Hω
ξ
⊗Hω

ξ

∣∣∣∣
∀(λ, µ) ∈ (Bry ,Hωξ⊗Hωξ )2, and then (BHω

ξ
, dBry,Hωξ ⊗H

ω
ξ
) is a compact metric space.

In the two following theorems, we give only the drifts of the infinitesimal generators
because, in what follows, we shall use only this part.

Theorem 3.3 ∀(y1, y2) ∈ (Hωξ )2, the process Uξ,ε(ω, .)(y1, y2) converge in distribution on
C([0,+∞), (Bry ,Hωξ⊗Hωξ , dBry,Hωξ ⊗Hωξ )) as ε → 0 to a limit denoted by Uξ(ω, .)(y1, y2). This
limit is the unique solution of a martingale problem on Hωξ ⊗Hωξ , starting from y1 ⊗ y2, with
drift given by

Lω1 + Lω2,ξ,

where

Lω1 =
N(ω)∑
j,l=1
j 6=l

Γ̃cjl(ω)
(
Ull∂Ujj + Ull∂Ujj

)

+ 1
2

N(ω)∑
j,l=1

[
Γcjj(ω) + Γcll(ω)−

(
Γ1
jj(ω) + Γ1

ll(ω)− 2Γ̃1
jl(ω)

)](
Ujl∂Ujl + Ujl∂Ujl

)

+ 1
2

N(ω)∑
j=1

∫ k2(ω)

ξ

[
Γcjj(ω)− Γ1

jj(ω)
](
Ujγ2∂Ujγ2

+ Ujγ2∂Ujγ2

)
dγ2

+ 1
2

∫ k2(ω)

ξ

N(ω)∑
l=1

[
Γcll(ω)− Γ1

ll(ω)
](
Uγ1l∂Uγ1l

+ Uγ1l∂Uγ1l

)
dγ1

+ i

2

N(ω)∑
j,l=1

[
Γsll(ω)− Γsjj(ω)

](
Ujl∂Ujl − Ujl∂Ujl

)

− i

2

N(ω)∑
j=1

∫ k2(ω)

ξ
Γsjj(ω)

(
Ujγ2∂Ujγ2

− Ujγ2∂Ujγ2

)
dγ2

+ i

2

∫ k2(ω)

ξ

N(ω)∑
l=1

Γsll(ω)
(
Uγ1l∂Uγ1l

− Uγ1l∂Uγ1l

)
dγ1,
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and

Lω2,ξ =− 1
2

N(ω)∑
j,l=1

[
Λc,ξj (ω) + Λc,ξl (ω)

](
Ujl∂Ujl + Ujl∂Ujl

)

− i

2

N(ω)∑
j,l=1

[
Λs,ξl (ω)− Λs,ξj (ω)

](
Ujl∂Ujl − Ujl∂Ujl

)

− 1
2

N(ω)∑
j=1

∫ k2(ω)

ξ

[
Λc,ξj (ω)− iΛs,ξj (ω)

]
Ujγ2∂Ujγ2

+
[
Λc,ξj (ω) + iΛs,ξj (ω)

]
Ujγ2∂Ujγ2

− 1
2

∫ k2(ω)

ξ

N(ω)∑
l=1

[
Λc,ξl (ω) + iΛs,ξl (ω)

]
Uγ1l∂Uγ1l

+
[
Λc,ξl (ω)− iΛs,ξl (ω)

]
Uγ1l∂Uγ1l

.

Here, we have considered the complex derivative with the following notations. If U =
U1 + iU2 ∈ Hω0 ⊗ Hω0 , we have (U1, U2) ∈ (Gω0 ⊗ Gω0 )2, where Gω0 = RN(ω) × L2(0, k2(ω)).
Then, the operators ∂U = (∂Ur,s) and ∂U = (∂Ur,s) are defined by

∂U = 1
2
(∂U1 − i∂U2) and ∂U = 1

2
(∂U1 + i∂U2),

with ∀f ∈ C1((Gω0 ⊗ Gω0 )2,R) and ∀λ = (λ1, λ2) ∈ (Gω0 ⊗ Gω0 )2

∑
n=1,2

[N(ω)∑
j,l=1

λnjl∂Unjlf(v1, v2) +
N(ω)∑
j=1

∫ k2(ω)

ξ
λnjγ2∂Unjγ2

f(v1, v2)dγ2

+
∫ k2(ω)

ξ

N(ω)∑
l=1

λnγ1l∂Unγ1l
f(v1, v2)dγ1 +

∫ k2(ω)

ξ

∫ k2(ω)

ξ
λnγ1γ2∂Unγ1γ2

f(v1, v2)dγ1dγ2
]

=
∑
n=1,2

〈
λn, ∂Unf(v1, v2)

〉
Gω0 ⊗G

ω
0

= Df(v1, v2)(λ),

which is the differential of f . Moreover, Γc,ξ(ω), Γs,ξ(ω), Γ1,ξ(ω), Λc,ξ(ω), and Λs,ξ(ω) are
defined in Section 2.4.1, and

Γ̃cjl(ω) = k4(ω)
2βj(ω)βl(ω)

∫ +∞

0
E
[
C1
jl(0)C2

jl(z)
]
cos

(
(βl(ω)− βj(ω))z

)
dz,

Γ̃cjj(ω) = −
N(ω)∑
l=1
l 6=j

Γ̃cjl(ω),

Γ̃1
jl(ω) = k4(ω)

2βj(ω)βl(ω)

∫ +∞

0
E
[
C1
jj(0)C2

ll(z)
]
dz, ∀(j, l) ∈

{
1, . . . , N(ω)

}2
.

As in Chapter 2, we can also give the asymptotic distribution of the process Uξ(ω, .) as ξ
goes to 0.

Theorem 3.4 ∀(y1, y2) ∈ (Hω0 )2, the process Uξ(ω, .)(y1, y2) converge in distribution on
C([0,+∞), (Bry ,Hω0⊗Hω0 , dBry,Hω0⊗Hω0 )) as ξ → 0 to a limit denoted by U0(ω, .)(y1, y2). This
limit is the unique solution of the martingale problem on Hω0 ⊗Hω0 , starting from y1 ⊗ y2,
with drift given by

Lω1 + Lω2 ,
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where

Lω2 =− 1
2

N(ω)∑
j,l=1

[
Λcj(ω) + Λcl (ω)

](
Ujl∂Ujl + Ujl∂Ujl

)

− i

2

N(ω)∑
j,l=1

[
Λsl (ω)− Λsj(ω)

](
Ujl∂Ujl − Ujl∂Ujl

)

− 1
2

N(ω)∑
j=1

∫ k2(ω)

ξ

[
Λcj(ω)− iΛsj(ω)

]
Ujγ2∂Ujγ2

+
[
Λcj(ω) + iΛsj(ω)

]
Ujγ2∂Ujγ2

− 1
2

∫ k2(ω)

ξ

N(ω)∑
l=1

[
Λcl (ω) + iΛsl (ω)

]
Uγ1l∂Uγ1l

+
[
Λcl (ω)− iΛsl (ω)

]
Uγ1l∂Uγ1l

.

From Theorems 3.3 and 3.4, we have the following proposition about the autocorrelation
function of the transfer operator for the two steps of the time-reversal experiment.

Proposition 3.7 ∀(y1, y2) ∈ Hωξ ×Hωξ and ∀λ ∈ Hωξ ×Hωξ , the autocorrelation function of
the transfer operator for the two steps of the time-reversal experiment as ε→ 0 is given by

lim
ε→0

E
[〈

Uξ,ε(ω,L)(y1, y2), λ
〉
Hω
ξ
⊗Hω

ξ

]
= E

[〈
Uξ(ω,L)(y1, y2), λ

〉
Hω
ξ
⊗Hω

ξ

]
=

N(ω)∑
j,l=1
T̃ ξ,lj (ω,L)y1

l y
2
l λjj +

N(ω)∑
j,m=1
j 6=m

eQ
ξ
jm(ω)Ly1

j y
2
mλjm

+
N(ω)∑
j=1

∫ k2(ω)

ξ
e

1
2 (Γcjj(ω)−Γ1

jj(ω)−Λc,ξj (ω))L− i
2 (Γsjj(ω)−Λs,ξj (ω))Ly1

j y
2
γ′λjγ′dγ

′

+
∫ k2(ω)

ξ

N(ω)∑
m=1

e
1
2 (Γcmm(ω)−Γ1

mm(ω)−Λc,ξm (ω))L+ i
2 (Γsmm(ω)−Λs,ξm (ω))Ly1

γy
2
mλγmdγ

+
∫ k2(ω)

ξ

∫ k2(ω)

ξ
y1
γy

2
γ′λγγ′dγdγ

′.

Here,

Qξjm(ω) =1
2
[
Γcjj(ω) + Γcmm(ω)− (Γ1

jj(ω) + Γ1
mm(ω)− 2Γ̃1

jl(ω))− (Λc,ξj (ω) + Λc,ξm (ω))
]

+ i

2
[
Γsmm(ω)− Γsjj(ω)− (Λs,ξm (ω)− Λs,ξl (ω))

]
.

and T̃ ξ,lj (ω, z) is the solution of the coupled power equations

d

dz
T̃ ξ,lj (ω, z) =−

[
Λc,ξj (ω) + Γ1

jj(ω)− Γ̃1
jj(ω)− Γcjj(ω) + Γ̃cjj(ω)

]
T̃ ξ,lj (ω, z)

+
N(ω)∑
n=1

Γ̃cnj(ω)
(
T̃ ξ,ln (ω, z)− T̃ ξ,lj (ω, z)

)
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and T̃ ξ,lj (ω, 0) = δjl. Moreover,

lim
ξ→0

E
[〈

Uξ(ω,L)(y1, y2), λ
〉
Hω0⊗H

ω
0

]
= E

[〈
U0(ω,L)(y1, y2), λ

〉
Hω0⊗H

ω
0

]
=

N(ω)∑
j,l=1
T̃ lj (ω,L)y1

l y
2
l λjj +

N(ω)∑
j,m=1
j 6=m

eQjm(ω)Ly1
j y

2
mλjm

+
N(ω)∑
j=1

∫ k2(ω)

ξ
e

1
2 (Γcjj(ω)−Γ1

jj(ω)−Λcj(ω))L− i
2 (Γsjj(ω)−Λsj(ω))Ly1

j y
2
γ′λjγ′dγ

′

+
∫ k2(ω)

ξ

N(ω)∑
m=1

e
1
2 (Γcmm(ω)−Γ1

mm(ω)−Λcm(ω))L+ i
2 (Γsmm(ω)−Λsm(ω))Ly1

γy
2
mλγmdγ

+
∫ k2(ω)

0

∫ k2(ω)

0
y1
γy

2
γ′λγγ′dγdγ

′,

where, Q(ω) = limξ→0Q
ξ(ω) and T̃ lj (ω, z) is the solution of the coupled power equations

d

dz
T̃ lj (ω0, z) =−

[
Λcj(ω0) + Γ1

jj(ω0)− Γ̃1
jj(ω0)− Γcjj(ω0) + Γ̃cjj(ω0)

]
T̃ lj (ω0, z)

+
N(ω0)∑
n=1

Γ̃cnj(ω0)
(
T̃ ln(ω0, z)− T̃ lj (ω0, z)

) (3.20)

and T̃ lj (ω0, 0) = δjl.

Here,
T̃ lj (ω0, L) = lim

ξ→0
lim
ε→0

E
[
T1,ξ,ε
j (ω0, L)(yl)T2,ξ,ε

j (ω0, L)(yl)
]
, (3.21)

with ylj = δjl, and ylγ = 0 for γ ∈ (0, k2(ω)). T̃ lj (ω0, L) is the asymptotic covariance for the
jth propagating mode of the transfer operators at distance z = L, with respect to the two
steps of the time-reversal experiment.The initial condition yl means that an impulse equal to
one charges only the lth propagating mode at z = 0. The coupled equations (3.20) permit us
to study the influence of the degree of correlation, between the two realizations of the random
medium, on the amplitude of the refocused wave.

3.4.5 Refocused Field in a Changing Random Waveguide

In this section we study the refocusing of the wave when the realizations of the medium
parameters are not the same between the two steps of the time-reversal experiment. With
the change of variable ω = ω0 +

√
εh, the mean refocused wave is given by

pTR
( tobs
ε

+ t√
ε
, x, LS

)
e
iω0
(
tobs−t1

ε
+ t√

ε

)
= 1

8π

∫
f̂(h)eih

(
t1−tobs√

ε
−t
)

×
〈
Uξ,ε(ω0 +

√
εh, L)

(
ã(ω0 +

√
εh), b̃x(ω0 +

√
εh)
)
, λε(ω0 +

√
εh)
〉
Hω0+

√
εh

ξ
⊗Hω0+

√
εh

ξ

dh.

According to the previous section and using the perturbed-test-function method we get

E
[〈

Uξ,ε(ω0 +
√
εh, L)

(
ã(ω0 +

√
εh), b̃x(ω0 +

√
εh)
)
, λε(ω0 +

√
εh)
〉
Hω0+

√
εh

ξ
⊗Hω0+

√
εh

ξ

]
= E

[〈
Uξ(ω0, L)

(
ã(ω0), b̃x(ω0)

)
, λ̃ε(h, ω0)

〉
Hω0
ξ
⊗Hω0

ξ

]
+O(

√
ε),
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where
λ̃εmj(h, ω0)

=
√
βm(ω0)
βj(ω0)

e−i(βm(ω0)−βj(ω0))L
ε e
−ih(β′m(ω0)−β′j(ω0)) L√

ε e−i
h2
2 (β′′m(ω0)−β′′j (ω0))LMmj(ω0),

λ̃εmγ′(h, ω0) =
√
βm(ω0)√

γ′
e−i(βm(ω0)−

√
γ′)L

ε e
−ihβ′m(ω0) L√

ε e−i
h2
2 β
′′
m(ω0)LMmγ′(ω0),

λ̃εγj(h, ω0) =
√ √

γ

βj(ω0)
e−i(

√
γ−βj(ω0))L

ε e
ihβ′j(ω0) L√

ε ei
h2
2 β
′′
j (ω0)LMγj(ω0),

λ̃εγγ′(h, ω0) = γ1/4

γ′1/4
e−i(

√
γ−
√
γ′)L

εMγγ′(ω0),

and

E
[〈

Uξ(ω0, L)
(
ã(ω0), b̃x(ω0)

)
, λ̃ε(h, ω0)

〉
Hω0
ξ
⊗Hω0

ξ

]
=

N(ω0)∑
j,m=1

E
[
Uξ
jm(ω0, L)

(
ã(ω0), b̃x(ω0)

)]
λ̃εmj(h, ω0)

+
N(ω0)∑
j=1

∫ k2(ω0)

ξ
e

1
2 (Γcjj(ω0)−Γ1

jj(ω0)−Λc,ξj (ω0))L− i
2 (Γsjj(ω0)−Λs,ξj (ω0))LMγ,j(ω0)

× φj(ω0, x0)φγ(ω0, x)ei(
√
γ−βj(ω0))

(
−LS+L

ε

)
e
−ihβ′j(ω0) L√

ε e−i
h2
2 β
′′
j (ω0)Ldγ

+
∫ k2(ω0)

ξ

N(ω0)∑
m=1

e
1
2 (Γcmm(ω0)−Γ1

mm(ω0)−Λc,ξm (ω0))L+ i
2 (Γsmm(ω0)−Λs,ξm (ω0))LMmγ′(ω0)

× φγ′(ω0, x0)φm(ω0, x)ei(βm(ω0)−
√
γ′)
(
−LS+L

ε

)
e
ihβ′m(ω0) L√

ε ei
h2
2 β
′′
m(ω0)Ldγ′

+
∫ k2(ω0)

ξ

∫ k2(ω0)

ξ
Mγγ′(ω0)φγ′(ω0, x0)φγ(ω0, x)ei(

√
γ−
√
γ′)
(
−LS+L

ε

)
dγdγ′.

We can see that the three last terms give a term of the form∫ k2(ω)

ξ
φγ(ω, x)φγ(ω, y)ei

√
γ L
ε = O(ε)

uniformly on bounded subset of [0,+∞)2. We recall that the radiating components are very
small, of order O(ε). We cannot observe the recompression of the radiating components by
the time-reversal mechanism, because it holds only on a set with null Lebesgue measure.

Consequently,

E
[
pTR

( tobs
ε

+ t√
ε
, x, LS

)]
e
iω0
(
tobs−t1

ε
+ t√

ε

)
= 1

4

N(ω0)∑
j,m=1

√
βm(ω0)
βj(ω0)

ei(βm(ω0)−βj(ω0))L
ε

×Mmj(ω0)Kω0
j,m,L ∗ f

(
(β′m(ω0)− β′j(ω0))L+ t1 − tobs√

ε
− t
)

E
[
Uξ
jm(ω0, L)

(
ã(ω0), b̃x(ω0)

)]
+O(

√
ε),

where Kω0
j,m,L are defined by (3.18) page 129. From Proposition 3.7, for m 6= j, we get

lim
ξ→0

lim
ε→0

E
[
pTR

( tjm
ε

+ t√
ε
, x, LS

)]
e
iω0
( tjm−t1

ε
+ t√

ε

)
e−i(βm(ω0)−βj(ω0))

(
−LS+L

ε

)
= eQjm(ω0)LMjm(ω0)Kω0

j,m,L ∗ f(−t) · 1
4
φj(ω0, x0)φm(ω0, x),
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where the times tjm are defined by (3.19). Then, at these times we can observe the refocused
waves obtained in the homogeneous case but with the damping terms eQjm(ω0)L. The
amplitude of the coherent refocused waves at times tjm decays exponentially with respect to
the propagation distance L, and therefore becomes negligible for long propagation distance.

Now, for tobs = t1, we have from Proposition 3.7

lim
ξ→0

lim
ε→0

E
[
pTR

( t1
ε

+ t√
ε
, x, LS

)]
e
iω0

t√
ε = f(−t) · 1

4

N(ω0)∑
j,l=1

Mjj(ω0)T̃ lj (ω0, L)φl(ω0, x0)φl(ω0, x),

where T̃ lj (ω0, L) are the asymptotic covariance (3.21) which satisfie the coupled power equations
(3.20). Here, we have a contribution of all the modes. In the case of a random waveguide we
have a coupling between the modes during the propagation of the two steps of the experiment.
As in the case of a homogeneous waveguide, at time tobs = t1, the time-reversal mechanism
produces a coupling of a mode with itself through Mjj(ω0), which imposes the form of the
coupling produced by the random waveguide through T̃ lj (ω0, z).

Let us remark that we can study T̃ lj (ω0, z) as in Section 2.5.1, by using a probabilistic
interpretation. Let us consider

SN(ω0)
+ =

{
X ∈ RN(ω0), Xj ≥ 0 ∀j ∈ {1, . . . , N(ω0)} and ‖X‖22,RN(ω0) =

〈
X,X

〉
RN(ω0) = 1

}
with

〈
X,Y

〉
RN(ω0) =

∑N(ω0)
j=1 XjYj for (X,Y ) ∈ (RN(ω0))2, and

Dd(ω0) = diag
(
D1(ω0), . . . , DN(ω)(ω0)

)
, (3.22)

where
Dj(ω0) = Λcj(ω0)−

[
Γcjj(ω0)− Γ̃cjj(ω0)

]
+
[
Γ1
jj(ω0)− Γ̃1

jj(ω0)
]
.

Let us begin with the case where the two processes V 1 and V 2 are independent, that is the
case in which γ̃0(x, y) = 0 ∀(x, y) ∈ [0, d]2. In this case, the asymptotic covariances (3.21)
become the square modulus of the asymptotic mean amplitude for the jth propagating modes
(2.45),

T̃ lj (ω0, L) = e
(
−Λcj(ω0)+Γcjj(ω0)−Γ1

jj(ω0)
)
Lδjl.

Then, the mode-dependent and frequency-dependent dispersion produced during the first
step of the experiment is compensated by the time-reversal mechanism. However, the mode-
dependent and frequency-dependent attenuation is equal to the one of a wave which propagates
over a distance 2L. Therefore, in this particular case the time-reversal mechanism cannot
recompress efficiently the recorded field during the second step of the experiment. The reason
is that the two realizations of the random medium are much too different between the two
steps of the time-reversal experiment.

In what follows, we shall assume that V 1 and V 2 are not independent anymore. However,
even in this case, we have the following result on T̃ lj (ω0, L).

