Corrigé du Test Intégration et transformée de Fourier. Durée 1h

Exercice 1.

Soit (E,T,m) un espace mesuré.

Soient $\alpha \in]0,1]$ et $1 . On considère <math>A \in T$ tel que $m(A) < +\infty$.

On note $\mathbf{1}_A$ la fonction indicatrice de A telle que pour tout $x \in E$ $\mathbf{1}_A(x) = 1$ si $x \in A$ et 0 sinon.

1. Montrer que si f est une fonction mesurable sur E à valeurs réelles alors

$$\int |f|^{\alpha} \mathbf{1}_{A} dm \le \left(\int |f|^{p} dm \right)^{\frac{\alpha}{p}} (m(A))^{1-\frac{\alpha}{p}}$$

Correction:

Les fonctions $t \mapsto |f(t)|^p$ et $t \mapsto |f(t)|^{\alpha} \mathbf{1}_A$ sont mesurables comme composées et produit de deux fonctions mesurables.

On distingue deux cas.

- On suppose que f n'est pas dans $\mathcal{L}^p_{\mathbb{R}}(E,T,m)$. Alors $\int |f|^p dm = +\infty$ donc le membre de droite de l'inégalité recherché est $+\infty$, et l'inégalité est vraie pour toute valeur de $\int |f|^{\alpha} \mathbf{1}_A dm$
- On suppose que f est dans $\mathcal{L}^p_{\mathbb{R}}(E,T,m)$. On a $0 < \alpha \le 1$ donc 1 .

Posons $p' = \frac{p}{\alpha}$ et q' tel que $\frac{1}{p'} + \frac{1}{q'} = 1$. On prend $F(t) = |f(t)|^{\alpha}$ et $G(t) = \mathbf{1}_A(t)$. D'après notre hypothèse $F \in \mathcal{L}^{p'}_{\mathbb{R}}(E,T,m)$ et $G \in \mathcal{L}^{q'}_{\mathbb{R}}(E,T,m)$ vu que $\int \mathbf{1}_A^{\beta} dm = \int \mathbf{1}_A dm = m(A) < \infty$ pour tout $\beta > 0$.

Donc l'inégalité de Hölder s'applique et on a

$$\int |f|^{\alpha} \mathbf{1}_{A} dm = \int FG dm \leq \left(\int F^{p'} dm \right)^{1/p'} \left(\int G^{q'} dm \right)^{1/q'}$$

$$\leq \left(\int |f|^{\alpha \frac{p}{\alpha}} dm \right)^{\frac{\alpha}{p}} \left(\int \mathbf{1}_{A} dm \right)^{1-\frac{\alpha}{p}}$$

$$\leq \left(\int |f|^{p} dm \right)^{\frac{\alpha}{p}} (m(A))^{1-\frac{\alpha}{p}}$$

ce qui est bien l'inégalité voulue.

2. On suppose que E est de mesure finie. Montrer que si f est une fonction mesurable sur E à valeurs réelles alors

$$\int |f|^{\alpha} dm \le \left(\int |f|^p dm\right)^{\frac{\alpha}{p}} (m(E))^{1-\frac{\alpha}{p}}$$

Correction:

Il suffit de prendre E=A dans l'inégalité précédente. Comme $\int |f|^{\alpha} \mathbf{1}_E dm = \int |f|^{\alpha} dm$, on a le résultat.

3. En déduire que si E est de mesure finie alors $L^p_{\mathbb{R}}(E,T,m) \subset L^1_{\mathbb{R}}(E,T,m)$.

Correction:

Si E est de mesure finie et f est dans $L^p_{\mathbb{R}}(E,T,m)$ alors il existe un représentant de la classe d'équivalence de f que l'on note encore f tel que $||f||_p^p = \int |f|^p dm$. D'après l'inégalité de la question précédente prise pour $\alpha = 1$ on a bien

$$\int |f|dm \le \left(\int |f|^p dm\right)^{\frac{1}{p}} (m(E))^{1-\frac{1}{p}}$$

Donc vu que m(E) est finie et $\int |f|^p dm$ aussi on a bien $\int |f| dm$ finie. Donc $||f||_1 = \int |f| dm < \infty$ et donc $f \in L^1_{\mathbb{R}}(E,T,m)$.

4. A-t-on $L^p_{\mathbb{R}}(E,T,m)\subset L^1_{\mathbb{R}}(E,T,m)$ si E n'est pas de mesure finie? Justifiez votre réponse.

Correction:

Prenons le cas de $E = \mathbb{R} \ T = \mathcal{B}(\mathbb{R})$ et $m = \lambda$.

Alors la fonction $x \mapsto \mathbf{1}_{[1,+\infty[}(x)^{\frac{1}{x}} \text{ est bien dans } L^p(\mathbb{R}) = L^p_{\mathbb{R}}(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda) \text{ pour tout } p > 1 \text{ mais n'est pas dans } L^1(\mathbb{R}) = L^p_{\mathbb{R}}(\mathbb{R},\mathcal{B}(\mathbb{R}),\lambda).$

Exercice 2.

On note λ_2 la mesure de Lebesgue sur \mathbb{R}^2 muni de sa tribu borélienne $Bor(\mathbb{R}^2)$.

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$\forall (x,y) \in \mathbb{R}^2$$
 $f(x,y) = \sin(x^2 + y^2)$

On note pour $n \in \mathbb{N}^*$ $D_n = \{(x,y) \in \mathbb{R}^2, x^2 + y^2 < n\pi\}$ et $I_n = \int_{D_n} f d\lambda_2 = \int \mathbf{1}_{D_n} f d\lambda_2$.