Theorem 3.5 Let us assume that the energy transport matrix Γ̃c(ω0) is irreducible. Then,
we have

lim
L→+∞

1
L

ln

N(ω)∑
j=1
T̃ lj (ω0, L)

 = −Λ̃∞(ω0)

with
Λ̃∞(ω0) = inf

X∈SN(ω0)
+

〈(
− Γ̃c(ω0) +Dd(ω0)

)
X,X

〉
RN(ω0) > 0,

and where Dd(ω0) is defined by (3.22).
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From this result we get the following inequalities

0 < min
j∈{1,...,N(ω0)}

Dj(ω0) ≤ Λ̃∞(ω0) ≤ D(ω0) = 1
N(ω0)

N(ω0)∑
j=1

Dj(ω0).

Moreover, this result means that if the two realizations of the random medium are not fully
correlated, that is µ ∈ [0, 1) with the assumption (3.23), the amplitude of the refocused wave
decays exponentially with the propagation distance, even if the radiation losses are negligible.

Let us consider the case of a strong coupling process, that is we assume that the energy
transport matrix Γ̃c(ω0) can be replaced by 1

τ Γ̃
c(ω0) with τ � 1. Consequently, the decay

rate in this regime is given by
lim
τ→0

Λ̃τ∞(ω0) = D(ω0),

and we also have
lim
τ→0
T̃ τ,lj (ω0, L) = 1

N(ω)
exp

(
−D(ω0)L

)
.

Let us remark that in the strong coupling regime the decay rate takes its largest value.
In order to investigate some particular cases relative to the changing medium, let us

assume that ∀(x, y) ∈ [0, d]2,

γ0(x, y) = µ γ̃0(x, y) for µ ∈ (0, 1]. (3.23)

This assumption implies that

Γ̃1(ω0) = µΓ1(ω0) and Γ̃c(ω0) = µΓc(ω0).

In the case of weak correlation, that is µ� 1, the asymptotic decay rate is given by

lim
µ→0

Λ̃µ∞(ω0) = min
j∈{1,...,N(ω0)}

Λcj(ω0) + Γ1
jj(ω0)− Γcjj(ω0) > 0,

and we also have
lim
µ→0
T̃ µ,lj (ω0, L) = e

(
−Λcj(ω0)+Γcjj(ω0)−Γ1

jj(ω0)
)
Lδjl,

which corresponds to the case µ = 0.
More generally, for any µ ∈ [0, 1) there exists a constant KN(ω0) > 0 such that

N(ω0)∑
j=1
T̃ lj (ω0, L) ≤ exp

(
−KN(ω0)(1− µ)L

)
,

and then the amplitude of the mean refocused wave decays exponentially with respect the
propagation distance L.

In the case where µ is close to 1, that is a strong correlation regime, the asymptotic decay
rate in this case is given by

lim
µ→1

Λ̃µ∞(ω0) = inf
X∈SN(ω0)

+

〈(
− Γc(ω0) + Λcd(ω0)

)
X,X

〉
RN(ω0) ,

and we also have
lim
µ→1
T̃ µ,lj (ω0, L) = T lj (ω0, L)

uniformly on each bounded subset of [0,+∞), which corresponds to the case µ = 1. Here,
Λcd(ω0) is defined in Section 2.5.1, and T l(ω0, L) is the solution of the coupled power equations
(2.47) page 53. This last case will be studied more closely in Section 3.4.7 using the high-
frequency approximation developed in Chapter 2.
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3.4.6 Stability of the Refocused Wave

An important property of the time-reversal experiment is the stabilization of the refocused
wave. This property has been shown in [18] in the one-dimensional context, and in [25,
Chapter 20] in the case of a waveguide. However, when the realizations of the random medium
are not the same between the two steps of the experiment, it has been shown in [3], in the
one-dimensional context, that the loss of the statistical stability is related to the degree of
correlation between the two realizations of the random medium. In the three-dimensional
context with the parabolic approximation, it has been shown in [12], that the statistical
stability is not affected by the change of the random medium between the two steps of the
experiment. In this section we study, in the context of a waveguide, the effects of the change
of the random medium on the statistical stability.

We recall that the mean refocused wave at the source location in the asymptotic ε→ 0 is
given by

lim
ε→0

E
[
pTR

( t1
ε

+ t√
ε
, x, LS

)
e
iω0

t√
ε

]
= f(−t) · 1

4

N(ω0)∑
j,l=1

Mjj(ω0)T̃ ξ,lj (ω0, L)φl(ω0, x0)φl(ω0, x),

where the asymptotic covariances T̃ ξ,lj (ω0, L), defined by (3.21), are the solution of

d

dz
T̃ ξ,lj (ω0, z) = −(1− µ)Γ1

jj(ω0)T̃ ξ,lj (ω0, z) + Lµ
(
T̃ ξ,l(ω0, z)

)
(j),

with

Lξ,µφ(j) = −Λc,ξj (ω0)φ(j) + (1− µ)Γcjj(ω0)φ(j) + µ

N(ω0)∑
n=1

Γcnj(ω0)
(
φ(n)− φ(j)

)
,

and T̃ ξ,lj (ω0, 0) = δjl. Now, let us introduce another probabilistic representation, in terms of
the solution of a stochastic differential equation, for T̃ ξ,lj (ω0, L). Let (Bj)j∈{1,...,N(ω0)} be a
family of independent one-dimensional standard Brownian motions. We recall that Γ1(ω0) is
a nonnegative symmetric matrix and then admits a unique symmetric square root that we
denote by

√
Γ1(ω0). Let

Zj(ω0, z) =
N(ω0)∑
j=1

[√
Γ1(ω0)

]
jl
Bl
z ∀j ∈

{
1, . . . , N(ω0)

}
,

and
(
Xξ,l(ω0, .)

)
j∈{1,...,N(ω0)} be the unique solution of the system of coupled Stratonovich

stochastic differential equations

dXξ,l
j (ω0, z) = Lξ,µ

(
Xξ,l(ω0, z)

)
(j)dz + i

√
2(1− µ)Xξ,l

j (ω0, z) ◦ dZj(ω0, z),

with Xξ,l
j (ω0, 0) = δjl. Consequently, we have

T̃ ξ,lj (ω0, L) = Ẽ
[
Xξ,l
j (ω0, L)

]
,

where the expectation Ẽ is taken with respect to the law of (Bj)j∈{1,...,N(ω0)}, and

lim
ε→0

E
[
pTR

( t1
ε

+ t√
ε
, ., LS

)
e
iω0

t√
ε

]
= Ẽ

[
f(−t) · 1

4

N(ω0)∑
j,l=1

Mjj(ω0)Xξ,l
j (ω0, L)φl(ω0, x0)φl(ω0, x)

]
.

(3.24)

The following proposition extends this result.
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Proposition 3.8 The refocused wave pTR
(
t1
ε + t√

ε
, x, LS

)
e
iω0

t√
ε converges in distribution as

ε→ 0 as a continuous process in (t, x) ∈ R× [0,+∞) to

pξTR(t1, t, x, LS) = f(−t) · 1
4

N(ω0)∑
j,l=1

Mjj(ω0)Xξ,l
j (ω0, L)φl(ω0, x0)φl(ω0, x).

Moreover, pξTR(t1, t, x, LS) converges in distribution as ξ → 0 as a continuous process in (t, x)
to

pTR(t1, t, x, LS) = f(−t) · 1
4

N(ω0)∑
j,l=1

Mjj(ω0)X l
j(ω0, L)φl(ω0, x0)φl(ω0, x),

where
(
X l(ω0, .)

)
j∈{1,...,N(ω0)} is the unique solution of the system of coupled Stratonovich

stochastic differential equations

dX l
j(ω0, z) = Lµ

(
X l(ω0, z)

)
(j)dz + i

√
2(1− µ)X l

j(ω0, z) ◦ dZj(ω0, z), (3.25)

with X l
j(ω0, 0) = δjl, and

Lµφ(j) = −Λcj(ω0)φ(j) + (1− µ)Γcjj(ω0)φ(j) + µ

N(ω0)∑
n=1

Γcnj(ω0)
(
φ(n)− φ(j)

)
.

Consequently, the spatial profile of the refocused wave at the source location is the
superposition of the N(ω0)-discrete propagating modes with random weights, which depend
on the time-reversal mirror through the coefficientsMjj(ω0) and on the solution of a stochastic
differential equation driven by a family of N(ω0)-independent Brownian motions.

Let us remark that in the case µ = 1, the limit in distribution of the refocused wave is de-
terministic, and therefore the convergence holds in probability. The stabilization phenomenon
of the refocused wave has been already observed in the context of waveguides in [25, Chapter
20] for instance.

Proof We begin by proving the tightness of the refocused wave and next we study the
convergence of all finite-dimentional distributions. First of all, let us remark that

sup
ε∈(0,1)

sup
x∈[0,+∞)

sup
t∈R

∣∣∣pTR( t1
ε

+ t√
ε
, x, LS

)
e
iω0

t√
ε

∣∣∣ ≤ K,
where K is a non random constant since the transfer operators T1,ξ,ε and T2,ξ,ε are unitary.
Therefore, ∀τ > 0,

sup
ε∈(0,1)

sup
|x1−x2|+|s1−s2|≤τ

∣∣∣pTR( t1
ε

+ s1√
ε
, x1, LS

)
e
iω0

s1√
ε − pTR

( t1
ε

+ s2√
ε
, x2, LS

)
e
iω0

s2√
ε

∣∣∣
≤ K

[
|1− eiω0(s2−s1)|

+
∫
|f̂(h)| ·

[
|1− eih(s1−s2)|+ ‖b̃x1(ω0 +

√
εh)− b̃x2(ω0 +

√
εh)‖

Hω0+
√
εh

ξ

]
dh
]

≤ Kτ,

and then ∀η > 0

lim
τ→0

lim
ε→0

P

 sup
|x1−x2|+
|s1−s2|≤τ

∣∣∣pTR( t1
ε

+ s1√
ε
, x1, LS

)
e
iω0

s1√
ε − pTR

( t1
ε

+ s2√
ε
, x2, LS

)
e
iω0

s2√
ε > η

∣∣∣
 = 0.
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We have already shown the convergence of the first moment (3.24). Now, for the high-order
moments we have

E
[(
e
iω0

s1√
ε pTR

( t1
ε

+ s1√
ε
, x1, LS

))r1
· · ·
(
e
iω0

sq√
ε pTR

( t1
ε

+ sq√
ε
, xq, LS

))rq]
= 1

(8π)r
∫
· · ·
∫ ∏

1≤i1≤q
1≤i2≤ri1

dhi1i2 f̂(hi1i2)e−ihi1i2si1 E
[ ∏

1≤i1≤q
1≤i2≤ri1〈

Uξ,ε(ω0 +
√
εhi1i2 , L)

(
ã(ω0 +

√
εhi1i2), b̃(ω0 +

√
εhi1i2)

)
, λε(ω0 +

√
εhi1i2)

〉
H
ω0+
√
εhi1i2

ξ
⊗H

ω0+
√
εhi1i2

ξ

]
,

with r =
∑q
i1=1 ri1 . Following, the proof of Theorem 2.1, one can show an asymptotic theorem

as ε goes to 0 for the process(
Uξ,ε(ω0 +

√
εh1, z), . . . ,Uξ,ε(ω0 +

√
εhm, z)

)
with hj 6= hl,∀j 6= l,

and which takes its values in the space
⊗m

j=1(H
ω0+hc
ξ ⊗Hω0+hc

ξ ). Then, using the perturbed-
test-function method we have

lim
ε→0

E
[(
e
iω0

s1√
ε pTR

( t1
ε

+ s1√
ε
, x1, LS

))r1
· · ·
(
e
iω0

sq√
ε pTR

( t1
ε

+ sq√
ε
, xq, LS

))rq]
= 1

4r
∏

1≤i1≤q
f(−si1)ri1 ·

∑ ∏
1≤i1≤q

1≤i2≤ri1

Mji1i2ji1i2
(ω0)φli1i2 (ω0, x0)φli1i2 (ω0, xi1)T̃

ξ,l
j (ω0, L)

with j = (ji1i2) 1≤i1≤q
1≤i2≤ri1

and l = (li1i2) 1≤i1≤q
1≤i2≤ri1

, and where

d

dz
T̃ ξ,lj (ω0, z) = −(1− µ)

(∑
Γ1
ji1i2 j̃i1i2

(ω0)
)
T̃ ξ,lj (ω0, z) +

∑
1≤i1≤q

1≤i2≤ri1

Lξ,µ
(
T̃ ξ,l(ω0, z)

)
(ji1i2),

with T̃ ξ,lj (ω0, 0) =
∏
i1,i2 δji1i2 li1i2 . L

ξ,µ
(
T̃ ξ,l(ω0, z)

)
(ji1i2) means that the operator Lξ,µ acts

only on the component ji1i2 . Therefore, we get that

T̃ ξ,lj (ω0, L) = Ẽ
[ ∏

1≤i1≤q
1≤i2≤ri1

X
ξ,li1i2
ji1i2

(ω0, L)
]
,

where the expectation Ẽ is taken with respect to the law of the family (Bj)j∈{1,...,N(ω0)} of
independent Brownian motion. Consequently

lim
ε→0

E
[(
e
iω0

s1√
ε pTR

( t1
ε

+ s1√
ε
, x1, LS

))r1
· · ·
(
e
iω0

sq√
ε pTR

( t1
ε

+ sq√
ε
, xq, LS

))rq]
= Ẽ

[(
pξTR(t1, s1, x1, LS)

)r1
· · ·
(
pξTR(t1, sq, xq, LS)

)rq]
.

This concludes the first part of Proposition 3.8. For the second part of Proposition 3.8, using
Îto’s formula we get that, ∀ξ and ∀z ≥ 0

‖Xξ,l(z)‖2CN (ω0) ≤ 1 a.s.,
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and then

Ẽ
[
‖Xξ,l(L)−X l(L)‖2CN(ω0)

]
≤ K

∫ L

0
Ẽ
[
‖Xξ,l(u)−X l(u)‖2CN(ω0)

]
du

+ L sup
j∈{1,...,N(ω0)}

|Λcj(ω0)− Λc,ξj (ω0)|2.

Consequently, using the Gronwall’s inequality, ∀η > 0

lim
ξ→0

P̃
(

sup
x∈[0,+∞)

sup
t∈R

∣∣∣pξTR(t1, t, x, LS)− pTR(t1, t, x, LS)
∣∣∣ > η

)
= 0.

This concludes the proof of Proposition 3.8. �

Let us investigate the regime µ → 0, that is, when the two realizations of the random
medium between the two steps of time-reversal experiment are weakly correlated. In this
regime the system of stochastic differential equations (3.25) take a particular form, from
which we can get an explicit expression of the solution. Now, let us denote by Xµ,l

j (ω0, .)
the solution of (3.25) and by X0,l

j (ω0, .) the solution of the following stochastic differential
equation

dX0,l
j (ω0, z) =

[
− Λcj(ω0) + Γcjj(ω0)− Γ1

jj(ω0)
]
X0,l
j (ω0, z) + i

√
2X0,l

j (ω0, L)dZj(ω0, z)

with X0,l
j (ω0, 0) = δjl. Because there is no coupling between the N(ω0)-stochastic differential

equations, we have

X0,l
j (ω0, z) = δjle

(
−Λcj(ω0)+Γcjj(ω0)

)
L+i
√

2Zj(ω0,L).

Proposition 3.9 ∀η > 0, we have

lim
µ→0

P̃
(

sup
x∈[0,+∞)

sup
t∈R

∣∣∣pµTR(t1, t, x, LS)− p0
TR(t1, t, x, LS)

∣∣∣ > η

)
= 0,

where

p0
TR(t1, t, x, LS) = f(−t) · 1

4

N(ω0)∑
j=1

Mjj(ω0)e
(
−Λcj(ω0)+Γcjj(ω0)

)
L+i
√

2Zj(ω0,L)φj(ω0, x0)φj(ω0, x).

Consequently, in the weakly correlated regime µ→ 0, the refocused wave is the superposition
of the N(ω0)-propagating modes with weights depending of the time-reversal mirror through
Mjj(ω0), a damping term e

(
−Λcj(ω0)+Γcjj(ω0)

)
L, and a random phase ei

√
2Zj(ω0,L).

3.4.7 Mean Refocused Field in the Case µ→ 1
This section is devoted to the study, in the strongly correlated regime µ→ 1, of the transverse
profile of the refocused wave in the high-frequency regime ω0 → +∞.

First of all, in the particular regime µ→ 1, we get the stabilization of the refocused wave.
In fact, using the Îto’s formula we know that, ∀µ ∈ [0, 1], ‖Xµ,l(L)‖2CN(ω0) ≤ 1 a.s. , and then

Ẽ
[
‖X l,µ(ω0, L)−T l(ω0, L)‖2CN(ω0)

]
≤ K1

∫ L

0
Ẽ
[
‖X l,µ(ω0, s)−T l(ω0, s)‖2CN(ω0)

]
ds+K2(1−µ),

where T l(ω0, .) is the solution of the coupled power equations (2.47) page 53. Consequently,
we have the following result.
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Proposition 3.10 ∀η > 0, we have

lim
µ→1

P̃
(

sup
x∈[0,+∞)

sup
t∈R

∣∣∣pµTR(t1, t, x, LS)− p1
TR(t1, t, x, LS)

∣∣∣ > η

)
= 0,

where
p1
TR(t1, t, x, LS) = f(−t)HαM

x0 (ω0, x),
with

HαM
x0 (ω0, x, L) = 1

4

N(ω0)∑
j,l=1

Mjj(ω0)T lj (ω0, L)φl(ω0, x0)φl(ω0, x).

In what follows we consider the band-limiting idealization, introduced in Section 2.5.2,
to study the transverse profile HαM

x0 in the high-frequency regime ω0 → +∞. With this
assumption T lj (ω0, .) satisfies (2.51) page 59.

Mean Refocused Field with Radiation Losses

In this section, we study the transverse profile of the refocused wave in the presence of
radiation losses.

Proposition 3.11 For αM ∈ [0, 1), the transverse profile of the refocused wave in the high-
frequency ω0 → +∞ is given by

lim
ω0→+∞

λ1−αM
oc

θ
HαM
x0

(
ω0, x0 + λoc

θ
x̃, L

)
= d̃2 + d̃1

d
H(x̃, L),

where
H(x̃, L) =

∫ 1

0
T1(L, u) cos(2πux̃)du,

and T1(L, u) is the solution of
∂

∂z
T1(z, u) = ∂

∂u

(
a∞(·) ∂

∂u
T1
)

(z, u),

with the boundary conditions:
∂

∂u
T1(z, 0) = 0, T1(z, 1) = 0 and T1(0, u) = 1,

∀z > 0. Here,
a∞(u) = a0

1−
(
1− π2

a2d2

)
(θu)2

,

with a0 = π2S0
2an4

1d
4θ2 , θ =

√
1− 1/n2

1, S0 =
∫ d
0
∫ d
0 γ0(x1, x2) cos

(
π
dx1

)
cos

(
π
dx2

)
dx1dx2. n1 is

the index of refraction in the ocean section [0, d], 1/a = lz,x is the correlation length of the
random inhomogeneities in the longitudinal direction, and γ0 is the covariance function of the
random inhomogeneities in the transverse direction.

Consequently, the transverse profile of the refocused wave can be expressed in terms of the
diffusive continuous model introduced in Section 2.5.2, with a reflecting boundary condition at
u = 0 (the top of the waveguide) and an absorbing boundary condition at u = 1 (the bottom
of the waveguide) which represents the radiative loss (see Figure 3.5). As it is illustrated in
Section 3.4.8, the radiation losses degrade the quality of the refocusing: the amplitude of the
refocused wave decays exponentially with the propagation distance (see Section 2.5.2), and
the width of the focal spot increases and converges to an asymptotic value that is significantly
larger than the diffraction limit λoc/(2θ), where λoc is the carrier wavelength in the ocean
section [0, d].
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d

Bottom

Ocean

z

x

0

Figure 3.5: Illustration of the radiative loss in the shallow-water random waveguide model.

Proof First, we have

d

d̃2 + d̃1

λ1−αM
oc

θ
HαM
x0

(
ω0, x0 + λoc

θ
x̃, L

)
= λoc

2θ

N∑
j,l=1
T lj (ω0, L)φl(ω0, x0)

φl(ω0, x0 + λocx̃/θ)
A2
jd

2

[
1− cos

(
σj

2dM + λαMoc (d̃2 − d̃1)
d

)
sinc

(
σj
λαMoc (d̃2 + d̃1)

d

)]
,

where Aj is defined by (2.8) page 35. Moreover, using the probabilistic representation (2.49)
used in the proof of Theorem 2.3 page 54,∣∣∣λoc2θ

N∑
j,l=1
T lj (ω0, L)φl(ω0, x0)φl(ω0, x0 + λocx̃/θ)

×
A2
jd

2
cos

(
σj

2dM + λαMoc (d̃2 − d̃1)
d

)
sinc

(
σj
λαMoc (d̃2 + d̃1)

d

)∣∣∣
≤ λ1−αM

oc N
[ N∑
j=2

1
π(j − 1)

PµN
(
Y N
L = j

)
+ 1
σ1

PµN
(
Y N
L = 1

)]
≤ Kλ1−αM

oc ln(N),

where
(
Y N
t

)
t≥0 is a jump Markov process with state space {1, . . . , N}, intensity matrix Γc(ω0),

and invariant measure µN , which is the uniform distribution over {1, . . . , N}. Consequently,
the transverse profile of the refocused wave is given by

λoc
2θ

N∑
j,l=1

A2
jd

2
T lj (ω0, L)φl(ω0, x0)φl(ω0, x0 + λocx̃/θ).

Let η > 0 such that η � 1. We have

λoc
2θ

N∑
j,l=1

A2
jd

2
T lj (ω0, L)φl(ω0, x0)φl(ω0, x0 + λocx̃/θ)

=λoc
2θ

[N(1−η)]∑
j,l=1

A2
jd

2
T lj (ω0, L)φl(ω0, x0)φl(ω0, x0 + λocx̃/θ)

+O(η)

=λoc
2θ

[N(1−η)]∑
j,l=1

T lj (ω0, L)φl(ω0, x0)φl(ω0, x0 + λocx̃/θ)

+O(η),

143



Chapter 3 Section 3.4.7

since we recall that
lim

N→+∞
sup

j∈{1,...,N−[Nα]}

∣∣∣A2
j (ω0)−

2
d

∣∣∣ = 0. (3.26)

Let fη(v) = 1[0,1−η](v), we have

λoc
2θ

N∑
j,l=1

A2
jd

2
T lj (ω0, L)φl(ω0, x0)φl(ω0, x0 + λocx̃/θ)

=λoc
2θ

[N(1−η)]∑
l=1

T lfη(ω0, L)φl(ω0, x0)φl(ω0, x0 + λocx̃/θ)

+O(η).

Now, we are able to apply the high-frequency approximation given in Theorem 2.4 page 59.

1
N

[N(1−η)]∑
l=1

∣∣∣T lfη(ω0, L)− Tfη
(
L, l/N

)∣∣∣
≤

[N(1−η)]−1∑
l=1

∫ (l+1)/N

l/N

∣∣T [Nu]
fη (ω0, L)− Tfη

(
L, [Nu]/N

)∣∣du
≤
∫ 1

0

∣∣T Nfη (ω0, L, u)− Tfη(L, u)
∣∣du

+
∫ 1

0

∣∣∣Tfη(L, u)− Tfη(L, [Nu]/N)∣∣du,
where the terms on the right side of the last inequality goes to 0 as ω0 → +∞ by Theorem
2.4. Then

λoc
2θ

N∑
j,l=1

A2
jd

2
T lj (ω0, L)φl(ω0, x0)φl(ω0, x0 + λocx̃/θ)

=λoc
2θ

[N(1−η)]∑
l=1

Tfη(L, l/N)φl(ω0, x0)φl(ω0, x0 + λocx̃/θ)

+O(η).

Moreover, we have

φj(ω0, x0)φj
(
ω0, x0 + λoc

θ
x̃
)

=
A2
j

2

[
cos

(
σj
λoc
θd
x̃
)
− cos

(
σj

2x0 + λocx̃/θ

d

)]
,

and

cos
(
σj

2x0 + λocx̃/θ

d

)
= cos

(
(σj − jπ)2x0 + λocx̃/θ

d

)
cos

(
jπ

2x0 + λocx̃/θ

d

)
− sin

(
(σj − jπ)2x0 + λocx̃/θ

d

)
sin
(
jπ

2x0 + λocx̃/θ

d

)
.

Using the Abel transform, Lemma 2.1 page 36, (3.26), and the continuity of v 7→ Tfη1 (L, v)
on [0, 1], we get

lim
ω0→+∞

λoc
∣∣∣ [N(1−η)]∑

l=1
Tfη(L, l/N)A2

l cos
(
σj

2x0 + λocx̃/θ

d

)∣∣∣ = 0.
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Moreover, using (3.26) and the fact that limω0 supj λoc|σj − jπ| = 0,

lim
N→+∞

λoc
2θ

[N(1−η)]∑
l=1

Tfη(L, l/N)A2
l cos

(
σj
λoc
θd
x̃
)

= lim
N→+∞

λoc
2θd2

[N(1−η)]∑
l=1

Tfη(L, l/N) cos
(
2π l

N
x̃
)

= (1− η)
∫ 1−η

0
Tfη(L, u) cos(2πux̃)du.

Consequently, from the decomposition used in the proof of Theorem 2.5 page 60, we have

‖Tfη(L, .)− T1(L, .)‖L2([0,1]) ≤ ‖fη − 1‖L2([0,1]),

and then

lim
ω0→+∞

∣∣∣λoc2θ

N∑
j,l=1

A2
jd

2
T lj (ω0, L)φl(ω0, x0)φl(ω0, x0 + λocx̃/θ)

−
∫ 1

0
T1(L, v) cos(2πux̃)du

∣∣∣ ≤ Kη.
This concludes the proof of Proposition 3.11.�

In order to study the case αM = 1, let us introduce some notations. Let E =
⋃
M≥1 EM ,

where

EM =


M∑
j=1

αjφj , (αj)j ∈ RM

 ,
and

φj(x) =
√

2
d

sin
(
j
π

d
x
)
∀x ∈ [0, d],∀j ≥ 1.

Let us remark that (φj)j is a basis of L2(0, d).

Proposition 3.12 For αM = 1, in the continuum limit N(ω0)� 1, we have

lim
ω0→+∞

H1
x0(ω0, ., L)− H̃1

x0(ω0, ., L) = 0

in E ′, which is the topological dual of E equipped with the weak topology, and where

lim
ω0→+∞

H̃1
x0

(
ω0, x0 + λoc

θ
x̃, L

)
= θ

d̃2 + d̃1
d

H(x̃, L).

Here, H(x̃, L) is defined in Proposition 3.11.

Proof Let M ≥ 1 and fM =
∑M
j=1 αjφj ∈ EM . Moreover, let

∀x ∈ [0, d], f̃M (x) =
M∑
j=1

αjφj(ω0, x).

Using (3.26) and because we have

sup
j∈{1,...,M}

|σj − jπ| = O
( 1
N

)
,
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then,
sup
x∈[0,d]

|fM (x)− f̃M (x)| = O
( 1
N

)
.

Finally, by letting

H̃1
x0(ω0, x, L) = d̃2 + d̃1

d

λoc
2θ

N∑
j,l=1

A2
jd

2
T lj (ω0, L)φl(ω0, x0)φl(ω0, x),

we have〈
H1
x0(ω0, ., L)− H̃1

x0(ω0, ., L), fM
〉
L2(0,d) =

〈
H1
x0(ω0, ., L)− H̃1

x0(ω0, ., L), fM − f̃M
〉
L2(0,d)

+
〈
H1
x0(ω0, ., L)− H̃1

x0(ω0, ., L), f̃M
〉
L2(0,d),

with∣∣〈H1
x0(ω0, ., L)− H̃1(ω0, ., L), fM−f̃M

〉
L2(0,d)

∣∣
≤ K

N
N
[ N∑
j=2

1
π(j − 1)

PµN
(
Y N
L = j

)
+ 1
σ1

PµN
(
Y N
L = 1

)]
≤ K ln(N)

N
,

and∣∣〈H1
x0(ω0, ., L)−H̃1

x0(ω0, ., L), f̃M
〉
L2(0,d)

∣∣
≤ K

M∑
l=1

[
T lfη(ω0, L) + 1

[Nη] + 1
P
(
Y N
L ∈ {[Nη] + 1, . . . , N}

∣∣Y N
0 = l

)]

for η > 0, and fη(v) = 1[0,η]. Therefore, it suffices to study
∑M
l=1 T lfη(ω0, L). To do this, let gη

be a smooth function with compact support included in [0, 2η] and such that 0 ≤ fη ≤ gη ≤ f2η.
Using the second part of Theorem 2.5 page 60,

lim
N→+∞

M∑
l=1
T lgη(ω0, L) = MTgη(L, 0) ≤MP0

(
x(t) ∈ [0, 2η]

)
.

Here, we have used the probabilistic representation of T lgη(ω0, L) introduced in the proof
of Theorem 2.5, where P0 is the unique solution of a martingale problem starting from 0.
However, the probabilistic representation can be chosen such that the associated diffusion
process has transition probabilities absolutely continuous with respect to the Lebesgue measure
[27]. Therefore,

lim
ω0→+∞

〈
H1
x0(ω0, ., L)− H̃1

x0(ω0, ., L), f̃M
〉
L2(0,d) = 0,

and the rest of the proof is the same as that of Proposition 3.11. �

Consequently, in the case of a random waveguide, the order of magnitude αM of the time-
reversal mirror plays no role in the transverse profile compared to the homogeneous case (see
Section 3.4.7).
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Mean Refocused Field with Negligible Radiation Losses

In this section, we study the transverse profile of the refocused wave in the case where the
radiation losses are negligible, that is, Λc(ω) can be replaced by τ Λ̃c(ω) with τ � 1. Therefore,
we have

∀L > 0, sup
z∈[0,L]

‖T τ,lj (ω, z)− T 0,l
j (ω, z)‖2,RN(ω) = O(τ),

where T 0,l(ω, .) satisfies

d

dz
T 0,l
N (z) = ΓcN−1N

(
T 0,l
N−1(z)− T

0,l
N (z)

)
,

d

dz
T 0,l
j (z) = Γcj−1 j

(
T 0,l
j−1(z)− T

0,l
j (z)

)
+ Γcj+1 j

(
T 0,l
j+1(z)− T

0,l
j (z)

)
for j ∈ {2, . . . , N − 1},

d

dz
T 0,l

1 (z) = Γc2 1

(
T 0,l

2 (z)− T 0,l
1 (z)

)
,

with T 0,l
j (0) = δjl. Consequently,

lim
τ→0

sup
x∈[0,+∞)

∣∣Hτ,αM
x0 (ω0, x, L)−H0,αM

x0 (ω0, x, L)
∣∣ = 0,

where

H0,αM
x0 (ω0, x, L) = 1

4

N(ω0)∑
j,l=1

Mjj(ω0)T 0,l
j (ω0, L)φl(ω0, x0)φl(ω0, x).

Proposition 3.13 For αM ∈ [0, 1), with negligible radiation losses, the transverse profile of
the refocused wave in the continuum limit N(ω0)� 1 is given by

lim
ω0→+∞

λ1−αM
oc

θ
H0,αM
x0

(
ω0, x0 + λoc

θ
x̃, L

)
= d̃2 + d̃1

d
sinc(2πx̃).

Proof Following the proof of Propostion 3.11 and using Theorem 2.6 page 63, we get

lim
ω0→+∞

λ1−αM
oc

θ
H0,αM
x0

(
ω0, x0 + λoc

θ
x̃, L

)
= d̃2 + d̃1

d

∫ 1

0
T1(L, u) cos(2πux̃)du,

where T1(z, v) is a solution of

∂

∂z
T1(z, u) = ∂

∂u

(
a∞(·) ∂

∂u
T1
)

(z, u),

with the boundary conditions

∂

∂u
T1(z, 0) = 0, ∂

∂u
T1(z, 1) = 0, and T1(0, u) = 1.

However, this problem admits only one solution, which is T1(z, u) = 1. �

The transverse profile of the refocused wave is studied using the diffusive continuous model
introduced in Section 2.5.3, with two reflecting boundary conditions at u = 0 (the top of
the waveguide) and u = 1 (the bottom of the waveguide). Here, the two reflecting boundary
conditions mean that there is no radiative loss anymore (see Figure 3.6), and then the energy
is conserved. This is for this reason that T1(z, u) = 1. Consequently, the sinc profile obtained
in Proposition 3.13 is the best transverse profile that we can obtain.

In the same way, we have the following result for αM = 1.
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Figure 3.6: Illustration of negligible radiation losses in the shallow-water random waveguide
model.

Proposition 3.14 For αM = 1, in the continuum limit N(ω0)� 1, we have

lim
ω0→+∞

H0,1
x0 (ω0, ., L)− H̃0,1

x0 (ω0, ., L) = 0

in E ′, and where

lim
ω0→+∞

H̃0,1
x0

(
ω0, x0 + λoc

θ
x̃, L

)
= θ

d̃2 + d̃1
d

sinc(2πx̃).

These results are consistent with the ones obtained in [25, Chapter 20] where the authors
have obtained the sinc function for transverse profile, and which does not depend on the size
of the time-reversal mirror.

3.4.8 Numerical Illustration

In this section we illustrate the spatial focusing of the refocused wave around the source
location. First, we represent the evolution of T1(L, u), in presence of radiation losses, with
respect to L. Here, T1(L, u) is the mean mode power for the [N(ω0)u]th propagating mode in
the continuum limit N(ω0)� 1, which is the solution of the partial differential equation in
Proposition 3.11.

Second, we represent the spatial profile H(x̃, L) of the refocused wave, and finally we
illustrate the resolution of the refocused wave as the propagation distance L becomes large.

In this section, we consider the following values of the parameters. For the sake of simplicity,
we take a0 = 1 and the inverse of the correlation length of the random inhomogeneities in the
longitudinal direction is a = 1. Moreover, we take n1 = 2 for index of refraction in the ocean
section [0, d], and depth d = 20.

We saw in Proposition 3.11 and Proposition 3.12 that T1(L, u), in the presence of radiation
losses, plays an important role in the transverse profile of the refocused wave. In Figure 3.7,
we illustrate the influence of the radiation losses on T1(L, u) as the propagation distance L
increase. As we can see in Figure 3.8 and Figure 3.9, the radiation losses degrade the quality
of the refocusing. Moreover, for L� 1, one can see a threshold of the quality of the resolution
since

Hx0(x̃, L) '
L�1

eλ1L
∫ 1

0
φ∞,1(v)dv

∫ 1

0
φ∞,1(u) cos(2πx̃u)du,

where λ1 < 0 and φ∞,1 are defined in the proof of Theorem 2.5 page 60.
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Figure 3.7: Representation of T1(L, u), in the presence of radiation losses, with respect to the
propagation distance L.

(a) (b)

Figure 3.8: Normalized transverse profile. In (a) and (b) the dashed curves are the transverse
profiles in the case where the radiation losses are negligible, and the solid curves represent the
transverse profile H(x̃, L). In (a) we represent H(x̃, L) with L = 75, and in (b) we represent
H(x̃, L) with L = 250.

Figure 3.9: Representation of the evolution of the resolution with respect to the propagation
distance L.
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Conclusion
In this chapter we have analyzed the pulse propagation and the time reversal of waves in a
shallow-water acoustic waveguide with random perturbations.

We have shown that a broadband pulse can be decomposed into a superposition of modal
waves with different arrival times and different modal speeds. As in [17], the statistics of
the transmitted wave can be described by a front stabilization theory. We have studied the
incoherent wave fluctuations, which requires the analysis of the distribution of the transfer
operator at two nearby frequencies, and we have derived an effective system of transport
equations which takes into account the effect of the radiation losses. The intensity of the
wave fluctuations is exponentially damped and becomes uniform across the waveguide section
[0, d] as long as the propagation distance is large.

We have studied the time-reversal experiment of a broadband pulse in the case where the
medium may have changed between the two steps of the experiment. We have shown that
the loss of the statistical stability of the refocused wave is related to the degree of correlation
between the two realizations of the random medium. In the case where the two realizations are
not sufficiently correlated, the amplitude of the refocused wave decreases exponentially with
the propagation distance. In the case where the two realizations are sufficiently correlated, we
obtain the statistical stability of the refocused wave. Moreover, using the continuous diffusive
models developed in Section 2.5.2 and 2.5.3, we have seen that radiation losses degrade the
quality of the refocused transverse profile as the propagation distance increases.

In this chapter, we have shown that the size of the focal spot in the time-reversal experiment
is, at least in the most favorable case, limited by the diffraction limit. However, we shall
see in Chapter 4 that the focal spot can be smaller than the diffraction limit by inserting a
strongly heterogeneous random section in the vicinity of the source.
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Chapter 4
Time Reversal SuperResolution in Random
Waveguides

Introduction
Time-reversal refocusing has been studied in different contexts: in one-dimensional media
[18, 25], in three-dimensional randomly layered media [26], in the paraxial approximation
[15, 10, 49], and in random waveguides [30, 25]. In all these contexts it has been shown that
the focal spot can be smaller than the Rayleigh resolution formula λL/D (where λ is the
carrier wavelength, L is the propagation distance, and D is the mirror diameter). However,
the focal spot is still larger than the diffraction limit λ/2.

Mathias Fink and his group at ESPCI have proposed an approach to obtain a superres-
olution effect, that is to refocus beyond the diffraction limit, with a far-field time-reversal
mirror [42]. This approach consists in adding a random distribution of scatterers in the
vicinity of the source. The proposed physical explanation is as follows. The small-scale
features (position and shape) of the source are carried by high evanescent modes, and these
modes decay exponentially fast with the propagation distance, so that this information is
usually not transmitted up to the time-reversal mirror, which is located in the far field. The
random medium located around the source location permits to convert high modes into low
propagating modes. In other words, the inhomogeneities of the random slab induce mode
coupling, so that the information on small scales of the source is transferred to the propagating
modes and reaches the time-reversal mirror. During the time-reversal experiment these modes
are regenerated in the vicinity of the source from the backpropagated propagating modes,
and therefore they can participate in the refocusing process. An application of this result to
wireless communication is presented in [42].

In this Chapter, even though the work of Fink and his group was on time reversal of
electromagnetic waves, we consider a two-dimensional acoustic waveguide model. The main
goal of this chapter is to present a mathematical proof that the focal spot can indeed be
smaller than the diffraction limit. Before the mathematical analysis, we give some physical
explanations to describe the important phenomena induced by the insertion of a section in the
vicinity of the source for a long waveguide. First, the case of a waveguide with homogeneous
speed of propagation c0 (see Figure 4.1 (a)) is well known; see, for instance, [25], where the
authors obtain the classical diffraction limit. Namely, the focal spot has radius equal to
the carrier wavelength over two. In this case, the small-scale features (position and shape)
of the source are carried by high evanescent modes that decay exponentially fast with the
propagation distance. Consequently, these modes do not reach the time-reversal mirror, which
is located in the far field. Only low modes are recorded by the time-reversal mirror. In the
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(a)

mirror

Source
High modes

Low modes

Time reversal
mirror

Source Low modes

Time reversal

(b)

mirror

Source
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Time reversal

            Low modes

Time reversal
mirror

Source

(c)

mirror

Source

High modes

Low modes

Time reversal Time reversal
mirror

Source
            Low modes

High modes

Figure 4.1: Representation of mode propagation in the time reversal experiment. In (a)
we represent a homogeneous waveguide, in (b) we add a homogeneous section with low
propagation speed, and in (c) we add a randomly heterogeneous section with low background
propagation speed.

second step of the time-reversal experiment, the mirror sends back the recorded low modes
that carry only the large-scale features of the original source. This loss of information is
responsible for the diffraction-limited transverse profile computed in Proposition 4.3. In what
follows, we refer to high or low modes relatively to a waveguide with homogeneous speed of
propagation c0. Experiments have shown that the situation changes dramatically when a
section of medium with low speed of propagation c1 � c0 is inserted in the vicinity of the
source. In this chapter, we will compare the two following cases with the homogeneous case.

First, we assume that a homogeneous section with low speed of propagation is inserted in
the vicinity of the source, as illustrated in Figure 4.1 (b), such that some high modes of the
previous case are propagating modes in this first section. However, we assume that the major
part of the waveguide has speed of propagation c0 so the high modes and the small-scale
features of the source do not reach the time-reversal mirror. Therefore, as in the homogeneous
case, only low modes are recorded by the time-reversal mirror and the small-scale features of
the source are lost. The transverse profile obtained in this case is described in Proposition 4.2.

Second, if the additional section with low speed of propagation is randomly perturbed,
then coupling mechanisms, between propagating modes of the first section, allow small-scale
features of the source, which are carried by the high modes, to be transferred to low modes.
Even if the high modes do not propagate over large distances in the second part of the
waveguide and are not recorded by the time-reversal mirror, a part of the small-scale features
of the source reaches the time-reversal mirror since they are carried by the low modes which
are recorded by the time-reversal mirror. This fact is illustrated in Figure 4.1 (c). These low
modes, time-reversed, will come back to the randomly perturbed section in the second step of
the time-reversal experiment, and by coupling mechanisms they will regenerate high modes
with the small-scale features of the source. This regeneration of small-scale features of the
source is responsible for the superresolution described in Proposition 4.4.