1. Calculer I_n pour $n \in \mathbb{N}^*$.

Correction:

Le domaine D_n est bien un borélien de \mathbb{R}^2 car c'est un ouvert de \mathbb{R}^2 . C'est en effet l'image réciproque par l'application continue $g:(x,y)\mapsto x^2+y^2$ de l'intervalle $]-\infty,n\pi[$.

Donc la fonction $\mathbf{1}_{D_n}$ est mesurable. La fonction $f:(x,y)\mapsto \sin(x^2+y^2)$ étant continue comme composée de fonctions continues est elle aussi mesurable sur \mathbb{R}^2 . Donc le produit $f\mathbf{1}_{D_n}$ est mesurable sur \mathbb{R}^2 .

D'autre part on a de même $|f|\mathbf{1}_{D_n}$ qui est bien sûr mesurable sur \mathbb{R}^2 .

On calcule d'après le théorème de Tonelli, et le fait que $|f(x,y)| \le 1$ pour tout $(x,y) \in \mathbb{R}^2$

$$\int |f| \mathbf{1}_{D_n} d\lambda_2 = \int \int |f(x,y)| \mathbf{1}_{D_n}(x,y) dx dy$$

Or le changement de variable défini sur $]0, +\infty[\times]0, 2\pi[$ par $\varphi: (r,\theta) \mapsto (x,y)$ tel $que\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$

est un difféomorphisme de classe C^1 . On a de plus $J_{\varphi}(r,\theta) = |\det(D_{\varphi}(r,\theta))| = r$.

Cela donne donc, en appliquant ce changement de variable puis le théorème de Tonelli,

$$\int |f| \mathbf{1}_{D_n} d\lambda_2 = \int |f(r\cos(\theta), r\sin(\theta))| \mathbf{1}_{D_n}(r\cos(\theta), r\sin(\theta)) r d\lambda_2(r, \theta)
= \int_0^{2\pi} \left(\int_0^{+\infty} |\sin(r^2)| \mathbf{1}_{r:r^2 < n\pi}(r) r dr \right) d\theta
= \int_0^{2\pi} 1 d\theta \int_0^{\sqrt{n\pi}} |\sin(r^2)| r dr
\leq 2\pi \int_0^{\sqrt{n\pi}} r dr < \infty$$
(1)

Donc $\int |f| \mathbf{1}_{D_n} d\lambda_2$ est finie et donc la fonction $f \mathbf{1}_{D_n}$ est bien dans $\mathcal{L}^1(\mathbb{R}^2)$. On peut donc appliquer le théorème de Fubini.

Cela donne donc avec le même calcul mais cette fois appliqué directement à f

$$\int f \mathbf{1}_{D_n} d\lambda_2 = \int f(r\cos(\theta), r\sin(\theta)) \mathbf{1}_{D_n} (r\cos(\theta), r\sin(\theta)) r d\lambda_2 (r, \theta)
= \int_0^{2\pi} \left(\int_0^{+\infty} \sin(r^2) \mathbf{1}_{r:r^2 < n\pi} (r) r dr \right) d\theta
= \int_0^{2\pi} 1 d\theta \int_0^{\sqrt{n\pi}} \sin(r^2) r dr
= 2\pi \int_0^{\sqrt{n\pi}} \sin(r^2) r dr
= \pi \left[-\cos(r^2) \right]_0^{\sqrt{n\pi}}
= \pi \left(1 - \cos(n\pi) \right) = \pi (1 - (-1)^n)$$

2. f est-elle λ_2 -intégrable sur \mathbb{R}^2 ?

Correction:

D'après (1) on a avec le changement de variable dans l'intégrale en variable $ru=r^2$

$$\int |f| \mathbf{1}_{D_n} d\lambda_2 = \int_0^{2\pi} 1 d\theta \int_0^{\sqrt{n\pi}} |\sin(r^2)| r dr$$
$$= 2\pi \frac{1}{2} \int_0^{n\pi} |\sin(u)| du$$

Or vu que $f_n = |f| \mathbf{1}_{D_n}$ est une suite croissante de fonctions mesurables positives qui converge partout vers f, par le théorème de convergence monotone on a

$$\int |f| d\lambda_2 = \lim_{n \to \infty} \int f_n d\lambda_2 = \sup_{n \in \mathbb{N}} \int f_n d\lambda_2$$

Or $\int f_n d\lambda_2 = \pi \int_0^{n\pi} |\sin(u)| du$ qui n'est pas une suite bornée quand $n \to +\infty$. En effet il suffit de remarquer que $|\sin(u)| \ge \frac{\sqrt{2}}{2}$ pour $u \in [\pi/4 + k\pi, 3\pi/4 + k\pi]$. Donc

$$\int_0^{n\pi} |\sin(u)| du = \sum_{k=0}^{n-1} \int_{k\pi}^{(k+1)\pi} |\sin(u)| du \ge \sum_{k=0}^{n-1} \int_{k\pi + \frac{\pi}{4}}^{(k+1)\pi + \frac{3\pi}{4}} \frac{\sqrt{2}}{2} du \ge n\pi \frac{\sqrt{2}}{4}$$

et $\int |f| d\lambda_2$ n'est pas finie. Donc f n'est pas λ_2 -intégrable sur \mathbb{R}^2 .