The organization of Chapter 4 is as follows: In the first section, we describe the waveguide
model that we consider in this chapter for the experiment. In Section 4.2, we reduce the
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Figure 4.2: Representation of the waveguide model with bounded cross-section [0, d], and two sections
(−∞, L/ε1−α) and (L/ε1−α,+∞).

study of the wave propagation in the random section to the study of a system of differential
equations with random coefficients by using a modal decomposition. Moreover, we introduce
some assumptions needed for the study of the time-reversal process. In Section 4.3, we state
the asymptotic results that we will use in the following section. In Section 4.4, we consider
the time-reversal experiment in the random waveguide presented in Section 4.1. We analyze
the refocused field to emphasize the superresolution effect and show the statistical stability.
Finally, the appendix is devoted to the proofs of the theorems stated in Section 4.3.

4.1 Waveguide Model
For the sake of simplicity, we do not consider in this chapter the same waveguide model as in
Chapters 2 and 3. The waveguide model that we consider in this chapter is the same as in
[25, Chapter 20] and [30], that is, with a bounded-cross section. As a result, in this Chapter
we shall not consider the influence of radiative losses on the time-reversal experiment.

We consider a two-dimensional linear acoustic wave model. The conservation equations of
mass and linear momentum are given by

ρε(x, z)∂u
∂t

+∇p = Fε,

1
Kε(x, z)

∂p

∂t
+∇.u = 0,

(4.1)

where p is the acoustic pressure, u is the acoustic velocity, ρε is the density of the medium,
Kε is the bulk modulus, and the source is modeled by the forcing term Fε(t, x, z). The third
coordinate z represents the propagation axis along the waveguide. The transverse section of
the waveguide is a bounded interval denoted by [0, d], with d > 0 and x ∈ [0, d] representing
the transverse coordinate. We assume that the medium parameters are given by (see Figure
4.2)

1
Kε(x, z)

=


ε2αK 1

K̄

(
1 +
√
εV
(
x, zεα

))
if x ∈ (0, d), z ∈ [0, L/ε1−α]

ε2αK 1
K̄

if x ∈ (0, d), z ∈ (−∞, 0)
1
K̄

if x ∈ (0, d), z ∈ (L/ε1−α,+∞),

ρε(x, z) =
{
ε−2αρ ρ̄ if x ∈ (0, d), z ∈ (−∞, L/ε1−α]
ρ̄ if x ∈ (0, d), z ∈ (L/ε1−α,+∞),

where αρ and αK are such that αρ − αK = α ∈ (0, 1] and where V , which models the spatial
inhomogeneities, is described in Section 2.6.1. In what follows, we will see that the important
parameter is α, because it determines the order of the sound speed of the first section. This
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configuration means that the order of the sound speed of the section (−∞, L/ε1−α) is small
compared to that of the section (L/ε1−α,+∞). The first section can represent a solid with
random inhomogeneities, and the second can represent a homogeneous gas or liquid. The case
α = 0 is equivalent to that studied in [30] and [25, Chapter 20], in which no superresolution
effect can be detected. The parameter α represents a possible configuration of the waveguide
model, but we will see in Theorem 4.1 that the set of possible configurations for which we
will apply an asymptotic analysis is more restricted.

We consider a source that emits a signal in the z-direction with carrier frequency ω0. The
source is localized in the plane z = 0.

Fε(t, x, z) = f ε(t)Ψ(x)δ(z)ez, where f ε(t) = 1
2εα

f(εpt)e−iω0t with p ∈ (0, 1), (4.2)

Ψ(x) is the transverse profile of the source and ez is the unit vector pointing in the z-
direction. The source amplitude is large, of order 1/εα, because transmission coefficients at
the interface z = L/ε1−α are small, of order εα/2. However, we shall see in Section 4.4.6 that
the transmission coefficients can be made of order one by inserting a quarter wavelength plate.
Note that the condition p > 0 simplifies the algebra, and the condition p < 1 corresponds to
the broadband case and ensures the statistical stability property discussed in Section 4.4.5.
In the configuration (4.2), the relative bandwidth is of order εp, and the carrier wavelength is
of order εα in the (−∞, L/ε1−α) section and of order one in (L/ε1−α,+∞).

Let us recall that the process V is unbounded and this fact implies that the bulk modulus
can take negative values. However, this situation can be avoided by working on the event(

∀(x, z) ∈ [0, d]× [0, L/ε1−α], 1 +
√
εV

(
x,

z

εα

)
> 0

)
,

since by the property (2.55) page 66

lim
ε→0

P
(
∃(x, z) ∈ [0, d]× [0, L/ε1−α] : 1 +

√
εV

(
x,

z

εα

)
≤ 0

)
≤ lim

ε→0
P
(
√
ε sup
z∈[0,L]

sup
x∈[0,d]

∣∣∣∣V (x, zε
)∣∣∣∣ ≥ 1

)
= 0.

4.2 Waveguide Propagation

4.2.1 Propagation in Homogeneous Waveguides

In this section, we assume that the medium parameters are given by

ρε(x, z) = ρ̄

ε2αρ
and Kε(x, z) = K̄

ε2αK
, ∀(x, z) ∈ (0, d)× R.

From the conservation equations (4.1), we can derive the wave equation for the pressure field,

∆p− 1
cε2

∂2p

∂t2
= ∇.Fε, (4.3)

where cε = εα
√

K̄
ρ̄ = εαc and ∆ = ∂2

x + ∂2
z . We consider Dirichlet boundary conditions

p(t, 0, z) = p(t, d, z) = 0, ∀(t, z) ∈ [0,+∞)× R.

We recall that the Fourier transform and the inverse Fourier transform, with respect to
time, are defined by

f̂(ω) =
∫
f(t)eiωtdt, f(t) = 1

2π

∫
f̂(ω)e−iωtdω.
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In the half-space z > 0 (resp., z < 0), taking the Fourier transform in (4.3), we get that
p̂(ω, x, z) satisfies the time harmonic wave equation without source term

∂2
z p̂(ω, x, z) + ∂2

xp̂(ω, x, z) + k2(ω)
ε2α

p̂(ω, x, z) = 0,

with Dirichlet boundary conditions p̂(ω, 0, z) = p̂(ω, d, z) = 0, ∀(t, z) ∈ [0,+∞) × R. Here
k(ω) = ω

c . The source term implies the following jump conditions for the pressure field across
the plane z = 0

p̂(ω, x, 0+)− p̂(ω, x, 0−) = f̂ ε(ω)Ψ(x),
∂z p̂(ω, x, 0+)− ∂z p̂(ω, x, 0−) = 0.

We can decompose this solution in a spectral basis of L2(0, d), which can be chosen as the
set of eigenfunctions (φj(x))j≥1 of −∂2

x

−∂2
xφj(x) = λjφj(x) and

∫ d

0
φj(x)φl(x)dx = δjl ∀j, l ≥ 1,

where δjl denotes the Kronecker symbol. This family is given by

φj(x) =
√

2
d

sin
(
jπ

d
x

)
with λj = j2π2

d2 for j ≥ 1,

and corresponds to the basis of the unperturbed waveguide. Let us remark that in this
waveguide model the spectral decomposition does not depend on the frequency. Thus, we can
write

p̂(ω, x, z) =
∑
j≥1

p̂j(ω, z)φj(x). (4.4)

This implies that ∀j ≥ 1, p̂j(ω, z) satisfies the differential equation

d2

dz2 p̂j(ω, z) +
(
k2(ω)
ε2α

− λj

)
p̂j(ω, z) = 0. (4.5)

For each frequency ω,
ε2αλNε(ω) ≤ k2(ω) < ε2αλNε(ω)+1

with Nε(ω) =
[k(ω)d
πεα

]
. There are two cases. First, for j ≤ Nε(ω), these modes represent the

propagating modes, and we define the associated modal wavenumbers by

βεj(ω) =

√
k2(ω)
ε2α

− λj .

Second, for j > Nε(ω), these modes represent evanescent modes, and in this case we define
the modal wavenumbers by

βεj(ω) =

√
λj −

k2(ω)
ε2α

.

Finally, using (4.5) and (4.4), the pressure field can be written as an expansion over the
complete set of modes

p̂(ω, x, z) =

Nε(ω)∑
j=1

âεj,0(ω)√
βεj(ω)

eiβ
ε
j(ω)zφj(x) +

∑
j≥Nε(ω)+1

ĉεj,0(ω)√
βεj(ω)

e−β
ε
j(ω)zφj(x)

1(0,+∞)(z)

+

Nε(ω)∑
j=1

b̂εj,0(ω)√
βεj(ω)

e−iβ
ε
j(ω)zφj(x) +

∑
j≥Nε(ω)+1

d̂εj,0(ω)√
βεj(ω)

eβ
ε
j(ω)zφj(x)

1(−∞,0)(z),

(4.6)
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where âεj,0(ω) (resp., b̂εj,0(ω)) is the amplitude of the jth right-going (resp., left-going) mode
propagating in the right half-space z > 0 (resp., left half-space z < 0), and ĉεj,0(ω) (resp.,
d̂εj,0(ω)) is the amplitude of the jth right-going (resp., left-going) evanescent mode in the
right half-space z > 0 (resp., left half-space z < 0). We recall that the source is located in the
plane z = 0 with the transverse profile Ψ(x).

Substituting (4.6) into

∂2
z p̂(ω, x, z) + ∂2

xp̂(ω, x, z) + k2(ω)
ε2α

p̂(ω, x, z) = f̂ ε(ω)Ψ(x)δ′0(z), (4.7)

multiplying by φj(x), and integrating over (0, d) permit us to express the mode amplitudes

âεj,0(ω) = −b̂εj,0(ω) =

√
βεj(ω)

4εα+p f̂

(
ω − ω0
εp

)
θj ,

ĉj,0(ω) = −d̂j,0(ω) = −

√
βεj(ω)

4εα+p f̂

(
ω − ω0
εp

)
θj ,

where ∀j ≥ 1,

θj = 〈Ψ, φj〉L2(0,d) =
∫ d

0
Ψ(x)φj(x)dx.

4.2.2 Mode Coupling in Random Waveguides

In this section, we study the expansion of p̂(ω, x, z) when a random section z ∈ [0, L/ε1−α] is
inserted between two homogeneous waveguides:

1
Kε(x, z)

=


ε2αK 1

K̄

(
1 +
√
εV
(
x, zεα

))
if x ∈ (0, d), z ∈ [0, L/ε1−α]

ε2αK 1
K̄

if x ∈ (0, d), z ∈ (−∞, 0)
1
K̄

if x ∈ (0, d), z ∈ (L/ε1−α,+∞),

ρε(x, z) =
{
ε−2αρ ρ̄ if x ∈ (0, d), z ∈ (−∞, L/ε1−α]
ρ̄ if x ∈ (0, d), z ∈ (L/ε1−α,+∞).

In this region, the pressure field can be decomposed on the basis of eigenmodes of the
unperturbed waveguide

p̂(ω, x, z) =
Nε(ω)∑
j=1

p̂j(ω, z)φj(x) +
∑

j>Nε(ω)
q̂j(ω, z)φj(x).

Evanescent modes correspond to j > Nε(ω), and Nε(ω) goes to +∞ as ε goes to 0. Therefore,
we will neglect the modes j > Nε(ω). Note that it could be possible to incorporate the modes
j > Nε(ω) using the method described in Chapter 2 or in [25, Chapter 20], but this would
lead to complicated algebra without modifying the overall result. Indeed, we shall check a
posteriori that the mode decomposition of the wave is supported by a number of modes of
order one as ε goes to 0. Consequently, we shall consider in what follows the decomposition

p̂(ω, x, z) =
Nε(ω)∑
j=1

p̂j(ω, z)φj(x),

where p̂j(ω, z) satisfies

d2

dz2 p̂j(ω, z) + βεj(ω)2p̂j(ω, z) + ε
1
2−2αk2(ω)

Nε(ω)∑
l=1

Cjl

(
z

εα

)
p̂l(ω, z) = 0 (4.8)
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with ∀(j, l) ∈ {1, . . . , Nε(ω)}2

Cjl(z) = 〈φj , φlV (., z)〉L2(0,d) =
∫ d

0
φj(x)φl(x)V (x, z)dx.

Let us recall that ∀(j, l) ∈ {1, . . . , Nε(ω)}2, the coefficient Cjl represents the coupling between
the jth propagating mode with the lth propagating mode. Next, we introduce the amplitudes
of the generalized right- and left-going modes âj(ω, z) and b̂j(ω, z) for j ∈ {1, . . . , Nε(ω)}.
They are given by

p̂j(ω, z) = 1√
βεj(ω)

(
âj(ω, z)eiβ

ε
j(ω)z + b̂j(ω, z)e−iβ

ε
j(ω)z

)
,

d

dz
p̂j(ω, z) = i

√
βεj(ω)

(
âj(ω, z)eiβ

ε
j(ω)z − b̂j(ω, z)e−iβ

ε
j(ω)z

)
.

In the absence of random perturbation, these amplitudes are constant. In the presence of
random perturbations, we obtain from (4.8) the coupled mode equation

d

dz
âj(ω, z) = ε

1
2−α

ik2

2

Nε(ω)∑
l=1

Cjl
(
z
εα
)

εα
√
βεjβ

ε
l

(
âl(ω, z)ei(β

ε
l−β

ε
j)z + b̂l(ω, z)e−i(β

ε
l+β

ε
j)z
)
,

d

dz
b̂j(ω, z) = −ε

1
2−α

ik2

2

Nε(ω)∑
l=1

Cjl
(
z
εα
)

εα
√
βεjβ

ε
l

(
âl(ω, z)ei(β

ε
l+β

ε
j)z + b̂l(ω, z)e−i(β

ε
l−β

ε
j)z
)
,

∀j ∈ {1, . . . , Nε(ω)}.
Let us define the rescaled processes

âεj(ω, z) = âj

(
ω,

z

ε1−α

)
and b̂εj(ω, z) = b̂j

(
ω,

z

ε1−α

)
for z ∈ (0, L),

∀j ∈ {1, . . . , Nε(ω)}. These scalings correspond to the size of the random section (0, L/ε1−α).
They satisfy the rescaled coupled mode equation

d

dz
âεj(ω, z) = ik2

2
√
ε

Nε(ω)∑
l=1

Cjl
(
z
ε

)
εα
√
βεjβ

ε
l

(
âεl (ω, z)e

iεα(βεl−βεj) zε + b̂εl (ω, z)e
−iεα(βεl+βεj) zε

)
,

d

dz
b̂εj(ω, z) = − ik2

2
√
ε

Nε(ω)∑
l=1

Cjl
(
z
ε

)
εα
√
βεjβ

ε
l

(
âεl (ω, z)e

iεα(βεl+βεj) zε + b̂εl (ω, z)e
−iεα(βεl−βεj) zε

)
,

(4.9)

This system is endowed with the boundary conditions ∀j ∈ {1, . . . , Nε(ω)},

âεj(ω, 0) = âεj,0(ω) and b̂εj(ω,L) = 0.

Note that ∀j ∈ {1, . . . , Nε(ω)}, âεj,0(ω) represents the initial amplitude of the jth propa-
gating mode generated by the source at z = 0+. The second condition means that no wave
comes from the right. We can rewrite (4.9) in a vector-matrix form as

d

dz
Xε(ω, z) = 1√

ε
Hε
(
ω,
z

ε

)
Xε(ω, z),

where

Xε(ω, z) =
[
âε(ω, z)
b̂ε(ω, z)

]
, Hε(ω, z) =

[
Ha,ε(ω, z) Hb,ε(ω, z)
Hb,ε(ω, z) Ha,ε(ω, z)

]
,
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and ∀(j, l) ∈ {1, . . . , Nε(ω)}2,

Ha,ε
jl (ω, z) = ik2(ω)

2
Cjl(z)

εα
√
βεj(ω)βεl (ω)

eiε
α(βεl (ω)−βεj(ω))z,

Hb,ε
jl (ω, z) = ik2(ω)

2
Cjl(z)

εα
√
βεj(ω)βεl (ω)

e−iε
α(βεl (ω)+βεj(ω))z.

(4.10)

Now, we introduce the propagator matrix Pε(ω, z), that is, the 2Nε(ω) × 2Nε(ω) matrix
solution of the differential equation

d

dz
Pε(ω, z) = 1√

ε
Hε
(
ω,
z

ε

)
Pε(ω, z) with Pε(ω, 0) = I.

This relation implies [
âε(ω, z)
b̂ε(ω, z)

]
= Pε(ω, z)

[
âε(ω, 0)
b̂ε(ω, 0)

]
,

and the symmetry of Hε(ω, z) gives a particular form of the propagator:

Pε(ω, z) =
[
Pa
ε (ω, z) Pb

ε(ω, z)
Pb
ε(ω, z) Pa

ε (ω, z)

]
,

where Pa
ε (ω, z) and Pb

ε(ω, z) are Nε(ω)×Nε(ω) matrices which represent, respectively, the
coupling between right-going modes and the coupling between right-going and left-going
modes.

4.2.3 Band-Limiting Idealization and Forward Scattering Approximation

In this section, we introduce a band-limiting idealization hypothesis in which the power
spectral density of the random fluctuations is assumed to be limited in both the transverse
and the longitudinal directions. We already have introduced this assumption in Section
2.5.2 for the study of the coupled power equations in the high-frequency regime and also for
the study of the time-reversal experiment in Section 3.4.7. In the same way, this hypothesis
simplifies in this chapter the study of the time-reversal experiment. Note that ∀j ≥ 1 and
z ∈ [0,+∞), we have

E[Cjl(z)2] =
∫ d

0

∫ d

0
γ(x, y)φj(x)φl(x)φj(y)φl(y)dxdy

= S(j − l, j − l) + S(j + l, j + l)− S(j − l, j + l)− S(j + l, j − l),

where
S(a, b) = 4

d2

∫ d

0

∫ d

0
γ(x, y) cos

(
a
π

d
x

)
cos

(
b
π

d
y

)
dxdy.

We assume that the support of S lies in the square
[
−3

2 ,
3
2

]
×
[
−3

2 ,
3
2

]
. Our compact support

hypothesis implies
Cjl(z) = 0 if |j − l| > 1,

which is tantamount to a nearest neighbor coupling. More precisely, this assumption implies
that ∀(j, l) ∈ {1, . . . , Nε(ω)}2 the jth mode amplitude can exchange information with the lth
amplitude mode if they are direct neighbors, that is, if they satisfy |j − l| ≤ 1.

Now, we consider the forward scattering approximation already discussed in Section 2.3.4
for the waveguide model studied in Chapter 2 and Chapter 3. Considering the first exit
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times of a closed ball related to the weak topology and by considering the process Pε in an
appropriate finite dimensional dual space, the same proof as the one in Section 4.5.1 shows
that Pε converges in law. The limit processes of Pa

ε and Pb
ε, as ε→ 0, are coupled through

the coefficients ∫ +∞

0
E[Cjl(0)Cjl(z)] cos(2k(ω)z)dz,

because of the factor e±iε(β
ε
l (ω)+βεj(ω))z in Hb,ε

jl (ω, z) and the fact that ∀j ≥ 1,

lim
ε→0

εαβεj(ω) = k(ω). (4.11)

We assume that the power spectral density of the process V , i.e. the Fourier transform of its
z-autocorrelation function, possesses a cut-off wavenumber strictly less than 2k(ω). In other
words, we consider the case where∫ +∞

0
E[Cjl(0)Cjl(z)] cos(2k(ω)z)dz = 0 ∀j, l ≥ 1.

Consequently, the limit coupling between Pa
ε (ω, z) and Pb

ε(ω, z) becomes zero. Moreover,
the initial condition Pb

ε(ω, 0) = 0 implies that Pb
ε converges to 0. In this forward scattering

approximation, we can neglect the left-going propagating modes in the asymptotic ε → 0.
With this assumption, one can consider the simplified coupled amplitude equation given by

d

dz
âε(ω, z) = 1√

ε
Ha,ε

(
ω
z

ε

)
âε(ω, z) with âε(ω, 0) = â0(ω).

Finally, we introduce the transfer matrix Tε(ω, z), which is the Nε(ω)×Nε(ω) matrix solution
of

d

dz
Tε(ω, z) = 1√

ε
Ha,ε

(
ω,
z

ε

)
Tε(ω, z) with Tε(ω, 0) = I. (4.12)

From this equation, one can check that the transfer matrix Tε(ω, z) is unitary since Ha,ε(ω, z)
is skew-Hermitian.

4.3 The Coupled Mode Process
This section presents the theoretical results needed in this chapter. In our configuration
the number of propagating modes is not fixed. Then, we must extend the limit theorem
stated in [48], where the number of propagating modes is fixed. The first result concerns
the diffusion-approximation for a solution of an ordinary differential equation with random
coefficients. This result is a version of that stated in [48], where the dimension of the system is
fixed, adapted to the case where the dimension of the system goes to infinity in the asymptotic
ε goes to 0. The second result, which follows from Theorem 4.1, is about the asymptotic
behavior of the expectation of the product of two transfer coefficients. These two results will
be used in the following section to compute the refocused wave in the asymptotic regime ε
goes to 0. The third result concerns the high-frequency approximation to the coupled power
equations obtained in Proposition 4.1. Using a probabilistic representation of solutions of this
equation, we establish a convergence in law to a continuous diffusion process. From Theorem
4.2, we give the high-frequency approximation to the coupled power equations that will allow
us to compute the transverse profile of the refocused wave and show that randomness enhances
spatial refocusing beyond the diffraction limit.

Let H = l2 (E,C), with E = (N∗)2, equipped with the inner product be defined by

∀(λ, µ) ∈ H ×H, 〈λ, µ〉H =
∑
j,m≥1

λjmµjm.
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Let us fix (l, n) ∈ (N∗)2 and consider

Uε
jm(ω, z) = Tε

jl(ω, z)Tε
mn(ω, z),

which is an H-valued process such that ∀z ≥ 0

‖Uε(ω, z)‖H = 1.

Note that we have dropped the indexes l and n in the previous definition because they do not
play any role in (4.12). Moreover, let

BH =
{
λ ∈ H, ‖λ‖H =

√
〈λ, λ〉H ≤ 1

}
the unit ball of H, and {gn, n ≥ 1} a dense subset of BH. We equip BH with the distance
dBH defined by

dBH(λ, µ) =
+∞∑
j=1

1
2j
∣∣∣〈λ− µ, gn〉H∣∣∣ ,

∀(λ, µ) ∈ BH2, and then (BH, dBH) is a compact metric space.

Theorem 4.1 For α ∈ (0, 1/4), the family of processes (Uε(ω, .))ε∈(0,1) converges in distribu-
tion on C([0,+∞), (BH, dBH)) as ε→ 0 to a limit denoted by U(ω, .). This limit is the unique
solution of the infinite-dimensional stochastic differential equation

dU(ω, z) = Jω(U(ω, z))dz + ψω1 (U(ω, z))(dB1
z ) + ψω2 (U(ω, z))(dB2

z ),

with Ujm(ω, 0) = δjlδmn. (Bη
jm)η=1,2

j,m≥1
is a family of independent one-dimensional standard

Brownian motions and

Jω(U)jm = Λ(ω) [(Uj+1j+1δjm − Ujm) + (Uj−1j−1δjm − Ujm)] ,

ψω1 (U)(λ)jm =

√
Λ(ω)

2
(Uj+1mλjj+1 − Uj−1mλj−1j + Ujm+1λmm+1 − Ujm−1λm−1m),

ψω2 (U)(λ)jm = i

√
Λ(ω)

2
(−Uj+1mλjj+1 − Uj−1mλj−1j + Ujm+1λmm+1 + Ujm−1λm−1m)

∀(U, λ) ∈ H× l2(E,R), with Λ = k2(ω)
2a S(1, 1). We use the convention (y0,m)m≥1 = (yj,0)j≥1 =

0 for y ∈ H.

This theorem gives the asymptotic behavior of the statistical properties of the matrix
Uε in terms of the diffusion model given by the infinite-dimensional stochastic differential
equation.

The proof of this theorem, given in the appendix, is based on a martingale approach using
the perturbed-test-function method already used in the proof of Theorem 2.1.

Proposition 4.1

lim
ε→0

E
[
Tε
jj(ω,L)Tε

mm(ω,L)
]

= E [Ujm(ω,L)]

=
{

e−Λ(ω)L if j 6= m and j = 1 or m = 1,
e−2Λ(ω)L if j 6= m 6= 1,

lim
ε→0

E
[
Tε
jl(ω,L)Tε

jl(ω,L)
]

= E [Ujj(ω,L)] = T lj (ω,L),

lim
ε→0

E
[
Tε
jl(ω,L)Tε

mn(ω,L)
]

= E [Ujm(ω,L)] = 0 in the other cases,
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where
(
T lj (ω, z)

)
j≥1

is the solution of the coupled power equations,

d

dz
T lj (ω, z) = Λ(ω)

[
T lj+1(ω, z) + T lj−1(ω, z)− 2T lj (ω, z)

]
, j ≥ 1,

d

dz
T l1 (ω, z) = Λ(ω)

[
T l2 (ω, z)− T l1 (ω, z)

]
,

with T lj (ω, 0) = δjl.

T lj (ω,L) is the expected power of the jth propagating mode at the propagation distance
z = L, when at z = 0 the energy is concentrated on the lth propagating mode. These
equations represent the transfer of energy between propagating modes, and Λ is the energy
transport coefficient. As in Section 2.5, we are interested in studying this equation in the
high-frequency regime, that is, when ω � 1. To this end we take a probabilistic representation
of this equation. We introduce the jump Markov process (Xt)t≥0 whose state space is N∗ and
whose infinitesimal generator is

LXϕ(j) = Λ(ω)(ϕ(j + 1) + ϕ(j − 1)− 2ϕ(j)), j ≥ 2,
LXϕ(1) = Λ(ω)(ϕ(2)− ϕ(1)).

We get

T lj (ω,L) = P(XL = j|X0 = l) = P
(
XL

N
= j

N

∣∣∣∣∣X0
N

= l

N

)
,

where N(ω) =
[
ωd
πc̄

]
is the number of propagating modes in the homogeneous part of the

waveguide model (L/ε1−α,+∞). The normalization of the last equality is the same as the
one used in the proof of Theorems 2.4 and 2.6. As in Chapter 3, the continuous diffusive
regime that we get in Theorem 4.2 will be used in the next section to compute the transverse
profile of the refocused wave.

We can consider (T l(ω,L))l≥1 as a family of probability measures on R+. Let ∀ϕ ∈
C0
b ([0,+∞)), ∀u ∈ [0,+∞), and z ≥ 0,

T Nϕ (z, u) = T [Nu]
ϕ (ω, z) =

∑
j≥1

ϕ
( j
N

)
T [Nu]
j (z).

Theorem 4.2 Let u ≥ 0. ∀ϕ ∈ C0
b ([0,+∞)) and ∀z ≥ 0, we have

lim
ω→+∞

T N(ω)
ϕ (z, u) = Tϕ(z, u) =

∫
R+
ϕ(v)W(z, u, v)dv,

where ∀z > 0 and ∀(u, v) ∈ [0,+∞)2,
∂

∂z
W(z, u, v) = σ2

2
∂2

∂u2W(z, u, v),

with
∂

∂u
W(z, 0, v) = 0 and W(0, u, v) = δ(u− v).

and σ2 = π2

d2aS(1, 1).

This theorem is a continuum approximation in the limit of a large number of propagating
modes. This approximation gives us, in the high-frequency regime, a diffusion model for
the transfer of energy between propagating modes. In our case, the diffusion model of the
coupled power equations takes a particularly simple form; it is the heat equation with a
reflecting barrier. Let us note that W(z, u, v) can be computed. We have, ∀z > 0 and
∀(u, v) ∈ [0,+∞)2,

W(z, u, v) = 1√
2πσ2z

(
e−

(v−u)2

2σ2z + e−
(v+u)2

2σ2z

)
.
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4.4 Time Reversal in a Waveguide

4.4.1 First Step of the Time Reversal Experiment

In the first step of the experiment, a source sends a pulse into the medium, and the wave
propagates and is recorded by the time-reversal mirror. In this section we obtain the integral
representation of the wave recorded by the time-reversal mirror.

A source is located in the plane z = 0 and emits a pulse f ε(t) of the form (4.2),

f ε(t) = 1
2εα

f(εpt)e−iω0t with p ∈ (0, 1).

A time-reversal mirror is located in the plane z = LM/ε
1−α, it occupies the transverse

subdomain DM ⊂ [0, d] and in the first step of the experiment the time-reversal mirror plays
the role of a receiving array. The transmitted wave is recorded for a time interval

[ t0
ε ,

t1
ε

]
at the time-reversal mirror and is re-emitted time-reversed into the waveguide toward the
source. We have chosen such a time window because it is of the order of the total travel time
of the two sections. We recall that the propagation distance is of order 1/ε1−α and the sound
speed is of order εα in (−∞, L/ε1−α), and the propagation distance is of order 1/ε1−α and
the sound speed is of order 1 in (L/ε1−α, LM/ε1−α).

The Fourier transform of the pressure field at the end of the random section [0, L/ε1−α] is
given by

p̂0,ε
tr

(
ω, x,

L−

ε1−α

)
=

Nε(ω)∑
j=1

âεj(ω,L)√
βεj(ω)

eiβ
ε
j(ω) L

ε1−α φj(x).

Jumps of the medium parameters at z = L/ε1−α imply that the incoming pulse produces
a reflected and a transmitted field. The modal decomposition obtained in Section 4.2.1 for
the first part of the waveguide can be obtained in the same way for the second part with
ε = 1. The decomposition over the eigenmodes gives

p̂L,εtr (ω, x, z) =

N(ω)∑
j=1

âj,L(ω)√
βj(ω)

eiβj(ω)
(
z− L

ε1−α
)
φj(x) + b̂j,L(ω)√

βj(ω)
e−iβj(ω)

(
z− L

ε1−α
)
φj(x)

+
Nε(ω)∑

j=N(ω)+1

ĉj,L(ω)√
βj(ω)

e−βj(ω)
(
z− L

ε1−α
)
φj(x) + d̂j,L(ω)√

βj(ω)
eβj(ω)

(
z− L

ε1−α
)
φj(x)

1(L/ε1−α,+∞)(z)

+

Nε(ω)∑
j=1

âεj,L(ω)√
βεj(ω)

eiβ
ε
j(ω)

(
z− L

ε1−α
)
φj(x) +

b̂εj,L(ω)√
βεj(ω)

e−iβ
ε
j(ω)

(
z− L

ε1−α
)
φj(x)

1(0,L/ε1−α)(z),

(4.13)

where âj,L(ω) (resp., b̂j,L(ω)) is the amplitude of the jth right-going (resp., left-going) mode
propagating, and ĉj,L(ω) (resp., d̂j,L(ω)) is the amplitude of the jth right-going (resp., left-
going) evanescent mode in the homogeneous section (L/ε1−α,+∞). Moreover, âεj,L(ω) (resp.,
b̂εj,L(ω)) is the amplitude of the jth right-going (resp., left-going) mode propagating in the
section (0, L/ε1−α). Note that we have kept the evanescent modes j > N(ω), in the waveguide
section (L/ε1−α,+∞), in the expression (4.13) because N(ω) is of order one.

From the continuity of the pressure and velocity fields, we get ∀j ∈ {1, . . . , N(ω)}[
âj,L(ω)
b̂j,L(ω)

]
=
[
rε,+j rε,−j
rε,−j rε,+j

] [
âεj,L(ω)
b̂εj,L(ω)

]
, where rε,±j = 1

2

√βj(ω)
βεj(ω)

±

√
βεj(ω)
βj(ω)

 ,
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and ∀j ∈ {N(ω) + 1, . . . , Nε(ω)}[
ĉj,L(ω)
d̂j,L(ω)

]
=

rε,ij rε,ij

rε,ij rε,ij

[âεj,L(ω)
b̂εj,L(ω)

]
,where rε,ij = 1

2

√βj(ω)
βεj(ω)

− i

√
βεj(ω)
βj(ω)


with

âεj,L(ω) = âεj(ω,L)eiβ
ε
j(ω) L

ε1−α , b̂j,L(ω) = 0, and d̂j,L(ω) = 0.

The two last conditions mean that no wave comes from the right. In fact, in the first part of the
experiment the time-reversal mirror records the signal and does not produce reflected waves.
Solving these equations allows us to express the transmitted and the reflected coefficients.
Consequently, ∀j ∈ {1, . . . , N(ω)}, we have

âj,L(ω) = τ ε,+j (ω)âεj(ω,L)eiβ
ε
j(ω) L

ε1−α and b̂εj,L(ω) = −
rε,−j

rε,+j
âεj(ω,L)eiβ

ε
j(ω) L

ε1−α ,

where
τ ε,+j (ω) = 1

rε,+j (ω)
(4.14)

is the transmission coefficient of the interface z = L/ε1−α, and ∀j ∈ {N + 1, . . . , Nε(ω)}

ĉj,L(ω) = − i

rε,ij
âεj(ω,L)eiβ

ε
j(ω) L

ε1−α and b̂εj,L(ω) = −
rε,ij

rε,ij
eiβ

ε
j(ω) L

ε1−α .

We can remark that ∀j ∈ {1, . . . , N(ω)}, the transmission coefficients τ ε,+j (ω), which are
defined by (4.14), are of order εα/2. We recall that we have taken a source amplitude of
order 1/εα in (4.2). This fact will allow us to have, after the second step of the time-reversal
experiment, a refocused wave of order one. However, we recall that we shall see, in section
4.4.6, that the transmission coefficients can be made of order one by inserting a quarter
wavelength plate.

The reflected wave produced at the interface z = L/ε1−α does not reach the time-reversal
mirror. Moreover, LM/ε1−α is sufficiently large so that one can assume that the evanescent
modes, that is, the jth right-going modes for j ∈ {N(ω) + 1, . . . , Nε(ω)} in the homogeneous
section (L/ε1−α,+∞) which decrease exponentially fast, do not reach the time-reversal mirror
either. Therefore, only the transmitted propagating wave

pεtr

(
t

ε
, x,

LM
ε1−α

)
= 1

2π

∫ N(ω)∑
j=1

âεj(ω,L)√
βj(ω)

τ ε,+j (ω)eiβ
ε
j(ω) L

ε1−α e
iβj(ω)

(
LM−L
ε1−α

)
φj(x)e−iω

t
εdω (4.15)

is recorded by the time-reversal mirror.
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4.4.2 Second Step of the Time-Reversal Experiment

In the second step of the time-reversal experiment, the time-reversal mirror plays the role of
a source array, and the time-reversed signal is transmitted back. This source term is given by

Fε
TR(t, x, z) = −f εTR(t, x)δ(z − LM/ε1−α)ez,

with
f εTR(t, x) = pεtr

(
t1
ε
− t, x, LM

ε1−α

)
G1(t1 − εt)G2(x),

and
G1(t) = 1[t0,t1](t) and G2(x) = 1DM (x).

Here, G1 represents the time window in which the transmitted wave is recorded, and G2
represents the spatial window in which the transmitted wave is recorded. As in Chapter 3,
we are interested in the spatial effects of the refocusing, so we assume that we record the field
for all time at the time-reversal mirror, i.e.,

f εTR(t, x) = pεtr

(
t1
ε
− t, x, LM

ε1−α

)
G2(x). (4.16)

However, in this chapter, we assume that the two realizations of the random medium are the
same during the two steps of the time-reversal experiment. Let us remark that the same work
as in Section 3.4.6 can be done in the configuration of this chapter.

We study the propagation from z = LM/ε
1−α to z = 0. The decomposition on the

eigenmodes gives

p̂LM ,εTR

(
ω, x,

z

ε1−α

)
=

N(ω)∑
m=1

b̂m,LM (ω)√
βm(ω)

e
−iβm(ω)

(
z−LM
ε1−α

)
φm(x)

in the homogeneous part (L/ε1−α, LM/ε1−α) of the waveguide, with

b̂m,LM (ω) =
√
βm(ω)
2

∫ d

0
f̂ εTR(ω, x)φm(x)dx, (4.17)

where

f̂ εTR(ω, x) =
N(ω)∑
j=1

âεj(ω,L)√
βj(ω)

τ ε,+j (ω)e−iβ
ε
j(ω) L

ε1−α e
−iβj(ω)

(
LM−L
ε1−α

)
φj(x)G2(x)eiω

t1
ε , (4.18)

and b̂m,LM (ω) = 0 for m > N . We are now interested in the refocused wave near the source
location. The transmission through the interface z = L/ε1−α and the back propagation in the
random section are treated in the same way as the first step of the time-reversal experiment.
The eigenmode decomposition at the interface z = L/ε1−α is given by

p̂L,εTR (ω, x, z) =N(ω)∑
m=1

âm,L(ω)√
βm(ω)

eiβm(ω)
(
z− L

ε1−α
)
φm(x) + b̂m,L(ω)√

βm(ω)
e−iβm(ω)

(
z− L

ε1−α
)
φm(x)

1(L/ε1−α,+∞)(z)

+

Nε(ω)∑
m=1

âεm,L(ω)√
βεm(ω)

eiβ
ε
m(ω)

(
z− L

ε1−α
)
φm(x) +

b̂εm,L(ω)√
βεm(ω)

e−iβ
ε
m(ω)

(
z− L

ε1−α
)
φm(x)

1(0,L/ε1−α)(z),

(4.19)
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where âm,L(ω) (resp., b̂m,L(ω)) is the amplitude of the mth right-going (resp., left-going)
mode propagating in the homogeneous section (L/ε1−α,+∞), and âεm,L(ω) (resp., b̂εm,L(ω))
is the amplitude of the mth right-going (resp. left-going) mode propagating in the section
(0, L/ε1−α).

From the continuity of the pressure and velocity fields, we get ∀m ∈ {1, . . . , Nε(ω)}[
âm,L(ω)
b̂m,L(ω)

]
=
[
rε,+m rε,−m
rε,−m rε,+m

] [
âεm,L(ω)
b̂εm,L(ω)

]
.

However, the source emits only N(ω) propagating modes; therefore, âm,L(ω) = b̂m,L(ω) = 0
for m > N(ω) and for m ≤ N(ω)

âεm,L(ω) = 0 and b̂m,L(ω) = b̂m,LM e
−iβm(ω)

(
L−LM
ε1−α

)
.

The first condition means that no wave comes from the left in this forward approximation
that we are considering. Solving this equation permits us to express the transmitted and the
reflected coefficients. ∀m ∈ {1, . . . , N(ω)},

âm,L(ω) = rε,−m
rε,+m

b̂m,LM e
−iβm(ω)

(
L−LM
ε1−α

)
, b̂εm,L(ω) = τ ε,+m (ω)b̂m,LM e

−iβm(ω)
(
L−LM
ε1−α

)
,

where τ ε,+m (ω) = 1
rε,+m (ω)

and b̂εm,L(ω) = 0 ∀m ∈ {N(ω) + 1, . . . , Nε(ω)}. Thus, we have
obtained the expression of the boundary conditions at the plane z = L/ε1−α. Now, we are
interested in the back propagation through the random section from z = L/ε1−α to z = 0;

p̂εTR(ω, x, 0) =
Nε(ω)∑
n=1

b̂εn(ω, 0)√
βεn(ω)

φn(x).

Since the transfer matrix Tε(ω, z) is unitary,

b̂εn(ω, 0) =
N(ω)∑
m=1

Tε
mn(ω,L)b̂εm(ω,L)eiβ

ε
m(ω) L

ε1−α

=
N(ω)∑
m=1

Tε
mn(ω,L)τ ε,+m (ω)b̂m,LM e

iβm(ω)
(
L−LM
ε1−α

)
eiβ

ε
m(ω) L

ε1−α ,

and using (4.15), (4.16), (4.17), and (4.18) we get

b̂m,LM (ω) = 1
8εp

N(ω)∑
j=1

Nε(ω)∑
l=1

√
βεl (ω)βm(ω)

βj(ω)
Mmjθlf̂

(
ω − ω0
εp

)
Tε
jl(ω,L)

× 1
εα
τ ε,+j (ω)τ ε,+m (ω)e−iβ

ε
j(ω) L

ε1−α e
−iβj(ω)

(
LM−L
ε1−α

)
eiω

t1
ε ,

165



Chapter 4 Section 4.4.2

where
Mjl =

∫ d

0
G2(x)φj(x)φl(x)dx.

The matrix (Mjl) represents the coupling produced by the time-reversal mirror between the
propagating modes during the two steps of the time-reversal experiment. We recall that
b̂m,LM is the projection over the mth propagating mode for the Fourier transform of the
time-reversed signal recorded by the time-reversal mirror. Therefore, the refocused wave is

pεTR

(
t

ε
, x, 0

)
= 1

16πεp
∫ N(ω)∑

j,m=1

Nε(ω)∑
l,n=1

√
βεl (ω)βm(ω)
βj(ω)βεn(ω)

Mmjθlφn(x)

×Tε
jl(ω,L)Tε

mn(ω,L) 1
εα
τ ε,+j (ω)τ ε,+m (ω)f̂

(
ω − ω0
εp

)

× e
i(βm(ω)−βj(ω))

(
LM−L
ε1−α

)
ei(β

ε
m(ω)−βεj(ω)) L

ε1−α eiω
t1−t
ε dω.

(4.20)

Now, we make the change of variable ω = ω0 + εph. Consequently, (4.20) becomes

e−iω0
t1−t
ε pεTR

(
t

ε
, x, 0

)
= 1

16π

∫ N(ω0+εph)∑
j,m=1

Nε(ω0+εph)∑
l,n=1

√
βεl (ω0 + εph)βm(ω0 + εph)
βj(ω0 + εph)βεn(ω0 + εph)

×Tε
jl(ω0 + εph, L)Tε

mn(ω0 + εph, L) 1
εα
τ ε,+j (ω0 + εph)τ ε,+m (ω0 + εph)

×Mmjθlφn(x)f̂(h)e
i(βm(ω0+εph)−βj(ω0+εph))

(
LM−L
ε1−α

)
× ei(β

ε
m(ω0+εph)−βεj(ω0+εph)) L

ε1−α eih
(
t1−t
ε1−p

)
dh.

(4.21)

In what follows: we consider the following

1. A source with transverse profile of the form

∀x ∈ [0, d], Ψ(x) =
ζ∑
l=1

φl(x0)φl(x),

where we assume that ζ � N(ω0). Then, θl = φl(x0) for l ∈ {1, . . . , ζ} and θl = 0 for
l ≥ ζ + 1. This profile is an approximation of a Dirac distribution at x0, which models
a point source at x0.

2. A time-reversal mirror of the form DM = [d1, d2] with

d2 = dM + λαM0 d̃2 and d1 = dM − λαM0 d̃1,

where dM ∈ (0, d), (d̃2, d̃1) ∈ (0,+∞)2, and αM ∈ [0, 1]. The time-reversal coupling
matrix is given by

Mjl = d2 − d1
d

[
cos

(
(j − l)

(
d2 + d1

2d

)
π

)
sinc

(
(j − l)

(
d2 − d1

2d

)
π

)
− cos

(
(j + l)

(
d2 + d1

2d

)
π

)
sinc

(
(j + l)

(
d2 − d1

2d

)
π

)]
.

The parameter αM represents the order of the magnitude of the size of the mirror with
respect to the carrier wavelength λ0 = 2πc/ω0. In fact, we shall see that the size of the
mirror plays a role in the homogeneous case only when it is of the order the carrier
wavelength λ0.
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Moreover, we shall study the spatial profile of the refocused wave in the high-frequency
regime ω0 ↗ +∞. However, we know that the main focal spot must be of order λ0, which
tends to 0 in this continuum limit. Therefore, we shall study the spatial profile in a window
of size λ0 centered around the source location x0.

4.4.3 Homogeneous Waveguide

Here we examine the homogeneous case, that is, the case in which the section [0, L/ε1−α] has
homogeneous parameters K̄/ε2αK and ρ̄/ε2αρ . In these conditions we have Tε

jl(ω, z) = δjl.
We recall that the continuum limit N(ω0) � 1 is achieved in the high frequency regime
ω0 ↗ +∞ and the carrier wavelength is given by λ0 = 2πc/ω0.

Proposition 4.2 The refocused field is given by

lim
ε→0

eiω0
t
εp pεTR

(
t1
ε

+ t

εp
, x, 0

)
= HαM

x0 (ω0, x)f(−t),

where

HαM
x0 (ω0, x) = 1

2

N(ω0)∑
j=1

βj(ω0)
k(ω0)

Mjjφj(x0)φj(x)

For αM ∈ [0, 1), the transverse profile of the refocused wave in the continuum limit is given by

lim
ω0→+∞

λ1−αM
0 HαM

x0 (ω0, x0 + λ0x̃) = d̃2 + d̃1
d

H(1)(x̃),

where
H(1)(x̃) =

∫ 1

0

√
1− u2 cos (2πx̃u) du. (4.22)

Proof First, we have ∀p ∈ (0, 1) and ∀α ∈ (0, 1]

lim
ε→0

1
εα
τ ε,+j (ω0 + εph)τ ε,+m (ω0 + εph) = 4

√
βj(ω0)βm(ω0)

k(ω0)
. (4.23)

Second, we will fix the parameters p and α in order to give, for illustration, a simpler
proof. Let p = 1/2 and α = 1/6. These two values allow us to have a not too long truncated
expansion (4.24); then the refocused field is given by the deterministic expression, for ε� 1,

pεTR

(
t1
ε

+ t

ε1/2
, x, 0

)
' 1

2

N(ω0)∑
j,m=1

βm(ω0)
k(ω0)

Mmjθjφm(x)e
i(βm(ω0)−βj(ω0))

(
LM−L
ε5/6

)

× ei(β
ε
m(ω0)−βεj(ω0)) L

ε5/6 e
−iω0

t

ε1/2

× f
([
ε1/6(β′m(ω0)− β′j(ω0))(LM − L) + ε1/3(m2 − j2) π

2c2

ω2
0d

2
L

2c

]
1
ε1/2
− t
)
,

since (
βεm(ω0 + ε1/2h)− βεj(ω0 + ε1/2h)

) L

ε1−α
=
(
βεm(ω0)− βεj(ω0)

) L

ε5/6

+ h

2c
(m2 − j2) π

2c2

ω2
0d

2
L

ε1/6
+ o(1).

(4.24)
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Finally, the transverse profile is given by

d

d̃2 + d̃1
λ1−αM

0 HαM
x0 (ω0, x0 + λ0x̃) = 1

N

N∑
j=1

√
1− j2

N2 cos
(

2πx̃ j
N

)

+ λ0
2d

N∑
j=1

βj(ω0)
k(ω0)

cos
(
j
π

d
(2x0 + λ0x̃)

)

− d

d̃2 + d̃1

λ1−αM
0
2

N∑
j=1

βj(ω0)
jπk(ω0)

φj(x0)φj(x0 + λ0x̃)

× cos
(
jπ

(
d2 + d1

d

))
sin
(
jπ

(
d2 − d1

d

))
+ o(1).

Using the Abel transform, the second and the third sums on the right are O(1). This completes
the proof of the Proposition. �

To finish this section, we consider the difference between the previous profile (obtained in
the case where the homogeneous section [0, L/ε1−α], with the parameters K̄/ε2αK and ρ̄/ε2αρ ,
is present) and the one in which this homogeneous section is missing (that is, the waveguide is
homogeneous with parameters K̄ and ρ̄). The second profile is given, in [25, Chapter 20], by

HαM
x0,no section(ω0, x) = 1

2

N(ω0)∑
j=1

Mjjφj(x0)φj(x),

which we can rewrite in the continuum limit N(ω0)� 1.

Proposition 4.3 For αM ∈ [0, 1), the spatial profile in the continuum limit is given by

lim
ω0→+∞

λ1−αM
0 HαM

x0,no section(ω0, x0 + λ0x̃) = d̃2 + d̃1
d

sinc(2πx̃); (4.25)

where the sinc function is defined by sinc(v) = sin(v)/v.

The formula (4.25) corresponds to the classical diffraction limit with a focal spot of radius
λ0/2. In Figure 4.3, we compare, in the homogeneous case, the spatial profile (4.22) in the
case where the homogeneous section [0, L/ε1−α] is present with the profile (4.25), where this
section is missing. We can see that the main focal spot, in the case where a section is inserted,
is larger than the focal spot produced when this section is missing (see Figure 4.5). The use
of this section does not improve the refocusing in the homogeneous case. It is necessary to
use an inhomogeneous section to induce mode coupling in order to enhance refocusing, as we
shall see in the next section.

4.4.4 Mean Refocused Field in the Random Case

Taking the expectation of (4.21), we obtain the mean refocused wave

E
[
e−iω0

t1−t
ε pεTR

(
t

ε
, x, 0

)]
= 1

16π

∫ N(ω0+εph)∑
j,m=1

Nε(ω0+εph)∑
n=1

ζ∑
l=1

√
βεl (ω0 + εph)βm(ω0 + εph)
βj(ω0 + εph)βεn(ω0 + εph)

× E
[
Tε
jl(ω0 + εph, L)Tε

mn(ω0 + εph, L)
]
Mmjφl(x0)φn(x)f̂(h)

× 1
εα
τ ε,+j (ω0 + εph)τ ε,+m (ω0 + εph)e

i(βm(ω0+εph)−βj(ω0+εph))
(
LM−L
ε1−α

)
× ei(β

ε
m(ω0+εph)−βεj(ω0+εph)) L

ε1−α eih
(
t1−t
ε1−p

)
dh.
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Figure 4.3: Normalized transverse profiles in the homogeneous waveguide in the case where
αM ∈ [0, 1). The dashed curve is the transverse profile in the case where the section is missing
sinc(2πx̃) and the solid curve is the refocusing profile H(1)(x̃) in the case where we add a
homogeneous section.

We shall establish the convergence of the mean refocused wave in the topological dual space
E ′ equipped with the weak topology, with E =

⋃
M≥1 EM and where

EM =


M∑
j=1

µjφj , (µj)j ∈ RM

 .
EM is equipped with the topology induced by

〈
., .
〉
L2(0,d) and E with the inductive limit

topology. This topology is a the same as the one used in Proposition 3.12 and Proposition
3.14. Consequently, It suffices to study

〈
E
[
eiω0

t
εp pεTR

( t1
ε + t

εp , ., 0
)]
, φn

〉
L2(0,d) for n ∈ N∗.

Using Proposition 4.1, we get

lim
ζ→+∞

lim
ε→0

〈
E
[
eiω0

t
εp pεTR

(
t1
ε

+ t

εp
, ., 0

)]
, φn

〉
L2(0,d)

= 1
2

N(ω0)∑
j=1

∑
l≥1

βj(ω0)
k(ω0)

T lj (ω0, L)Mjjφl(x0)f(−t)δln +O(N2e−ΛL)

=
〈
f(−t)HαM

x0 (ω0, .), φn
〉
L2(0,d) +O(N2e−ΛL),

where the transverse profile is given by

HαM
x0 (ω0, x) = 1

2
∑
l≥1

N(ω0)∑
j=1

βj(ω0)
k(ω0)

T lj (ω0, L)Mjjφl(x)φl(x0).

In the continuum limit, the terms which correspond to j 6= m decay exponentially because of
the damping term e−ΛL since Λ ' N2σ2/2.

Proposition 4.4 For αM ∈ [0, 1], in the continuum limit N(ω0)� 1, we have

lim
ω0→+∞

(
HαM
x0 (ω0, .)− H̃αM

x0 (ω0, .)
)

= 0

in E ′, where

lim
ω0→+∞

λ1−αM
0 H̃αM

x0 (ω0, x0 + λ0x̃) = d̃2 + d̃1
d

H(2)(x̃, L),
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with
H(2)(x̃, L) = e−x̃

2/r2
cH(1)(x̃) = e−x̃

2/r2
c

∫ 1

0

√
1− u2 cos (2πx̃u) du, (4.26)

and
rc = 1

πσ
√

2L
= d

π2

√
a

2LS(1, 1)
. (4.27)

From this proposition, in contrast with Proposition 4.2 which considers a homogeneous
waveguide, the time-reversal coupling matrix does not play any role in the transverse profile
of the mean refocused wave. This result is consistent with those obtained in [25, 30] and
those of Section 3.4.7.
Proof Let n ∈ N∗; we have

lim
ζ→+∞

〈
HαM
x0 (ω0, .), φn

〉
L2(0,d) = 1

2
φn(x0)

N∑
j=1

βj(ω0)
k(ω0)

MjjT nj (ω0, L).

Using the probabilistic interpretation of T nj (ω0, L) in Section 4.3, we get

N∑
j=1

βj(ω0)
k(ω0)

MjjT nj (ω0, L) = d2 − d1
2d

E

√1−
(
XL

N

)2
1(XL

N
∈{ 1

N
,··· ,1}

)∣∣∣∣∣X0
N

= n

N


− 1

2

N∑
j=1

βj(ω0)
jπk(ω0)

T nj (ω0, L) cos
(
jπ
d2 + d1

d

)
sin
(
jπ
d2 − d1

d

)
+ o(1).

Moreover, using Theorem 4.2

E

√1−
(
XL

N

)2
1(XL

N
∈{ 1

N
,··· ,1}

)∣∣∣∣∣X0
N

= n

N

 = E

√1−
(
σBL + n

N

)2
1(σBL+ n

N
∈[−1,1])


+ o(1),

and we have the following result.
Lemma 4.1

lim
N→+∞

N∑
j=1

βj(ω0)
jπk(ω0)

T nj (ω0, L) cos
(
jπ
d2 + d1

d

)
sin
(
jπ
d2 − d1

d

)
= 0.

Proof It suffices to show that

lim
N→+∞

N∑
j=1

βj(ω0)
jπk(ω0)

T nj (ω0, L) = 0.

Let η ∈ (0, 1); we have
N∑
j=1

βj(ω0)
jπk(ω0)

T nj (ω0, L) ≤ P
(
XL

N
∈
{ 1
N
, · · · , [Nη]

N

} ∣∣∣X0
N

= n

N

)

+ 1
[Nη] + 1

N∑
j=[Nη]+1

P(XL = j|X0 = n).

Therefore,

lim
N

N∑
j=1

βj(ω0)
jπk(ω0)

T nj (ω0, L) ≤ P(σBL ∈ [0, η]),

and we get the result by letting η ↘ 0.�
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This lemma shows that the time-reversal coupling matrix does not play any role in the
transverse profile of the mean refocused wave. Consequently,

lim
ω0→+∞

〈
HαM
x0 (ω0, .)− H̃αM

x0 (ω0, .), φn
〉
L2(0,d)

= 0,

where

H̃αM
x0 (ω0, x) = d2 − d1

2d
∑
l≥1

E

√1−
(
σBL + l

N

)2
1(σBL+ l

N
∈[−1,1])

φl(x0)φl(x).

Lemma 4.2 In the continuum limit N(ω0)� 1, we have

λ1−αM
0 H̃αM

x0 (ω0, x0 + λ0x̃) = d̃2 + d̃1
d

e−2Lσ2π2x̃2
∫ 1

0

√
1− u2 cos (2πx̃u) du.

Proof The proof is an application of the Poisson formula,∑
m∈Z

F̂u(m)eimv = 2π
∑
m∈Z

Fu(v + 2mπ),

with F̂u(m) = e−
(m−Nu)2

2N2σ2L and Fu(t) =
√

2πN2σ2L
2π e−t

2N2 σ2
2 L+itNu. Thus, we obtain

d

d2 − d1
H̃αM
x0 (ω0, x0 + λ0x̃)

= N

d

∑
l∈Z

e−N
2 σ2

2 L(πd λ0x̃+2lπ)2
∫ 1

0

√
1− u2 cos

[(
π

d
λ0x̃+ 2lπ

)
Nu

]
du

− N

d

∑
l∈Z

e−N
2 σ2

2 L(πd (λ0x̃+2x0)+2lπ)2
∫ 1

0

√
1− u2 cos

[(
π

d
(λ0x̃+ 2x0) + 2lπ

)
Nu

]
du.

Finally, we take only the term l = 0 in the first sum on the right because the rest of the
first sum and the second sum are of order O(e−CN2) uniformly in x̃. Moreover, we have
limω0 λ0N/(2d) = 1. �

This last result completes the proof of Proposition 4.4. �

In Figure 4.4, we illustrate the differences between the transverse profiles of the refocused
wave in the homogeneous case and when a random section is inserted. In order to show
that random inhomogeneities enhance refocusing of the time-reversed waves, we consider two
configurations. (a) illustrates the case where σ � 1 (weak fluctuations). We can see that the
focal spot in the case where we add a section can be larger than in the case where this section
is missing. In contrast, (b) illustrates the case where σ is large enough to have side-lobe
suppression and a focal spot which is narrower than in the case where the random section is
missing. In figure 4.5, we illustrate the improvement of resolution with respect to σ by using
the FWHM, that is the full width at half maximum, which is a useful tool for studying the
width of peaks. In the case where the random perturbed section is missing, the FWHM of
the transverse profile given in Proposition 4.3, is of order λ0/2. However, when this section is
inserted the FWHM of the transverse profile, given in Proposition 4.4 is narrower than in the
previous case for σ large enough. Consequently, if σ is large enough, the resolution is < λ0/2.
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(a) (b)

Figure 4.4: Normalized transverse profiles in a random waveguide. Here L = 1. In (a) and (b)
we illustrate the case where αM ∈ [0, 1). The dashed curves are the transverse profiles in the
case where the section is missing sinc(2πx̃), and the solid curves are the transverse profiles
H(2)(x̃, L) in the case where we add a random section, with σ = 0.5 in (a), and σ = 7 in (b).

Figure 4.5: Ratio between the FWHM of the profile H(2)(x̃, L) obtained when we add a
random section and that of the profile obtained when this section is missing sinc(2πx̃), in
terms of the standard deviation σ. Here L = 1. The solid curve represents the case where
αM ∈ [0, 1), and the dashed curve represents the case where αM = 1.
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4.4.5 Statistical Stability

Pulse stabilization is proved by a frequency decoherence argument, see [18] in the context of
a one-dimensional medium and [25, Chapter 20] in the context of waveguides. In our case, to
prove the self-averaging property, we study the second order moment of the refocused wave
εiω0

t
εp pεTR

( t1
ε + t

εp , x, 0
)
. As in section 4.5.1, we prove a limit theorem for(

Tε
.l(ω + εph, .)Tε

.n(ω + εph, .)Tε
.l′(ω + εph′, .)Tε

.n′(ω + εph′, .)
)
ε

and show that, ∀p ∈ (0, 1) and α ∈
(
0, 1

4 ∧
1−p
2

)
,

E
[
Tε
jl(ω + εph, .)Tε

mn(ω + εph, .)Tε
j′l′(ω + εph′, .)Tε

m′n′(ω + εph′, .)
]

= E
[
Tε
jl(ω + εph, L)Tε

mn(ω + εph, L)
]
E
[
Tε
j′l′(ω + εph′, L)Tε

m′n′(ω + εph′, L)
]

+O
(
ε(1/2)∧(1−2α−p)

)
∀K ≥ 1 and ∀(j, l,m, n, j′, l′,m′, n′) ∈ {1, . . . ,K}4. Consequently, we have ∀ϕ ∈ E

lim
ε→0

E
[∣∣∣〈eiω0

t
εp pεTR

( t1
ε

+ t

εp
, ., 0

)
, ϕ
〉
L2(0,d)

∣∣∣2]
= lim

ε→0

∣∣∣E[〈eiω0
t
εp pεTR

( t1
ε

+ t

εp
, x, 0

)
, ϕ
〉
L2(0,d)

]∣∣∣2.
4.4.6 Quarter Wavelength Plate

In this section, we explain how the transmission coefficients through the interface z = L/ε1−α

can be made of order one. We have seen that the previous transmission coefficients, defined
by (4.14), are particularly small, of order εα/2. This poor transmission can be corrected by
inserting a quarter wavelength plate. A description of this antireflective process can be found
in [25, Chapter 3]. This method is often used in echographic imaging; it consists in adding a
thin layer to enhance the transmission through an interface with the minimum loss of energy.
In our situation, we will obtain a transmission of order one when it was of order εα/2 without
this method. Here, we consider a source that emits a pulse of the form

f ε(t) = 1
2
f(εpt)e−iω0t.

Note that we no longer need the factor 1/εα as in (4.2) in order to get a refocused signal
of order one. The medium parameters of this thin homogeneous layer located in the region
(L/ε1−α, Lεc) are given by

ρε(x, z) = ρ̄

εαρ
and Kε(x, z) = K̄

εαK
∀(x, z) ∈ (0, d)×(L/ε1−α, Lεc) with Lεc = L

ε1−α
+εα/2λ0

4
.

In the section (L/ε1−α, Lεc), the modal wavenumbers are

β̃εj(ω) =

√
k2(ω)
εα

− j2π
2

d2 , j = 1, . . . ,
[
k(ω)d
εα/2π

]
.

From the continuity of the pressure and velocity fields, the transmission coefficients of the
layer become

τ ε,+j (ω) =
T 0,ε
j (ω)T 1,ε

j (ω)eiβ̃
ε
j(ω)(Lεc−L/ε1−α)

1 +R0,ε
j (ω)R1,ε

j (ω)e2iβ̃
ε
j(ω)(Lεc−L/ε1−α)

,
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with

T 0,ε
j (ω) =

2
√
βεj(ω)β̃εj(ω)

βεj(ω) + β̃εj(ω)
, T 1,ε

j (ω) =
2
√
βj(ω)β̃εj(ω)

βj(ω) + β̃εj(ω)
,

R0,ε
j (ω) =

βεj(ω)− β̃εj(ω)
βεj(ω) + β̃εj(ω)

, R1,ε
j (ω) =

β̃εj(ω)− βj(ω)
β̃εj(ω) + βj(ω)

,

where T 0,ε
j and R0,ε

j (resp., T 1,ε
j and R1,ε

j ) are the transmission and reflection coefficients
of the interface between the sections (0, L/ε1−α) and (L/ε1−α, Lεc) (resp., (L/ε1−α, Lεc) and
(Lεc, LM/ε1−α)). Consequently, the refocused wave is given by

e−iω0
t1−t
ε pεTR

(
t

ε
, x, 0

)
= 1

16π

∫ N(ω0+εph)∑
j,m=1

Nε(ω0+εph)∑
n=1

ζ∑
l=1

√
βεl (ω0 + εph)βm(ω0 + εph)
βj(ω0 + εph)βεn(ω0 + εph)

×Tε
jl(ω + εph, L)Tε

mn(ω + εph, L)τ ε,+j (ω0 + εph)τ ε,+m (ω0 + εph)

×Mmjφl(x0)φn(x)f̂(h)e
i(βm(ω0+εph)−βj(ω0+εph))

(
LM
ε1−α−L

ε
c

)
× ei(β

ε
m(ω0+εh)−βεj(ω0+εh′)) L

ε1−α eih
(
t1−t
ε1−p

)
dh′dh.

(4.28)

Note that the only difference between (4.21) and (4.28) is the expression for the product of
transmission coefficients τ ε,+j (ω)τ ε,+m (ω). The limit as ε→ 0 of this product is (4.23) in the
absence of quarter wavelength plate. In the presence of the quarter wavelength plate, it is
given by

lim
ε→0

τ ε,+j (ω0 + εph)τ ε,+m (ω0 + εph) = 4

√
βj(ω0)βm(ω0)

k(ω0)
1(

βj(ω0)
k(ω0) + 1

) (
βm(ω0)
k(ω0) + 1

) .
From this result, we can analyze the mean refocused wave and see that the statistical stability
is not affected. The homogeneous spatial profile, with αM = 1, becomes

1
2

N(ω0)∑
j=1

βj(ω0)
k(ω0)

1(
βj(ω0)
k(ω0) + 1

)2Mmjφj(x0)φj(x0 + λ0x̃),

and in the case where αM ∈ [0, 1), we have in the continuum limit N(ω0)� 1∫ 1

0

√
1− u2(

1 +
√

1− u2
)2 cos (2πx̃u) du.

In the random case, the expression of the mean refocused field (4.26) becomes

e−x̃
2/r2

c

∫ 1

0

√
1− u2(

1 +
√

1− u2
)2 cos (2πx̃u) du

in the continuum limit N(ω0)� 1, where rc is defined by (4.27).
To summarize, random inhomogeneities in the section (0, L/ε1−α) ensure a conversion

between low and high modes, and the quarter wavelength plate (L/ε1−α, Lεc) ensures an
efficient transmission from the perturbed section (0, L/ε1−α) to the homogeneous medium
(Lεc, LM/ε1−α).
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Conclusion
In this chapter we have analyzed a time-reversal experiment in a homogeneous waveguide in
which a heterogeneous section is inserted in the vicinity of the source. The role played by
these inhomogeneities is quite different from the regime studied in [30] or in Chapter 3, in
which the random fluctuations are weak and distributed throughout the waveguide. In the
latter case, randomness can enhance spatial refocusing up to the usual diffraction limit. But
in our configuration, the random section permits us to refocus beyond this diffraction limit,
and this effect is statistically stable in that it does not depend on the particular realization
of the random section. The role of this random section is to ensure a strong conversion
between low modes (that can propagate over large distances) and high modes (that carry
the information about the small-scale features of the source). The insertion of a quarter
wavelength plate completes the experimental set-up. It ensures an efficient transmission from
the random section to the homogeneous one. It could be possible to build other experimental
configurations (with a rough surface, for instance) in order to achieve super-resolution. The
important ingredient is that a time-reversible mechanism should convert high modes to low
(propagating) modes in the vicinity of the source.

4.5 Appendix

4.5.1 Proof of Theorem 4.1

The proof of this theorem follows the ideas of the proof of Theorem 2.1, which is based on a mar-
tingale approach using the perturbed-test-function method. First, using a particular tightness
criteria, we shall prove the tightness of the family (Uε(ω, .))ε∈(0,1) on C([0,+∞), (BH, dBH)).
In a second part, we shall characterize all subsequence limits as being solutions of a martingale
problem in a Hilbert space, and using the stochastic calculus in infinite-dimensional Hilbert
spaces we will see that this martingale problem is well posed.

From the definition of the metric dBH , we can use the tightness criteria of Theorem 2.10
page 67, which was already used in the proof of Theorem 2.1.

For any λ ∈ H, we set Uε
λ(ω, z) =

〈
Uε(ω, z), λ

〉
H. According to Theorem 2.10, the family

(Uε(ω, .))ε is tight on C([0,+∞), (BH, dBH)) if and only if the family (Uε
λ(ω, .))ε is tight on

C([0,+∞),C) ∀λ ∈ H. Furthermore, ‖Uε(ω, z)‖H = 1 ∀z ≥ 0,∀ε ∈ (0, 1), and (Uε(ω, .))ε is
a family of continuous processes. Then, it is sufficient to prove that (Uε

λ(ω, .))ε is tight in
D([0,+∞),C) ∀λ in a dense subset of H. Let EH be the subspace of sequences with finite
support equipped with the induced inner product. We have chosen EH for two reasons. First,
EH is a dense subset of H. Second, thanks to the band-limiting idealization, it allows one to
avoid in (4.12) the unboundedness of Nε(ω) and the fact that εβεj(ω) goes to 0 for j of order
Nε(ω) when ε goes to 0.

As in the proof of Theorem 2.1, we consider the complex case for more convenient
manipulations. Letting λ ∈ EH, we consider the equation

d

dt
Uε
λ(ω, t) = 1√

ε
F ελ

(
Uε(ω, t), C

(
t

ε

)
,
t

ε

)
,

where

F εjm (U, C, s) =−ik
2(ω)
2

Nε(ω)∑
q=1

Cjq

εα
√
βεjβ

ε
q

eiε
α(βεj−βεq)sUqm

+ ik2(ω)
2

Nε(ω)∑
q=1

Cmq

εα
√
βεmβ

ε
q

eiε(β
ε
q−βεm)sUjq.
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The proof of this theorem is based on the perturbed-test-function approach. Using the
notion of a pseudogenerator recalled in Section 2.6.2, we prove tightness and characterize all
subsequence limits.

Tightness

We shall consider the classical complex derivative with the following notation: If v = α+ iβ,
then ∂v = 1

2 (∂α − i∂β) and ∂v = 1
2 (∂α + i∂β).

Proposition 4.5 ∀λ ∈ EH, the family (Uε
λ(ω, .))ε∈(0,1) is tight in D ([0,+∞),C).

Proof (of Proposition 4.5) According to Theorem 4 in [41], we need to show the following
three lemmas. Let λ ∈ EH, f be a smooth function, and f ε0(t) = f (Uε

λ(ω, t)). Thus,

Aεf ε0(t) = 1√
ε
∂vf (Uε

λ(ω, t))F ελ
(

Uε(ω, t), C
(
t

ε

)
,
t

ε

)
+ 1√

ε
∂vf (Uε

λ(ω, t))F ελ
(

Uε(ω, t), C
(
t

ε

)
,
t

ε

)
.

Let

f ε1(t) = 1√
ε

∫ +∞

t
Eεt
[
F ελ

(
Uε(ω, t), C

(
u

ε

)
,
u

ε

)]
∂vf (Uε

λ(ω, t)) du

+ 1√
ε

∫ +∞

t
Eεt

[
F ελ

(
Uε(ω, t), C

(
u

ε

)
,
u

ε

)]
∂vf (Uε

λ(ω, t)) du.

Lemma 4.3 ∀T > 0, limε sup0≤t≤T |f ε1(t)| = 0 almost surely, and supt≥0 E [|f ε1(t)|] = O (
√
ε).

Proof (of Lemma 4.3) Using the Markov property of the Gaussian field, we get

f ε1(t) =
√
ε∂vf (Uε

λ(ω, t))

∑
j,m

− ik
2

2
∑
|q−j|≤1

Cjq
(
t
ε

)
εα
√
βεjβ

ε
q

eiε
α(βεj−β

ε
q) tε

×Uε
qm(ω, t)

a+ iεα(βεj − βεq)
a2 + ε2α(βεj − βεq)2

λjm

+ ik
2

2
∑

|q−m|≤1

Cmq
(
t
ε

)
εα
√
βεmβ

ε
q

eiε
α(βεq−βεm) t

εUε
jq(ω, t)

a+ iεα(βεq − βεm)
a2 + ε2α(βεq − βεm)2

λjm


+
√
ε∂vf (Uε

λ(ω, t))

∑
j,m

ik2

2
∑
|q−j|≤1

Cjq
(
t
ε

)
εα
√
βεjβ

ε
q

eiε(β
ε
q−βεj)

t
ε

×Uε
qm(ω, t)

a+ iεα(βεq − βεj)
a2 + ε2α(βεq − βεj)2

λjm

− ik
2

2
∑

|q−m|≤1

Cmq
(
t
ε

)
εα
√
βεmβ

ε
q

eiε
α(βεm−βεq) tεUε

jq(ω, t)
a+ iεα(βεm − βεq)
a2 + ε2α(βεm − βεq)2

λjm

 .
Using (2.54) page 65, we obtain

E [|f ε1(t)|] ≤
√
εK(f, λ).

For the first part, we get

|f ε1(t)| ≤ K(λ, f)
√
ε sup

0≤t≤T
sup
x∈[0,d]

∣∣∣∣V (x, tε
)∣∣∣∣ ,

and we conclude with (2.55) page 66.�
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Lemma 4.4 {Aε (f ε0 + f ε1) (t), ε ∈ (0, 1), 0 ≤ t ≤ T} is uniformly integrable.

Proof (of Lemma 4.4) After a computation, we get

Aε (f ε0 + f ε1) (t) = F̃ ελ

(
Uε(ω, t),

(
Cjl

(
t

ε

)
Cmn

(
t

ε

))
j,l,m,n

,
t

ε

)
,

where

F̃ ελ (U,C, s) = ∂vf(U)F̃ 1,ε
λ (U,C, s) + ∂vf(U)F̃ 1,ε

λ (U,C, s)

+ ∂2
vf(U)F̃ 2,ε

λ (U,C, s) + ∂2
vf(U)F̃ 2,ε

λ (U,C, s)

+ ∂v∂vf(U)F̃ 3,ε
λ (U,C, s) + ∂v∂vf(U)F̃ 3,ε

λ (U,C, s),

with

F̃ 1,ε
λ (U,C, s)

= k4

4
∑
j,m

 Nε∑
q,q′=1

−
Cjqqq′

ε2α
√
βεjβ

ε
qβ

ε
qβ

ε
q′

e
iεα(βεj−β

ε
q′ )sUq′m

a+ iεα(βεj − βεq)
a2 + ε2α(βεj − βεq)2

+
Cjqmq′

ε2α
√
βεjβ

ε
qβ

ε
mβ

ε
q′

e
iεα(βεj−β

ε
q+βεq′−β

ε
m)sUqq′

a+ iεα(βεj − βεq)
a2 + ε2α(βεj − βεq)2

+
Cjq′mq

ε2α
√
βεjβ

ε
q′β

ε
mβ

ε
q

e
iεα(βεj−β

ε
q′+β

ε
q−βεm)sUq′q

a+ iεα(βεq − βεm)
a2 + ε2α(βεq − βεm)2

−
Cmqqq′

ε2α
√
βεmβ

ε
qβ

ε
qβ

ε
q′

e
iεα(βε

q′−β
ε
m)sUjq′

a+ iεα(βεq − βεm)
a2 + ε2α(βεq − βεm)2

λjm,
F̃ 2,ε
λ (U,C, s)

= k4

4
∑
j,m
j′,m′

 Nε∑
q,q′=1

−
Cjqj′q′

ε2α
√
βεjβ

ε
qβ

ε
j′β

ε
q′

e
iεα(βεj−β

ε
q+βεj′−β

ε
q′ )sUqmUq′m′

a+ iεα(βεj − βεq)
a2 + ε2α(βεj − βεq)2

+
Cjqm′q′

ε2α
√
βεjβ

ε
qβ

ε
m′β

ε
q′

e
iεα(βεj−β

ε
q+βεq′−β

ε
m′ )sUqmUj′q′

a+ iεα(βεj − βεq)
a2 + ε2α(βεj − βεq)2

+
Cj′q′mq

ε2α
√
βεj′β

ε
q′β

ε
mβ

ε
q

e
iεα(βε

j′−β
ε
q′+β

ε
q−βεm)sUjqUq′m′

a+ iεα(βεq − βεm)
a2 + ε2α(βεq − βεm)2

−
Cmqm′q′

ε2α
√
βεmβ

ε
qβ

ε
m′β

ε
q′

e
iεα(βεq−βεm+βε

q′−β
ε
m′ )sUjqUj′q′

a+ iεα(βεq − βεm)
a2 + ε2α(βεq − βεm)2

λjmλj′m′ ,
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F̃ 3,ε
λ (U,C, s)

= k4

4
∑
j,m
j′,m′

 Nε∑
q,q′=1

Cjqj′q′

ε2α
√
βεjβ

ε
qβ

ε
j′β

ε
q′

e
iεα(βεj−β

ε
q−βεj′+β

ε
q′ )sUqmUq′m′

a+ iεα(βεj − βεq)
a2 + ε2α(βεj − βεq)2

−
Cjqm′q′

ε2α
√
βεjβ

ε
qβ

ε
m′β

ε
q′

e
iεα(βεj−β

ε
q−βεq′+β

ε
m′ )sUqmUj′q′

a+ iεα(βεj − βεq)
a2 + ε2α(βεj − βεq)2

−
Cj′q′mq

ε2α
√
βεj′β

ε
q′β

ε
mβ

ε
q

e
iεα(−βε

j′+β
ε
q′+β

ε
q−βεm)sUjqUq′m′

a+ iεα(βεq − βεm)
a2 + ε2α(βεq − βεm)2

+
Cmqm′q′

ε2α
√
βεmβ

ε
qβ

ε
m′β

ε
q′

e
iεα(βεq−βεm−βεq′+β

ε
m′ )sUjqUj′q′

a+ iεα(βεq − βεm)
a2 + ε2α(βεq − βεm)2

λjmλj′m′ .
From this expression, using (2.54) page 65, we can check that supε,t E

[
|Aε (f ε0 + f ε1) (t)|2

]
<

+∞. �

Lemma 4.5
lim

K→+∞
lim
ε→0

P
(

sup
0≤t≤T

|Uε
λ(ω, t)| ≥ K

)
= 0.

Proof (of Lemma 4.5) We have

|Uε
λ(ω, t)| =

∣∣∣∣∣∣
∑
j,m≥1

Uε
jm(ω, t)λjm

∣∣∣∣∣∣ ≤ ‖λ‖H.
�
This last lemma completes the proof Proposition 4.5. �

Martingale problem

In this section, using a well-posed martingale problem, we characterize all subsequence limits.
In what follows, we consider a converging subsequence of (Uε(ω, .))ε∈(0,1) which converges to
a limit U(ω, .). For the sake of simplicity we denote by (Uε(ω, .))ε∈(0,1) the subsequence.

Convergence Result

Proposition 4.6 ∀λ ∈ EH and ∀f smooth test function,

f
(
Uλ(ω, t)

)
−
∫ t

0
∂vf (Uλ(ω, s)) 〈J(U(ω, s)), λ〉H + ∂vf (Uλ(ω, s)) 〈J(U(ω, s)), λ〉H

+∂2
vf (Uλ(ω, s)) 〈K (U(ω, s)) (λ), λ〉H + ∂2

vf (Uλ(ω, s)) 〈K (U(ω, s)) (λ), λ〉H
+∂v∂vf (Uλ(ω, s)) 〈L (U(ω, s)) (λ), λ〉H + ∂v∂vf (Uλ(ω, s)) 〈L (U(ω, s)) (λ), λ〉Hds
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is a martingale, where

J(U)jm = Λ
[
(Uj+1j+1δjm −Ujm) + (Uj−1j−1δjm −Ujm)

]
,

K(U)(λ)jm = Λ
2
[
Uj−1m

(
〈Uj−1, λj〉2 − 〈Uj , λj−1〉1

)
+ Uj+1m

(
〈Uj+1, λj〉2 − 〈Uj , λj+1〉1

)]
+ Λ

2
[
Ujm−1

(
〈Um−1, λm〉1 − 〈Um, λm−1〉2

)
+ Ujm+1

(
〈Um+1, λm〉1 − 〈Um, λm+1〉2

)]
,

L(U)(λ)jm = Λ
2
[
Uj−1m

(
〈Uj−1, λj〉1 − 〈Uj , λj−1〉2

)
+ Uj+1m

(
〈Uj+1, λj〉1 − 〈Uj , λj+1〉2

)]
+ Λ

2
[
Ujm−1

(
〈Um−1, λm〉2 − 〈Um, λm−1〉1

)
+ Ujm+1

(
〈Um+1, λm〉2 − 〈Um, λm+1〉1

)]
,

with
〈λj , µj〉1 =

∑
m≥1

λjmµjm, 〈λm, µm〉2 =
∑
j≥1

λjmµjm

∀j,m ≥ 1, and for (U, λ, µ) ∈ H × EH × EH.

Proof (of Proposition 4.6) Let

f ε2(t) =
∫ +∞

t
Eεt

[
F̃ ελ

(
Uε(ω, t),

(
Cjl

(
u

ε

)
Cmn

(
u

ε

))
j,l,m,n

,
u

ε

)]

− F̃ ελ
(

Uε(ω, t), (E[Cjl(0)Cmn(0)])j,l,m,n ,
u

ε

)
du.

Lemma 4.6
sup
t≥0

E [|f ε2(t)|] = O (ε)

and
Aε (f ε0 + f ε1 + f ε2) (t) = F̃ ελ

(
Uε(ω, t), (S(j − l,m− n))j,l,m,n ,

t

ε

)
+A(ε, t),

where supt≥0 E [|A(ε, t)|] = O(
√
ε).

Proof (of Lemma 4.6) A change of variable gives

f ε2(t) = ε

∫ +∞

0
Eεt

[
F̃ ελ

(
Uε(ω, t),

(
Cjl

(
u+ t

ε

)
Cmn

(
u+ t

ε

))
j,l,m,n

, u+ t

ε

)]

− F̃ ελ
(

Uε(ω, t), (E[Cjl(0)Cmn(0)])j,l,m,n , u+ t

ε

)
du

= εB(ε, t).

By a computation, we can check that supε,t≥0 E [|B(ε, t)|] < +∞. The second part of this
lemma follows a long but straightforward computation. �

We consider G̃ελ
(
Uε(ω, t), tε

)
= F̃ ελ

(
Uε(ω, t),

(
S(j − l,m− n)

)
j,l,m,n

, tε
)
and let

f ε3(t) = −
∫ t

0

[
G̃ελ
(
Uε(ω, t), u

ε

)
− lim
T→+∞

1
T

∫ T

0
G̃ελ
(
Uε(ω, t), s

)
ds
]
du.
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Lemma 4.7 We have
sup
t≥0

E [|f ε3(t)|] = O(ε1−2α).

Then, we need to have α ∈ (0, 1/2).

Proof (of Lemma 4.7) After a change of variable, we get

f ε3(t) = −ε
∫ t

ε

0

[
G̃ελ (Uε(ω, t), u)− lim

T→+∞

1
T

∫ T

0
G̃ελ (Uε(ω, t), s) ds

]
du,

and

sup
t,ε

E
[∣∣∣∣∣
∫ t

ε

0

[
G̃ελ (Uε(ω, t), u)− lim

T→+∞

1
T

∫ T

0
G̃ελ (Uε(ω, t), s) ds

]
du

∣∣∣∣∣
]
≤ K

ε2α
.

�

Let f ε(t) = f ε0(t) + f ε1(t) + f ε2(t) + f ε3(t). With the boundness condition (2.54) page 65, a
computation gives

Aεf ε(t) = lim
T→+∞

1
T

∫ T

0
G̃ελ (Uε(ω, t), s) ds+ C(ε, t).

We assume that the following nondegeneracy condition holds. ∀ε ∈ (0, 1), the wavenumbers
βεj(ω) = βj(ω/εα) are distinct along with their sums and differences. Consequently, we get

Aεf ε(t) = ∂vf (Uε
λ(ω, t)) 〈J(Uε(ω, t)), λ〉H

+ ∂vf (Uε
λ(ω, t)) 〈J(Uε(ω, t)), λ〉H

+ ∂2
vf (Uε

λ(ω, t)) 〈K (Uε(ω, t)) (λ), λ〉H
+ ∂2

vf (Uε
λ(ω, t)) 〈K (Uε(ω, t)) (λ), λ〉H

+ ∂v∂vf (Uε
λ(ω, t)) 〈L (Uε(ω, t)) (λ), λ〉H

+ ∂v∂vf (Uε
λ(ω, t)) 〈L (Uε(ω, t)) (λ), λ〉H

+ C(ε, t),

(4.29)

where supt≥0 E [|C(ε, t)|] = O(ε
1
2−2α). Then, we need to have α ∈ (0, 1/4). By Theorem 2.11

page 73,
(
M ε
fε(t)

)
t≥0 is an (F εt )-martingale; this implies that for every bounded continuous

function h, every sequence 0 < s1 < · · · < sn ≤ s < t, and every family (λj)j∈{1,...,n} we have

E
[
h
(
Uε
λj (ω, sj), 1 ≤ j ≤ n

)(
f ε(t)− f ε(s)−

∫ t

s
Aεf ε(u)du

)]
= 0.

Finally, using (4.29) and (4.11) with lemmas 4.3, 4.6, and 4.7, we get the announced result of
Proposition 4.6. �

Uniqueness To show uniqueness, we decompose U(ω, .) into real and imaginary parts.
Then let us consider the new process

Y(ω, t) =
[
Y1(ω, t)
Y2(ω, t)

]
, where Y1(ω, t) = Re (U(ω, t)) and Y2(ω, t) = Im (U(ω, t)) .

Let G = l2 (E,R). G × G is endowed with the inner product defined by

〈T,S〉G×G =
∑
j,m≥1

T1
jmS1

jm + T2
jmS2

jm
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∀(T,S) ∈ G × G. We also use the notation Yλ(ω, t) = 〈Y(ω, t), λ〉 with λ ∈ G × G. We
introduce the operator ϕ on G × G given by

ϕ :G × G −→ G × G,[
T1

T2

]
7−→

[
T2

−T1

]
.

Let f be a smooth function on R. By Proposition 4.6, we get the following result.

Proposition 4.7 ∀λ ∈ EG×G,

f (Yλ(ω, t))−
∫ t

0
〈J(Y(ω, s)), λ〉G×G f

′ (Yλ(ω, s))

+ 1
2
〈A (Y(ω, s)) (λ), λ〉G×G f

′′ (Yλ(ω, s)) ds

is a martingale, where

A(Y)(λ)jm = Λ
2

[
Yj+1m

[
〈Yj+1, λj〉1 − 〈Yj , λj+1〉2 + 〈Yj+1, λj〉2 − 〈Yj , λj+1〉1

]
+ Yj−1m

[
〈Yj−1, λj〉1 − 〈Yj , λj−1〉2 + 〈Yj−1, λj〉2 − 〈Yj , λj−1〉1

]
+ Yjm+1

[
〈Ym+1, λm〉1 − 〈Ym, λm+1〉2 + 〈Ym+1, λm〉2 − 〈Ym, λm+1〉1

]
+ Yjm−1

[
〈Ym−1, λm〉1 − 〈Ym, λm−1〉2 + 〈Ym−1, λm〉2 − 〈Ym, λm−1〉1

]
+ ϕ(Y)j+1m

[
〈ϕ(Y)j+1, λj〉1 − 〈ϕ(Y)j , λj+1〉2 − 〈ϕ(Y)j+1, λj〉2 + 〈ϕ(Y)j , λj+1〉1

]
+ ϕ(Y)j−1m

[
〈ϕ(Y)j−1, λj〉1 − 〈ϕ(Y)j , λj−1〉2 − 〈ϕ(Y)j−1, λj〉2 + 〈ϕ(Y)j , λj−1〉1

]
+ ϕ(Y)jm+1

[
〈ϕ(Y)m+1, λm〉2 − 〈ϕ(Y)m, λm+1〉1 − 〈ϕ(Y)m+1, λm〉1 + 〈ϕ(Y)m, λm+1〉2

]
+ ϕ(Y)jm−1

[
〈ϕ(Y)m−1, λm〉2 − 〈ϕ(Y)m, λm−1〉1 − 〈ϕ(Y)m−1, λm〉1 − 〈ϕ(Y)m, λm−1〉2

]]
for (Y, λ) ∈ (G × G)2.

Proof (of Proposition 4.7) By Proposition 4.6,

f (Yλ(ω, t))−
∫ t

0
〈J(Y(ω, s)), λ〉G×G f

′ (Yλ(ω, s))

+ 1
2
Re (〈(L+K) (U(ω, s)) (λ), λ〉H) f ′′ (Yλ(ω, s)) ds

is a martingale, where we also have denoted by λ the sequence λ1 + iλ2. In addition,

Re
(〈

U(ω, t)j , λj
〉)

=
〈
Y(ω, t)j , λj

〉
and Im

(〈
U(ω, t)j , λj

〉)
=
〈
ϕ (Y(ω, t))j , λj

〉
,

and we get Re (〈(L+K) (U(ω, s)) (λ), λ〉H) = 〈A (Y(ω, s)) (λ), λ〉G×G . �

From this last proposition, for f(x) = x and f(x) = x2, we get that

〈
M(t), λ

〉
G×G = Mλ(t) =

〈
Y(ω, t)−

∫ t

0
J(Y(ω, s))ds, λ

〉
G×G

is a continuous martingale with quadratic variation given by

< Mλ > (t) =
∫ t

0
〈A(Y(ω, s))(λ), λ〉G×G ds.
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Proposition 4.8 ∀f ∈ C2
b (G × G),

f(Y(ω, t))−
∫ t

0
Lf(Y(ω, s))ds (4.30)

is a continuous martingale, where ∀Y ∈ G × G

Lf(Y) = 1
2
trace

(
A(Y)D2f(Y)

)
+ 〈J(Y), Df(Y)〉G×G .

Moreover, the martingale problem associated to the generator L is well posed.

Proof (of Proposition 4.8) We begin with the following lemma.

Lemma 4.8

A :G × G −→ L+
1 (G × G) ,

J :G × G −→ G × G,

where L+
1 (G × G) is a set of nonnegative operators with finite trace. We have, ∀Y ∈ G × G,

A(Y) = σ∗(Y) ◦ σ(Y) with
σ : G × G −→ L2(G × G),

where L2(G × G) is the set of Hilbert-Schmidt operators on G × G, σ∗ is the adjoint operator
of σ, and

σ1(Y)(λ)jm =

√
Λ
2

(
〈Yj+1, λj〉1 + 〈Yj+1, λj〉2 − 〈Yj , λj+1〉1 − 〈Yj , λj+1〉2

)
δj+1m,

σ2(Y)(λ)jm =√
Λ
2

(
〈ϕ(Y)j+1, λj〉1 − 〈ϕ(Y)j+1, λj〉2 + 〈ϕ(Y)j , λj+1〉1 − 〈ϕ(Y)j , λj+1〉2

)
δj+1m.

Proof ∀(Y, λ, µ) ∈ (G × G)3, we have

〈A(Y)(λ), µ〉G×G = Λ
2
∑
j≥1

(
〈Yj+1, λj〉1 + 〈Yj+1, λj〉2 − 〈Yj , λj+1〉1 − 〈Yj , λj+1〉2

)
×
(
〈Yj+1, µj〉1 + 〈Yj+1, µj〉2 − 〈Yj , µj+1〉1 − 〈Yj , µj+1〉2

)
+
(
〈ϕ(Y)j+1, λj〉1 − 〈ϕ(Y)j+1, λj〉2 + 〈ϕ(Y)j , λj+1〉1 − 〈ϕ(Y)j , λj+1〉2

)
×
(
〈ϕ(Y)j+1, µj〉1 − 〈ϕ(Y)j+1, µj〉2 + 〈ϕ(Y)j , µj+1〉1 − 〈ϕ(Y)j , µj+1〉2

)
= 〈σ(Y)(λ), σ(Y)(µ)〉G×G .

Let
(
eηjl
)
η=1,2
j,l≥1

be the family of elements in G × G defined by

e1jl =
[
δjl
0

]
and e2jl =

[
0
δjl

]
.

This family defines a basis of G × G and ∀Y ∈ G × G,

trace(A(Y)) =
∑
η=1,2
j,l≥1

〈
A(Y)(eηjl), e

η
jl

〉
G×G =

∑
η=1,2
j,l≥1

‖σ(Y)(eηjl)‖
2
G×G ≤ 16‖Y‖2G×G .

�
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From this lemma and following the proof of Theorem 4.1.4 in [63], (4.30) is a martingale.
In fact, the key point is that the process Y(ω, .) takes its values in BG×G . Moreover, by
Theorem 3.2.2 and 4.4.1 in [63], the martingale problem is well posed since σ is linear in x
and ∀Y ∈ G × G

‖σ(Y)‖ = ‖σ∗(Y)‖ ≤ 4‖Y‖G×G .

That concludes the proof of Proposition 4.7.�

At this point, we cannot assert that Y(ω, .) is uniquely determined. In fact, we need to
know if its law is supported by C([0,+∞), (G × G, ‖.‖G×G)). Let

SG×G =
{
λ ∈ G × G, ‖λ‖G×G =

√〈
λ, λ

〉
G×G = 1

}
.

Proposition 4.9 The law of the continuous process (Y(ω, t))t≥0 is support by the space
C([0,+∞), (SG×G , ‖.‖G×G)), and more generally by C([0,+∞), (G ×G, ‖.‖G×G)). Consequently,
(Y(ω, t))t≥0 is uniquely characterised as being the unique solution of the martingale problem
associated to the generator L.

Proof (M(t))t≥0 is a bounded weakly-continuous martingale with values in G × G. Fur-
thermore, from the following proposition, (M(t))t≥0 is also a bounded strongly-continuous
martingale with values in G × G.

Proposition 4.10 Let (Mn
t )t≥0 be a sequence of continuous (Ft)-martingale with values in

a separable banach space B. Assuming that

lim
n→+∞

E
[
‖Mn

t −Mt‖2B
]

= 0.

Then, (Mt)t≥0 is an Ft-martingale, almost surely continuous.

Consequently, we can use the representation theorem, Theorem 4.3.5 in [63]. Then, there
exists a cylindrical Brownian motion (Bt)t≥0 defined on G × G such that

Y(ω, t) = Y(ω, 0) +
∫ t

0
J(Y(ω, s))ds+

∫ t

0
σ∗(Y(ω, s))dBs. (4.31)

Using the Ito’s formula given by Theorem 3.1.3 in [63], we get that

‖Y(ω, t)‖G×G = 1, ∀t ≥ 0.

Then, the process (Y(ω, t))t≥0 is strongly-continunous with values in BG×G , and more generally
in G × G. �

Using (4.31) and the definition of the last integral, we have〈
eηjl,

∫ t

0
σ∗(Y(ω, s))dBs

〉
G×G

=
∫ t

0

〈
σ(Y(ω, s))(eηjl), dBs

〉
G×G

=
∑
θ=1,2
r,s≥1

∫ t

0

〈
σ(Y(ω, s))(eηjl), e

θ
rs

〉
G×G

dBs(eθrs).

By Theorem 3.2.2 in [35], (Bt)t≥0 can be decomposed as follows:

Bt(h) =
∑
η=1,2
j,l≥1

〈
eηjl, h

〉
G×GB

η
jl(t), ∀h ∈ G × G

183



Chapter 4 Section 4.5.2

with (Bη
jl)η=1,2

j,l≥1
a family of independent one-dimensional Brownian motions. Finally, a

computation gives

dU(ω, t) = dY1(ω, t) + i dY2(ω, t)
= J(U(ω, t))dt+ ψ1(U(ω, t))(dB1

t ) + ψ2(U(ω, t))(dB2
t ),

From this equation, we can get the conservation relation:

‖U(ω, t)‖H = 1, ∀t ≥ 0.

4.5.2 Proof of Theorem 4.2

The proof of this theorem follows closely the ideas developed in Theorem 2.4. In a first step,
we introduce a new process, it is an adapted version of the first one, which has a symmetric
state space about 0 and which is more convenient for manipulations. In a second step we shall
prove the tightness using Theorem 3 in [41]. Moreover, the size of the jumps are equal to 1/N .
Then, all accumulation points are supported by the set of continuous functions. Consequently,
the last step consists of adapting Lemma 11.1.1 and 11.1.3 in [59] to the Skorokhod topology.

We begin by introducing a new process. Let (Yt)t≥0 be a jump Markov process on Z with
generator L̃ given by

L̃φ(j) = Λ(ω)(φ(j + 1) + φ(j − 1)− 2φ(j)), j 6= 0,

L̃φ(0) = Λ(ω)
2

(φ(1) + φ(−1)− 2φ(0)), j = 0.

One can check that, starting from the same point and ∀t ≥ 0, Xt and 1 + |Yt| have the same
law. In what follows, we will denote by QN

d(N) the law of the normalized process (Yt/N)t≥0
starting from d(N) = (l(N) − 1)/N . According to Theorem 3 in [41], we will not directly
prove the tightness of the normalized process, but truncations of this process, and we will
be able to conclude thanks to an adapted version of Lemma 11.1.1 in [59] to the Skorokhod
topology on D([0,+∞),R). We also introduce some notation. Let M = σ(x(u), u ≥ 0),
Mt = σ(x(u), u ≤ t), and

MN
f (t) = f(x(u))− f(x(0))−

∫ t

0
L̃Nf(x(s))ds,

which is an (Mt)-martingale under QN
d(N) and where

L̃Nφ(j) = Λ(ω)
[
φ

(
j + 1
N

)
+ φ

(
j − 1
N

)
− 2φ

(
j

N

)]
, j 6= 0,

L̃Nφ(0) = Λ(ω)
2

[
φ

( 1
N

)
+ φ

(−1
N

)
− 2φ(0)

]
, j = 0.

Tightness of
(
QN,M
d(N)

)
N

Let M ≥ 1, large enough to have supN d(N) ≤ M , and τM = inf (u ≥ 0, |x(u)| ≥M). We
denote by QN,M

d(N) the law of (Yt∧τM /N)t≥0 starting from d(N). We remark that QN,M
d(N) = QN

d(N)
onMτM . It becomes easy to see that

lim
K→+∞

QN,M
d(N)

(
sup
u≥0
|x(u)| ≥ K

)
= 0.
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Moreover, (MN
f (t ∧ τM ))t≥0 is an (Mt)-martingale under QN

d(N). Consequently, ∀ 0 ≤ s ≤ t,

E
QN,M
d(N)

s

[
(x(t)− x(s))2

]
= E

QN,M
d(N)

s

[
(MN

Id(t)−MN
Id(s))2

]
= E

QN
d(N)

s

[
< MN

Id >t∧τM − < MN
Id >s∧τM

]
≤ 2 Λ

N2 (t− s),

where E
QN,M
d(N)

s is the conditional expectation under QN,M
d(N) givenMs. Thus, by Theorem 3 in

[41],
(
QN,M
d(N)

)
N

is tight in D([0,+∞),R).

Convergence

We consider f a smooth function and
(
QN ′,M
d(N ′)

)
N ′

a converging subsequence to QM
y . Let

0 ≤ s ≤ t and Φ be a bounded continuousMs-measurable function. We have

EQN
′,M

d(N′)
[
MN ′
f (t ∧ τM )Φ

]
= EQN

′,M
d(N′)

[
MN ′
f (s ∧ τM )Φ

]
. (4.32)

However, Λ(ω) = k2(ω)S(1,1)
2a ∼

ω�1
N2 σ2

2 ,

lim
N→+∞

sup
v∈[−M,− 1

N ]∪[ 1
N
,M]

∣∣∣∣∣L̃Nf
( [Nv]

N

)
− σ2

2
f ′′(v)

∣∣∣∣∣ = 0 and lim
N→+∞

L̃Nf(0) = 1
2
σ2

2
f ′′(0).

To correct the problem in v = 0, we have the following lemma.
Lemma 4.9

EQN
d(N)

[∫ t

0
1(x(u)=0)du

]
= O

( 1
N2

)
.

Proof EQN
d(N)

[ ∫ t
0 1(x(u)=0)du

]
is the mean time spent by (YtN )t≥0 in the state 0. We denote

by (X̃t)t≥0 the traffic of the M/M/1 queue with traffic rate ρ = 1. In addition to the Markov
property,

EQN
d(N)

[∫ t

0
1(x(u)=0)du

]
= Ed(N)

[∫ t

0
1(X̃u=0)du

]
≤ E0

[∫ t

0
1(X̃u=0)du

]
≤
∫ t

0
P0(X̃u = 0)du.

However, explicit expressions of the transition probabilities for this queue can be found in [6,
Theorem 8.5] . In our case,

P0(X̃t = 0) = e−2Λt (I0(2Λt) + I1(2Λt)) ,

where In is the modified Bessel function of order n, given by In(t) =
∑
k≥0

tn+2k

2n+2kk!(n+k)! . Then,
we get ∫ t

0
P0(X̃u = 0)du ≤ 1

2Λ
e−2Λt∑

k≥0

(2Λ)2k+1

(2k + 1)!
+ (2Λ)2k+2

(2k + 2)!
≤ 1

2Λ
.

�

Consequently, letting N ′ → +∞ in (4.32), we obtain that under QM
y ,

f(x(t ∧ τM ))− f(x(0))− σ2

2

∫ t∧τM

0
f
′′(x(u))du

is an (Mt)-martingale. If we denote by Wσ
y the law of the process (σBt+y)t≥0, where (Bt)t≥0

is a standard Brownian motion, we have QM
y = Wσ

y onMτM . Finally, we conclude that QN
d(N)

converges to Wσ
y thanks to an adapted version of Lemma 11.1.1 in [59] to the Skorokhod

topology on D([0,+∞),R).�
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Résumé : Cette thèse porte sur la propagation et le retournement temporel des ondes dans
des guides d’ondes aléatoirement perturbés. L’étude de la propagation dans les guides d’ondes
aléatoires est devenue indispensable face au grand nombre de situations pouvant se modéliser
de cette manière : comme par exemple en télécommunication, en acoustique sous-marine ou
en géophysique.

Le travail présenté dans cette thèse se décompose en trois chapitres. Dans un premier
chapitre, on s’intéresse à la propagation des ondes dans un guide d’onde océanique inhomogène.
On propose des équations effectives permettant de modéliser la propagation des ondes dans ce
milieu. Ces équations décrivent le rôle des modes propagatifs, évanescents et radiatifs sur la
propagation, et permettent de quantifier la perte radiative d’énergie dans le fond océanique.
Dans un second chapitre, on s’intéresse à la propagation et à la refocalisation par retournement
temporel d’une impulsion dans le modèle de guide d’onde océanique du premier chapitre. On
obtient une description de l’onde refocalisée prenant en compte la perte radiative dans le
fond océanique et l’évolution des fluctuations du milieu entre les deux étapes de l’expérience
de retournement temporel. Dans le dernier chapitre, on s’intéresse à la refocalisation par
retournement temporel dans un modèle de guide d’onde simple. On obtient un phénomène de
super-résolution par l’insertion, devant la source, d’une section inhomogène à faible vitesse de
propagation, c’est à dire qu’on obtient des tailles de taches focales plus concentrées qu’en
milieu homogène.

Mots-clés : Propagation d’ondes, Retournement temporel des ondes, Guides d’ondes
acoustiques, Milieux aléatoires, Analyse asymptotiques, Théorèmes limites.

WAVE PROPAGATION AND TIME REVERSAL IN RANDOM
WAVEGUIDES

Abstract : This thesis concerns wave propagation and time reversal of waves in randomly
perturbed waveguides. The study of wave propagation phenomena in random waveguides is an
interesting subject with numerous domains of applications: for instance in telecommunication,
underwater acoustics and geophysics.

This thesis is composed of three chapters. In a first Chapter, we are interested in wave
propagation in inhomogeneous oceanic waveguides, and we derive effective equations which
model wave propagation in such media. These equations describe the role of the propagating,
radiating, and evanescent modes, and allow us to quantify the radiative loss of energy in the
ocean bottom during the propagation. In a second chapter we study pulse propagation and
time-reversal refocusing in the perturbed waveguide model introduced in the first chapter.
We get a description of the refocused wave which takes into account the radiative loss in the
ocean bottom, and the evolution of the random fluctuations of the medium between the two
steps of the time-reversal experiment. In a last chapter, we study time-reversal refocusing in
a simple waveguide model. In this model we get a superresolution phenomena by inserting a
random section with low speed of propagation in the vicinity of the source, that is, we get
more concentrated focal spots than in the homogenous waveguides.

Keywords : Wave propagation, Time reversal of waves, Acoustic waveguides, Random
media, Asymptotic analysis, Limit theorems.
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